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PREFACE

The work reported herein was performed by Arnold Engineering Development Center

(AEDC), Air Force Materiel Command (AFMC), under Program Element 65807F. The Air

Force Program Managers were Capt. D. G. Burgess, Capt. H. Martin, and Lt. P. Zeman,

DOT. The work was performed by Calspan Corporation/AEDC Operations, technical services

contractor for the Aerospace Flight Dynamics testing effort at AEDC, AFMC, Arnold Air

Force Base, TN. The work was performed in the Aerospace Systems Facility (ASF) and the

Technology and Development Facility (TDF) under AEDC Project Number DD01, Job

Number 0115. The work was conducted in conjunction with the development of the High

Temperature Wall Laboratory (HTWL) during the period between 1 October 1990 and 16

October 1992. The manuscript was submitted for publication on February 25, 1993.
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1.0 INTRODUCTION

The work reported herein was performed by Arnold Engineering Development Center

(AEDC), Air Force Materiel Command (AFMC), under Program Element 65807F. The Air

Force Program Managers were Capt. D. G. Burgess, Capt. H. Martin, and Lt. P. Zeman,

DOT. The work was performed by Calspan Corporation/AEDC Operations, technical services

contractor for the Aerospace Flight Dynamics testing effort at AEDC, AFMC, Arnold Air

Force Base, TN. The work was performed in the Aerospace Systems Facility (ASF) and the

Technology and Development Facility (TDF) under AEDC Project Number DD01, Job

Number 0115. The work was conducted during the period between 1 October 1990 and 16

October 1992.

Water cooling is used extensively at AEDC to prevent the failure of high-enthalpy arc

heater components at elevated heat loads where cooling by radiation, conduction, and natural

convection from air circulation are ineffective. Other cooling techniques such as the use of

liquid metals, transpiration or film cooling pose their own set of disadvantages or limitations

(Ref. 1) but are certainly possibilities for providing cooling at much more severe heating

conditions where water cooling alone may prove to be inadequate. The current interest is

in exploiting backside water cooling to the limit of its capability, especially for arc heater

nozzles. Such an application requires an understanding of the parameters that affect the cooling

processes and the determination of the limiting point* where the surface fails due to

inadequate cooling.

The purpose of this report is threefold: (1) to review the different processes encountered

in backside water cooling and identify those processes that are desirable for effective cooling

of high-enthalpy facility components; (2) to identify those parameters which affect the cooling

processes of interest and the trend of cooling performance when the parameters are individually

varied; and (3) to present a summary of applicable theoretical, analytical, and experimental

work in surface cooling performed in the past 50 years.

2.0 THE BASIC BOILING CURVE

The characteristic temperature response of a surface cooled by an adjacent fluid as heat

flux is increased was first proposed by Nukiyama (Ref. 2) in 1934. Figure 1 shows the typical

* The limiting point is also identified as the burnout point, boiling crisis, departure from nucleate boiling (DNB), or critical

heat flux (CHF) condition, among other terms by various authors. Terminology for the limiting point will be discussed in

Section 2.0.
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shape of the curve, known as the boiling curve, obtained when heat flux from a cooled surface

is plotted as a function of the liquid superheat (the difference between the surface temperature

and the liquid saturation temperature). At low heat flux (segment A-B in Fig. 1), the surface

temperature is below the saturation temperature of water and similar liquids at or above

atmospheric pressure. Cooling at low heat flux is by pure convection heat transfer and is

fairly well understood. In this region, analytical solutions and experimental correlations (for

more complex flow geometries) have been derived which allow for accurate prediction of

heat transfer in various cooling configurations (see, for example, Chapters 8-9 of Lienhard

(Ref. 3), Chapter 6 of White (Ref. 4), or Kays and Crawford (Ref. 5), Chapters 13-14). As

heat flux from the surface is increased beyond the point where the surface temperature becomes

significantly greater** than the water saturation temperature (point B in Fig. 1), vapor

generation, better known as boiling, occurs from discrete nucleation sites on the surface or

in the bulk fluid depending on the bulk fluid temperature. The region of boiling from discrete

sites is termed nucleate boiling and is shown as segment B-C in Fig. 1.

As the upper limit of nucleate boiling is reached (point C in Fig. 1), a typically undesirable

transition to another form of boiling, known as film boiling, begins. Because the boiling

near the limit of nucleate boiling becomes so violent, numerous vapor bubbles begin to combine

near the surface. Since the vapor has a much lower thermal conductivity than the liquid,

the patches of vapor effectively insulate the surface from the efficient heat transfer to the

liquid as experienced during nucleate boiling. Unlike a temperature-driven system which would

proceed toward point Dt in Fig. 1, a heat flux-driven system such as a high-enthalpy arc

facility would proceed directly toward point Ett. The processes involved when a boiling

system undergoes the path from the limit of nucleate boiling (point C) toward stable film

boiling (point E) are highly unstable, and failure of the surface due to melting occurs in most

cases because the melting temperature of the surface material is lower than the temperature

associated with stable film boiling at point E. The point at which transition to film boiling

begins is often termed the burnout point, even though, in some cases, failure does not occur

(e.g., a temperature-driven system or a surface material with a very high melt temperature).

** A certain degree of liquid superheat is required to establish a flow of heat to create vapor bubbles. The superheat can become

quite large for very smooth surfaces or highly wettable fluids (e.g., refrigerants or liquid metals) which can lead to explosive

boiling (known as bumping) that can lead to structural damage to hardware.

t Transition boiling occurs between the limit of nucleate boiling (point C) and point D, which is known as the Leidenfrost

point. The path between the points is dependent on numerous factors and the heat flux becomes a multivalued function of

the liquid superheat (e.g., see Witte and Lienhard, Ref. 6). This region is inaccessible with a heat flux controlled system.

tt Point E lies on a portion of the boiling curve known as film boiling. Beginning at the Leidenfrost point (point D), heat

transfer across the vapor film adjacent to the surface increases due to radiation from the wall, through the vapor, to the bulk fluid.
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The burnout point is known also as the departure from nucleate boiling (DNB), fast

burnout, and burnout of the first kind in systems which involve a subcooled* liquid. In

saturated liquid boiling systems, another type of burnout occurs (usually at lower heat flux

than subcooled boiling), and the terms slow burnout, dryout, or burnout of the second kind

are used (see Ref. 8). Boiling crisis and critical heat flux condition are used in a general sense

to describe all burnout situations. Because of a lack of standard nomenclature, hereafter

the point at which transition to film boiling begins is designated the burnout point or boiling

crisis, and the peak, ultimate, or maximum heat flux is termed the critical heat flux (CHF),

except where designated differently in the referenced material.

Design of the cooled components of a high-enthalpy facility for safe operation necessitates

the cooling processes to lie to the left of, and well below, point C in Fig. 1. High heat-transfer

coefficients, hence, efficient energy transfer, can be realized when operating in the nucleate

boiling regime rather than the pure convection regime at low-to-moderate coolant pressure

and velocity. Any method used to increase the CHF will provide a factor of safety when

operating well into the fully developed nucleate boiling regime. The determination of the

CHF, along with the shape of the nucleate boiling curve for a given cooling system, remains

one of the most challenging areas of research despite the considerable attention it has received

in the last 50 years (Ref. 9). Complexity of the boiling mechanisms, their unsteady nature,

and the small scale of the heat-transfer processes have hindered the development of theoretical

models and understanding of the phenomena from experimental studies. Moreover, the cooling

flow structure and, hence, the heat-transfer processes vary depending on the heating condition,

fluid properties, and surface geometry. For instance, boiling heat transfer that occurs in a

high-enthalpy facility (subcooled flow, surface boiling optimized for effective wall cooling

over short lengths at high heat loads) can be quite different than that which occurs in a nuclear

reactor (saturated flow with possible slug or annular two-phase flow, bulk boiling optimized

for efficient energy transfer over great lengths at low-to-moderate heat loads).

The objective of a large portion of the experimental work undertaken in recent years in

the area of boiling heat transfer has been to obtain an empirical or semiempirical correlation

for a given cooling configuration and set of test conditions. Many of the correlations have

limited application and cannot be generalized for use in analyzing other cooling configurations

and conditions. The experiments do provide a qualitative evaluation of what parameters affect

the boiling processes of interest and the trend in cooling performance when each of the

* If the cooling fluid bulk temperature is well below the saturation temperature of the fluid, then the fluid is known as subcooled.

Boiling that occurs on a surface adjacent to such a fluid is known as subcooled local or surface boiling. If the bulk temperature

is at or near the saturation temperature, the fluid is known as saturated. Bulk boiling can occur when the fluid is near saturation,

and undergoes various flow regimes in forced flow such as slug, annular, and drop flow. See Collier (Ref. 7) for further discussion

of saturated flows.
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parameters is varied. Optimizing the influential parameters for high-enthalpy facility

component cooling will, in turn, aid in identifying those boiling mechanisms which playa

part in the cooling process of interest. Once the mechanisms are identified, appropriate

analytical models and experimental data may be assembled.

3.0 PARAMETRIC EFFECTS ON THE BOILING CURVE

More than 20 parameters that affect the cooling process have been identified. Some

parameters play an important role from pure convection to boiling crisis while others play

intermittent roles. For instance, velocity has a large effect on cooling performance in the

pure convection regime and at boiling crisis, but it has virtually no effect in the nucleate

boiling regime. Therefore, the contribution of each parameter in each of the three regions

of interest (pure convection, nucleate boiling, boiling crisis) will be discussed. The effects

of various parameters on the microscopic boiling scale (Le., bubble characteristics) have not

been studied in great detail and are presented here for the more influential parameters. The

cooling process is not without parametric distortion; that is, the change in one parameter

causes a change in another parameter. Because of the complexity of the boiling process, many

of the parametric distortions are ill-defined or unknown; therefore, a discussion of these

distortions included here is limited. Several excellent reviews of various parametric effects

on boiling are available and are drawn upon in the following review, most notably: boiling

in general-Tong (Ref. 10), Westwater (Refs. 11 and 12), Rohsenow (Refs. 13 and 14), Addoms

(Ref. 15), and Katto (Ref. 16); convective boiling-Collier (Ref. 7); subcooled flow boiling­

Boyd (Refs. 1 and 17), Bergles (Ref. 8), Macbeth (Ref. 18), Hewitt (Ref. 19), Fiori and Bergles

(Ref. 20), and Hughes (Ref. 21).

3.1 IMPORTANT PARAMETERS AND THEIR EFFECTS ON HEAT TRANSFER

Velocity

Velocity (or mass velocity, G, when combined with the fluid density), as mentioned

previously, plays an intermittent role in the cooling process. Figure 2 (from Kreith and

Summerfield, Ref. 22) illustrates the significant effect of fluid (butanol) velocity as heat flux

from an adjacent surface increases in pure convection heat transfer. However, as transition

to boiling occurs, the effect of velocity diminishes. Clark and Rohsenow (Ref. 23) and Tong

(Ref. 10), among others, have noted that velocity has little or no effect on heat transfer in

vigorous (or fully developed) nucleate boiling. Analysis of boiling processes is divided into

two categories with regard to velocity. Boiling which occurs on a surface or in a fluid initially

at rest where only free-convection motion is present is known as pool boiling. Boiling which

occurs on a surface or in a fluid where the fluid has a bulk (imposed by some external source

such as a pump) and free-convection motion is known as forced-convection boiling or simply

8
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flow boiling. The advantages of flow boiling over pool boiling, when present in a cooling

process, become evident as boiling crisis is approached. McAdams, et al. (Ref. 24) showed

that the CHF could be increased with increasing velocity (Fig. 3). Grace (Ref. 25) generalized

the velocity effect on CHF for various qualities of water liquid/vapor systems as shown in

Fig. 4. An inversion in velocity effectiveness occurs at higher vapor qualities (i.e., saturated

fluid) as illustrated in Fig. 4; however, as will be discussed next, subcooling (vapor qualities

less than zero) provides the largest values of CHF, where increasing mass velocity increases

the CHF for a given degree of subcooling (Fig. 4).

Analyzing the boiling process on a microscopic scale, Abdelmessih, et al. (Ref. 26) found

that both the maximum bubble radius and the bubble lifespan decrease as the liquid velocity

increases (Fig. 5). Gunther (Ref. 27) found, in addition to decreasing the bubble radius and

lifetime, that increasing velocity also decreases the bubble population. Tippets (Ref. 28) found

that when high velocity is combined with large subcoolings, the flow adjacent to a surface

sustaining boiling is an irregular, frothy layer made up of bubbles that grow, slide, and then

collapse along the surface. These bubble characteristics make their detection and measurement

at high flow velocity difficult.

Subcooling

Subcooling, or the amount that the fluid bulk temperature is below the fluid saturation

temperature, has been shown to have an effect similar to velocity on the cooling process.

Researchers have correlated experimental data using a fluid bulk temperature measured at

various locations in a given apparatus. Generally, for larger length-to-diameter ratios where

the bulk fluid may enter at subcooled conditions but reach saturation conditions somewhere

along the heated length, the inlet subcooling (inlet saturation temperature minus the inlet

bulk temperature) is typically used in analyses. For constant diameter configurations and

uniform heating where burnout occurs at or near the exit of the heater, the exit subcooling

(exit saturation temperature minus the exit bulk temperature) is typically used. Some researchers

have used a mean average bulk temperature (average of the inlet and outlet bulk temperatures)

in some instances to define subcooling. In some cases, subcooling is calculated using an inlet

bulk temperature and an exit pressure (exit saturation temperature). For a configuration such

as an arc heater nozzle where nonuniform heating, velocity, and pressure exist along the length

of the nozzle, a local subcooling using a local bulk temperature and saturation temperature

is more appropriate. A discussion of the general subcooling effects follows, with an effort

made to identify the type of subcooling used in the experimental results cited.

McAdams, et al. (Ref. 24) showed that inlet subcooling has a slight effect on heat transfer

in the pure convection and the nucleate boiling regions of the boiling curve because of small

variations in physical properties of the fluid at different temperatures. Subcooling, like velocity,

9
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has its primary advantages at boiling crisis. Van Huff and Rousar (Ref. 29) and Kreith (Ref.

30) indicated that subcooling and velocity are the most important variables on burnout (CHF).

Green, et al. (Ref. 31) measured burnout heat flux for vertical water flow in a rectangular

channel at high pressure and found that increasing both velocity and inlet subcooling increased

the burnout heat flux (Fig. 6). Van Huff and Rousar (Ref. 29) combined velocity and an

average subcooling and derived a linear fit to previous data (Fig. 7). Macbeth (Ref. 18) found

that increasing inlet subcooling increased CHF linearly at constant mass velocity; however,

Katto and Yokoya (Ref. 32) indicated that nonlinear regimes can occur at high mass velocity

at low-to-moderate inlet subcooling, and Lienhard (Ref. 33) found that the maximum heat

flux (CHF) versus degree of subcooling curve "flattens" out for any velocity above a threshold

degree of subcooling. In any event, it is likely that the CHF generally can be increased by

increasing velocity and subcooling.

On a microscopic scale, Gunther's work (Ref. 27) with a flow boiling apparatus found

that the bubble lifetime, surface coverage, and maximum radius decreased with increased

exit subcooling, while the bubble population, which initially decreases, increases for subcoolings

above noc (130°F as shown in Fig. 8). As reported by Westwater (Ref. 12), the motion

pictures of Dew (Ref. 34) confirmed Gunther's findings except bubble population, which

decreased with increased average subcooling. Ibrahim and Judd (Ref. 35) confirmed that

the growth period decreased with increased subcooling and, in addition, found that the waiting

period between bubble generations from an active nucleation site also decreased with increased

subcooling except at low subcooling (below 22°C). It should be noted, however, that Ibrahim

and Judd performed their subcooling studies on a pool boiling apparatus.

Pressure

The primary contribution of pressure on a cooling process is its effect on the saturation

temperature of the fluid, although an interesting inversion of pressure effect occurs at boiling

crisis. Kreith and Summerfield (Ref. 22), who studied flow boiling with butanol, found that

increasing pressure had no effect on heat transfer in the pure convection region, but increased

wall temperature for a given heat flux in the nucleate boiling region, as shown in Fig. 2.

An increase in wall temperature is not particularly beneficial; however, some improvement

to the CHF can be achieved by increasing pressure - up to a point. Cichelli and Bonilla (Ref.

36), while studying pool boiling of organic liquids, found that heat flux increased with

increasing pressure to a maximum value which occurred at about one-third of the critical

pressure (Fig. 9). Addoms (Ref. 15) obtained similar results from pool boiling of water;

however, the maximum peak heat flux varied with heater wire size (Fig. 10). Chang (Ref.

37) suggested a similar maximum CHF in flow boiling that occurs at various pressures between

500 and 1,000 psia, depending on mass velocity and subcooling. Boyd (Ref. 1) suggested

a similar "optimum pressure" as shown in Fig. 11.

10
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Tolubinsky and Kostanchuk (Ref. 38) found that increased pressure decreased the

maximum bubble diameter and the generation frequency (Fig. 12), although the former appears

to remain constant or to begin increasing above a pressure of 8 to 10 bar (120 to 150 psia).

The bubble life span is inversely related to the generation frequency, and, therefore, increases

with increased pressure.

Surface Roughness

Surface roughness plays a complicated role in cooling efficiency and is divided into micro­

roughness (typically smaller than 3 f-tm) and macro-roughness (artificial protrusions such as

knurling, fins, or ribs). Corty and Foust (Ref. 39) performed an extensive micro-roughness

study of various fluids in pool boiling on copper and nickel surfaces. They found that increased

roughness had no effect in the pure convection region, but heat-transfer coefficients were

more than doubled in the nucleate boiling region for the roughest surface when compared

to the smoothest surface (Fig. 13). Brown (Ref. 40), however, found a modest effect of surface

finish in subcooled, low-velocity flow boiling at moderate heat flux (Fig. 14). Berenson (Ref.

41) and later Ramilison and Lienhard (Ref. 42) found a modest surface finish dependence

of boiling burnout (up to approximately 20-percent decrease from smooth to rough surface)

in pool boiling. Other than Weatherhead (Ref. 43), who concluded that CHF is decreased

for very smooth surfaces, other investigators such as Leung, et al. (Ref. 44), Aladyev, et

al. (Ref. 45), and Bergles and Morton (Ref. 46) found little or no effect of surface micro­

roughness on CHF in flow boiling. Bergles and Morton further determined that any

improvements of the burnout heat flux caused by roughness appear to diminish with increasing

velocity and subcooling.

Macro-roughness has been found to have a more pronounced effect on forced flow cooling

efficiency than the micro-roughness previously discussed. Types of macro-roughness used

in forced flow include knurling (Durant, et al., Ref. 47), fins (Kovalev, et al., Ref. 48, and

Shim, et al., Ref. 49), and ribs (Ravigururajan and Bergles, Ref. 50, and Akhanda and James,

Ref. 51). Durant and his team determined that liquid film heat-transfer coefficients of knurled

surfaces were up to 75-percent higher than those of smooth surfaces. Burnout heat flux was

shown to increase by as much as 80 percent (Fig. 15). The types of roughness investigated

by Durant's team were comparatively large (greater than 130 f-tm) over those discussed in

the previous paragraph. Macro-roughness is considered a heat-transfer enhancement technique

rather than a basic parameter affecting heat transfer that would be inherent in a given system.

An excellent review of this enhancement technique is presented by Webb (Ref. 52); however,

most of the surface geometries have been developed for pool boiling only.

11
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Coolant Properties

The understanding of the effects of coolant properties on the heat-transfer processes in

boiling remains limited, even though selection of the fluid is a most important consideration

in boiling applications (Ref. 1). The physical properties of a given fluid such as liquid/vapor

density ratio, latent heat of vaporization, surface tension, heat capacity, and transport

properties (i.e., viscosity and thermal conductivity) may playa role in the cooling process;

however, distinguishing their individual contribution is difficult, and little or no data exist

to ascertain their effect. The properties are related to the pressure and/or the temperature

of the fluid, and the problem of parametric distortion discussed earlier becomes evident.

The limited studies of the microscale mechanisms during boiling have produced conflicting

information as to the effect of latent heat. A number of investigations (Refs. 53-56) have

revealed that latent heat transport accounts for as much as 50 percent of the measured heat

flux in subcooled boiling; however, Forster and Grief (Ref. 57), Brown (Ref. 40), and Plesset

and Prosperetti (Ref. 58) found very little latent heat contribution.

In their work with a pool boiling apparatus, Pike, et al. (Ref. 59) found that increasing

viscosity hindered the onset of boiling (decreased heat-transfer coefficient, increased wall

superheat) and lowered the CHF. As will be discussed under transient operation effects, it

has been proposed that transient operation is viscosity-dependent, thereby contributing to

an observed difference in CHF for the transient and steady-state heating of certain fluids.

Surface tension mayor may not playa beneficial role in the cooling process (Ref. 11).

Fiori and Bergles (Ref. 20) identified several investigations that clearly showed that CHF

decreases with decreasing surface tension. The addition of various amounts of surface-active

agent has been found to increase the heat transfer quite significantly at the expense of reducing

the CHF. For example, Frost and Kippenhan (Ref. 54) showed that for a given wall

temperature, the heat flux increased by approximately 50 percent when a surface-active agent

was added to water, thereby reducing the surface tension (Fig. 16). The reduction of surface

tension (or increased wettability) had a detrimental (decreasing) effect on the CHF, which

agrees with previous results, and is evident in Fig. 16. However, a recent study by Sadasivan

and Lienhard (Ref. 60) showed an increased CHF with the addition of the surfactant sodium

dodecyl sulfate to water. They also noted that bubble diameters were smaller, and the number

of bubbles was much greater with the surfactant present.

Improvements to the CHF have been demonstrated in a limited number of investigations

using binary mixture components. Papaioannou and Koumoutsos (Ref. 61) and Wei and

Maa (Ref. 62) found that polymeric additives to water increased heat-transfer coefficients

and broadened the peak (CHF) of the boiling curve. Tolubinskiy and Matorin (Ref. 63) found
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that for ethanol-water and acetone-water mixtures, the maximum CHF (occurring at 20-percent

ethanol/80-percent water and lO-percent acetone/90-percent water) exceeded the CHF for

water by 30 and 40 percent, respectively (Fig. 17).

A number of coolants such as refrigerants, cryogenics, organics, binary mixtures, liquid

metals, and propellants, in addition to water, have been investigated for various cooling

applications. A propellant is probably not attractive for use as a coolant in a high-enthalpy

facility, except in specific test article configurations. The use of organics is unlikely, except

possibly as a trace additive or in a binary mixture, because of their lower performance

compared to that of water (Ref. 64) and their tendency to decompose at surface temperatures

experienced at nucleate boiling heat flux levels (Ref. 8). Binary mixtures, as discussed

previously, may be an attractive approach to improve the CHF in a water-cooled system.

Liquid metals may be considered in the future as an alternative or complement to water cooling.

Because of their high thermal conductivity, liquid metals have proved useful in convective

cooling applications. Boiling in liquid metals, however, is somewhat confused. Lyon, et al.

(Ref. 65) showed that mercury, for instance, appears to enter film boiling at surprisingly

low wall superheats. And because of the high wettability of liquid metals, high superheats

are normally required to initiate boiling, in some cases having an explosive transition that

can cause structural damage to hardware. A thorough understanding of boiling metals is

needed before they can be applied in high heat flux/cooling situations. Refrigerants such

as Freon® have been used in previous experiments (Refs. 66-69) to simulate water cooling

at high heat flux conditions since the CHF can be achieved at much lower heat flux. Scaling

methods are applied to the simulation to achieve high heat flux/water cooling predictions

(see, for example, Ahmad, Ref. 70). A good example of this "fluid-to-fluid" scaling is

presented by Bergles in Ref. 8. Use of refrigerants for actual cooling in high-enthalpy facilities

is not recommended because of their low thermal conductivity and CHF levels. In addition,

refrigerants suffer from a high wettability problem not unlike that of liquid metals. Similarly,

Powell (Ref. 71) found that low heat-transfer coefficients and CHF levels existed for cryogenics

such as hydrogen, nitrogen, and oxygen which would limit the use of liquified gases as a

heat-transfer fluid. Refrigerants and cryogenics perform well in systems that have relatively

low heat flux requirements and limited space availability.

Wall Material

Although it is considered to be a secondary effect, surface material properties appear

to contribute to cooling efficiency. Early experiments in pool boiling demonstrated a difference

between stainless steel and copper in nonboiling and boiling water (Ref. 72); copper, gold,

and chromium in boiling ethanol (Ref. 73); nickel, tungsten, and Chromel® in boiling water

(Ref. 74); and aluminum, copper, iron, and chrome-plated copper in water and various organic

liquids (Ref. 75), among others. Later, Magrini and Nannei (Ref. 76) found that the heat-
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transfer coefficient appears to be dependent on the thermal activity, .,jQck, for heaters of

different metals above a limiting value of thickness (Fig. 18). Kovalev, et al. (Ref. 77) showed

that copper with coatings of low thermal conductivity tended to increase the degree of wall

superheat over that of clean copper boiling in Freon 113. Cheng and Ragheb (Ref. 78) found

that a greater wall superheat was required for an Inconel® surface than a copper surface

in flow boiling of water (Fig. 19).

Numerous pool boiling experiments have demonstrated that the CHF has a significant

material dependence (Refs. 73-75 and 77) which has not been observed in flow boiling. The

data of Cheng and Ragheb presented in Fig. 19 show the CHF to be equivalent for Inconel

and copper. Jacket, et al. (Ref. 79) found no effect on CHF due to changing wall material

from nickel to Zircaloy® or, later, stainless steel (Ref. 31) in flow boiling of water at high

pressure. Van Huff and Rousar (Ref. 29) identified studies in which various metals had no

effect on CHF, except where the material and coolant were incompatible (additional reactions

occur). Similarly, Vandervort, et al. (Ref. 80) found no difference in CHF for subcooled

forced-convection boiling of water on stainless steel 304, stainless steel 316, nickel 200, brass,

and Inconel 600. However, Vandervort's team suggested that materials with low values of

thermal conductivity, such as stainless steel and Inconel, may exhibit hot spots due to changes

in metal crystalline structure when high wall temperature gradients are present (e.g., high

heat flux in thin wall tubes). Fiori and Bergles (Ref. 20) suggest that materials with high

thermal diffusivity (e.g., aluminum and molybdenum) are expected to have higher CHF.

Wall Thickness

The thickness of the heated wall has been shown to have an effect on the boiling heat

flux, but only below a critical or limiting value of wall thickness. Magrini and Nannei (Ref.

76), for instance, found for saturated pool boiling of water that the limiting value was

approximately 15 p,m (0.0006 in.) for tin and nickel, and negligible for copper and silver.

They also determined the limiting value for zinc to be approximately 70 p,m (0.0028 in.),

although it is not obvious from the data presented in Ref. 76. Del Valle and Kenning (Ref.

81), while studying subcooled water flow at high heat flux, found that thin heated walls (0.08­

to 0.2-mm thickness) had no effect in the nonboiling region, but the rate of nucleate boiling

heat transfer at a given wall superheat increased with increasing wall thickness (Fig. 20). Tippets

(Ref. 28) found that CHF measured for 0.15-mm-thick heater ribbons was approximately

20 percent lower than for 0.25-mm-thick ribbons in saturated water flow. They suggest that

thicker walls can maintain a higher internal heat generation rate per unit volume (q" IV) before

the critical condition is reached than thin walls, since the latter will have a larger temperature

rise at a given heat flux (i.e., q" IV will be greater for a thin-walled tube since the volume

is smaller and the heat flux constant). Fiori and Bergles (Ref. 20), using subcooled water

in a flow boiling apparatus, showed that thicker-walled tubes (2 mm versus 0.3 mm) had
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a CHF up to 58 percent higher than thin-walled tubes. Aladyev, et al. (Ref. 44), however,

found no effect of wall thickness (0.4 mm to 2 mm) on the CHF for water flow boiling.

Geometry

Geometric considerations that have been experimentally shown to have an effect on the

cooling process include the diameter (or hydraulic diameter) of the heater (or channel), heated

length (or LID), the channel cross section and longitudinal configuration, and the flow

orientation (Ref. 1). Because of various applications, past experiments associated with studying

cooling problems have encompassed a wide range of configurations, and one must be cautious

when comparing data from one experiment to another (Ref. 11).

The channel diameter appears to have a varied effect on boiling heat transfer. Schweppe

and Foust (Ref. 82) found that for flow boiling with low-velocity water, the wall superheat

increased (or heat-transfer coefficient decreased) as channel diameter increased from 11.1

mm to 26.6 mm. Collier (Ref. 7) presented subcooled, flow boiling data of Lee and Obertelli

(Ref. 83) and Matzner (Ref. 84) that indicated that CHF increased as channel diameter

increased from 5.6 mm to 37.5 mm at constant subcooling (Fig. 21). Bergles (Ref. 85), however,

found for subcooled flow boiling that CHF increased as channel diameter decreased from

8.4 mm to 0.6 mm (see Fig. 22), although the percentage increase in CHF is somewhat less

when parametric distortion is accounted for (Ref. 20). Similarly, Glushchenko (Ref. 86) found

that CHF increased as the tube diameter was reduced below 2 mm. Van Huff and Rousar

(Ref. 29) found no effect of channel diameter on CHF for subcooled flow boiling with

diameters ranging from 2.7 to 14.9 mm.

Schweppe and Foust (Ref. 82), by varying channel diameter (as previously discussed) and

holding the heated length constant, showed for flow boiling with low-velocity water that the

wall superheat increased as LID decreased below 15 to 20. Bergles (Ref. 85) found for flow

boiling that CHF increased as LID was decreased below 35 (Fig. 23). Similarly, Ornatskiy

(Ref. 87), using subcooled water flowing in circular ducts, found this limiting LID to be

between 20 to 24, and Jens and Lottes (Ref. 88) showed that, for high-pressure, subcooled

flow boiling, changing LID from 110 to 21 had an increasing effect on CHF. Lee and Obertelli

(Ref. 83) found a considerable effect onCHF in subcooled, low-velocity flow for LID values

less than 300 (Fig. 24). Van Huff and Rousar (Ref. 29), however, noted that data acquired

by Aerojet General Corporation for high-velocity, highly subcooled water showed very little

effect of LID (ranging from 13 to 100) on CHF. As Boyd (Ref. 1) points out, since the LID

limit is related directly to the flow development, this limit is not a constant and is related

to the flow parameters and fluid properties.

The geometric considerations thus far discussed have been primarily for circular tube

configurations. External flow over rods (or wires) and rod bundles, jets, internal flow in
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multiple tube (or tube bundle) configurations, annuli, and, to a lesser extent, rectangular

channels have been studied in the past. Internal tube flow and annular flow closely simulate

the cooling configurations encountered in a high-enthalpy arc facility. Becker and Hernborg

(Ref. 89) found for water flowing in an annulus with inlet subcooling and an inner heated

wall (similar to an arc facility nozzle) that CHF data were considerably below those for

comparable flow in a circular tube, and Zenkevich, et al. (Ref. 90) also found a difference

in CHF between annuli and tubes (at the same length and diameter). Barnett (Ref. 91),

however, points out significant difficulties which arise when comparing tube and annulus

data and the definition of an appropriate equivalent diameter. In addition, Alekseev, et al.

(Ref. 92) found significant heated length effects for annuli at much greater lengths than for

circular tubes. Collier (Ref. 7) discusses other characteristics of annular flow of interest.

Specifically, eccentricity of the internal heated wall will tend to reduce the CHF (see also

Ref. 91). In addition, Collier points out that the outer wall in a concentric annulus system

has little or no effect on the CHF for the inner surface.

The channel longitudinal configuration is important to the boiling heat transfer when

significant curves or twists are introduced. Such longitudinal changes have an effect on the

acceleration and turbulence of the coolant flow. A discussion of these types of configurations

is included in the section entitled "Acceleration and Turbulence."

Coolant flow orientation (horizontal, inclined, or vertical) has been shown to have an

effect on cooling efficiency due primarily to buoyancy (gravity) causing stratification of the

liquid/vapor flow (Refs. 93 and 94). The effect of flow orientation, though, diminishes with

increasing subcooling and/or mass velocity, and there appears to be a threshold above which

no effect of orientation has been observed (Refs. 1,7,94, and 95). Zeigarnik, et al. (Ref.

96), for instance, showed that the orientation of the heater plate in a rectangular flow channel

had little effect on the CHF at mass velocities above 4,500 kg/m2 sec (922 lbm/ft2 sec) in

subcooled water flow (Fig. 25). Boyd, et al. (Ref. 97) suggests that the mass velocity limit

is between 3,000 and 4,500 kg/m2 sec (600 to 900 Ibm/ft2 sec), which agrees with the velocity

limit of 4,000 kg/m2 sec (820 Ibm/ft2 sec) found by Merilo (Ref. 94).

Gas Content

A number of experiments in pool boiling (Refs. 59 and 98) and flow boiling (Refs. 21,

24, and 99) have demonstrated the effect of dissolved gases on pure convection and nucleate

boiling heat transfer. McAdams, et al. (Ref. 24), for example, found little effect of dissolved

air on forced-convection heating, but the presence of air tended to reduce the wall superheat

necessary to initiate and sustain nucleate boiling (Fig. 26) which is typical* of data obtained

* Only Jens and Lottes (Ref. 88) found that boiling incipience is not affected by gas content.
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in boiling experiments where the effect of dissolved gas was evaluated. In several experiments,

the effect of dissolved gases was found to diminish in fully developed nucleate boiling (Refs.

24 and 100). This is evident in Fig. 26 at high wall superheat where the data for boiling with

dissolved air match that for degassed boiling.

Data obtained to evaluate the effect of dissolved gases on CHF are contradictory; however,

in experiments where an effect was noted (Refs. 24, 99-101), the presence of dissolved gases

tended to reduce the CHF from that of degassed boiling at the CHF. Fisenko, et al. (Ref.

99) found this reduction to be as high as 23 percent at higher subcoolings. A number of

investigators (e.g., Refs. 21, 31, and 102) identified no appreciable effect of dissolved gases

on CHF. Kalayda, et al. (Ref. 103) found that for water flow boiling, the gas content had

little effect on CHF at pressures below 100 bar, but at higher pressures the CHF was reduced

with increased concentrations of nitrogen.

Other experimental results have been obtained with gassed and degassed coolants. Jens

and Lottes (Ref. 88) and Buchberg, et al. (Ref. 100) in water flow boiling found that the

presence of dissolved nitrogen had a small effect on the pressure loss along the heated wall.

Baranenko, et al. (Ref. 104) found for atmospheric pool boiling of water that the bubble

diameters are larger when degassed water is used rather than gassed water. The presence of

dissolved oxygen can have an additional effect on the heat-transfer process due to oxidation

of surfaces in contact with the coolant. A discussion of this oxidation effect is included in

the following section.

Surface Aging, Deposits, and Coatings

Surface aging* has been shown in the past to increase the wall superheat in pool boiling

(Refs. 11 and 13). Bonilla and Perry (Ref. 73), for instance, found this to be the case on

a chrome-plated copper heater with boiling ethanol. Hughes (Ref. 21) found for subcooled

flow boiling that surface aging tended to decrease the CHF, and Akhanda and James (Ref.

51) found that aging increased the wall superheat in forced-convection boiling of water.

The effect of surface deposits (or fouling) on cooling heat transfer is much more difficult

to ascertain. Epstein (Ref. 105) identified several categories in which fouling (primarily in

forced-flow heat exchangers) can occur. These include precipitation (dissolved substance

deposits), particulates (suspended particle deposits), chemical reaction (surface is not a

* Nucleate boiling on clean surfaces will not reach a steady-state condition for a sizeable period of time (in some cases, an

hour or more) due to several reasons including surface outgassing, chemical reactions, etc. (Ref. 11). This process of reaching

steady-state conditions is known as aging.
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reactant), and corrosion (surface reactions) among others. Collier (Ref. 7) pointed out that

porous deposits on heat-transfer surfaces can influence the CHF both favorably and adversely

(see also Westwater, Ref. 11). Bui and Dhir (Ref. 106), found that the presence of an oxide

increased the CHF in pool boiling of water. Mel'nikov, et al. (Ref. 107), however, found

that CHF decreased nearly 36 percent (at a quality of 0.06) with the presence of a 55-llm

(0.002-in.)-thick ferric-oxide scale as compared to a scale-free surface in forced-convection

boiling of water.

The effect of surface coatings (primarily used for heat-transfer enhancement) on cooling

heat transfer is similar to that of deposits. For example, Zhukov, et al. (Ref. 108) found

that the wall superheat and CHF primarily decreased for an aluminum oxide coating, but

both increased for an enameled surface in Freon pool boiling. As discussed previously in

the wall material effects, Kovalev, et al. (Ref. 77) found that low thermal conductive coatings

increased the wall superheat. Collier (Ref. 7) discusses improvements in heat transfer

demonstrated by several investigators using thin Teflon® films; however, Sadasivan and

Lienhard (Ref. 60) showed that Teflon microcoatings on Nichrome® surfaces reduced the

wettability and, hence, reduced CHF values.

Acceleration and Turbulence

High-enthalpy facility components invariably require coolant flow direction and area

changes which, in turn, cause flow acceleration/deceleration and turbulence. Merte and Clark

(Ref. 109) found for pool boiling of saturated water that increasing the acceleration (g-loading

of 1 to 20) decreased the wall temperature and thereby increased the heat-transfer coefficient

in both the pure convection and nucleate boiling regions, although the effect of acceleration

diminished as the boiling became fully developed. Forced-convection acceleration/turbulence

effects have been studied with curved channels and coiled tubes. Ou, et al. (Ref. 110), studying

a fluorocarbon liquid flowing over a concave-shaped heater, found that for the same flow

velocity and subcooling, both the heat-transfer coefficient and CHF are higher in a curved

channel (concave section) than in a straight channel. Ou's team also found that the increase

in CHF is significant (40-percent higher than straight channel CHF) at higher flow velocities.

Hughes (Ref. 21) found similar results for concave heater surfaces in subcooled Freon 113

flow boiling. Hughes found that the CHF was increased up to 50 percent in concave channels

over straight channels (Fig. 27). Hughes' data, however, illustrate the disadvantages of such

a curved channel configuration. Should the channel be heated entirely, the convex portion

could have a detrimental effect on CHF, as shown in Fig. 27. The CHF for convex surfaces

was as much as 22 percent lower than that for a straight channel. Jensen and Bergles (Ref.

95) found low CHF levels in subcooled R-l13 flow over inside surfaces (convex portion) of

helically coiled tubes, and Bergles (Ref. 8) noted similar results found by other investigators.

Winovich and Carlson (Ref. 111) made use of the advantages of a concave surface in the
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design of an undulating flow channel used in various high-enthalpy facility components. They

found that the undulating channel significantly increased (as much as 100 percent) the CHF

over that of a straight channel (Fig. 28).

Swirl flow devices and other inserts have been used in the past to induce turbulence, thereby

enhancing the cooling heat transfer in applications such as heat exchangers. Kudryavtsev,

et aI. (Ref. 112), used a twisted tape in tubes with saturated water flow boiling to show that

the turbulence generated by density gradients and acceleration from the twisted tapes decreased

the rate of nucleate boiling (increased wall superheat). However, Lopina and Bergles (Ref.

113) found little effect of swirl on the wall superheat for subcooled water flow boiling.

Ornatskiy, et aI. (Ref. 114) demonstrated that induced swirl at the inlet of a concentric annulus

increased the CHF by 10 to 60 percent over unswirled flow for low qualities. Gambill, et

aI. (Ref. 115) found similar results for subcooled water flow boiling. Ornatskiy's team also

showed that the effect of swirl on CHF decreases with increasing pressure (Fig. 29), but

increases with increasing mass velocity (Fig. 30).

Megerlin, et aI. (Ref. 116) augmented the heat transfer in subcooled water flow in tubes

by using brush and mesh inserts, showing that heat-transfer coefficients up to nine times

the coefficients of empty tubes can be obtained. Megerlin and his team found that the inserts

produced very large pressure drops and very large wall superheats. Bergles (Ref. 8) recommends

that the inserts are more suitable for use in single-phase flow heat-transfer augmentation.

As mentioned previously in the discussion of surface roughness effects, macro-roughness

can be used to enhance the heat transfer in forced flow, which probably involves some type

of turbulence mechanism.

Heat Flux Distribution

Variations in heat flux distribution, both axial and circumferential, have been shown to

have an effect on boiling heat transfer, primarily on the CHF. Stein and Begell (Ref. 117),

using subcooled water flowing in internally heated annuli, found no significant effect of an

axial heat flux distribution (cosine shape) on the heat-transfer coefficients. Various researchers,

however, have found significant effects when CHF is approached. Styrikovich, et aI. (Ref.

118), while studying subcooled and saturated water flow in pipes with uniform and linearly

varying heat flux, found that the CHF for a linearly increasing heat flux (along the tube

length) was nearly twice that of a tube with uniform heat flux for low-quality water at 100

atm (mass velocity of 410 Ibm/ft2 sec) and 40 to 50 percent higher at 180 atm. For these

cases, the crisis always occurred at the exit of the heated tube. Styrikovich's team also found

that the CHF for a linearly decreasing heat flux occurred near the inlet of the heated section

and was larger than that with a uniform heat flux, although data errors prevented the increase

from being quantified for the subcooled case. Ornatskiy, et aI. (Ref. 119) found similar results
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for subcooled water flow in annuli with linearly or parabolically increasing heat flux; however,

they found quite different results for other nonuniform heat flux applications. Earlier (Ref.

114), Ornatskiy's team had shown that for a cosinusoidal heat flux distribution on annuli

with subcooled water flow, the CHF can be as much as 80 percent lower than that of a

uniformly heated annulus at similar conditions, and the difference between the nonuniform

heating CHF and uniform heating CHF increased with a decrease in pressure and mass flow

rate. In addition, data presented in Ref. 119 show that, for subcooled water flow in annuli,

the CHF with sinusoidal, exponential, or linearly/parabolically decreasing heat flux is generally

lower than the CHF with uniform heat flux. Similar results were presented by Zenkevich,

et al. (Ref. 90) for subcooled and saturated water flowing in tubes with uniform and

cosinusoidal heat flux distribution, although at higher pressure and subcooled conditions,

the difference appears to diminish or even reverse (Fig. 31). They point out that for complex

nonuniform heat flux applications, the location of the burnout point along the length of

tube or annulus is difficult to predict. Swenson, et al. (Ref. 120) presented some interesting

results concerning saturated water flow in tubes with nonuniform heating along their length.

They showed that the effect of nonuniform heating on DNB (CHF) was similar to that of

Ornatskiy's team (CHF for nonuniform heating is less than CHF for uniform heating);

however, as the region over which the nonuniform heating occurred became very small (i.e.,

a spike heat flux), the CHF for the nonuniform heating case approached and surpassed that

for a uniformly heated tube.

Aladyev, et al. (Ref. 45) demonstrated that nonuniform heating around the perimeter

of a tube with subcooled or saturated water flow can affect the level of CHF. They showed

that the CHF generally occurs where the heat flux is the highest and increases with increasing

unevenness of the heating (characterized by the ratio of the maximum to the average heat

flux). It was also shown that the effect of nonuniform heating around the perimeter decreased

with increasing diameter. Leontiev, et al. (Ref. 121) found, for subcooled water flowing in

horizontal tubes with nonuniform circumferential heating (the ratio of maximum heat flux

to average heat flux was 1.5), that the local values of CHF were somewhat higher than those

of uniformly heated tubes. However, when they averaged the heat flux at the station where

the critical point occurred, the averaged CHF for the nonuniform heating case was much

lower than that for the uniform heating case at subcooled conditions, and the two coincided

at high-quality conditions.

Transient Operation

The effects of transient power (heat flux), flow rate, and pressure operation on heat transfer

have been studied in previous experiments primarily associated with petrochemical and nuclear

power plant safety (e.g., Ref. 122). A major portion of these experiments involved the study

of transient heat flux effects. Ragheb, et al. (Ref. 123), showed that the wall superheat was
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larger for transient boiling (found by quenching a high thermal capacity tube with subcooled,

low-pressure water flow) than steady-state boiling at comparable conditions (Fig. 32). Cheng,

et al. (Ref. 124) had earlier found little difference in wall superheat for transient or steady­

state heating with the same apparatus, although a limitation in the steady-state heating

capability prevented data comparison at heat flux levels approaching the CHF. Kataoka,

et al. (Ref. 125) found an effect on wall superheat similar to the one found by Ragheb's

team for an exponentially increasing heat input to a platinum wire in subcooled forced water

flow.

Several interesting results have been found during studies of the effect of transient heat

flux on CHF. Borishanskiy and Fokin (Ref. 64) and later Tolubinskiy, et al. (Ref. 126) found

that the CHF was equal for transient and steady-state heating in pool and forced-convection

boiling of water with and without subcooling. However, when organic coolants* were used,

it was found that the CHF for steady-state heating was much larger than the CHF for transient

heating (Tolubinskiy's team found this difference to be as large as a factor of 3). Tolubinskiy's

team theorized that the transient operation is viscosity-dependent, and pointed out that the

organics have higher viscosities than that of water, thereby contributing to the difference

in CHF for the transient and steady-state heating of organic fluids. Roemer (Ref. 127) found

no effect of transient heating (time constant of the applied power was approximately 0.1

sec) on CHF for water flow normal to cylindrical test elements as long as the test surfaces

were aged. This result was found to be independent of the test element wall thickness and

the speed of the power transient. The CHF for unaged specimens was as much as 25 percent

lower than the CHF at comparable steady-state conditions. Other researchers have found

results conflicting with those observed by Borishanskiy's team and Tolubinskiy's team for

water. As seen in Fig. 32, the data of Ragheb, et al. (Ref. 123) show the CHF for transient

conditions to be higher than that for steady-state conditions. Kataoka, et al. (Ref. 125) also

found the CHF for transient heating to be greater than that for steady-state heating, and

the difference between the two CHF varied approximately as the -0.6 power of the period

of the exponentially increasing heat flux (Fig. 33).

Fewer experiments have been performed to evaluate the effects of transient flow rate or

pressure operation on boiling heat transfer. Celata, et al. (Ref. 128), using subcooled

Refrigerant-12 as a coolant, found that the difference between the CHF for a flow rate transient

and the CHF for a steady-state flow rate became significant when the time to reach half

of the initial flow became less than approximately twice the flow rate transit time. The CHF

for the transient flow was typically less than the comparable steady-state CHF in these cases.

Celata, et al. (Ref. 129) later evaluated the combined effect of transient flow rate and thermal

power on CHF using flowing subcooled R-12. His team found that the CHF for the transient

* Borishanskiy's team used ethyl alcohol; Tolubinskiy's team used ethanol and acetone.
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cases was approximately equal to that for steady-state conditions when the time to reach

half flow was greater than the transit time. When the time to reach half flow dropped below

the transit time, the CHF for the transient case became greater than the corresponding steady­

state CHF. These trends appeared to be insensitive to the level of pressure or mass flux at

which the runs were made.

Weisman, et aI. (Ref. 130), using depressurization of saturated water to produce boiling

in a nonflowing apparatus, found that the wall superheat for the pressure transients was

significantly higher (as high as a factor of two) than a slow pressure change, although the

data are probably applicable only near boiling incipience. Celata, et al. (Ref. 131) used flowing,

subcooled R-12 to demonstrate that pressure transients tended to reduce the CHF (higher

depressurization rates led to more marked crisis conditions) from that exhibited during

comparable steady-state conditions. Finally, Celata, et aI. (Ref. 122) evaluated the combined

effect of transient pressure, power, and/or flow rate on CHF, although no steady-state data

were obtained for comparison. Celata's team did show the inadequacy of using the available

steady-state CHF correlations in predicting transient power/flow rate/pressure situations.

The data acquired by Celata's team for one-, two-, and three-parameter transients were recently

tabulated in Ref. 132.

Flow Instabilities

Thermal-hydraulic flow instabilities are directly related to the flow system design, and

can seriously affect the value of CHF and the integrity of the flow system (Ref. 17). Podowski

(Ref. 133) identified several instabilities that can appear in two-phase flow and pointed out

that these instabilities can be compounded in some cases. The classes of instabilities include

excursive (Ledinegg), flow regime relaxation, nucleation, density-wave oscillation, pressure

drop oscillation, acoustic, and condensation-induced instabilities. Numerous authors (Refs.

17, 133-136) have provided excellent reviews of these instabilities and their effects; therefore,

a rigorous treatment is excluded here. In general, flow instabilities have a detrimental effect

on boiling heat transfer, primarily a reduction in the CHF (Ref. 14).

According to Podowski (Ref. 133), one of the most predominant of the instabilities is

that classified under density-wave oscillation. It includes flow loop, parallel-channel, and

channel-to-channel instabilities. Flow loops consisting of sections with liquid flow combined

with sections having liquid/vapor flow will have areas with different speeds of propagation

of perturbations. In such a system, a perturbation can induce velocity and pressure oscillations

which may diverge or reach a self-sustained periodic mode. In the latter case, the oscillations

can exceed the thermal limits of the system, thereby reaching a premature CHF. Premature

CHF has also been demonstrated in parallel channels (see Veziroglu and Lee, Ref. 137) that

share a common inlet manifold or have a bypass channel. In configurations where the channels
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have similar operating conditions, the phase of oscillations may be opposite, depending on

the number of channels (Ref. 133).Such oscillations are called channel-to-channel instabilities.

In many cases, the manifolded cooling approach is used in high-enthalpy arc facilities and

may be prone to these types of instabilities when two-phase flow is present. Concepts for

future arc facility nozzle liners include thin walls with structural webbing or ribs on the cooling

channel surface. Such designs may introduce channel-to-channel instabilities between the

cooling passages on the nozzle liners.

Density-wave oscillations frequently combine with other phenomena such as pressure­

drop oscillations to create additional instabilities. For instance, Lowdermilk, et al. (Ref. 101)

and later Aladyev, et al. (Ref. 45) showed that pulsations in flowing subcooled and saturated

water caused by an upstream compressible volume reduced the CHF (from that of a stable

system with no pulsations) as much as 80 percent. Lowdermilk's team found that the flow

instability could be removed by throttling the flow just upstream of the test section (Fig.

34). In addition, Gambill, et al. (Ref. 115) suggested that stability is improved as the test

section pressure drop becomes a smaller fraction of the total system pressure drop, and

restricted flow upstream of the test section for most of their tests. * It appears that the stability

of a cooling apparatus which involves flow boiling can be improved by avoiding compressible

volumes in the flow loop (or throttling the flow between the compressible volume and the

test section) and forcing the test section pressure drop to be a small portion of the total pressure

drop of the system. However, as pointed out by Boyd (Ref. 17), in cases where a compressible

volume is in the test section, or in very long test sections, no amount of throttling can eliminate

or reduce the instability.

Heat Application/Orientation

Although not typically associated with an actual cooling configuration, the method of

heat application when resistive (Joule) heating is used in an experimental simulation can be

important. Ellion (Ref. 138) was one of the first to note an effect of alternating current (a-c)

heating on an experimental boiling apparatus. Ellion found that a 60-cycle/sec a-c power

supply caused a 120-cycle/sec growth and collapse of the bubbles in flowing subcooled water

in an annulus. The problem was rectified by switching to direct current (d-c) power with

the amplitude of the voltage ripple less than 1 percent over the full operational range. Gambill,

et al. (Ref. 115) suspected a similar problem when they used a-c power to electrically heat

a tube with internally flowing subcooled water. Gambill's team calculated that the a-c heating

reduced the CHF as much as 16 percent over that for d-c heating. Tippets (Ref. 28), who

used a-c heating of stainless steel ribbons to study subcooled and saturated water flow boiling,

*Gambill's team restricted the ratio of test section pressure drop to the total system pressure drop to values between 0.045 and DAD.
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found that the CHF for 0.006-in.-thick heater ribbons averaged 20 percent lower than those

for O.OIO-in.-thick ribbons, and in a few cases, the difference was substantially larger. Tippets

theorized that the reduction was due in part to the lesser thermal time constant of the thinner

ribbons coupled with the a-c heating. Although Sadasivan and Lienhard (Ref. 60) showed

a definite difference between a-c and d-c heating on bubble character, they found little effect

on CHF.

Leung, et al. (Ref. 44) found little effect (less than 6-percent difference) of direct and

indirect heating of the interior wall of an annulus with flowing water at subcooled inlet

conditions. As mentioned previously, Collier (Ref. 7) points out that the outer wall in a

concentric annulus system has little or no effect on the CHF for the inner surface. However,

Tong (Ref. 10) suggests that the presence of an unheated wall in the proximity of a critical

point can adversely affect the cooling effectiveness (termed the "unheated wall effect").

Tolubinsky, et al. (Ref. 139) found, for subcooled and saturated water flowing in annuli,

that higher CHF (as much as 30 percent) existed on a heated inner wall than on a heated

outer wall at comparable conditions. Yucel and Kakac (Ref. 140) found that the heater

orientation had an effect on the CHF in a rectangular channel with flowing subcooled water.

Their data indicated that higher CHF is achieved with the heated surface (along one side

of the rectangular channel) facing up rather than facing down. However, they attributed

the difference not to the presence of an unheated wall, but to buoyancy forces moving the

vapor away from the lower surface, resulting in a lower surface temperature and higher CHF

(as opposed to a higher surface temperature and lower CHF on the downward facing heater).

Miscellaneous Effects

Several other parameters have been shown to have an effect on the cooling process, albeit

only a small number of experiments have been performed that demonstrate their effect. Tong

(Ref. 10) suggested that the local enthalpy can impair the CHF, primarily when there is

significant vapor voidage near the heated wall. Such conditions could exist for subcooled*

or saturated flow, even at high velocity. The local enthalpy near the wall, even at upstream

locations, can be excessively high and can cause burnout when significant vapor exists in

the bubble layer near the wall.

Johnson (Ref. 141) pointed out that the presence of an electric field has some effect in

the pure convection region, little effect in the nucleate boiling region, and a significant effect

* Fiori and Bergles (Ref. 20) found, contrary to prior beliefs, that large vapor voidages can exist even in subcooled flow. They

noted that instantaneous void fractions larger than 50 percent were possible at high heat flux (3.1 x 106 to 17.3 X 106 W/m2
),

high exit subcooling (28° to 56°C), and low pressure (less than 6.2 bar).
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at CHF and beyond. Markels and Durfee (Ref. 142) applied a 3,000-v a-c voltage across

the gap of an annulus with the inner wall heated and flowing subcooled water. They found

that the CHF was augmented as much as 40 percent with the applied electric field as opposed

to no field present. No effect of the applied voltage was found where flow instability burnouts

occurred.

Another heat flux augmentation method which has been demonstrated involves the use

of flow and ultrasonic vibration. Although the use of vibration has not resulted in an increase

in CHF for forced-flow configurations (Refs. 7 and 143), an enhancement of the heat transfer

(increase in the heat-transfer coefficient) in the single-phase forced-convection region and

boiling onset has been demonstrated (see Bergles, Ref. 143).

Boyd (Ref. 1) identified two other heat flux enhancement techniques which should be

included here for completeness. As Boyd noted, Inoue and Bankoff (Ref. 144) found that

the destabilization of film boiling (initially subcooled) by the. introduction of a pressure wave

increased the transient heat transfer up to 20 times the steady-state values. Boyd also noted

that Weede and Dhir (Ref. 145) showed that the CHF can be enhanced and its location

controlled using tangential injection of a fluid into the mainstream. This technique probably

takes advantage of the induced swirl and turbulence whose benefits were discussed previously.

3.2 SUMMARY OF PARAMETRIC TRENDS AND IMPLICATIONS

As suggested previously, velocity and subcooling have a primary contribution on cooling

effectiveness, and it appears that a highly subcooled, forced-convection cooling system is

most attractive for high-enthalpy arc facility component cooling. Figure 35 summarizes the

effect of a majority of the parameters and enhancement techniques previously discussed for

a subcooled, forced-convection cooling environment. Those parameters and techniques that

tend to decrease heat transfer or increase wall temperature in the pure convection (nonboiling)

and nucleate boiling regions, respectively, are not necessarily detrimental to the cooling process

unless the wall temperature increase approaches the melt temperature of the material or

contributes to plasticity to the point of structural failure. Probably the most important

contributions to cooling effectiveness and, hence, component survival, are those parameters

and enhancement techniques which tend to increase the CHF. A number of parameters, such

as pressure, can have either a beneficial or a detrimental effect on CHF and must be optimized

for the conditions of interest. However, system limitations and configuration requirements

may limit the degree of optimization that can be achieved.

The implications of requiring a subcooled, forced-convection cooling configuration are

numerous and are not generally conducive to experimental evaluation. As previously discussed,

high velocity, high subcooling, and high pressure tend to decrease bubble diameter and lifespan,
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where

JLb/JLw is between 0 and 40

ReD is between 104 and 5 x 106

Pr is between 0.5 and 200 for 6-percent accuracy

Pr is between 200 and 2,000 for lO-percent accuracy

n 0.11 for Tw > Tb

n 0.25 for Tw < Tb

n = 0 for gases

and where

f = 11(1.82 IOgiO ReD - 1.64)2 for smooth pipes

or from Moody chart for smooth or rough pipes.

Sleicher and Rouse (Ref. 152) recommended a simpler expression with comparable accuracy

for tube flow,

where

a 0.88 - 0.24 / (4 + Pr)

b = (113) + 0.5 e(-O.6Pr)

and

Pr is between 0.1 and 105

ReD is between 104 and 106

5 + 0.015 (ReD)a (Pr)b (6)

The properties in ReD are evaluated at the local film temperature, T f = (Tb + Tw)/2,

and the properties in Pr are evaluated at the local wall temperature.
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Kays and Leung (Ref. 153) solved the turbulent-flow energy equation for constant heat

flux in annuli over wide ranges of Reynolds number, Prandtl number, and annulus radius

ratio. Table 1 in Ref. 153 or Tables 13-3 to 13-5 in Ref. 5 present the results of their

computati0n,s.

For fully developed laminar flow in a circular tube with uniform heat flux, the Nusselt

number and, hence, the heat-transfer coefficient is constant, independent of Reynolds number

and Prandtl number,

NUD = 4.36 constant heat flux, Pr > 0.6 (7)

Treatment of heat transfer in the entry region where velocity and temperature profiles

are not fully developed is discussed in Chapter 8 of Ref. 154.

Pressure drop is also of interest in a cooling process, and the pressure gradient has even

been shown to have an effect on local heat transfer (see Chapter 6 of Ref. 148). Solution

of the equations of motion (using semiempirical shear correlations for the turbulent case

where random fluctuations are important) provides a means of determining the pressure drop

in a flow cooling configuration as outlined by White (Ref. 155). Friction factors as a function

of Reynolds number for flow in smooth or rough circular tubes, annuli, or noncircular ducts

are provided by the Moody chart or expressions such as those presented in Chapter 6 of Ref.

155.

4.2 TRANSITION TO FLOW BOILING, FLOW BOILING, AND CHF:

THEORETICAL MODELS

The theoretical determination of heat transfer, pressure drop, and other flow characteristics

once a cooling process has transitioned into boiling is one of the greatest challenges facing

researchers in two-phase flow. Three currently accepted two-phase flow or "mixture" models

have been developed based on the more dominant flow regimes in two-phase flow. The drift

flux model, which is based on a molecular diffusion model, allows for motion of one phase

relative to the other, and the two are coupled through the use of correlations accounting

for interaction effects. The correlations are difficult to obtain because they require a knowledge

of the average effects of one phase moving relative to the other (see, for example, Ref. 156).

Another theoretical model, the two-fluid model based on the application of the Navier-Stokes

equations, treats the phases separately and requires matching conditions at both solid

boundaries and liquid-vapor interfaces. Difficulty is encountered in obtaining local and

instantaneous mass, momentum, and energy balance equations at the interfaces (see, for

example, Ref. 157). The drift flux model is typically more applicable to flows where the one

phase is dispersed throughout the other. The two-fluid model is generally used for flows where
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the two phases are separated into layers, but has been accepted for use with dispersed flows.

If the motion of the two phases can be assumed to be equivalent (i.e., no-slip condition),

a simplified model, the homogeneous model that treats the mixture as a single-phase fluid,

may be used. The transport properties required for the model are difficult to determine due

to the lack of existing relationships. Although extensive progress in theoretical modeling has

been achieved in recent years, its application has been limited because of the difficulties

described above. A more complete treatment of these models, especially the two-fluid model,

is included in Jones, Ref. 158, and Drew, Ref. 159.

4.3 TRANSITION TO FLOW BOILING: CORRELATIONAL APPROACHES

Early studies in flow boiling suggested that boiling incipience occurred at the intersection

of the pure convection and fully developed nucleate boiling curves, although experimental

data indicated a transition region (McAdams, et al., Ref. 24). Several investigators later derived

heat-transfer expressions for the transition from pure convection to fully developed nucleate

boiling (termed partial nucleate boiling). Kutateladze (Ref. 160) and, later, Forster and Greif

(Ref. 57) suggested correlations based on the pure convection heat flux at the incipience of

boiling and the corresponding value of heat flux in pool boiling. Bergles and Rohsenow (Ref.

161), however, later showed that the transition region between pure convection and nucleate

boiling cannot be based on results from saturated pool boiling, and recommended the following

relation based on an extension of the fully developed nucleate boiling curve,

q"/q"conv = [1 + {(q"B/q"conv) (l - q"B/q"B)}2P12 (8)

where q"B is calculated from a fully developed nucleate boiling correlation at various wall
f

temperatures, and q" Bi is determined from an extension of the fully developed nucleate

boiling curve to the temperature corresponding to the boiling incipient point (see Fig. 37).

In addition, Bergles and Rohsenow developed a relation for heat flux at subcooled boiling

incipience by solving a bubble growth equation graphically to obtain

" - 15 60 1.156 (T - T )2,3/pO,0234q LB - • P w sat

4.4 FLOW BOILING: CORRELATIONAL APPROACHES

(9)

The team of McAdams, et al. (Ref. 24) was one of the earliest boiling research teams

to propose an empirical correlation for fully developed nucleate boiling in subcooled forced

flow. They found for flow in an annulus (heated stainless steel inner wall) that the heat flux

during boiling was independent of coolant velocity (1 to 36 ftlsec), degree of inlet subcooling

(20° to 150°F), pressure (30 to 90 psia), and equivalent diameter (0.17 to 0.48 in.). They

correlated the heat flux data with the expression,

q" = C'LlTsat3.86
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where the value of C' decreased from 0.19 to 0.074 as the concentration of dissolved gas

decreased from 0.30 to 0.06 ml of air at standard conditions per liter of water. Jens and

Lottes (Ref. 88) analyzed high-pressure, high heat flux, flow boiling data obtained by

researchers at UCLA, Purdue, and MIT, and derived the following empirical correlation,

q" = (0.527 eP/ 900 ~Tsat)4 (11)

where p is in pounds per square foot. Jens and Lottes found that the wall temperature during

boiling was independent of the flow velocity, gas content, and degree of subcooling and was

dependent only on heat flux and water pressure. All of the data were obtained for flow inside

round or square tubes made of stainless steel or nickel.

Gilmour (Ref. 162) derived a correlation based on dimensionless groups rather than

temperature difference:

where

O.OOl/(DG/fLe)O.3 (12)

and where p is in pounds per square foot. Although Gilmour substantiated the correlation

with data from various experiments, including several in which water was used, it was noted

that surface material had a significant effect that was not accounted for in the correlation

and that data from experiments involving boiling from wires did not agree well with the

correlation.

Later, Levy (Ref. 163) derived a semiempirical correlation based on the Forster and Zuber

(Ref. 164) bubble growth model and applicable to nucleate boiling with flow as well as pool

boiling, arguing that the fluid velocity normally used exerts a minor effect in comparison

with the local turbulence produced by the bubble motions. For subcooled liquids, Levy

proposed the correlation,

where Ts and Tb are in oR, (J in Btu/ft2, and BL is an empirical constant which is a function

of Qv ifg as shown in Fig. 38. Levy found that the above correlation agreed reasonably well

with data from McAdams, et al., and the UCLA data used by Jens and Lottes discussed

previously.
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About the same time Levy derived his correlation, Forster and Greif (Ref. 57) theorized

that the primary boiling heat-transfer mechanism is the exchange between the vapor and liquid,

and that microconvection in the liquid sublayer beneath the bubbles, bubbles acting as artificial

roughness, and latent heat transport by the bubbles contribute very little. Based on this

argument, they used a Reynold's analogy to derive the following expression for general boiling

of various liquids including water:

where .::lp is the pressure difference in pounds per square foot corresponding to the superheat,

.::lTsat • Reasonable agreement was achieved when the correlation was compared to

experimental data at pressures up to 50 atm with Ksf equal to 0.0012. In the discussion in

Ref. 57, the authors noted that the constant does change for other data.

Shah (Ref. 165) presented a correlation for the generalized prediction of heat transfer

during subcooled boiling in annuli based on earlier work involving tubes (Ref. 166). His

correlation is

q"

where

1 + 46 Bg·5 for Bo < 0.3 X 10-4

(15)

t/Jo = 230 Bg·5

Bo = q" IGifg

for Bo > 0.3 X 10-4

he = nonboiling heat-transfer coefficient

Shah found that the expression correlated 450 representative data points with a mean

deviation of 8.9 percent. The range of test conditions was: reduced pressure from 0.009 to

0.89, inlet subcooling from 2° to 109°C (3.6° to 196°F), mass flux from 278 to 7,774 kg/m2

sec (57 to 1,592 Ibm/ft2 sec), inner tube diameter from 4.5 to 42.2 mm (0.177 to 1.66 in.),

and annular gap from 1 to 6.6 mm (0.039 to 0.26 in.). Various fluids, including water, were

evaluated and heating was from the inner, outer, or both walls of the annuli.

Probably the most widely accepted and verified flow boiling correlation is based on

Rohsenow's (Ref. 167) pool boiling correlation (a Nusselt number derived from the fluid

Prandtl number and a bubble Reynolds number) and proposed by Rohsenow (Ref. 168) in
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1952. The heat-transfer rate associated with forced-convection boiling was found to be

accurately predicted by addition (or superposition) of the pool boiling effect with the pure

forced-convection effect discussed above, i.e.,

q" = q" forced convection + q" pool boiling (16)

where q"forced convection is determined from the expressions presented in the previous discussion

of pure forced-convection correlations and q" pool boiling is determined from

where the properties are evaluated at Tsat (except as noted), r equals 0.33, s equals 1 for water

cooling and 1.7 for other fluids, and Csf equals 0.006 for nickel and brass surfaces and 0.013

for copper and platinum surfaces. * Vachon, et al. (Ref. 169) later presented new values of

rand Csf which account for surface preparation technique as well as liquid-surface

combination. However, their analysis applies only to the linear portion of the nucleate boiling

curve, i.e., that portion which excludes partial nucleate boiling and approaching CHF. In

addition, the effects of subcooling and pressure have not been fully investigated and may

affect the constants presented by Vachon's team. Tong (Ref. 10) pointed out that the

superposition approach may be questionable in light of the experiments of Bergles and

Rohsenow (Ref. 161) which demonstrated the differences in the fluid mechanics of flow boiling

and pool boiling. Bergles and Rohsenow recommended a less restrictive construction approach

for predicting forced-convection boiling when the net vapor generation is relatively small,

which was presented previously in Eq. (8). Bjorge, et al. (Ref. 170) and Stephan and Auracher

(Ref. 171) later presented variations of the superposition approach. For additional approaches,

Guglielmini, et al. (Ref. 172) provided a survey of flow boiling correlations as of 1980, including

boiling incipience and partial nucleate boiling expressions.

Large vapor void fractions have been observed in low-pressure, subcooled flow, possibly

greater than 20 percent on a time-averaged basis and exceeding 50 percent on a local

instantaneous basis (Ref. 20). Such void fractions contribute to the accelerative and static

head components of the pressure gradient along the heated channel. Flow boiling experiments

where pressure drop characteristics were evaluated (e.g., Refs. 22 and 173) generally have

shown that as heat flux increases, the pressure drop decreases until boiling begins, after which

the pressure drop increases (Fig. 39). Boyd (Ref. 174), however, found pressure drops for

high-pressure, moderately subcooled water boiling to be slightly less than single-phase pressure

drops. Boyd noted that CHF occurred before substantial pressure drops occurred. Bergles

*The Rohsenow correlation is valid only for clean, relatively smooth surfaces. Rohsenow (Ref. 167) found that svaried erratically
between 0.8 and 2.0 when the surface was dirty.
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and Dormer (Ref. 173), who performed experiments in subcooled water flow boiling at pressure

below 100 psia, noted that little success had been reported in the general correlation of pressure

drop, and presented graphical correlations for the pressure drops encountered in their

experiments. About the same time, Staub and Walmet (Ref. 175) identified the two regions

before and after the point of significant vapor generation (SNVG) where the effects of void

fraction on pressure drop are different in subcooled flow boling. Recently, Hoffman and

Kline (Ref. 176) and Lu and Jia (Ref. 177) have presented correlations for the prediction

of void fraction and the subsequent gravity, acceleration, and friction pressure drop before

and after SNVG.

4.5 CHF CORRELATIONAL APPROACHES

No theory of subcooled burnout has yet been created for flow boiling (Ref. 33). Complexity

of the boiling mechanisms at the critical point; their unsteady nature, and the small scale

of the heat-transfer processes have hindered the development of theoretical models and

understanding of the phenomena from experimental studies. Moreover, the cooling flow

structure and, hence, the heat-transfer processes vary depending on the heating condition,

fluid properties, and flow/surface geometries as indicated in the previous discussion of

parametric effects. This has led to an excessive number of correlations derived for the prediciton

of CHF in flow boiling. Most of the CHF correlations, not unlike those for fully developed

nucleate boiling, were developed either by the analytical (mechanism-based) approach,

dimensional analysis/similitude-based approach, or optimization oftest data (empirical-based).

4.5.1 Mechanism-Based CHF Correlations

In an attempt to derive analytical relationships among the macroscopic heat-transfer and

flow-field characteristics in a boiling environment, several models describing the mechanisms

on a microscopic scale have been proposed. The mechanisms appear to vary with the degree

of subcooling, and several current approaches divide the subcooled boiling regions into three

areas: (1) high subcooling and mass velocity, (2) moderate subcooling, and (3) low subcooling,

velocity, and pressure (Ref. 8). At high subcooling and mass velocity, it has been proposed

that local wall overheat occurs when high heat flux leads to dryout and a resulting hot spot

beneath a bubble; however, there is little experimental support, and no correlations have

been developed based on this mechanism (Ref. 8). At moderate subcoolings, it has been

proposed that the liquid flow stagnates near the heated wall when the boundary layer separates.

At high heat flux, the stagnant liquid evaporates, resulting in vapor blanketing near the wall

and subsequent burnout. Tong (Ref. 178) presented a correlation based on this mechanism

which agreed reasonably well with data from subcooled, high-pressure water flow in tubes,

annuli, and rod bundles. Purcupile and Gouse (Ref. 179) presented a similarly based correlation

in nondimensional form. Other studies associated with this proposed mechanism include the
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work of Kutateladze and Leont'ev (Ref. 180) and Hancox and Nicoll (Ref. 181). At low

subcooling, velocity, and pressure, Fiori and Bergles (Ref. 20) suggested that dry-out of the

microlayer follows when inadequate quenching of the surface by adjacent liquid occurs after

the passage of a bubble. Subsequent burnout occurs when high surface temperatures prevent

rewetting of the surface. Because of difficulties in defining the flow structure, no correlation

could be obtained by the authors. Lee and Mudawwar (Refs. 182 and 183) proposed a similar

mechanism by suggesting that CHF occurs as a result of the Helmholtz instability at the

microlayer-vapor interface, leading to dry-out of the microlayer. They demonstrated that

their correlation agreed with numerous subcooled (over a wide range of inlet subcoolings)

water data points with a mean deviation of approximately 11 percent. Katto (Refs. 184 and

185) presented a correlation based on this same sublayer dry-out mechanism and suggested

that CHF of subcooled flow boiling has strong similarities to pool boiling CHF. Earlier,

Katto first presented generalized correlations for CHF in subcooled and saturated water flow

in tubes (Refs. 186 and 187) and annuli (Ref. 188) based on the existence of four characteristic

regimes of CHF and the following dimensionless groups:

(18)

where K is determined analytically to account for inlet subcooling. A reasonable

correspondence between the correlations and experimental data was found; however, later

studies (e.g., Ref. 189) identified problems with applying the correlations to the various regimes.

In addition, difficulty was encountered in deriving an expression for CHF at very high mass

velocity and pressure conditions. Nishikawa, et al. (Ref. 190) later correlated high-pressure

tube data at various Freon mass flows with Katto's proposed dimensionless groups using

the boiling length as the characteristic length. Their proposed expressions correlated

approximately 150 data points to within ± 10 percent.

Other proposed mechanisms of general subcooled flow-boiling CHF include liquid flow

blockage models and vapor removal limit/bubble crowding models (Ref. 184). The liquid

flow blockage models assume that the flow of liquid normal to the heated surface is blocked

by the flow of vapor along the surface. The mechanisms proposed by Bergel'son (Ref. 191)

and Smogalev (Ref. 192) involve some form of liquid flow blockage. Griffith (Ref. 193)

presented a dimensionless correlation based on a critical packing of bubbles on the surface.

Griffith proposed that a saturated pool boiling bubble growth term be multiplied by a

correction factor which included velocity and subcooling effects. Approximately 94 percent

of his data were correlated by the expression to within ± 33 percent. Hughes (Ref. 21) suggested

that CHF occurred when a maximum number of nucleation sites available for a surface was

exceeded (i.e., bubble crowding). For Freon flow over a straight surface, he proposed the

correlation:
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where

(19)

ds = 6.12 W Dh / Re7/ 8 (W = 30 in Ref. 21)

and q" CHF is in Btu/in.z sec, Q is in Ibm/in.3, k is in Btu/in. sec of, p, is in Ibm/in. sec,

D h and d are in in., and ex is in in.z/sec. The term K was determined experimentally as

({3fs is approximately equal to 7.94)

Although not given by Hughes, the drag coefficient for a bubble is approximated by

24 6
CD h "'" -- + ---- + 0.4

sp ere Re + -YRe
(see Ref. 148, Chap. 3)

and, for a straight test section, the bubble diameter for the preceding equations is approximated

by

Hughes also presented somewhat cumbersome algebraic expressions for CHF on convex

and concave surfaces (see Ref. 21). Hebel, et aI. (Ref. 194) similarly suggested that CHF

occurs when a limiting vapor removal rate is reached. Other proposed mechanisms included

in this group are those suggested by Yagov and Puzin (Ref. 195) and later, Weisman and

Ileslamlou (Ref. 196). Weisman and Ileslamlou (see also Yang and Weisman, Ref. 197), by

extending the earlier work reported in Ref. 198 based on limited turbulent interchange at

the outer edge of a bubbly layer near a heated surface, proposed the following CHF correlation

for use in highly subcooled flow:

q" CHF = Gl/tib [if (1 - xz) + iy (xz) - 1]
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where

ib = 0.462 (K)O.6 (Re)-O.l (Db/D)o.6 [1 + a (Qf - Qy) / QyJ

i is the average fluid enthalpy

X2 is the average quality in the boundary layer corresponding to a void fraction of 0.82

K = 2.4 (experimentally determined)

-----------......,.....------....._--
buoyancy correction term <>;; 1 for high mass velocity

a 0.87 (1.36 - Vsd + 0.135 0.5 < VSL < 1.36 m/sec

a = 0.135 G < 9.7 X 106 kg/m2 hr, VSL ;::: 1.36 m/sec

a = 0.135 (G/9.7 x 106)~o.3 G > 9.7 X 106 kg/m2hr

where VSL is the superficial velocity of two-phase mixture in m/sec. The correlation requires

iteration on q"CHF since Vll is dependent on q". Andreyev, et al. (Ref. 199) suggested that

CHF that occurs in the transition from bubbly to dispersed-annular flow can be based on

a transition void fraction and recommended an equation for this specific void fraction that

agreed reasonably well with experimental data for subcooled water flow boiling. Povarnin

(Ref. 200) assumed a concept of corresponding states and derived a correlation that agreed

reasonably well with subcooled CHF data for various fluids including water. No further work

has been performed in recent years to substantiate Povarnin's approach. Bergles (Ref. 8)

identified several other proposed mechanism-based correlations for subcooled flow boiling
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CHF. Specifically, Chang (Ref. 37) developed a correlation for CHF based on the idea that

large bubbles are broken up in a hydrodynamic limit, thereby reducing the heat-transfer

coefficient. Thorgerson, et aI., (Ref. 201) proposed a correlation which allowed a burnout

condition as a result of a critical friction factor. His correlation falls somewhat in the class

of expressions based on boundary-layer separation. Both of these correlations have met with

little success in experimental verification or general acceptance.

Probably the most widely verified mechanism-based correlation uses the superposition

approach originally proposed by Rohsenow for fully developed nucleate flow boiling and

extended to CHF prediction by Gambill (Ref. 202):

where

" -["] +["]q CHF - q CHF pool boiling q CHF forced convection (21)

in which

K 0.12 - 0.17, cp is evaluated at T = Tsat - (LlTsub/2)

[q"CHF]forced convection = hconv [(Tw)CHF - T b]

where (Tw)cHF is evaluated with Bernath's (Ref. 203) generalized plot of wall superheat at

burnout (Fig. 40). Gambill found that the correlation predicted burnout for a large number

of experimental data points within a maximum deviation of 40 percent for various fluids

and 17.8 percent for water. The data compared were for numerous fluids and flow

configurations with a range of conditions of velocity: 0 to 174 ft/sec, pressure: 4 to 3,000

psia, subcooling (various locations): 0° to 506°F, acceleration: 1 to 57,000 g, CHF: 0.1 x

106 to 37.4 X 106 Btu/hr ft2. Levy (Ref. 204) presented a similar superposition correlation

for CHF:

where

q"CHF q"p + q"c + q"F (22)
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and

where hf is determined from a pure forced-convection Nusselt number,

hf = Nu kf/D

and (~Tsat) is determined by trial and error from a fully developed nucleate boiling relation

such as Jens and Lottes [Eq. (11)] at q" CHF.

The list of mechanism-based CHF correlations is by no means limited to those presented

here. Those for which the equations are presented appear to be generally applicable to highly

subcooled, water flow boiling which will be encountered in the cooling of high-enthalpy arc

facility components. A statement made by Bergles in Ref. 8, which is applicable here, is that

there are enough "adjustable" constants in any predictive equation to permit an acceptable

correlation of data.

4.5.2 Dimensional Analysis/Similitude-Based CHF Correlations

Although dimensional analyses have been performed by Barnett (Ref. 205), Zenkevich

(Ref. 206), and Kampfenkel (Ref. 207), Glushchenko (Ref. 86) used partial modeling to obtain

a correlation for highly subcooled (greater than 25°C) water flow in tubes and annuli based

on the following dimensionless groups:

K "/. V1 = q CHF lfg Qv avg

Glushchenko proposed the correlation

(23)

which agreed reasonably well with experimental data (80 percent of nearly 200 selected data

points correlated within 25 percent). The data covered the ranges: mass velocity from 500

to 40,000 kg/m2 sec (100 to 8,200 Ibm/ft2 sec), pressure from 4.9 X 105 to 197 X 105 N/m2
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(72 to 2,900 psia), subcooling (location not discussed) from 25° to 250°C (45° to 450°F),

diameter from 2 to 12 mm (0.08 to 0.5 in.), and L/D from 10-20 to 60-120. Ornatskii, et

al. (Ref. 208), later extended the approach to low subcooling and moderate quality water flow.

Probably the most successful approach to similitude analysis of the CHF phenomena

was performed by Ahmad (Ref. 70). The primary impetus for such analyses was the need

for fluid-to-fluid modeling capability. Refrigerants such as Freon have been used in previous

experiments (Refs. 66-69) to simulate water cooling at high heat flux conditions, since the

CHF for Freon can be achieved at much lower heat flux. Scaling methods were necessary

to provide a means of relating the Freon test results to water for high heat flux/water cooling

predictions. Ahmad used classical dimensional analysis to identify 12 independent groups,

of which 6 were eliminated through inductive arguments. Of the remaining six terms, 3 terms

(subcooling number ~i/ifg, liquid/vapor density ratio elev, and L/D) can be independently

satisfied in a controlled experiment (controlled inlet temperature, pressure, and geometry).

The remaining 3 terms (Reynolds number, Weber-Reynolds number, and liquid/vapor viscosity

ratio) are distorted through the liquid and vapor viscosities when the above conditions are

fixed. Ahmad solved this problem of multiple distortion by expressing the remaining 3 terms

as a CHF modeling parameter Y;CHF, and using a compensated distortion model to relate

the terms through two empirical exponents. The final form of the modeling parameter is

written as

(24)

From the Buckingham Pi theorem the dependent parameter, boiling number

(q"CHF/Gifg), is written as follows:

(25)

In addition to the independent parameters identified above, Ahmad included the ratio

of the heated equivalent diameter (4 x flow area/heated perimeter) to the hydraulic diameter

(4 x flow area/wetted perimeter), Dhe/D, for more complex geometries. Ahmad

demonstrated reasonable scaling of subcooled Freon CHF data from Coffield, et al. (Ref.

209) to water CHF using the above approach. Analysis of complex geometries by this method

is limited by the modeling parameter in which the empirical exponents are highly sensitive

to geometric parameters. Use of the correlation for situations other than extrapolation of

refrigerant CHF data to water CHF has been very limited (see, for example, Katto, Ref.

210).
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4.5.3 Empirical-Based CHF Correlations

Probably the most common approach to obtaining a CHF correlation is the curvefitting

of experimental test data, although some confusion exists as to whether or not a correlation

is considered empirical when some or all of the parameters used in the correlation are obtained

from dimensional analysis or limited boiling mechanism analyses. Because most correlations

rely on some form of empiricism, this is probably a moot point, and some overlap of the

mechanism-based, dimensional analysis/similitude-based, and empirical-based approaches

exists. A word of caution about the use of empirical-based correlations: the expressions

typically have been derived for a specific range of experimental conditions, and extrapolation

of a correlation outside the specific range can lead to very large errors.

The earliest empirical CHF correlations appeared in the late 1940's into the early 1950's,

most notably those of McAdams, et al. (Ref. 24), Jens and Lottes (Ref. 88), Gunther (Ref.

27), Buchberg, et al. (Ref. 100), and McGill and Sibbitt (Ref. 211). The correlations proposed

by McAdams' team and Gunther are limited to low pressure and only McGill and Sibbitt

evaluated subcoolings greater than 250°F. All of the correlations are limited to low coolant

velocity (less than 40 fUsec or a mass velocity less than 2,500 lbm/ft sec). Only the Jens

and Lottes correlation included a pressure effect, and none included geometry effects. The

test configurations were typically tubes except those used by McAdams' team (annulus) and

Gunther (metal strip in a rectangular channel).

Weatherhead (Ref. 43) later modified the Jens and Lottes correlation to include the effects

of geometry and latent heat of vaporization. Weatherhead subdivided subcooled flow boiling

into four classifications and accounted for variations in boiling characteristics at low and

high pressure, low and high mass velocity, small and large geometries, and low and high

inlet subcooling. The correlation at high subcooling, however, could only be validated at

low L/D, and Tong (Ref. 10) later found that Weatherhead's correlation did not improve

the accuracy of prediction when other data were evaluated.

A number of empirical correlations appeared in the late 1950's into the mid- 1960's, many

of which are summarized in Ref. 10 (see also Refs. 212 and 213). Most notable are correlations

derived by Bernath (Ref. 203), Janssen, et al. (Refs. 214 and 215), Labuntsov (Ref. 216),

Van Huff and Rousar (Ref. 29), and the United Kingdom Atomic Energy Establishment at

Winfrith, AEEW (Refs. 83, 91,217, and 218). Bernath developed an empirical correlation

based on the premise that at CHF the two-phase flow near the heated surface is highly turbulent

and, therefore, well mixed. Assuming the convective heat transfer through this mixture,

Bernath empirically formulated expressions for the wall superheat and the heat-transfer

coefficient at the critical point (Ref. 219). He later (Ref. 203) refined the correlation for an

extended range of geometric variables, and for water is given as
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where

q"CHF (26)

Tw,CHF = 57 £Up - 54 [p/(p + 15)] - V/4

hCHF = 19,602 [De/(De + Di)] + (slope) V

slope = 86,4/Dg·6 for De < 0.1 ft

slope = 162 + (IS/De) for De ~ 0.1 ft

where hcHF* is in Btu/ft2hroC, Tw,CHF and Tb are in degrees Centigrade, and Di is the heated

perimeter (inner diameter) in feet divided by pi. Bernath found that the correlation predicted

the CHF for nearly 250 forced water flow experiment data points within 16 percent. The

range of parameters for the correlation is: pressure from 23 to 3,000 psia, velocity from 4

to 54 ft/sec, subcooling (various locations) from 0° to 615°F, and hydraulic diameter from

0.143 to 0.66 in. Multiple configurations including tubes, annuli, ducts, and ribbons were

used in the experiments.

Janssen and others (Refs. 214 and 215) developed rather cumbersome design correlations

(presented in Ref. 10) for CHF in subcooled and saturated water flow in tubes and annuli

(inner wall heated). Their correlations are valid over the parameter ranges: pressure from

600 to 1,450 psia, mass velocity from 0.2 to 6.2 Ibm/ft2 hr, and hydraulic diameters from

0.25 to 1.25 in. Labuntsov (Ref. 216) assumed (in the first approximation) that the CHF

is dependent on pressure, velocity, and subcooling, and developed a CHF correlation for

water flow at pressures up to 200 atm. Van Huff and Rousar (Ref. 29) compiled CHF data

on 23 different fluids, including water, during the study of heat flux limits of storable

propellants. They correlated the higher VLlTsub water data as shown in Fig. 7 with the

expression

q" CHF = 5.1 + 0.000860 VLlTsub (27)

where q"CHF is in Btu/in.2sec. Considerable scatter was noted at low VLlTsub (less than 10,000

ft OF/sec), and a significant pressure effect was observed for data obtained in swirl

* Bernath's original work computed hCHF in units of P.c.u./hr ft2°C, where P.c.u. is a pound-centigrade heat unit. His
equations presented here have been converted to Btu rather than P.c.U.
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flow. The correlation is valid over the range of parameters: pressure from 10 to 2,000 psia,

velocity from 7.5 to 205 ft/sec, and bulk fluid temperature (various locations) from 76° to

470°F.

Lee and Obertelli (Ref. 83) at AEEW in the UK satisfactorily correlated earl~ AEEW

subcooled flow boiling CHF data obtained at 1,000 psia using a modified version of an widely

used correlation derived by DeBortoli, et al. (Ref. 220) for higher pressure. Lee and Obertelli

also found that a more general correlation (based on a local conditions hypothesis) under

consideration by AEEW colleagues at about the same period of time (see Barnett, Ref. 221)

provided excellent accuracy in the prediction of over 600 CHF data points obtained at AEEW

over a range of pressure from 560 to 1,600 psia. Macbeth (Ref. 217) and, later, Thompson

and Macbeth (Ref. 218) correlated nearly 4,400 CHF data points (with a root-mean-square

error of 7.5 percent) obtained for water flow boiling in round tubes with expressions based

on Barnett's local condition hypothesis. The hypothesis assumes that the CHF is only a function

of the mass quality at the point of overheating. Macbeth showed that a nearly linear

relationship exists at low mass velocity; therefore, he divided the boiling map into a low­

velocity regime and a high-velocity regime. Figure 41 presents the boundary limits of the

two regimes as identified by Macbeth. The CHF correlations for the two regimes as given

by Thompson and Macbeth are

High-Velocity Regime

q"CHF = {[A' + 0.25D (G x 10-6) Liii] 1 (C' + L)} X 106 (28)

where A' and C' are given in Fig. 42,

Low-Velocity Regime

q" CHF = {[(G x 10-6) (ifg + Liii)] 1[158 DO.! (G x 10-6)°.49 + 4L/D]) X 106 (29)

The terms Land D are expressed in inches. Barnett (Ref. 91) later modified the basic form

of these equations to obtain a correlation more applicable to annulus data

q" CHF = [(A + BLiii) 1 (C + L)] X 106

where

A = 67.45 DHEO.68 (G x 10-6)°.192 {I - 0.744 exp [-6.512 DHy (G x 1O- 6)]}

B = 0.2587 DHE1.26! (G x 10-6)°.817
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C = 185.0 DHy1.415 (G X 10- 6)°.212

The terms L, Do, and DI are expressed in inches. With the correlation above, Barnett

correlated 724 annulus CHF data points with a root-mean-square error of 5.9 percent. Limits

of the correlation are D I from 0.375 to 3.798 in., Do from 0.551 to 4.006 in., L from 24

to 108 in., G X 10- 6 from 0.14 to 6.2 lbm/hr ft2, and Aij from 0 to 412 Btu/Ibm.

A number of empirical CHF correlations developed for subcooled flow boiling have

appeared since the 1960's. Tolubinsky, et al. (Ref. 139), at the Institute of Engineering

Thermophysics, USSR, proposed a design equation for determining CHF in annular channels

with the inner wall heated, noting that because the CHF is affected by the heated surface

shape and dimensions, the CHF data obtained from tube flow cannot be applied to annular

flow. Their expression correlated more than 90 percent of approximately 400 experimental

data points to within ± 25 percent. The correlation, however, requires knowledge of the

CHF during pool boiling conditions for the annular configuration of interest, which may

hinder its usefulness. More recent work performed in the USSR regarding CHF in flow boiling

correlations includes the studies by Levitan and others (Refs. 222 and 223) and the Scientific

Council of the Academy of Sciences of the USSR (Ref. 224). Levitan and his team proposed

the following correlation for subcooled and low-quality water flow in tubes:

q"CHF = [10.3 - 7.8 (p/98) + 1.6 (p/98)2] e-1.5x (G/l,000)1.2{0.25[(p/98) - I) - x}(31)

where q" CHF is in MW/m2, p is in bars, G is in kg/m2 sec, and x is the relative quality at

CHF. The correlation is good for water flow in circular tubes with a diameter within the

range of 4 to 16 mm (0.16 to 0.63 in.). Levitan and his team, along with several other

researchers, later assisted the Scientific Council of the Academy of Sciences of the USSR

(Ref. 224) in compiling tabular data for predicting CHF in uniformly heated, 8-mm (0.31-in.)­

diam tubes. An approximation formula is provided for calculating CHF for tubes whose

diameter is different than 8 mm:

q" CHF = q" CHF,8 (8/D)0.5 (32)

where q" CHF and q" CHF,8 are in MW/m2, q" CHF,8 is the value of q" CHF in the 8-mm-diam

tube, and D is in millimeters. The tabular data are quoted to have a root-mean-square error

of 10 percent. The tabular correlation is limited to the following range of conditions: pressure
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from 29.5 to 196 bar (435 to 2,880 psia), mass velocity from 750 to 5,000 kg/m2 sec (154

to 1,024 Ibm/ft2 sec), subcooling (location not discussed) from 0° to 75°C (0° to 135°F),

diameter from 4 to 16 mm (0.16 to 0.63 in.), and length-to-diameter ratio of 20 or greater.

Doroschuk, et al. (Ref. 222) modified Eq. (31) to include a variable critical pressure such

that the correlation could be used for other fluids.

Bowring (Ref. 225) built upon the work of Thompson and Macbeth (Ref. 218) and

developed a CHF correlation using four basic variables as functions of pressure. He showed

that the correlation predicted approximately 3,800 data points with a root-mean-square error

of 6.96 percent. At about the same time, Becker, et al. (Ref. 226) proposed a CHF correlation

for round tubes (their data were for primarily lO-mm-diam tubes). Their correlation is given as

q" CHF = [G(450 + Ai j)/(40L/D + 156G°.45)] [1.02 - (Pr - 0.54)2] (33)

where q" CHF is in W/cm2, D and L are expressed in meters, Ai j in kJ/kg, Gin kg/m2 sec,

and Pr in bars. The expression correlated over 500 data points to a root-mean-square error

of 5.7 percent, and is good for the following range of conditions: pressure from 120 to 200

bar (1,765 to 2,940 psia), mass velocity from G(p), as given in Fig. 43, to 7,000 kg/m2 sec

(up to 1,435 Ibm/ft2 sec), inlet subcooling from 8° to 272°C (14° to 490°F), heated length

from 2,000 to 5,000 mm (79 to 197 in.), and steam quality from - 0.3 to 0.6, where negative

quality represents a subcooled liquid.-

Knoebel, et al. (Ref. 227) developed a CHF correlation for subcooled water flow based

on previous work performed at the Savannah River Laboratory:

q" CHF = K (1 + 0.0515V) (1 + 0.069ATsub) (34)

where K equals 153,600 for stainless steel heaters. The correlation is limited to low-pressure

water flow (less than 45 psia) and higher subcooling (greater than 45°F). Green and Lawther

(Ref. 228) developed a CHF correlation for high-pressure water as well as Freon,

(35)

where

n = 1 - exp [- 0.0067 (Lsat/D)]

m = 0.1 + exp (- 0.007 (Lsat/D)]
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p = -0.5 {0.15 + exp [-0.007 (Lsat/D)]}

w = - {0.21 + 0.55 exp [- 0.007 (Lsat/D)]}

f (Lsat/D) = 9 x 10- 5 exp {-0.00055 (Lsat/D) + 3.83 exp [-0.00396 (Lsat/D)]}

o = exp { - [0.14 X 108 aN + 0.02 (L/D) Pry]}

Oe = 0.75 exp {-B(L/D) (Vrna/eeMLliy)}

B = 130.5 exp {5.0 exp (-0.02 L/D)}

The expression was quoted to have correlated over 4,250 data points with a root-mean­

square error of less than 10 percent, although the correlation proposed by Thompson and

Macbeth (Ref. 218) predicted the higher pressure data better. The correlation is limited to

reduced pressure less than 0.7, mass fluxes greater than 200 kg/m2 sec (41Ibm/ft2 sec), and

exit quality greater than 0.1.

Shah presented graphical correlations for CHF in subcooled and saturated flows in tubes

(Ref. 229) and annuli (Ref. 230). The tube correlation in functional form is

where

for Y <104

for Y> 105 (36)

The graphical expressions correlated 90 percent of 1,271 tube data points within ± 30

percent. The data include various fluids including water at reduced pressure from 0.0012

to 0.94, mass flux from 6 to 24,300 kg/m2 sec (1.2 to 4,980 Ibm/ft2 sec), and inlet quality

from -3.0 to positive values. The annulus correlation in functional form is

(37)
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where

Dhp = 4 x Flow area/Heated perimeter

The graphical expression correlated 88 percent of 825 annulus data points and one

noncircular geometry data point within ± 30 percent. The data include various fluids including

water at reduced pressure from 0.017 to 0.9, mass flux from 100 to 15,780 kg1m2 sec (20

to 3,230 Ibm/ft2 sec), heated perimeter diameter from 5.3 to 96.3 mm (0.2 to 3.8 in.), gap

width from 0.5 to 11.1 mm (0.02 to 0.44 in.), L/Dhp from 3.7 to 335, and inlet quality from

-3.1 to 0.0.

Finally, Vandervort, et al. (Ref. 80), recently presented an optimized CHF correlation

for subcooled forced convection in tubes based on the five parameters of mass flux, subcooling,

pressure, diameter, and length-to-diameter ratio. The correlation accounts for cross-coupling

of the parameters, and is given as

q" CHF = 17.05 [(G' )0.0732 + 0.2390(D')]

X [(T')0.3060(0') + 0.001730(T') - 0.0353 (D ')]

X [(P / )-0.1289]

x [1 + 0.01213(D')-2.946 + 0.7821(0') + 0.009299(T')]

x [1.540 - 1.280 (LID)']

where

G' = 0.005 + G/105

T' = 5 + ATsub

pI = (0.0333 + p)/3.0

D' = D/O.003

(LID)' = (L/D)/40.0

and q" CHF is in W1m2 , G is in kg/m2-sec, ATsub in degrees Centigrade, p is in MPa, and

D is in meters. The expression correlated 85 percent of over 800 data points within ± 25 percent.
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(41)

Gambill and Lienhard (Ref. 231) presented an interesting semiempirical approach to

determining a practical upper limit to CHF. From kinetic theory they derived an expression

for qmax,max, the highest heat flux that can conceivably be achieved in a phase-transition

process:

q"max,max = Qgifg (RT12'71-)112
(42)

A practical upper limit to heat transfer by phase change was shown to be O.lqmax,max;

however, the method is limited to pressures less than about one-tenth of the critical pressure.

As a point of interest, the highest CHF achieved for any configuration and test condition

was nearly 3.4 x 108 W1m2 (30,000 Btu/ft2 sec) measured by Ornatskii and Vinyarskii (Ref.

232) with a nonuniformly-heated (circumferential), small-bore tube.

4.6 COMPARISON OF FLOW BOILING AND CHF CORRELATIONS

Guglielmini, et al. (Ref. 172) presented an interesting comparison of flow boiling

correlations including boiling incipience and partial nucleate boiling. Most of the boiling

incipience correlations, when compared to representative data, had an accuracy within 30

percent. A quantitative comparison of the partial nucleate boiling expressions could not be

performed because of lack of data. The correlations for fully developed nucleate boiling

generally predicted representative data to within ± 30 percent, although in some cases the

data scatter caused error in the prediction to be as large as 70 percent.

Gambill (Ref. 233) compared ten CHF correlations for water flow in a tube (diameter

of 0.1 in. and length of 20 in.) at a pressure of 600 psia and subcooling of 100°F over a

range of velocity from 10 to 80 ft/sec. Prediction of CHF at the higher velocity using the

correlations varied by nearly a factor of four and by a factor of two at the lower velocity.

Factors of two or greater between correlation predictions at higher mass velocity have also

been noted by Zeigarnik, et al. (Ref. 96) and Boyd (Ref. 17), and the disagreement tends

to worsen as mass velocity increases. It should be reiterated that empirical CHF correlations

typically have been derived for a specific range of experimental conditions, and extrapolation

of a correlation outside the specific range can lead to very large errors. In addition, a given

analytical CHF correlation typically has enough "adjustable" constants in the predictive

equations to permit an acceptable correlation of a specific data set; howev:er, general

application of the correlation to various configurations or test conditions may result in

significant errors.
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5.0 APPLICABLE EXPERIMENTAL APPROACHES AND MEASUREMENT

TECHNIQUES FOR BOILING HEAT TRANSFER

A representative list of flow boiling experiments that have been performed within the

last 50 years is presented in Appendix B, and a few comments are in order. The heating method

of choice is electrical resistance heating (Joule heating). A fewer number of experiments made

use of cartridge heaters, and very few incorporated some other means of heating. The test

sections were primarily tubes, although a significant number of experiments had annular

test sections. Of the more than 175 listed experiments where water was used, 46 had a maximum

heat flux greater than 1 x 107 W/m2 (1,000 Btu/ft2 sec), and only 10 had a heat flux greater

than 5.5 x 107 W/m2 (5,000 Btu/ft2 sec), with most of these performed at a pressure less

than 35 bar (500 psia), subcooling less than 170°C (300°F), or mass velocity less than 30

Mg/m2 sec (6,200 Ibm/ft2 sec). Clearly, data obtained at high heat flux, pressure, subcooling,

and velocity are severely limited.

A number of measurement techniques used in these and other experiments are worth

reviewing. One of the most important measurements in a boiling experiment is surface

temperature. Placement of a discrete, intrusive temperature measuring device such as a

thermocouple on the surface at the fluid interface may disrupt the flow field, causing large

errors in the temperature measurement. For this reason, backside wall temperature is typically

measured and used to estimate surface/fluid interface temperature through the use of an

analytical temperature distribution. On an electrically heated surface, the temperature

measurement with a thermocouple (which provides temperature from millivolt changes) is

further complicated by voltage drop in the test specimen due to current flow. Hughes (Ref.

21) incorporated a single wire junction at the surface and the two-wire thermocouple junction

formed 0.8 mm (1/32 in.) from the surface, thereby preventing any extraneous voltages due

to voltage drop between the thermocouple leads. Numerous researchers have used thin sheets

of mica or other electrical insulating material to isolate the thermocouple from the current­

carrying surface. One of the most attractive approaches as suggested by Dutton and Lee (Ref.

234) involves the use of a three-wire thermocouple. The thermocouple circuit is "balanced"

by applying and subsequently reversing the current and nullifying the voltage drop with a

voltage-dividing potentiometer, the net effect being the same as welding all three wires to

the location of the middle wire.

Burnout detectors have been used by a number of investigators (e.g., Refs. 21,235, and

236) to protect the test sections from destruction as the CHF is approached. However, as

pointed out previously, Hughes (Ref. 21) noted that the speed and intensity of the transition

to film boiling (i.e., burnout) was observed to increase with increasing velocity and subcooling,

and in some cases burnout has occurred instantaneously (Ref. 147). Therefore, the effectiveness

of a burnout detector to protect the test section in highly subcooled, high-velocity, high­

pressure flow is questionable.
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Gunther (Ref. 27) was one of the earliest to perform a detailed photographic study of

subcooled flow boiling at higher heat flux, although pressure was limited to below 11.3 bar

(164 psia) and velocity limited to below 12 m/sec (40 ft/sec). His photographic system was

capable of 20,000 frames/sec and gave a resolution of bubbles as small as 0.1 mm (0.004

in.) diameter. Fiori and Bergles (Ref. 20) used several photographic techniques, including

high-speed photographs, movies, and video. They successfully identified cyclic variations

in surface temperature from variations in the flow structure by simultaneously recording surface

temperature and high-speed photographs of a specific surface location. Ram, et al. (Ref.

237), although studying bubble generation in pool boiling of water, analyzed intensity

fluctuations registered by a photomultiplier tube to determine bubble size and growth cycle.

Lineberger (Ref. 238) used a dual-frequency sound field to determine bubble size in pool

boiling of water. Brown (Ref. 40) used reflected light from bubbles detected by a light­

dependent resistor to identify the presence of first vapor when boiling begins.

Several approaches have been used to determine the vapor thickness or void fraction near

the heated surface in local boiling. Costello (Ref. 239) measured the number of beta particles

emitted from a vial containing radioactive strontium 90 to determine the vapor thickness

in a low-velocity, water flow boiling apparatus with an annular test section. Rogers, et al.

(Ref. 240) used a traversing gamma-ray densitometer (cobalt-57 source) to measure void

fractions in water flow boiling in an annulus. Similar densitometers have been used by

Buchberg, et al. (Ref. 100) and Edelman, et al. (Ref. 241) to measure the void fraction of

subcooled water flow in tubes. Jiji and Clark (Ref. 242) used a specially developed traversing

thermocouple probe to measure bubble boundary-layer thickness and temperature profiles

in low-velocity, subcooled water flow. Later, Stefanovic, et al. (Ref. 243) used a similar probe

to measure temperature fluctuations within a superheated boundary layer adjacent to a heated

annular wall in forced water flow.

The measurement of acoustic noise due to boiling has permitted various researchers to

study hydrodynamic instabilities in heated channels and to diagnose the different regimes

of boiling. Pressure transducers have typically been incorporated in an experimental apparatus

where flow oscillations are to be studied (e.g., Refs. 244 and 245), although Romberg and

Harris (Ref. 246) used piezoelectric accelerometers to measure vibrations associated with

parallel channel, density wave, and acoustic oscillations in a flow boiling loop. Several

investigations have been performed to show that information on the boiling mode can be

ascertained from boiling noise (Refs. 247-251). Hydrophones (i.e., transducers) with

piezoceramic sensing elements have typically been used to measure the acoustic emissions

from boiling.

A number of important considerations can be learned from the success or failure of

previous experiments and associated analyses . Westwater (Ref. 11) pointed out that one basic
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method of proving the correctness of instrumentation in these types of experiments which

is widely overlooked is a simple energy balance of the system. Accuracy of the all-important

wall temperature can be severely affected by overlooked items such as conduction effects

or temperature-dependent material properties. Flow loop layout can affect the hydrodynamic

stability of the system, which can seriously degrade the heat-transfer and CHF measurements.

Gas content and cooling fluid impurities have been shown to have an effect on boiling heat

transfer and CHF, yet in many experiments these have been ignored or have not been

adequately quantified. As shown in Appendix B, many researchers fail to present basic test

condition values such that their data may be used in other analyses. In many cases, the location

in which the subcooling and pressure are measured or determined is not given. Finally, the

geometric scale of a heater surface has been shown to be very important. Specifically, Bakhru

and Lienhard (Ref. 252) demonstrated that the hydrodynamic processes that give rise to

burnout cease to occur when the Laplace number*, R I , is reduced below a value on the order

of 0.1 (see also Refs. 33 and 253). Generalized correlations based on data acquired from

a configuration with a Laplace number below this value may have very large errors when

applied to scaled-up or different configurations.

6.0 SUMMARY

An extensive review of backside water cooling processes that are applicable to high-enthalpy

facility components has been conducted. The processes can be identified on the basic boiling

curve which, for the configurations of interest, includes the pure convection regime, the

nucleate boiling regime, and the boiling crisis point where the CHF occurs. More than 20

parameters have been shown to affect various portions of the boiling curve, and optimum

cooling (and greater CHF) occurs at high subcooling and high mass velocity. The primary

parameters which affect steady-state boiling heat transfer are pressure, mass velocity,

subcooling, heater diameter, and heater length (Ref. 7); however, other parameters have been

experimentally shown to have significant effects. Several heat-transfer enhancement techniques

have also been reported.

Because of the complexity, the unsteady nature, and the small scale of the flow boiling

processes, no general theory has been developed. Reasonable confidence in correlating heat­

transfer data in the pure convection and nucleate boiling regimes is shown. The more recent

pure forced-convection correlations of Petukhov [Eq. (5)] for turbulent flow in a tube and

Kays and Leung (Ref. 153) for turbulent flow in an annulus are probably the most useful

for the nonboiling regime. Bergles and Rohsenow's partial nucleate boiling expression [Eq.

(8)] best correlates the transition from pure convection to fully developed nucleate boiling,

* The Laplace number is defined as R' = r[g(QI' - Qv)/0"]1/2, where r is a characteristic radius dimension of the heater (see

Ref. 252).
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and the widely accepted Rohsenow relation [Eqs. (16) and (17)] ranks among the best

correlations for fully developed nucleate boiling in forced flow. Considerable disagreement

between the large number of analytical and empirical CHF correlations currently exists.

Moreover, because the CHF correlations are sensitive to the range of conditions for the data

used, no single correlation can be recommended. Those CHF correlations developed with

data from high mass velocity, pressure, subcooling, and heat flux experiments using water

as the coolant are more appropriate for use in the design of high-enthalpy arc heater

components. Recommended correlations in this group include Bernath (Ref. 203), Van Huff

and Rousar (Ref. 29), Yagov and Puzin (Ref. 195), Levy (Ref. 204), Labuntsov (Ref. 216),

and Vandervort, et al. (Ref. 80). Additional correlation development will be required to account

for factors such as acceleration or transient effects at these extreme conditions.

Very few data exist that were obtained at high heat flux, high subcooling, high mass

velocity, and high pressure, which are optimum for cooling high-enthalpy facility components.

Finally, numerous shortcomings of previous experiments have been identified, and care must

be taken in any experimental program where boiling heat-transfer data are acquired for future

analysis and correlation.
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o Addoms, Water, at 14.7, 283, 770, 1,205, 1,985,2,465 psia (Ref. 15)

+ Cichelli-Bonilla, Benzene, at 14.7, 55, 115,265,515 psia (Ref. 36)

v Cichelli-Bonilla, n-Heptane, at 6.6, 14.7,50, 115,215 psia (Ref. 36)

• Piret-Isbin, Water, Carbon Tetrachloride, Iso-propyl and
n-Butyl Alcohol, at 14.7 psia (Ref. 260)

x Cichelli-Bonilla, n-Pentane, at 22,60, 115,215,315 psia (Ref. 36)

6. Cichelli-Bonilla, Ethanol, at 14.7, 55, 115,265,515 psia (Ref. 36)
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from Ref. 226

7,000

1,000

6,000

u 5,000QI
VI

N

E-.
01
~

4,000
c:i
>....
'0 Mass Velocity Range
0 3,000
QI

>
VI
VI
IV

2,0002

200180160
0 .....1

120 140

Pressure, p, bar

Figure 43. Mass velocity range for the Becker burnout correlation.
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APPENDIX A

Table of Conversion Factors

Multiply By To Obtain Parameter

ft2 9.290E-02 m2 A

ft/sec 3.048E-01 m/sec V

ft 3.048E-01 m D,L

Btu/lbmoF 4.187E+00 kJ/kgOC cp

Btu/ft2hr 3.155E+00 W/m2 q",CHF,q/A

in. 2.540E + 01 mm d

Ibm/ft2hr 1.356E-03 kg/m2sec G

ft/hr2 2.352E-08 m/sec2 g,a

Btu/ft2hroF 5.679E+00 W/m2OC h

Btu/Ibm 2.326E+00 kJ/kg i,ifg

Btu/ft hroF 1.731E+00 W/moC k

psia 6.895E-02 bar p

psia 6.895E+03 Pa p

OF (differential) 5.556E-01 °C, K LlTsub , LlTsat

ft2/hr 2.581E-05 m2/sec ex

lbm/ft hr 4.134E-04 kg/m sec If.

Ibm/ft3 1.602E+01 kg/m3 e

lbflft 1.459E + 01 N/m a

Ibflft2 4.788E+01 N/m2 r

°C = 5/9 (OF - 32)

K = °C + 273.15
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APPENDIX B
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Concluded

Couents

IfollOlHX'l to previous elll)t
Istraiqht 1 curved HOlt

:binary.ixtures

Ichel.tting agent effect
Icentrifugal farceeHect

:hMed It unhMed geo.etries
lcoiledwires
lliany pretature failures
Isurface enhanceJIents
Ivoid fracUtrI r.easurMent

ltrMlsitioo. boiling
:trans It 5.5. hl!ating,press,f1ow
Ivoid fraetlleas, Wlheatedtube
tvapOt" characterisHcs leasured
:eccentrieityeffects

ltransient 1 5,5. heating,

:finnrMllt unfiMed geoAetries

GI9J I
"g/1l2s I

.1

.5-2

,58-1.1

------ I -_.-.-/-'--.---

.0t:h085 :vapor probe Ifasurelents"

:~=j~ ;voidfraCtion.,!asuruenfs"

, ,

,fXtj--.7 a,eater geo.etry varied

J ICHF detector
.4-1.6 IHOIftransients
.2.-1.2 ,

.Q4-b.65 I

4.4-41 I

,5-3

9.3-32
,2-,35

4.4-31.5
.1-1.5

1-5,9

.1-.2 I
1-3,7 ,

.05-.2 :falling fillS il150
7-20 I

0-.26 :
,2-,7. ,

2 J

.2-2.25 :

.017-.38 I
1.56-B.S5 1

,01-1
1-1.5

.0018-.12 lradio11 HOIf thtu Ifire aesh

.4·1.3 :transition evaluation

.82-1.29 :void fraction Hasurelellt

1-1.5
4.4-32

.016-.045 .~.72

,016-.045 .25-,72

.013-1.52 ,

0-2,5 ,

.007-.02 ,

0-,035

I ,2-1.4

:
.1.-1.4 I

0-.37 :
0-2 1

.15-.. :
0-.. :
,000-,On ,

0-.17
0-5,3

0-1.5
?

0-42 ,

0-1.7 , 2,5-8.5

0-,12 :
0-42 :

,01-.045 I
.01-.045 I

0-1.4 : H
.2-1.3 :

,01-.15 :

,02-.06
.03-.2~

1,5-4,25 :
(hi

0-10.1 :
,006-,J5 :

0-.4 :
0-5,5
.03-.01l5 :
0-,45

? i

0-.039 ,

.2-3 I .15-1
? I

0-1l.3 ,

0-,5 : .01-.4
10-100 :

0-.028 :

0-.12 I
0-; ,

.008-.02. :

PAAA"ETER RAta
qdot (6l I Vel
tIW/sq-1 : ,Is

0-.045 ,

1.26-3.J6 :
.022-,055 I

.ooas-.034 :
0-11 :
,ON,3 :
0-,12 ,

- 13,7:f-S,7

1.1
98.1-1.7

?

2,4-5,7

I
I.
1-5

5,8-13.8
1-20
1-7,9

98-147

12.5-27.5
1,5

I
1,2
1-7,3

10-2J4

?

1.5-4
1,8-2,4

68-151
7,7

1.3-2.8

12.5-270'

1."
2,.-4

pr=O.08
I
1(10-140

2,4-3.1

~tiCil I other I dTsub LID Presl
, :deq-CC2J C4J I bar

--1-1--- -- --

Press llililNmun IStability ITransient
Drop : HtFlux ; I

-1---- --1--

EFFECTS TU1lIED

dTsub PrK5 I Vel b'nout: 61S : Acctl LID: wall ~ Wall
(2) : [3) crit pt I Contnt : [4] 1 HaU [5] Th~

-- - - ---1--:- -1- -- ---- -:-1--1--

\£AT!"';

Cod,~5 I Eitel: Eltd : L i~id I Steil,
nrN Htr: RMis I I1etal I FlUld

~ert II I I : II 0 L 1 ?

vert dc I x x : 11 1/)-40 A: 1650 ?

vert dc: II I: I II ? : 71 ?

vert x? I II II X II I I I( I 42-120 I I 75-94 1.1-3.5
vert : de I II II : ll: II ? I - 1
vert? 1 dc t II II X X t J: x I l! 40-135 E : 2-25 6, 12
VPl"t : II I II 1 1 II I l! ll? :8HJ6? 1
vert I dc : II J II : 1 J : II 10-75 I I 46.4 10-33
vert 1 ae : II x X II I : ll: 50-80 ? 1 5(1 11-24

hol"lZ I de 1 I( : I 0 I I SOO 6
.ert : II : II II II I: I: 2.2-10.8 I I 25 7-8.1

: vert de: II II II II I II II : It 60-110 I 1 B5-ISB 1.38,3.45
vert : de : II x :: : : II ? I 80.7 1

heriz : it : II I( II :: II I: 4-10 t: 27-92 1.1, l.~

I horiz I de I II II : II I I J: 1~ I 149 4.5
: vert : 11 : II II Xli: I 1 1 r 5-51 I: 5.2 I 1.1-12
I vert 1 II I x X II X : .. : I II I II I 0-23 J I 153-299 : 12.5-21.~

horn: : x : I :: II I ? I 3(\6 : ?

t vert I de. II l X :: II ll: 20-J1 I' 124 I 1.8-2.5 .0"'14
hariz I dc I x t: : ll: 0 r 23.4 : 10.3 0-.32

I x: ? I x : x x II x : I : /)-160 f I 232
: I hcriz I dc I x x : l : 1 0-74 E: 96.6
I I hcriz : de x x x x I x : I( 1 1 13-46 I I .os-.~

I : vert I 11 I x l XliI I( : : 1[ 10-23 I I 153-199

: : hariz : dt:: II x I: I( : 1 183 E: 96.6
: : horiz : dc : x II I: lupto 1l-.95 E 1 444
: I horll : de ll: 1 : lup to .-.9 E : -444
I 1 hariz , : I l! Xli: x I : .5-38 L I I
t 1 hariz ll?: II II It:xl? :?

vert de.: II II ll: '20-37 I: 121

: ,
I

: .
:

I :

I t

t horlZ : ac l K x: ll: x I 5--30 I 13.8 : I 0--.55
: horiz 1 de Ill: t 188 1 96.6 : 16.6 0-36
I vert : ae : II II xliI x: IX"-.1to.7 I l~ : 8-160 0-2.4?
: circUllfr I II II II X X X r : II : 35-50 L 1-4 1 1-1.7 0-1.65 1
I vert : II dc: II II J X J Ix=-.04to.7 l 10.4 : 1.5, 5 0-.33 I .05-.5 I
: vert 1 dc: II II II II 1 : 0-8 1 10.4 : 1.5, S 0-.33 1 .05-.5 t

1 : vert I II I II X II X X I II 10-23 I 153,298 I 12-27.7 .026-.12: .-4-1.6 Itrans fl: 5.5. pa-er,pre5!i,flDM
1 : : : vert II I 1 x II II II I II II ll:" -: 1 0-.55: I :transient incl. fib boiling
: I 1 x: vert I ac,dc: II x x I II X I /)-~ L 33-267 I 1 0-7.5 : .1-3 lacceleratioo, .ttibility elfct

x : - .~----{--;-Ji;-:-;---1;;-,:-;--+----:-;....0.'-;-::-.-+--+....,...+--=.-;---+--+-+--+:-.-+-+--+--1,---+---+---+-::-,---';-''-;'':'l:3-"'36'-?-I,...;..;;"'~:'::;-1".3....3..;.;"TI....U;..·-+o-n,;----';:-,"T13":r,-;---+----+;~:~~~~.;:!J~~t,.I~:u~I~~~~'~~:~:·~~~~i:~:b~"~I
xl: : 1 vert? 1 dc I x X II I( II II II I I 0-150 E 1-100 l 1-22 0-104 : 5-50 I
II I I I : vert J dc ] II II X II X X II II II l I( II 1 10.5--142 E 1.66-49. I 1.31-22.8 0-123.8 : 3-42.7 Ivoid fradion leasurHent

: I : : :: 1
I: : I I I I : I

, I

, ,

, :
:

,
, :

I, :

, ,

:, ,

, ,

· :, ,
, :

·:
• I

:: 1 x vert I de x x IiIS-IS ? 52
I : 1 II l 1 : Inot defined : x x x X II X I : : 0-85 ? ,0=8 M

: I x I : 1 :notdefined : ? x x l x: 1 ? Igap=12.
: : vert de. x x II X I x I : 1 0-75 ? 1 3-100

: :: vert I de II II II X I 1 44-75 I 1 39-68
II : x I I vert 1[ Ill[ 11 X X I : : 32-1511 L : 7

: I: vert : dc I x x x : : 1 Io-SO I I 273
: t l( : hariz?)( I 1 x t x I II: ? :?
: :: vert I .? : x x x 11 I I 1 5-40 I I 6.25

If x 1 I 1 hariz : x: x x : • Ill:5-12? J I 72.3

"

I.
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'.

cro.AHT
TreiltHflt [1] I Flow

dis Idei Idu :deg :gas luntr Inwtd IlKienhtioo
--: --1-1-·:-: ~-: - 1-----

I : : : : : x: vert 1 de:: x x x : 1 1 I 1 I 0 I as
11: I 1 I:: vert 1 dc: 1 x MIl x I : I 11 / 78-83 I 167,169

: x: : x : 1 hariz : x I I xl: :: I: 186 I 116
I : 1 l 1 hcriz .:: x : x: I ,'" x : 0 I -4.8
: :: :: I horiz I ilC X)l Xl[:: : 1 1 59-1-40 L SO

: :: 1 1 : hOrlz,vtrt I ? x X : I I x: I? ?

I I:: horiz,vert I x x x / I :: x 1 92-139 L 7,625
1 I: x: vert? .1I. / x: 1 100

:: 1 / : vert I • x 1[ • 1 : x :23 I 307
I I 1 : 1 1 vert : IC x x xII I 10-30 1 40
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: InconelbOO : 'liter
55 I wat.,.

: cooper : water
: copper I Freon 113

55 : Freon 113
: SSt copper tliq mtrogl!l'l

55 : heptane

? : wattr?

55 'R-12
55 : Freon 113

cupronichl .att(
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92 I Uof IL
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921Argonneo''-,UIL

-1---

Yr ~ (i'glniuticn,
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90 : Colullliil U.
91: Uofl1ini
91: India
91 I f<I AIIl U.

91 : 6eruny

91 I Ihly
91 I UofWI
91 tAl St UtEPRI
91 tArgenhna

87: OxfordU
871 USSR

87: Uoi Othilia
87: JiPan

58 I UoJ '"
88/Nleo1l,Can
88 : Cin,Tai"in
se I Uof CA
BBI France
8a: China

92 I Purdue
921 RPI
92: RPI ,

1 :
: I

9S I ~gentina

88 I f<I MH U.
89 lMotorolJ,UHN
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69:f<liWlU,

a9 :lJ1D,N9S
B9 1lJ1D,HIST
99:UOfKY,APf'L
90 : USSR
90 IAl State,EPIU

115 I Ltlliqh U

8SlTtehnioo, I51'
8b 1 Sandia M..
8b 1 Japan
Bbl Japin
a;: USSR

Sbl Canada
a; I USSR
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8blJapinlKlll"ea

357

351l
359
12'1
174
3bQ

301
llO

362
363

342
241

97

343
344

345

346
235
128
347

373

374
375

3T.
on
3711

m
380
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382

348

349
35<)

351
352
353
354

355
356
177

51

3104

365

W.
49

367

368
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370
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372

R!I

: 39',)

: 391
I eo

3S3
384

385
~-86

1387
1132

388
: 60
: 389

Jnvestiqoltcr

Aounallih 1 KfMing

Yezl'lOV1"l.a1.
LH1Shen
Inanh Ir N.vhi
EI~k,ttil.

tklller-5ttinh.gen, 'l il.

Yin"l ..l.
FlIish'olnLYuf!1
Passos I.: Gentile

Lu I.: Jio1

Hahne,.et ..!.
Dougherly, et ill.
liu &: Kal::ac

R~vindrin, et 11.
Boyd

Fen;. JohiMHn

Celati, et .1.
KocillJstilh.ogulhri 'Nang
HasiIl, Roy 1 Kalr.
Balino ~ eooverti

Willingha. ~ t\Jdawar
Vandervort, et ill.
V~dervortl et al.

Bhaenkrantz
Boyd
Let.SilCll
Ctliti, el il.
Boyd

Junq, el al.

Jung,ela).

Su, It il.
Polmskii, It al.
Hasan, It il,.

Cornltell

SiVignillu " v.,••
El-Senk, et ill.

Shi',elill.

Dietrith"til.
VilIdfl"vcrt, et .1.
Yuncu, et al.
h"lUer"t.t.
Has,b, et ill.
Hihiril 1£ &lito

Akhanda It Jaae5
Boyd
6yullaJledov, et al.
Sillioway ~ t\Jdaw¥
Dykas It: Jensen
leroollLJensen
Celib, etal.
Crono LOlen
Siduinnllienhvd
Pancho11. et al.

[ViliS, et ill.
Edel.... , ,t 11.
lloyd, et al.

Fujib, etil.

Fukuya&1, et al.
Gri9Ol"lrl, et al.
Pklller·Sl,inhiget'l, .t al.
Tolubinskiy I.: Ootash,v
Celah., et ih
lied.. It Ki.

NlTES,

(11 coobnttreatllellt dis distilltd
dei deionized
dem demineralized
deg degassl!(!
gas g,;ssed
!Jntr untreated
nwtd no water treatment discussed

[6}Qdot

(71ac!ot

(81G

·[9]

.ass nux

ussveloeity

121dT5Ub subcooling, Tut-Thulk
I inlet, L local, E exit. Aaverilge fof inlet L ouUetl,? unknOl«llocation andlor value
(in some cises luted as inlet, ttle inlet bulk tHlll t,. exit pressure were used to CDlPule dTsubl

[31 Vel velocity

14JLtD fortubeD=Dh
for circular annulus D" Dh = 2la-bl iI =outer radius, b" inner radius
for red duct or channel D= Dh = 2ab/la+bl a" Width, b .. height
for ribbon D= II. W="idth

[5J C!l hydraulic dia.ter 15ee not! 41
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NOMENCLATURE

A Surface area, ft2

a Centrifugal acceleration, ft/hr2

Bo Boiling number, = q" /G ifg

c, cp Specific heat, Btu/Ibm OF

CD Drag coefficient for a sphere

CHF Critical heat flux, Btu/ft2 hr

D Diameter, ft

d Bubble departure diameter, in.

DNB Departure from nucleate boiling

erfc Complementary error function

f Friction factor as given in Eq. (5)

G Mass velocity, = eV except as defined in Eq. (12), Ibm/ft2 hr

g Acceleration of gravity, ft/hr2

gc Gravitational constant, ft/hr2

h Heat-transfer coefficient, Btu/ft2 hr of

AEDC-TR-93-3

J

k

Enthalpy, Btu/Ibm

Latent heat of vaporization, Btu/Ibm

Energy conversion factor, = 778 ft-IbflBtu

Thermal conductivity, Btu/ft hr OF
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L

Nu

p

Pr

q",q/A

q"/V

R

r

R'

Re

T

t

tirYz

v

x

z

SYMBOLS

Length, ft

Vapor rate, lbm/hr

Nusselt number, = hD/k

Pressure, psia

Prandtl number, = {tc/k

Heat flux, Btu/ftz hr, except as noted

Internal heat generation rate per unit volume

Ideal gas constant

Characteristic radius, ft

Laplace number, = r[g(Qe - Qv)la]1/Z

Reynolds number, = QVD/{t

Temperature, of

Wall thickness (Fig. 35)

Time to reach half of initial flow, sec

Flow rate transit time, sec

Velocity, fUsec

Vapor quality

Length, as defined in Figs. 21 and 24

ex Thermal diffusivity, ftz/hr

.:iC Excess concentration of the volatile component in the vapor, percent (see Fig. 17)
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Enthalpy difference due to inlet subcooling, = ilocal - iin, Btu/Ibm

Complete temperature difference, = Tw - Tb , OF

Superheat, = Tw - Tsat, OF

Subcooling, = Tsat - Tb , of (may be inlet, outlet, local, or average)

(J

7

cPm

Viscosity, Ibm/ft hr

Density, Ibm/ft3

Surface tension, lbflft

Shear stress, Ibflft2 [except as defined in Eqs. (38) and (39)]

Specific mass flow rate in Eq. (39), kg/m2 sec

SUBSCRIPTS

avg i\verage

B Fully developed nucleate boiling

Bi Extension of the fully developed nucleate boiling curve to incipience point

b Bulk fluid

CHF Critical heat flux conditions

conv Pure convection conditions

cr Critical heat flux conditions

D Diameter

De Equivalent or hydraulic diameter

e Equivalent or hydraulic
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f Film

Fe Forced convection

h Hydraulic

htr Heater

I Inner

i,in Inlet

e Liquid

LB Subcooled boiling incipience

m Mean

0 Outer

0 Outlet

r Reduced

sat Saturation

ss Steady-state conditions

tr Transient conditions

ts Test section

v Vapor

w Wall
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