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Abstract. Generalizing a classical one-variable theorem of Bohr, we show
that if an n-variable power series has modulus less than 1 in the unit polydisc,
then the sum of the moduli of the terms is less than 1 in the polydisc of radius
1/(3

√
n ).

How large can the sum of the moduli of the terms of a convergent power series
be? Harald Bohr addressed this question in 1914 with the following remarkable
result on power series in one complex variable.

Theorem 1 (Bohr). Suppose that the power series
∑∞

k=0 ckz
k converges for z in

the unit disk, and |∑∞
k=0 ckz

k| < 1 when |z| < 1. Then
∑∞

k=0 |ckzk| < 1 when
|z| < 1/3. Moreover, the radius 1/3 is the best possible.

Bohr’s paper [2], compiled by G. H. Hardy from correspondence, indicates that
Bohr initially obtained the radius 1/6, but this was quickly improved to the sharp
result by M. Riesz, I. Schur, and N. Wiener, independently. Bohr’s paper presents
both his own proof and Wiener’s. Some years later, S. Sidon gave a different
proof [9], which was subsequently rediscovered by M. Tomić [10].

In this note, we formulate a version of Bohr’s theorem in higher dimensions. We
write an n-variable power series

∑
α cαz

α using the standard multi-index notation:
α denotes an n-tuple (α1, α2, . . . , αn) of nonnegative integers, |α| denotes the sum
α1 + · · ·+ αn of its components, α! denotes the product α1!α2! . . . αn! of the facto-
rials of its components, z denotes an n-tuple (z1, . . . , zn) of complex numbers, and
zα denotes the product zα1

1 zα2
2 . . . zαnn .

Let Kn denote the n-dimensional Bohr radius : the largest number such that if∑
α cαz

α converges in the unit polydisc {(z1, . . . , zn) : max1≤j≤n |zj | < 1}, and if
|∑α cαz

α| < 1 in the unit polydisc, then
∑

α |cαzα| < 1 when max1≤j≤n |zj | < Kn.
It is evident from Bohr’s one-dimensional result that Kn ≤ 1/3 for every n.

Surprisingly, Kn tends to 0 when n increases. Our result implies that the decay
rate of Kn is essentially 1/

√
n.

Theorem 2. When n > 1, the n-dimensional Bohr radius Kn satisfies

(1/3)√
n

< Kn <
2
√

logn√
n

.
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Although the theorem gives tight control on the Bohr radius, there is a small
amount of slack that we have not been able to remove.

Open question. What is the exact value of the Bohr radius Kn when n > 1?

There is an analogous concept of a Bohr radius for the unit ball, or more generally
for domains of convergence for power series, that is, for logarithmically convex
Reinhardt domains (for definitions, see, for example, [6, section 2.3]). It is easy to
see that the polydisc constant Kn is a universal lower bound for the Bohr radius of
every multi-circular domain (whether logarithmically convex or not).

Theorem 3. Suppose that the n-variable power series
∑

α cαz
α converges for z in a

complete Reinhardt domain G, and |∑α cαz
α| < 1 when z ∈ G. Then

∑
α |cαzα| <

1 when z is in the scaled domain Kn ·G, where Kn is the Bohr radius for the unit
polydisc.

Indeed, a linear change of variables shows that Theorem 3 holds when G is
any bounded polydisc (with its n radii not necessarily equal to each other). By
definition, a complete Reinhardt domain G is a union of polydiscs centered at the
origin, so G inherits the conclusion of the theorem from the polydisc case.

Proof of Theorem 2. Concerning the lower bound, we will prove more than is stated
in the theorem: namely, if f(z) =

∑
α cαz

α is an analytic function of modulus less
than 1 in the unit polydisc, then

∑
α |cαzα| < 1 in the ball of radius 1/3 cen-

tered at the origin. This ball evidently contains the polydisc {z : max1≤j≤n |zj | <
1/(3

√
n )}, whence Kn ≥ 1/(3

√
n ). (It will become apparent below why strict

inequality obtains.)
We begin by establishing bounds on the coefficients cα. By Cauchy’s estimate,

|cα| ≤ 1 for every α. We improve this estimate for α different from the 0 multi-index
by an argument analogous to one used by Wiener in the single-variable case.

Let ω denote a primitive kth root of unity, and let g be defined by g(z) =

k−1
∑k

j=1 f(ωjz). The modulus of g is again less than 1 in the unit polydisc, and

the Taylor series of g begins c0 +
∑
|α|=k cαz

α+ · · · (because the nonconstant terms

of homogeneity less than k average out). Next define h by composing g with a linear
fractional transformation: h(z) = (g(z)− c0)/(1− c̄0g(z)). The modulus of h is less
than 1 in the unit polydisc, and the Taylor series of h begins

∑
|α|=k bαz

α + · · · ,
where the coefficients of the leading terms (the ones of homogeneity k) satisfy
bα = cα/(1− |c0|2). Since the modulus of h does not exceed 1 in the unit polydisc,
neither does its L2 norm on the unit torus. (We normalize Lebesgue measure on the
unit torus to have total mass 1.) The monomials zα are orthonormal on the unit
torus, so we have (in particular) that

∑
|α|=k |bα|2 ≤ 1, whence (

∑
|α|=k |cα|2)1/2 ≤

(1− |c0|2).
The Cauchy-Schwarz inequality now implies that∑

α

|cαzα| = |c0|+
∞∑
k=1

∑
|α|=k

|cαzα| ≤ |c0|+ (1− |c0|2)
∞∑
k=1

(∑
|α|=k

|zα|2
)1/2

.(1)

But
∑
|α|=k |zα|2 ≤ (

∑n
j=1 |zj|2)k, so if z lies in the ball of radius 1/3, then∑

α

|cαzα| ≤ |c0|+ (1− |c0|2)
∞∑
k=1

1

3k
= |c0|+ 1

2 (1− |c0|2).(2)
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The right-hand side of (2) does not exceed 1, whatever the value of c0. Thus∑
α |cαzα| < 1 in the ball of radius 1/3, and so Kn ≥ 1/(3

√
n ).

If k > 1 and at least two of the coordinates zj are nonzero, then
∑
|α|=k |zα|2 is

strictly less than (
∑n

j=1 |zj|2)k. This means that the set of z for which (2) holds is a

logarithmically convex Reinhardt domain slightly fatter than the ball of radius 1/3.
Hence Kn strictly exceeds 1/(3

√
n ) when n > 1.

We now turn to the right-hand inequality in the theorem. According to the
theory of random trigonometric series in n variables (specifically, [5, Theorem 4
of Chapter 6]), there is a constant C such that for every collection of complex
numbers cα and every integer M greater than 1, there is a choice of plus and minus
signs for which the supremum of the modulus of

∑
|α|=M ±cαzα in the unit polydisc

is no more than C(n
∑
|α|=M |cα|2 logM)1/2. We emphasize that C is independent

of the dimension n and the degree M .
If r is any number less than the Bohr radius Kn, then it follows from this estimate

that

rM
∑
|α|=M

|cα| ≤ C(n
∑
|α|=M

|cα|2 logM)1/2.(3)

In (3), we take cα equal to M !/α!, observing that
∑
|α|=M (M !/α!) = nM on the

left-hand side. On the right-hand side, we crudely estimate
∑
|α|=M (M !/α!)2 ≤

M !
∑
|α|=M (M !/α!) = M !nM . Consequently, we obtain

rM ≤ Cn(1−M)/2(M ! logM)1/2.(4)

Taking Mth roots in (4) and choosing M to be an integer close to logn, we obtain
Kn < C

√
logn/

√
n (with a new constant C).

We now make a rough estimate for C. Since Kn never exceeds 1/3, the upper
bound for Kn stated in the theorem is interesting only when n ≥ 189. If we take
M to be the next integer above logn, then M ≥ 6 for such n. Now [5, Theorem 1
of Chapter 6] with κ = 3 and ρ = (2πM2)n shows the existence of a random
homogeneous polynomial

∑
|α|=M ±(M !/α!)zα whose modulus is bounded on the

unit polydisc in dimension n by 3
(∑

|α|=M (M !/α!)2n log(61/n2πM2)
)1/2

. For the

values of M of interest, 61/n2π < M2, so since logM < M , this upper bound
is less than 6(M !nM+1M)1/2. Arguing as above, we divide by nM and take the
Mth root to estimate the Bohr radius. Using that n1/M < n1/ log n = e, while
M !M ≤ MM5!/64 and M < (logn)(1 + (log 189)−1), we find Kn < 2

√
logn/

√
n

as claimed.

Remark 1. Our method seems unlikely to yield the exact value of the Bohr ra-
dius Kn, but small improvements over Theorem 2 are feasible. For example, the
Schwarz lemma for polydiscs (see [8, Lemma 7.5.6]) implies that

∑
|α|=1 |cα| ≤

(1−|c0|2); and if z is in the polydisc of radius r, then
∑
|α|=k |zα|2 ≤ r2k

∑
|α|=k 1 =

r2k
(
n+k−1

k

)
. Hence we find in place of equation (2) that the Bohr radius is no smaller

than the solution r of the equation r +
∑∞

k=2 r
k
(
n+k−1

k

)1/2
= 1/2.

If we put r = q/
√
n and optimize the value of q, we find (for example) that

Kn exceeds (2/5)/
√
n when n > 1, and Kn exceeds (1/2)/

√
n for sufficiently large n.

Also, it is easy to deduce from inequality (4) the asymptotic upper bound

lim supn→∞Kn

√
n/ logn ≤ 1.
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Remark 2. We thank Professor Henry Helson for bringing to our attention a pa-
per of Bohnenblust and Hille [1] that constructs special M -linear forms with uni-
modular coefficients, the forms being bounded on the unit polydisc in dimen-
sion n by n(M+1)/2. One might hope similarly to construct symmetric M -linear
forms with unimodular coefficients, the forms admitting some weaker upper bound
CMn(M+1)/2 for a constant C. The homogeneous polynomial associated to such a
symmetric form could then be used in our argument above to eliminate the loga-
rithmic factor in the upper bound for the Bohr radius. However, we can prove that
no such symmetric M -linear form can exist.

In fact, the homogeneous polynomial associated to a symmetric M -linear form
with unimodular coefficients can be written

∑
|α|=M cαz

α, where |cα| = M !/α!. The

supremum of such a polynomial dominates its L2 norm on the unit torus, namely

(
∑
|α|=M (M !/α!)2)1/2, which in turn exceeds

(
M+n−1

M

)−1/2
nM by the Cauchy-

Schwarz inequality applied to
∑
|α|=M [1 · (M !/α!)]. When n is fixed, this lower

bound grows faster than nM/Mn/2 as M →∞. Hence the modulus of the polyno-
mial cannot admit an upper bound on the n-dimensional unit polydisc of the form
CMn(M+1)/2 with C independent of n and M .

Remark 3. In [3] (see also [4]), S. Dineen and R. M. Timoney state a result (The-
orem 3.2) that, specialized to polydiscs whose n radii are all equal, says Kn ≤
2/
√
n, a better asymptotic upper bound than the one in our Theorem 2. How-

ever, the supporting Lemma 3.3 in [3] is false: it claims the existence of a sym-
metric M -linear form with unimodular coefficients that admits an upper bound
2M+1[MnM+1 log(1 + 4M)]1/2 + 1 on the unit polydisc in dimension n; but Re-
mark 2 shows that no such form can exist when the dimension n is large. The error
in [3] results from a mistaken assumption that the constants in the estimates of
A. M. Mantero and A. Tonge [7] for norms of random tensors carry over unchanged
to the case of symmetric tensors. Adjustments to the proof in [7] are required in
the symmetric case because the random components of the tensors are no longer
independent random variables: see [11] for a clear exposition of random symmetric
tensors of order three. After appropriate modifications, the method of Dineen and
Timoney does yield that Kn = O(nε−1/2) for an arbitrary positive ε, and this is
good enough for their applications.
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