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Blood oxygen level dependent (BOLD) imaging in awake mice was used to identify

differences in brain activity between wild-type, and Mu (µ) opioid receptor knock-outs

(MuKO) in response to oxycodone (OXY). Using a segmented, annotated MRI mouse

atlas and computational analysis, patterns of integrated positive and negative BOLD

activity were identified across 122 brain areas. The pattern of positive BOLD showed

enhanced activation across the brain in WT mice within 15min of intraperitoneal

administration of 2.5mg of OXY. BOLD activation was detected in 72 regions out of 122,

and was most prominent in areas of high µ opioid receptor density (thalamus, ventral

tegmental area, substantia nigra, caudate putamen, basal amygdala, and hypothalamus),

and focus on pain circuits indicated strong activation in major pain processing centers

(central amygdala, solitary tract, parabrachial area, insular cortex, gigantocellularis

area, ventral thalamus primary sensory cortex, and prelimbic cortex). Importantly, the

OXY-induced positive BOLD was eliminated in MuKO mice in most regions, with few

exceptions (some cerebellar nuclei, CA3 of the hippocampus, medial amygdala, and

preoptic areas). This result indicates that most effects of OXY on positive BOLD are

mediated by the µ opioid receptor (on-target effects). OXY also caused an increase in

negative BOLD in WT mice in few regions (16 out of 122) and, unlike the positive BOLD

response the negative BOLDwas only partially eliminated in the MuKOmice (cerebellum),

and in some case intensified (hippocampus). Negative BOLD analysis therefore shows

activation and deactivation events in the absence of the µ receptor for some areas where

receptor expression is normally extremely low or absent (off-target effects). Together, our

approach permits establishing opioid-induced BOLD activation maps in awake mice. In

addition, comparison of WT andMuKOmutant mice reveals both on-target and off-target

activation events, and set an OXY brain signature that should, in the future, be compared

to other µ opioid agonists.
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INTRODUCTION

Oxycodone (OXY) is a powerful analgesic initially prescribed
for the management of acute pain, pain following surgery, and
pain associated with palliative care. Laws allowing the use of
opioid analgesics in the management of non-cancerous, chronic
pain led to the escalation of OXY use, and not unexpectedly its
abuse (Manchikanti et al., 2010). Indeed, there is accumulating
evidence that OXY is more addictive than morphine (Stoops
et al., 2010; Comer et al., 2013). Opioid addiction in the United
States accounted for nearly 19,000 overdose deaths in 2014 with
OXY responsible for a majority of these fatalities (Center for
Disease Control and Prevention, 2015). The cost to the health
care system is staggering and was estimated be $55.7 billion
annually in 2007 and has only risen since (Birnbaum et al., 2011).

The three opioid receptors Mu (µ), kappa (κ), and delta
(δ), are located throughout the brain across all mammalian
species thus studied (Dhawan et al., 1996). Opioid signaling
in the brain involves not only the regulation of pain, but
the modulation of behavior associated with reward, depression,
anxiety, and obviously addiction (for reviews, see Al-Hasani
and Bruchas, 2011; Pradhan et al., 2012; Lutz and Kieffer,
2013a,b). Upon interaction with opioid receptors, preferably
the µ receptor (Yoburn et al., 1995), OXY has been shown
to affect dopamine, as well as GABA transmission (Vander
Weele et al., 2014; Takasu et al., 2015). The analgesic effects
of morphine are mediated through µ receptors as shown in
human and animal studies using specific µ-receptor antagonists
in the presence of a painful stimulus and in studies on Mu-
opioid knock-out (MuKO) mice (Matthes et al., 1996; Sora
et al., 1997). Indeed, MuKO mice showed lack of morphine
analgesia, rewarding effect and physical dependence, indicating
that a single receptor mediates all biological effects of the
prototypic opiate (Matthes et al., 1996). Whether this is also
true for OXY has not been tested in MuKO mice, as yet. Ross
and Smith reported a κ-mediated analgesic effect of OXY given
intracerebroventricularly to rats that could only be blocked with
a selective κ receptor antagonist but not µ or δ antagonists
(Ross and Smith, 1997). Finally, µ-opioid analgesics (but not
endogenous µ-opioid peptides), such as morphine, fentanyl, and
OXY promote inhibition of thalamic neuronal activity; the effects
were not affected by µ-opioid receptor antagonist treatment, nor
the deletion of the µ-opioid receptor gene (Hashimoto et al.,
2009), indicating possible off-target effects for these µ-opioid
agonists.

The present study using the MuKO mouse (Matthes et al.,
1996) provided an opportunity to evaluate the global effect of
OXY on brain activity in a WT mouse and the contribution
of the µ receptor to this pattern of activity. With non-invasive
ultra-high field, functional magnetic resonance imaging (fMRI)
in awake animals it is possible to image changes in brain activity
across distributed, integrated neural circuits with high temporal,
and spatial resolution (Ferris et al., 2011). When combined
with the use of 3D segmented, annotated, brain atlases, and
computational analysis it is possible to reconstruct the activity
of OXY on the neural circuits of pain, reward, and addiction that
demand our understanding. As such, MuKO and WT mice were

scanned awake and BOLD activation in response to OXY was
assessed.

METHODS

Animal Care
Male Oprm1+/+ and Oprm1−/− mice (Matthes et al., 1996) were
bred in-house at the Douglas Hospital Research Center,
Montreal, Canada. At ages 10–12 weeks, animals were
transferred to Northeastern University, Center for Translational
NeuroImaging. Mice were left undisturbed for 1 week before
the start of an experimentation, and were allowed access to food
and water ad libitum while housed in groups of up to four per
cage with mice of the same genotype. Animals were cared for
in accordance with the guidelines published in the Guide for
the Care and Use of Laboratory Animals (National Institutes of
Health Publications No. 85–23, Revised 1985) and adhered to
the National Institutes of Health and the American Association
for Laboratory Animal Science guidelines. The protocols used
in this study were in compliance with the regulations of the
Institutional Animal Care and Use Committee at Northeastern
University.

Awake Mouse Imaging System
A detailed description of the awake mouse imaging system has
been published previously (Ferris et al., 2014). The quadrature
transmit/receive volume coil (ID 38mm) provides excellent
anatomical resolution and signal-noise-ratio for voxel-based
blood oxygen level dependent (BOLD) fMRI (see Figure 1). The
unique design of the holder essentially stabilizes the head in
a cushion, minimizing any discomfort normally caused by ear
bars, and pressure points used to immobilize the head for awake
animal imaging.

Acclimation
A week prior to the first imaging session, all animals were
acclimated to the imaging protocol, i.e., head restraint and noise
of the scanner before the imaging session. Mice were secured
in the holding system while anesthetized with 2–3% isoflurane.
Following cessation of isoflurane, fully conscious mice were put
into a “mock scanner” (a black box with a tape recording of MRI
pulses) for 30min for 4 consecutive days. Acclimation in awake
animal imaging significantly reduces physiological effects of the
autonomic nervous system including heart rate, respiration,
corticosteroid levels, and motor movements (King et al., 2005)
helping to improve contrast-to-noise and image quality.

Oxycodone Preparation and Administration
Oxycodone (OXY) was purchased from Sigma Chemical (St.
Louis MO, USA) and dissolved in 0.9% NaCl for intraperitoneal
(IP) injections. To deliver drug remotely during the imaging
session, a poly-ethylene tube (PE-20), ∼30 cm in length, was
positioned in the peritoneal cavity. The dose of 2.5mg/kg of OXY
was taken from the study of Zhang and colleagues that reported
a significant increase in dopamine in the striatum of the mouse
within 20min of IP drug injection (Zhang Y. et al., 2009).
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FIGURE 1 | Anatomical fidelity. Shown are representative examples of brain images collected during a single imaging session using a multi-slice spin echo, RARE

(rapid acquisition with relaxation enhancement) pulse sequence. The column on the right shows axial sections collected during the anatomical scan taken at the

beginning of each imaging session using a data matrix of 256 × 256, 20 slices in a field of view of 2.5 cm. The column on the left shows the same images but

collected for functional analysis using HASTE, a RARE pulse sequence modified for faster acquisition time. These images were acquired using the same field of view

and slice anatomy but a larger data matrix of 96 × 96. The images in the middle column have been smoothed during pre-processing. Note, the anatomical fidelity

between the functional images and their original anatomical image. The absence of any distortion is necessary when registering the data to atlas to resolve 122

segmented brain areas.

Imaging Acquisition and Pulse Sequence
Experiments were conducted using a Bruker Biospec 7.0T/20-cm
USR horizontal magnet (Bruker, Ettlingen, Germany) and a 20-
G/cm magnetic field gradient insert (ID = 12 cm) capable of a
120-µs rise time. At the beginning of each imaging session, a
high-resolution anatomical data set was collected using the RARE
pulse sequence (20 slice; 0.75mm; FOV 2.5 cm; datamatrix 256×
256; repetition time (TR) 2.1 s; echo time (TE) 12.4ms; Effective
TE 48ms, NEX 6; 6.5min acquisition time). Functional images
were acquired using a multi-slice HASTE pulse sequence (Half
Fourier Acquisition Single Shot Turbo Spin Echo). With this

sequence it is possible to collect twenty, 0.75mm thick, axial
slices in <6 s. With a FOV of 2.5 cm and a data matrix of 96 ×

96, the in-plane pixel functional resolution for these studies was
260 µm2.

For the functional scans, maintaining neuroanatomical
fidelity was a priority since: (1) we are imaging activity in brains
very small in size, and (2) awake mice (even when acclimated)
exhibit some degree of motion. The neuroanatomical fidelity
of our functional scans can be seen when presented alongside
the same animal’s anatomical scan (see example, Figure 1). To
achieve anatomical fidelity across scans that encompass the whole

Frontiers in Neuroscience | www.frontiersin.org 3 November 2016 | Volume 10 | Article 471

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Moore et al. Oxycodone fMRI in MuKO Mice

brain, we chose to use spin echo pulse sequences that were
developed for awake imaging in rats and mice (Ferris et al.,
2011). In relation to the more common gradient echo BOLD,
spin echo BOLD offers several major advantages: (i) the potential
of improved functional spatial resolution since functional signal
changes are localized to the capillary bed, and (ii) elimination
of magnetic susceptibility artifacts, particularly signal dropout at
the interface of air-filled sinus and gray matter (Norris, 2006).
Specifically, we used a single-shot fast spin echo/rapid acquisition
with relaxation enhancement (FSE/RAREst) pulse sequence with
half-Fourier transform that provided reasonable in-plane spatial
resolution (260µm2), sufficiently thin slices (700µm/slice), and
scans of the entire brain (20 slices) in 6 s. The major disadvantage
to spin echo BOLD is low sensitivity, but this is addressed
by using a high magnetic field strength (7T). In addition,
and importantly, FSE/RAREst scans run at high magnetic field
strengths (7T and above) result in BOLD signal dominated
by the extravascular dynamic averaging component of the T2-
weighted signal (Ugurbil et al., 2000; Duong et al., 2003; Yacoub
et al., 2003; Zhang N. et al., 2009). The extravascular signal
surrounding capillary beds and small vessels is more reflective
of the metabolic changes in brain parenchyma than signal from
large draining veins and thus provides a more accurate measure
of neuronal activity (Yacoub et al., 2007). A second disadvantage
of spin echo BOLD is that, even with the advancement of parallel
imaging techniques combined with partial Fourier acquisition
and the associated shortening of scan times, complete coverage
of a large brain, like the human is not possible at sufficiently
short repetition times (TR) for event-related fMRI. However, we
are able to circumvent this disadvantage given the substantially
smaller brain size of rodents and the use of a single epoch
stimulus-presentation period.

Multi-slice FSE/RAREst using a partial Fourier acquisition
with a 9/16 ratio pulse sequences were runwith Bruker Paravision
v.5.1. With this pulse sequence we imaged the entire brain,
collecting 22 axial slices per repetition, at 1.0 mm thick, in
6 s repetition intervals [22 slices; slice thickness, 1.0mm; FOV
3.0 cm; data matrix 96 × 96; repetition time (TR) 6.0 s; echo
time (TE) 3.0ms; effective TE 45ms; RARE factor, 62; NEX, 1].
With a FOV of 3.0 cm and a data matrix of 96 × 96, the in-
plane pixel functional resolution for these studies was 312 µm2.
In automated fashion, Paravision v.5.1 finds the basic frequency,
shims, determines power requirements for 90◦ and 180◦ pulses,
and sets the receiver gain proportionally. Each single-epoch,
event-related scanning session was run in continuous fashion.

Data Analysis
Data are coregistered to a mean functional image using SPM8’s
coregistrational code with the following parameters: Quality:
0.97, Smoothing: 0.35mm, Separation: 0.5mm. Gaussian
smoothing was performed with a FWHM of 0.8mm. Images
were aligned and registered to a 3D mouse brain atlas,
which is segmented and labeled with 122 discrete anatomical
regions (Ekam Solutions, Boston MA). The alignment process
was facilitated by an interactive graphic user interface. The
registration process involved translation, rotation, and scaling
independently and in all three dimensions. Matrices that

transformed each subject’s anatomy were used to embed each
slice within the atlas. All pixel locations of anatomy that were
transformed were tagged with major and minor regions in the
atlas. This combination created a fully segmented representation
of each subject within the atlas. The composite statistics were
built using the inverse transformation matrices. Each composite
pixel location (i.e., row, column, and slice), pre-multiplied by
[Ti]−1, mapped it within a voxel of subject (i). A tri-linear
interpolation of the subject’s voxel values (percentage change)
determined the statistical contribution of subject (i) to the
composite (row, column, and slice) location. The use of [Ti]−1

ensured that the full volume set of the composite was populated
with subject contributions. The average value from all subjects
within the group determined the composite value.

Using voxel-based analysis, the percent change in BOLD signal
for each independent voxel was averaged for all subjects. Each
scanning session consisted of data acquisitions (whole brain
scans) with a period of 6 s (TR) each for a total lapse time of
20min. The control window was the first 50 scan repetitions
(5min baseline) while the treatment stimulation window was
50–200 (min 5–20). Statistical t-tests were performed on each
voxel (ca. 15,000 in number) of each subject within their
original coordinate system with a baseline threshold of 2% BOLD
change to account for normal fluctuation of BOLD signal in
the awake rodent brain (Brevard et al., 2003). As a result of
the multiple t-test analyses performed, a false-positive detection
controlling mechanism was introduced (Genovese et al., 2002).
This subsequent filter guaranteed that, on average, the false-
positive detection rate was below our cutoff of 0.05. The t-test
statistics used a 95% confidence level, twotailed distributions, and
heteroscedastic variance assumptions.

A composite image of the whole brain representing the
average of all subjects was constructed for each group for
analyses of 122 brain areas, allowing us to look at each
brain area separately to determine the BOLD change and
the number of activated voxels in each area. Volume of
activation was compared across experimental groups using the
non-parametric Kruskall-Wallis test statistic. Brain areas were
considered statistically different between experimental groups
when comparison produced P-values less than or equal to our
cutoff of 0.05. Post-hoc analyses were performed with aWilcoxon
rank-sum test.

Group difference for the change in BOLD signal over time
(time course analysis) were assessed by one-way ANOVA at each
time point to determine when groups started to diverge from
one another following the injection. Tukey-Kramer post-hoc tests
were run in the event of the first significant result to determine
the onset of pairwise group differences. Timing of change from
baseline in % BOLD was assessed by group using sequential
paired t-tests with a hypothesized difference of 0.

Normalization of Volume of Activation
The differences BOLD signal change in Oprm1 +/+ wild-type
(WT) and Oprm1 −/− µ-opioid knock-out (MuKO) mice are
reported in terms of volume of activation or number of voxels
per brain area to control for any differences in brain volume that
may occur between genotypes. In this study, on average, the brain
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size inMuKOmice was slightly less thanWT but not significantly
different (see Figure 1S) although there were a few brain areas
e.g., ventral tegmental area and glomerular layer of the olfactory
bulb that did show a significant difference across genotypes.
By normalizing to volume of activation we can compare across
different genotypes or within groups among different regions.
Normalized volume of activation was computed using following
formula.

Normalized number of voxels in ROI

=
Number of activated voxels in ROI× 100

Total number of Voxels in ROI
(1)

Calculating the Volumes of Different Brain
Areas
The volume of each brain area was determined from the high
resolution anatomical scan taken at the beginning of each
scanning session for each subject. The 3D segmented atlas
provides the precise number of voxels (3D pixels) that combine to
fill the volume of each of the 122 brain regions. The dimensions
of each voxel are calculated from the slice thickness (0.75
mm), Voxel width (FOV in X direction/Number of voxels in
X direction) and Voxel height (FOV in Y direction/Number of
voxels in Y direction) using the formula:

Volume of Voxel = voxel width × voxel height

× slice thickness (2)

[ca. 0.097 × 0.097 × 0.750 mm = 0.00706 mm3]. Total number
of voxels in each brain area was multiplied by volume of voxel to
compute total volume of brain region.

Carbon Dioxide Challenge
To assess the strength of the BOLD signal in mice using HASTE
and to further characterize any differences between WT (n = 5)
and MuKO (n = 5) mice in terms of cerebrovascular reactivity
animals were challenged with a 5% CO2 as a stimulus for a
surrogate BOLD response (see Figure 2). Carbon dioxide causes
a direct relaxation of cerebrovascular smooth muscle, causing
a passive dilation with a subsequent increase in cerebral blood
flow. To this end, mice were imaged for a total of 5 min
with presentation of 5% CO2 in ambient air at 2.5 min into
the scanning session. The presentation of CO2 is facilitated
by the design of the head holder. The front incisors of the
mouse are locked onto a bite bar by pulling the snout into a
beveled nose cone. The cone is perforated so as not to restrict
the flow of air from the nostrils or mouth. A hollow tube
extends from the tip of the nose cone providing a route for
administering carbon dioxide gas. Data were analyzed using
a repeated measures ANOVA followed by Fisher’s protected
least significant difference to limit experiment-wise error when
performing pairwise comparisons between genotypes. There
were no significant differences between genotypes.

RESULTS

Shown in Table 1 are the positive BOLD signal changes
represented as a percentage of the total brain area volume (i.e.,

number of voxels activated, divided by the total number of
voxels in the 3D volume of interest, times 100) for WT and
MuKO mice in response to saline vehicle or 2.5 mg/kg OXY.
The brain areas are ranked in order of their significance and
are truncated from a larger list of 122 regions of activation
(for complete list see Table 1S in Supplementary Material).
With a Kruskall-Wallis multiple comparison analysis WT mice
treated with oxycodone showed 72 out of 122 brains areas to be
significantly different from WT mice treated with saline vehicle.
Post-hoc analysis showed there were no significant differences
between the vehicle group and MuKO mice given OXY. Most
of the significance was attributed to WT mice given OXY as
compared to the vehicle group. In Table 2 are the negative BOLD
signal changes, i.e., number of voxels that showed a significant
decline in BOLD signal using the multiple comparison analyzes.
This truncated table shows 16 out of 122 brains areas that
were significantly different (for complete list see Table 2S in
Supplementary Material). Again post hoc analysis showed there
were no significant differences between the vehicle group and
MuKOmice given OXY.

On-Target Effects of OXY on µ-Opioid
Receptor Circuitry
It was anticipated that many of these activated brain regions
would be associated with areas of highµ-opioid receptor density.
The distribution of theµ binding sites in themouse is widespread
appearing throughout the neocortex, basal ganglia, thalamus,
amygdala, and brain stem (Moskowitz and Goodman, 1984;
Slowe et al., 1999; Erbs et al., 2015). A putative neural circuit
of those areas showing the highest concentrations of receptor
are shown in Figure 3. The images at the top left depict the
location of 13 3D brain volumes in the mouse having a high
density of µ receptor binding. These areas are color-coded and
annotated. These same areas are coalesced into a single volume
(yellow) shown in the lower 3D images depicting activation maps
following the IP injections of saline vehicle, OXY in WT mice
and OXY in MuKOmice. Areas in red are the composite average
of the significant increase in volumes of activation (number of
voxels in a brain area) for positive BOLD from all mice for each
condition. The changes in positive BOLD in the different areas of
the µ-opioid receptor neural circuit are better viewed in the 2D
activation maps shown the lower right in Figure 3. The precise
location of the positive voxels are shown registered to the mouse
MRI atlas. These composites are the average number of voxels
showing a significant increase above baseline for vehicle (n = 7),
WT oxycodone (n= 12), and MuKO oxycodone (n= 10).

The median (Med) number of positive voxels activated for
each experimental condition is reported in the table to the
upper right. These brain areas are ranked in order of their
significance. Of the 13 areas having a high density of OXY
binding sites, six were significantly activated by OXY in WT
mice as compared saline vehicle. Only the area of the reuniens
thalamus was significantly different between WT and MuKO
treated with OXY while there were no significant differences
between vehicle and MuKO mice. Essentially, the absence of the
µ receptor does not eliminate the activation of this neural circuit
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FIGURE 2 | BOLD signal change to carbon dioxide challenge. Shown are time-course data for each WT and MuKO mice for the percentage change in BOLD

signal intensity in the somatosensory cortex in response to the challenge of 5% carbon dioxide. Each image acquisition is the mean ± SEM.

with OXY treatment, however, the activation is so low that it is
not significantly different from vehicle. However, the significant
differences between WT OXY and MuKO OXY conditions are
clearly delineated in the time course plots depicting the change
in positive BOLD signal following vehicle and OXY treatments
shown in the lower left of Figure 3. A repeated measures one-
way ANOVA showed a significant main effect for group x time,
F(2, 398) = 3.17, p < 0.0001. Each experimental condition showed
a significant increase from baseline within the first min of IP
injection [Paired t-test: Baseline (40–50) vs: Vehicle repetition 56
(p = 0.041); WT OXY repetition 57 (p = 0.005); MuKO OXY
repetition 62 (p = 0.038)]. WT OXY diverged and remained
separate from MuKO OXY and vehicle at repetition 60 (p =

0.013).MuKOOXY diverged and remained separate from vehicle
at repetition 86 (p< 0.001). Hence, there is some level of arousal
and BOLD signal change that accompanies the I.P injection as
shown for vehicle. However, over the 15min post OXY treatment,
there is a delineation between conditions where the BOLD signal
change for WT is significantly greater than MuKO and MuKO is
significantly greater than vehicle.

On-Target Effects of OXY on the Pain
Circuitry
The µ receptor has a major role in mediating the analgesic
effects of opioids in mice as tested in the hot plate nociceptive
assay (Baamonde et al., 1991; Kieffer and Gavériaux-Ruff, 2002).
To assess the effect of OXY on changes in BOLD signal
intensity related to analgesia, a putative pain neural circuit was
reconstructed as shown in Figure 4. The pain neural circuit
was adopted from Gauriau and Bernard using the parabrachial
nucleus as key node (Gauriau and Bernard, 2002). The 16
volumes that comprise the pain neural circuits are color coded
and annotated as reported in Figure 3 and coalesced into a
single volume (yellow) below showing 3D activation maps for
each experimental condition. These 3D data in 3D space can
be viewed as 2D activation maps depicted in the lower right
showing the precise location of the positive voxels registered

to the MRI mouse atlas. WT mice treated with OXY showed
a pattern of positive BOLD activation much greater than WT
mice given saline vehicle or MuKOmice treated with OXY, while
there appears to be little difference between vehicle and MuKO
OXY conditions. Indeed, the table in the upper right reports that
eight out of the sixteen brain areas comprising the pain neural
circuit are significantly different. The volume of activation was
significantly higher for WT OXY mice as compared to vehicle in
all eight brain regions. However, unlike the activation pattern in
the µ-opioid neural circuit, WT OXY mice showed significantly
higher BOLD signal activation as compared to MuKO OXY
mice in the areas of the central amygdala, solitary tract, insular,
prelimibic and somatosensory cortices.

The change in BOLD signal over time for each of the three
experimental conditions is shown in the lower left and clearly
shows a delineation between each (group× time: F(2, 398) = 5.40,
p < 0.0001). As in the time course data shown in Figure 1, all
experimental groups showed a significant increase above baseline
within 1min of IP injection. WT OXY diverged and remained
separate fromMuKOOXY at repetition 61 (p= 0.038). WTOXY
diverged and remained separate from vehicle at repetition 77 (p=
0.019). MuKO OXY started to diverge and remained relatively
separate from vehicle at repetition 89 (p= 0.0002).

Off-Target Effects of OXY
The data focusing on the µ-opioid neural circuit and the pain
neural circuit in Figures 3, 4 show no significant differences
between WT mice given saline vehicle and MuKO mice given
OXY, demonstrating that most observed BOLD signal activation
in WT mice reflect on-target (µ receptor receptor-mediated)
OXY effects in live animals. However, from the total 122 brain
areas there are six that show a significant difference in positive
BOLD between the vehicle and MuKO OXY conditions (see
Table 3Sp in Supplementary Material comparing Vehicle vs.
MuKO OXY). The areas of difference are the facial nucleus of
the medulla oblongata, 2nd and 4th cerebellar lobules, medial
amygdala, medial preoptic area, and lateral geniculate. This small
number of activated brain areas in MuKO mice treated with
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TABLE 1 | Positive BOLD volume of activation in oxycodone challenge.

Oxycodone in WT vs. oxycodone in Mu opioid −/−

Brain Areas Veh WT oxy KO oxy P-val

Med Med Med

POSITIVE BOLD VOLUME OF ACTIVATION

9th cerebellar lobule 10 58 10 0.001

Facial nucleus 0 50 21 0.001

Locus ceruleus 0 100 0 0.002

Reuniens thalamic area 0 70 2 0.003

Inferior colliculus 4 52 16 0.003

Central amygdaloid area 0 50 4 0.004

Deep cerebellar nuclear area 0 63 13 0.005

Glomerular layer 21 36 7 0.005

External capsule 0 31 10 0.006

Intermediate reticular area 9 32 20 0.006

3rd cerebellar lobule 0 32 15 0.006

CA3 hippocampus 0 43 9 0.006

Lateral paragigantocellularis 2 44 23 0.007

Extended amydala 0 37 5 0.007

Simple lobule cerebellum 6 33 16 0.007

4th cerebellar lobule 0 24 16 0.008

Principal sensory n. trigeminal 7 42 16 0.008

Olivary complex 0 39 11 0.008

Lateral caudal hypothalamus 0 48 16 0.009

Paramedian lobule cerebellum 5 45 18 0.009

subiculum hippocampus 10 44 7 0.01

Paraventricular hypothalamus 0 42 0 0.01

8th cerebellar lobule 5 52 12 0.01

2nd cerebellar lobule 6 41 12 0.011

Prepositus area 0 42 7 0.011

Solitary tract area 11 40 6 0.011

Parabrachial area 7 53 20 0.012

Rostral piriform ctx 12 29 9 0.012

medial preoptic area 2 37 19 0.012

10th cerebellar lobule 0 37 14 0.012

Orbital ctx 4 42 4 0.013

Dentate gyrus hippocampus 3 38 13 0.015

CA1 hippocampus 4 31 10 0.016

Insular rostral ctx 17 34 15 0.016

Crus of ansiform lobule 19 40 22 0.016

Gigantocelllaris reticular area 3 29 21 0.016

Lateral rostral hypothalamus 2 36 11 0.017

Ventral thalamic area 0 31 18 0.017

Lemniscal area 0 42 19 0.018

Ventral pallidum 0 25 2 0.02

Primary motor ctx 20 39 7 0.021

Secondary motor ctx 17 43 14 0.021

5th cerebellar lobule 1 40 18 0.021

Medial amygdaloid area 1 30 16 0.021

Globus pallidus 0 29 7 0.022

6th cerebellar lobule 30 48 27 0.022

Ventral tegmental area 0 25 2 0.023

(Continued)

TABLE 1 | Continued

Oxycodone in WT vs. oxycodone in Mu opioid −/−

Brain Areas Veh WT oxy KO oxy P-val

Med Med Med

POSITIVE BOLD VOLUME OF ACTIVATION

Visual 1 ctx 24 44 21 0.023

Dorsal medial hypothalamus 0 38 16 0.024

Primary somatosensory ctx 14 29 13 0.026

Lateral geniculate 0 36 20 0.026

Basal amygdaloid area 11 44 27 0.027

Vestibular area 12 49 29 0.027

Granular cell layer 12 28 3 0.027

7th cerebellar lobule 6 51 16 0.029

Substantia nigra 0 47 13 0.03

Ambiguus area 13 54 18 0.031

Caudate putamen 2 31 5 0.031

Pedunculopontine tegmentum 10 43 26 0.032

Caudal piriform ctx 33 48 30 0.032

Reticulotegmental nucleus 0 22 17 0.033

Anterior amygdaloid area 0 23 4 0.035

Spinal trigeminal n. area 19 35 22 0.038

Prelimbic ctx 7 39 9 0.038

Lateral lemniscus 4 32 19 0.038

Anterior thalamic area 4 47 22 0.039

Parvicellular reticular area 14 40 16 0.041

Lateral septal area 2 38 12 0.041

Superior colliculus 3 31 16 0.042

Posterior hypothalamic area 0 35 0 0.045

Lateral preoptic area 0 56 0 0.046

Fimbria hippocampus 10 43 10 0.046

Medial geniculate 0 46 13 0.046

Pontine reticular nucleus oral 7 26 9 0.05

Shown is a truncated list of 122 brain areas and their median (med) number of voxels as a

percentage of the total Brain Area volume (i.e., number of voxels activated, divided by the

total number of voxels in the 3D volume of interest, times 100) for wild-type given saline

vehicle (Veh) wildtype given oxycodone (WT Oxy) and µ receptor knock-out mice given

oxycodone (KO Oxy). These volumes of activation for each brain region across genotypes

were analyzed using a Newman-Keuls multiple comparisons test statistic and ranked in

order of their significance. P-values are presented on the far right column.

OXY compared to vehicle is in stark contrast to WTmice treated
with OXY compared to vehicle (see Table 4Sp in Supplementary
Material comparing Vehicle vs. WT OXY). In this latter case
there are over 70 different brain areas showing activation.

This relative absence of positive BOLD in MuKO mice given
OXY is not so with negative BOLD. Both WT and MuKO
mice given OXY showed many areas of the brain having a
significant decrease in BOLD signal intensity as compared to
vehicle (see Tables 3Sn, 4Sn). These differences between positive
and negative BOLD in WT and MuKO mice given OXY as
compared to vehicle are clearly seen in the probability heat
maps shown in Figure 5. The red heat maps show many
areas of high intensity for WT mice given OXY while only
those few noted above for MuKO OXY (full list pf ROI in
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TABLE 2 | Negative BOLD volume of activation in oxycodone challenge

same as Table 1.

Oxycodone in WT vs. oxycodone in Mu opioid −/−

Brain areas Veh WT oxy KO oxy P-val

Med Med Med

NEGATIVE BOLD VOLUME OF ACTIVATION

CA1 hippocampus 0 7 6 0.006

Anterior hypothalamic area 0 12 1 0.01

Olfactory tubercles 0 20 0 0.01

Central medial thalamic area 0 0 0 0.012

Reuniens thalamic area 0 0 0 0.012

Ventral medial hypothalamus 0 19 0 0.012

Lateral reticular area 0 15 0 0.022

Medial amygdaloid area 0 9 1 0.023

Cuneate area 0 22 0 0.031

Insular caudal ctx 0 14 4 0.036

Reticular thalamic area 0 8 0 0.041

CA3 hippocampus 0 5 5 0.043

Ventral pallidum 0 11 0 0.043

Accumbens core 0 8 0 0.044

Globus pallidus 0 12 7 0.047

Paramedian lobule 0 13 2 0.049

Anterior amygdaloid area 0 17 4 0.052

Supplementary table 5Sp). The blue heat maps for negative
BOLD show many areas of high intensity for both experimental
conditions. Interestingly, there are clear differences. For example
MuKO mice given OXY show a pronounced decrease in
negative BOLD signal in the caudate/putamen and CA1 of the
hippocampus as compared to WT OXY. Conversely, WT mice
given OXY show a pronounced decrease in negative BOLD
signal in the olfactory tubercles, ventral medial hypothalamus,
medial amygdala, ventral pallidum, paramedian lobule of the
cerebellum, and lateral reticular area of the brain stem (see
Table 5Sn in Supplementary Material for complete ROI list).

DISCUSSION

The three opioid receptors are located throughout the brain
across all mammalian species. Opioid signaling in the brain
involves the regulation of pain, and the modulation of behavior
associated with reward, addiction, depression and anxiety [for
reviews, see Al-Hasani and Bruchas, 2011; Pradhan et al., 2012;
Lutz and Kieffer, 2013a,b]. Any change in brain activity in
response to the systemic, IP administration of OXY as reported
here, could be due to the direct action of drug on any of
these brain opioid receptors, with preferred action at the µ

receptors, or via yet unknown off-target effects or indirect via
other neurotransmitter systems such as dopamine (VanderWeele
et al., 2014) and GABA (Takasu et al., 2015). Comparing the
pattern of BOLD signal change in WT and MuKO mice in
response to OXY provided us with an opportunity to evaluate the
significance of the µ opioid receptor in mediating OXY’s effects
on the brain in the awake mouse.

In brief, the pattern of positive BOLD showed activation
across many brain areas (72 out of 122) in WT mice within
15min of OXY administration. The OXY-induced positive
BOLD was essentially eliminated in MuKO mice, demonstrating
a majority of on-target responses. A few exceptions were
cerebellum (lobules 2, 3, 4, and 10 and deep cerebellar
nuclei), CA3 of the hippocampus and medial amygdala and
preoptic areas, where receptor expression is low or absent
in WT mice, revealing off-target effect at some brain sites.
OXY also caused an increase in negative BOLD in WT mice,
however this was observed in only few areas (16 out of 122).
These areas included the basal ganglia (accumbens, olfactory
tubercles, ventral pallidum, and globus pallidus) insular ctx,
anterior and ventral medial hypothalamus, anterior and medial
amygdala, entorhinal ctx, CA1 of the hippocampus and the
paramedian lobule of the cerebellum. Unlike the positive BOLD
response to OXY in the MuKO mice the negative BOLD was
only partially eliminated and in some case intensified. Areas
that were reduced included the basal ganglia, hypothalamus,
amygdala, and cerebellum. Areas that were intensified include
the caudate/putamen, diagonal band of Broca, medial preoptic
area and CA1. Overall, the data show that most of OXY-induced
changes in positive and negative BOLD are mediated through the
µ receptor. Further, activation and deactivation events detected
in the absence of the µ receptor in a few areas, also reveal the
existence of off-target OXY effects that may be mediated by κ and
δ opioid receptors, or other non-opioid unknown target (Yoburn
et al., 1995). Looking at Tables 1, 2 for the significant changes
in positive and negative BOLD signal intensity, respectively,
it is obvious that OXY, acting through the µ receptor, has a
global effect on brain activity that reaches beyond those areas
with a high density of receptor highlighted in Figure 3. Indeed,
autoradiographic receptor binding on this mouse line shows a
widespread distribution of µ receptor (Kitchen et al., 1997).

The pattern of BOLD activation observed in these studies
with OXY is similar to the opioidinduced changes reported
in human functional imaging studies using positron emission
tomography (PET) and fMRI (Adler et al., 1997; Petrovic et al.,
2002; Wise et al., 2002; Wagner et al., 2007; Becerra et al., 2013;
Seah et al., 2014). For example, the activity of remifentanil, a
short acting specific µ receptor agonist was tested in humans
with BOLD imaging, and as in this study, the focus was on
brain areas known to have a high density of opioid receptors
and brain areas involved in pain processing (Leppä et al., 2006).
As expected limbic cortex, insula, and anterior cingulate and
their thalamic inputs together with amygdala and hippocampus
were activated with remifentanil exposure. The cerebellum was
also activated. To date, the only human imaging study testing
OXY examined resting-state functional connectivity following
oral administration of drug (Gorka et al., 2014). Functional
correlates were examined between seed areas in the anterior
cingulate and brain areas associated with pain and showed OXY
reduced coupling between cingulate and insula/putamen.

While there have been several published reports using fMRI
to follow opioid-induced changes in brain activity in rodents
(Xi et al., 2004; Shah et al., 2005; Liu et al., 2007), all have
been conducted under anesthesia which significantly limits
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FIGURE 3 | Mu opioid receptor system. Shown in the top left are 3D colored volumes of 13 areas in the brain noted to have a high density of µ opioid binding

sites. The central image is a coronal view of a translucent shell of the mouse brain showing the total composite and location of the different 3D volumes of interest.

Surrounding this are different layers showing a clockwise, caudal (deepest, lower left) to dorsal perspective of the different brain volumes. The color-coded volumes

are coalesced into a single volume shown in yellow below for each of the three experimental conditions. The number of animals contributing to the data for each

experimental condition are shown in parentheses. Once fully registered and segmented, the statistical responses for each animal are averaged on a voxel-byvoxel

bases. Those averaged voxels that are significantly different from baseline for positive BOLD are show in their appropriate spatial location coalesced as a 3D volume.

Below on the right are 2D activation maps from the mouse brain atlas showing the precise location of the significantly altered positive (red) voxels following OXY for

each experimental condition. These are the same 3D data but shown in a 2D perspective. The vertical color strip shows the scale of the positive BOLD signal change.

The table in the upper right lists the 13 areas having a high density of µ opioid binding. The columns show the median (med) number of significant voxels for each

brain area for each experimental condition. The voxel numbers for each condition were analyzed using a Newman-Keuls multiple comparisons test statistic followed

by post-hoc analyses using a Wilcoxon rank-sum test for individual differences. All areas are ranked in order of their significance. There were no significant differences

in the volume of activation between vehicle (Veh) and MuKO (KO Oxy) conditions. WT mice given OXY showed significance from Veh (*p < 0.05, **p < 0.01) and from

MuKO conditions (§p < 0.05). Shown in the lower left are time course data for the percent change in positive BOLD signal for each experimental condition. Each

acquisition is the mean and SEM of the combined signal from the brains areas that were significantly different as reported in the table.

both the degree of signal change and pattern of activation
(Borsook et al., 2006; Ferris et al., 2011; Liang et al., 2011;
Seah et al., 2014; Haensel et al., 2015). A previous fMRI

study that most closely parallels the findings reported here
was that done in awake rats in response to buprenorphine
(Becerra et al., 2013). Awake rats showed activation in the
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FIGURE 4 | Putative pain neural circuit. Shown is a 3D color representation of the 16 different brain areas comprising the putative pain neural circuit. The layout

and the description of the table and three composite figures are the same as Figure 3. The table of these 16 areas reports there were no significant differences in the

volume of activation between vehicle (Veh) and MuKO (KO Oxy) conditions. WT mice given OXY showed significance from Veh (*p < 0.05, **p < 0.01) and from MuKO

conditions (§p < 0.05).

limbic and olfactory cortices, caudate-putamen, globus pallidus,
septum, hippocampus, thalamus, PAG, inferior colliculus, and
cerebellum. The same areas were activated in the awake mouse in
response to OXY as reported here. Also, buprenorphine caused
a decrease in BOLD signal in the awake rat. The negative BOLD
was found in the thalamus, hypothalamus, and hippocampus.

OXY abuse is well documented, much of which can be
attributed to drug dependence and withdrawal as reported in

clinical (Jones et al., 2011; Mars et al., 2014) and preclinical
studies (Hutchinson et al., 2009; Wiebelhaus et al., 2016). In
addition, OXY has reinforcing effects as measured by self-
administration and condition place preference studies in rodents
(Beardsley et al., 2004; Zhang Y. et al., 2009; Rutten et al., 2011;
Bryant et al., 2014; Zhang et al., 2015). The mesocorticolimbic
dopaminergic system is a key pathway involved in drug
reinforcement (Koob, 1992) and as such, we anticipated OXY
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FIGURE 5 | Probability heat maps for positive and negative BOLD. The probability maps generated as the significant difference between WT and MuKO mice

given OXY as compared to WT mice given saline vehicle are present for positive BOLD (red) and negative BOLD (blue).

would affect activity in this neural circuit. While there was a
significant increase in positive BOLD in the ventral tegmental
area, prelimbic ctx, and ventral pallidum we were surprised to
see no activation in the shell of the accumbens and a significant
negative BOLD response in the core of the accumbens. However,
these data are consistent with the hypothesis that the rewarding

effect of drugs are coded by the activity in the medium spiny
GABAergic neurons in the accumbens (Carlezon and Thomas,
2009). Medium spiny neurons make up over 90% of the neurons
in the accumbens (Meredith, 1999). Electrical recordings from
these neurons show opioids inhibit their activity (McCarthy et al.,
1977; Hakan and Henriksen, 1987). This suppression of activity
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over a majority of the neurons in the accumbens might appear
as no change in BOLD signal intensity or a negative BOLD.
Indeed, humans given remifentanil show no activation of the
accumbens with BOLD imaging (Leppä et al., 2006). The same
is true in BOLD imaging studies using buprenorphine (Becerra
et al., 2013).

In a series of studies, Shih and collaborators characterized a
counter-intuitive negative BOLD signal change in the striatum
of the rat in the face of increased neuronal activity caused
by pain and exacerbated by morphine treatment during a
noxious stimulus (Shih et al., 2009, 2011, 2012). The effect of
morphine was blocked with naloxone pretreatment, evidence
of opioid receptor involvement. This phenomena is associated
with a dopamine-induced vasoconstriction that can be blocked
by the D2/D3 receptor antagonist eticlopride or disruption
to the dopaminergic inputs from the substantia nigra (Chen
et al., 2005; Shih et al., 2009). The pronounced negative BOLD
in WT OXY mice in areas of the basal ganglia (e.g., ventral
pallidum, globus pallidus, olfactory tubercles, and to a lesser
extent the caudate putamen) would support this dopamine-
mediated response observed in this awake mouse imaging study
(see Figure 3).

Interestingly, the caudate/putamen still showed a heightened
negative BOLD in response to OXY in the MuKO mice
suggesting a mechanism independent of the µ-opioid receptor.
Whether this is mediated through the k or δ opioid receptors or
involves yet another target is unknown.

Opioid agonists act by decreasing calcium conductance
and increasing potassium conductance with the net effect of
decreasing membrane excitability (Di Chiara and North, 1992)
predominantly in GABAergic neurons (Vaughan et al., 1997).
The classically described disinhibition effect of opioids results
in the activation of dopaminergic transmission within reward
pathways, as well as activation of endogenous descending
antinociceptive systems involving key opioid sensitive nodes in
the PAG,median raphe and rostral ventromedial medulla (RVM).
The mouse 3D MRI atlas used in these studies shows the RVM
as the gigantocellularis and paragigantocellaris areas bounded by
the facial nucleus in the medulla (Figure 3) (Lau and Vaughan,
2014). This general area of the medulla showed a pronounced
increase in positive BOLD signal intensity following OXY in
WT but not MuKO mice corroborating the importance of the
µ receptor in opioid analgesia. The antinociceptive action of
the opioid agonist morphine in mice is exclusively mediated
through the µ receptor (Matthes et al., 1996; Sora et al., 1997).
Indeed, many of the brain areas shown in the putative pain
neural circuit (Figure 2) were activated by OXY in WT but
showed little activity in MuKO mice. However, in a study by
Ross and Smith (Ross and Smith, 1997) it was reported the direct
administration of OXY into the cerebroventricular system of
rats has intrinsic antinociceptive effects that cannot be blocked
by prior treatment with selective µ or δ receptor antagonists.
The authors concluded that OXY’s analgesic activity is mediated
through the κ receptor. There are no data from this study that
would contest that finding. The present studies were designed
to finger print the OXY-induced pattern of brain activity and
the contribution of the µ receptor in that response. Indeed it

would be interesting to use BOLD imaging to study the response
to a painful stimulus during vehicle and OXY challenge. While
much of the OXY-induced BOLD activity is absent in the MuKO
mouse, this may reveal endogenous µ opioid receptor-mediated
mechanisms underlying pain processing and the reduction of
pain perception.

It has been known for some time that the cerebellum, in
addition to its role in motor coordination, is also involved
in cognitive and emotional experience (Haines et al., 1984;
Turner et al., 2007; Perciavalle et al., 2013). This acceptance of
cerebellum into the neural circuitry of affective behavior has
recently extended to include addiction (Miquel et al., 2016). This
is made possible by the many reciprocal connections between
the cerebellum, hypothalamus, limbic cortex, amygdala, and
hippocampus (Snider and Maiti, 1976; Heath et al., 1978; Haines
et al., 1984; Rogers et al., 2011) and the presence of opioid
receptors in the cerebellum. The human cerebellum has both
µ and κ opioid receptors but not δ (Schadrack et al., 1999).
The many studies on opioid receptor localization in the CNS
of rodents (Atweh and Kuhar, 1977; Goodman et al., 1980;
Moskowitz and Goodman, 1984; Tempel and Zukin, 1987; Sharif
and Hughes, 1989; Mansour et al., 1994a,b; 1995) are all in
agreement as to the absence ofµ and δ receptor in the cerebellum.
While many fail to report the presence of κ receptor, Temple
and Zukin showed autoradiographic evidence of κ binding in
the cerebellum of the rat (Tempel and Zukin, 1987), a finding
corroborated by Sharif and Hughes in rat and guinea pig (Sharif
and Hughes, 1989). In light of these data, the OXY-induced
activation of the cerebellum in MuKO mice would suggest a
possible interaction with the κ receptor, or again a non-opioid
off-target effect of OXY. In the future, the analysis of OXY effect
in κ opioid receptor KO mice may be of interest to identify
whether κ receptormediated mechanisms contribute to the OXY
BOLD activation map.

Caveats and Data Interpretation
For any imaging study on awake animals the issues and
consequences related to the stress of head restraint and restricted
body movement must be considered. Protocols have been
developed to help lessen the stress of an imaging study by
acclimating animals to the environment of the MR scanner
and the restraining devices helping to reduce stress hormones
levels and measures of sympathetic autonomic activity (Zhang
et al., 2000; King et al., 2005). These acclimation procedures
put animals through several simulated imaging sessions and
have been used to study sexual arousal in monkeys (Ferris
et al., 2004), generalized seizures in rats and monkeys (Tenney
et al., 2003, 2004), and exposure to psychostimulants like cocaine
(Febo et al., 2004, 2005; Ferris et al., 2005), amphetamine
(Madularu et al., 2015), nicotine (Skoubis et al., 2006) and
apomorphine (Zhang et al., 2000; Chin et al., 2006). Nonetheless,
one must consider the experimental confound that exists with
low levels of arousal and stress associated with imaging awake
animals.

Another consideration when interpreting the data is the
morphological differences in brain structure that may occur
between WT and transgenic rodents. This raises the possibility
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that regional differences in brain volume may have influenced
the BOLD signal analysis particularly when the data is reported
as volume of activation i.e., number of voxels activated in a 3D
brain volume. While there was little difference in whole brain
volume and the volumes of individual brain areas in between
these WT and MuKO mice we controlled for this possibility
by normalized the volume of activation to the brain volume of
interest for each subject prior to statistical comparisons for both
genotypes.

As noted above, the opioid receptors µ, κ, and δ are located
throughout the brain, but they are also found in the periphery
localized primarily to the enteric nervous system of the gut
(Holzer, 2009) and less so in the heart (Sobanski et al., 2014).
Opioids have a dramatic influence on gut motility with the
unwanted side effect of constipation (Holzer, 2009) and can
attenuate the sympathetic regulation of cardiac function (Wong
and Shan, 2001). Viscero-sensory information from these organs
would be conveyed back to the brainstem through spinal cord
and cranial nerves to affect BOLD signal intensity in many
areas in the hindbrain associated with autonomic function.
The nucleus of the solitary tract (NTS), parabrachial and
gigantocellularis nuclei and reticular formation, key areas in the
integration of viscero-sensory information, have direct sensory
connections with spinal neurons (Menétrey and De Pommery,
1991). This raises the question, how much of the activity in
the brain is direct or mediated through the periphery? Indeed
any change in brain activity in response to the systemic, IP
presentation of OXY as reported here, could be due to the direct
action of drug on the brain opioid receptors or indirectly through
peripheral nervous system.

In conclusion, our approach permits establishing opioid-
induced BOLD activation maps in awake mice. In addition,
comparison of WT and MuKO mutant mice reveals both
on-target and off target activation events, and set an OXY brain
signature that should, in the future, be compared to other µ

opioid agonists.
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Table 1S | Positive and negative BOLD activation for 122 brain areas.

Shown is a list of 122 brain areas and their median (med) number of voxels as a

percentage of the total Brain Area volume (i.e., number of voxels activated, divided

by the total number of voxels in the 3D volume of interest, times 100) for wild-type

given saline vehicle (Veh) wild-type given oxycodone (WT Oxy) and µ receptor

knock-out mice given oxycodone (KO Oxy). These volumes of activation for each

brain region across genotypes were analyzed using a Newman-Keuls multiple

comparisons test statistic and ranked in order of their significance. P-values are

presented on the far right column.

Table 2S | Negative BOLD activation for 122 brain areas. Same as Table 1S.

Table 3Sp | Positive BOLD volume of activation veh vs. MuKO oxycodone.

Shown is a list of 122 brain areas and their median (med), maximum (max), and

minimum (min) number of voxels as a percentage of the total Brain Area volume

(i.e., number of voxels activated, divided by the total number of voxels in the 3D

volume of interest, times 100) for wild-type given saline vehicle (Vehicle) and µ

receptor knock-out mice given oxycodone (MuKO Oxy). These volumes of

activation for each brain region between groups were analyzed using a Wilcoxon

rank-sum test.

Table 3Sn | Negative BOLD volume of activation veh vs. MuKO oxycodone.

Same as Table 3Sp but negative BOLD volume of activation.

Table 4Sp | Positive BOLD volume of activation veh vs. WT Oxycodone.

Same as Table 3Sp.

Table 4Sn | Negative BOLD volume of activation veh vs. WT Oxycodone.

Same as Table 3Sp but negative BOLD volume of activation.

Table 5Sp | Positive BOLD volume of activation WT oxycodone vs. MuKO

oxycodone. Same as Table 3Sp.

Table 5Sn | Negative BOLD volume of activation WT oxycodone vs. MuKO

oxycodone. Same as Table 3Sp but negative BOLD volume of activation.

Figure 1S | Volumetric analysis. Shown are bar graphs for the total brain

volume. Vertical lines denote SEM.

REFERENCES

Adler, L. J., Gyulai, F. E., Diehl, D. J., Mintun, M. A., Winter, P. M., and Firestone,

L. L. (1997). Regional brain activity changes associated with fentanyl analgesia

elucidated by positron emission tomography. Anesth. Analg. 84, 120–126. doi:

10.1213/00000539-199701000-00023

Al-Hasani, R., and Bruchas, M. R. (2011). Molecular mechanisms of opioid

receptor-dependent signaling and behavior. Anesthesiology 115, 1363–1381.

doi: 10.1097/aln.0b013e318238bba6

Atweh, S. F., and Kuhar, M. J. (1977). Autoradiographic localization of opiate

receptors in rat brain. II. The brain stem. Brain Res. 129, 1–12. doi:

10.1016/0006-8993(77)90965-9

Baamonde, A., Dauge, V., Gacel, G., and Rogues, B. P. (1991). Systemic

administration of (Tyr-D-Ser(O-tert-butyl)-Gly-PheLeu-Thr(O-tert-butyl), a

highly selective δ opioid agonist, induces µ receptor-mediated analgesia in

mice. J. Pharmacol. Exp. Ther. 257, 767–773.

Beardsley, P. M., Aceto, M. D., Cook, C. D., Bowman, E. R., Newman, J. L., and

Harris, L. S. (2004). Discriminative stimulus, reinforcing, physical dependence,

Frontiers in Neuroscience | www.frontiersin.org 13 November 2016 | Volume 10 | Article 471

http://journal.frontiersin.org/article/10.3389/fnins.2016.00471/full#supplementary-material
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Moore et al. Oxycodone fMRI in MuKO Mice

and antinociceptive effects of oxycodone in mice, rats, and rhesus monkeys.

Exp. Clin. Psychopharmacol. 12, 163–172. doi: 10.1037/1064-1297.12.3.163

Becerra, L., Upadhyay, J., Chang, P. C., Bishop, J., Anderson, J., Baumgartner,

R., et al. (2013). Parallel buprenorphine phMRI responses in conscious

rodents and healthy human subjects. J. Pharmacol. Exp. Ther. 345, 41–51. doi:

10.1124/jpet.112.201145

Birnbaum, H. G., White, A. G., Schiller, M., Waldman, T., Cleveland, J. M., and

Roland, C. L. (2011). Societal costs of prescription opioid abuse, dependence,

and misuse in the United States. Pain Med. 12, 657–667. doi: 10.1111/j.1526-

4637.2011.01075.x

Borsook, D., Becerra, L., and Hargreaves, R. (2006). A role for fMRI in

optimizing CNS drug development. Nat. Rev. Drug Discov. 5, 411–424. doi:

10.1038/nrd2027

Brevard, M. E., Duong, T. Q., King, J. A., and Ferris, C. F. (2003). Changes

in MRI signal intensity during hypercapnic challenge under conscious

and anesthetized conditions. Magn. Reson. Imaging 21, 9951001. doi:

10.1016/S0730-725X(03)00204-2

Bryant, C. D., Guido, M. A., Kole, L. A., and Cheng, R. (2014). The heritability

of oxycodone reward and concomitant phenotypes in a LG/J x SM/J mouse

advanced intercross line. Addict. Biol. 19, 552–561. doi: 10.1111/adb.12016

Carlezon, W. A. Jr., and Thomas, M. J. (2009). Biological substrates of reward

and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology

56(Suppl. 1), 122–132. doi: 10.1016/j.neuropharm.2008.06.075

Center for Disease Control and Prevention (2015). National Vital Statistics System,

Mortality File. National Center for Health Statistics.

Chen, Y. C., Choi, J. K., Anderson, S. L., Rosen, B. R., and Jenkins, B. G.

(2005). Mapping dopamine D2/D3 receptor function using pharmacological

magnetic resonance imaging. Psychopharmacology (Berl). 180, 705–715. doi:

10.1007/s00213-004-2034-0

Chin, C. L., Fox, G. B., Hradil, V. P., Osinski, M. A., McGaraughty, S. P.,

Skoubis, P. D., et al. (2006). Pharmacological MRI in awake rats reveals neural

activity in area postrema and nucleus tractus solitarius: relevance as a potential

biomarker for detecting drug-induced emesis. Neuroimage 33, 1152–1160. doi:

10.1016/j.neuroimage.2006.06.059

Comer, S. D., Metz, V. E., Cooper, Z. D., Kowalcyzk, W. J., Jones, J. D., Sullivan,

M. A., et al. (2013). Comparison of a drug versus money and drug versus drug

self-administration choice procedure with oxycodone and morphine in opioid

addicts. Behav. Pharmacol. 24, 504–516. doi: 10.1097/FBP.0b013e328363d1c4

Dhawan, B. N., Cesselin, F., Raghubir, R., Reisine, T., Bradley, P. B., Portoghese,

P. S., et al. (1996). International Union of Pharmacology. XII. Classification of

opioid receptors. Pharmacol. Rev. 48, 567–592.

Di Chiara, G., and North, R. A. (1992). Neurobiology of opiate abuse. Trends

Pharmacol. Sci. 13, 185–193. doi: 10.1016/0165-6147(92)90062-B

Duong, T. Q., Yacoub, E., Adriany, G., Hu, X., Ugurbil, K., and Kim, S. G. (2003).

Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-

echo and spin-echo fMRI with suppression of blood effects.Magn. Reson. Med.

49, 1019–1027. doi: 10.1002/mrm.10472

Erbs, E., Faget, L., Scherrer, G., Matifas, A., Filliol, D., Vonesch, J. L., et al.

(2015). A mu-delta opioid receptor brain atlas reveals neuronal cooccurrence

in subcortical networks. Brain Struct. Funct. 220, 677–702. doi: 10.1007/s00429-

014-0717-9

Febo, M., Segarra, A. C., Tenney, J. R., Brevard, M. E., Duong, T. Q., and Ferris, C.

F. (2004). Imaging cocaine-induced changes in the reward system in conscious

rate. J. Neurosci. Methods 139, 167–176. doi: 10.1016/j.jneumeth.2004.

04.028

Febo, M., Segarra, A., Nair, G., Schmidt, K., Duong, T. Q., and Ferris, C. F.

(2005). The neural consequences of repeated cocaine exposure revealed by

functional MRI in awake rats. Neuropsychopharmacology 25, 1132–1136. doi:

10.1038/sj.npp.1300653

Ferris, C. F., Kulkarni, P., J. M., Sullivan, Harder, J. A., Messenger, T. L., and

Febo, M. (2005). Pup suckling is more rewarding than cocaine: evidence

from fMRI and 3D computational analyses. J. Neurosci. 25, 149–156. doi:

10.1523/JNEUROSCI.3156-04.2005

Ferris, C. F., Kulkarni, P., Toddes, S., Yee, J., Kenkel,W., and Nedelman,M. (2014).

Studies on the Q175 knock-in model of huntington’s disease using functional

imaging in awake mice: evidence of olfactory dysfunction. Front. Neurol. 5:94.

doi: 10.3389/fneur.2014.00094

Ferris, C. F., Smerkers, B., Kulkarni, P., Caffrey, M., Afacan, O., Toddes, S.,

et al. (2011). Functional magnetic resonance imaging in awake animals. Rev.

Neurosci. 22, 665–674. doi: 10.1515/RNS.2011.050

Ferris, C. F., Snowdon, C. T., King, J. A., Sullivan, J. M. Jr., Ziegler, T. E., Olson,

D. P., et al. (2004). Activation of neural pathways associated with sexual

arousal in non-human primates. J. Magn. Reson. Imaging 19, 168–175. doi:

10.1002/jmri.10456

Gauriau, C., and Bernard, J. F. (2002). Pain pathways and parabrachial circuits in

the rat. Exp. Physiol. 87, 251–258. doi: 10.1113/eph8702357

Genovese, C. R., Lazar, N. A., and Nichols, T. (2002). Thresholding of statistical

maps in functional neuroimaging using the false discovery rate. Neuroimage

15, 870–878. doi: 10.1006/nimg.2001.1037

Goodman, R. R., Snyder, S. H., Kuhar, M. J., and Young, W. S. III. (1980).

Differentiation of delta and mu opiate receptor localizations by light

microscopic autoradiography. Proc. Natl. Acad. Sci. U.S.A. 77, 62396243. doi:

10.1073/pnas.77.10.6239

Gorka, S. M., Fitzgerald, D. A., de Wit, H., Angstadt, M., and Phan,

K. L. (2014). Opioid modulation of resting-state anterior cingulate

cortex functional connectivity. J. Psychopharmacol. 28, 1115–1124. doi:

10.1177/0269881114548436

Haensel, J. X., Spain, A., and Martin, C. (2015). A systematic review

of physiological methods in rodent pharmacological MRI studies.

Psychopharmacology (Berl). 232, 489–499. doi: 10.1007/s00213-014-3855-0

Haines, D. E., Dietrichs, E., and Sowa, T. E. (1984). Hypothalamo-cerebellar

and cerebello-hypothalamic pathways: a review and hypothesis concerning

cerebellar circuits which may influence autonomic centers affective behavior.

Brain Behav. Evol. 24, 198–220. doi: 10.1159/000121317

Hakan, R. L., and Henriksen, S. J. (1987). Systemic opiate administration has

heterogeneous effects on activity recorded from nucleus accumbens neurons

in vivo. Neurosci. Lett. 83, 307–312. doi: 10.1016/0304-3940(87)90105-4

Hashimoto, K., Amano, T., Kasakura, A., Uhl, G. R., Sora, I., Kuzumaki, N., et al.

(2009). µ-Opioid receptor-independent fashion of the suppression of sodium

currents byµ-opioid analgesics in thalamic neurons.Neurosci. Lett. 453, 62–67.

doi: 10.1016/j.neulet.2009.01.066

Heath, R. G., Dempesy, C.W., Fonatana, C. J., andMyers, W. A. (1978). Cerebellar

stimulation: effects on septal region, hippocampus, and amygdala of cats and

rats. Biol. Psychiatry 13, 501–529.

Holzer, P. (2009). Opioid receptors in the gastrointestinal tract. Regul. Pept. 155,

11–17. doi: 10.1016/j.regpep.2009.03.012

Hutchinson, M. R., Lewis, S. S., Coats, B. D., Skyba, D. A., Crysdale, N. Y.,

and Berkelhammer, D. L., et al. (2009). Reduction of opioid withdrawal and

potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain

Behav. Immun. 23, 240–250. doi: 10.1016/j.bbi.2008.09.012

Jones, J. D., Sullivan, M. A., Manubay, J., Vosburg, S. K., and Corner, S.

D. (2011). The subjective, reinforcing, and analgesic effects of oxycodone

in patients with chronic, non-malignant pain who are maintained on

sublingual buprenorphine/naloxone. Neuropsychopharmacology 36, 411–422.

doi: 10.1038/npp.2010.172

Kieffer, B. L., and Gavériaux-Ruff, C. (2002). Exploring the opioid system by gene

knockout. Prog. Neurobiol. 66, 285–306. doi: 10.1016/S0301-0082(02)00008-4

King, J. A., Garelick, T. S., Brevard, M. E., Chen, W., Messenger, T. L., Duong, T.

Q., et al. (2005). Procedure for minimizing stress for fMRI studies in conscious

rats. J. Neurosci. Methods 148, 154–160. doi: 10.1016/j.jneumeth.2005.04.011

Kitchen, I., Slowe, S. J., Matthes, H. W., and Kieffer, B. (1997). Quantitative

autoradiographic mapping of µ-, δ- and κ-opioid receptors in knockout mice

lacking the µ-opioid receptor gene. Brain Res. 778, 73–88. doi: 10.1016/S0006-

8993(97)00988-8

Koob, G. F. (1992). Drugs of abuse: anatomy, pharmacology and function of

reward pathways. Trends Pharmacol. Sci. 13, 177–184. doi: 10.1016/0165-

6147(92)90060-J

Lau, B. K., and Vaughan, C. W. (2014). Descending modulation of pain: the GABA

disinhibition hypothesis of analgesia. Curr. Opin. Neurobiol. 29, 159–164. doi:

10.1016/j.conb.2014.07.010

Leppä, M., Korvenoja, A., Carlson, S., Timonen, P., Martinkauppi, S., Ahonen,

J., et al. (2006). Acute opioid effects on human brain as revealed by

functional magnetic resonance imaging. Neuroimage 31, 661–669. doi:

10.1016/j.neuroimage.2005.12.019

Frontiers in Neuroscience | www.frontiersin.org 14 November 2016 | Volume 10 | Article 471

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Moore et al. Oxycodone fMRI in MuKO Mice

Liang, Z., King, J., and Zhang, N. (2011). Uncovering intrinsic connectional

architecture of functional networks in awake rat brain. J. Neurosci. 31,

3776–3783. doi: 10.1523/JNEUROSCI.4557-10.2011

Liu, C. H., Greve, D. N., Dai, G., Arota, J. J., and Mandeville, J. B. (2007).

Remifentanil administration reveals biphasic phMRI temporal responses in rat

consistent with dynamic receptor regulation. Neuroimage 34, 1042–1053. doi:

10.1016/j.neuroimage.2006.10.028

Lutz, P. E., and Kieffer, B. L. (2013a). The multiple facets of opioid receptor

function: implications for addiction. Curr. Opin. Neurobiol. 23, 473–479. doi:

10.1016/j.conb.2013.02.005

Lutz, P. E., and Kieffer, B. L. (2013b). Opioid receptors: distinct roles in mood

disorders. Trends Neurosci. 36, 195–206. doi: 10.1016/j.tins.2012.11.002

Madularu, D., Yee, J. R., Kenkel, W. M., Moore, K. A., Kulkarni, P., Shams, W.

M., et al. (2015). Integration of neural networks activated by amphetamine in

females with different estrogen levels: a functional imaging study in awake rats.

Psychoneuroendocrinology 56, 200–212. doi: 10.1016/j.psyneuen.2015.02.022

Manchikanti, L., Fellows, B., Ailinani, H., and Pampati, V. (2010). Therapeutic use,

abuse, and nonmedical use of opioids: a ten-year perspective. Pain Physician 13,

401–435.

Mansour, A., Fox, C. A., Burke, S., Akil, H., and Watson, S. J. (1995).

Immunohistochemical localization of the cloned µ opioid receptor in the rat

CNS. J. Chem. Neuroanat. 8, 283–305. doi: 10.1016/0891-0618(95)00055-C

Mansour, A., Fox, C. A., Meng, F., Akil, H., and Watson, S. J. (1994a). κ

1 receptor mRNA distribution in the rat CNS: comparison to κ receptor

binding and prodynorphin mRNA. Mol. Cell. Neurosci. 5, 124144. doi:

10.1006/mcne.1994.1015

Mansour, A., Fox, C. A., Thompson, R. C., Akil, H., and Watson, S. J. (1994b). µ-

Opioid receptor mRNA expression in the rat CNS: comparison to µ-receptor

binding. Brain Res. 643, 245–265. doi: 10.1016/0006-8993(94)90031-0

Mars, S. G., Bourgois, P., Karandinos, G., Montero, F., and Ciccarone, D.

(2014). “Every ‘never’ I ever said came true”: transitions from opioid pills to

heroin injecting. Int. J. Drug Policy 25, 257–266. doi: 10.1016/j.drugpo.2013.

10.004

Matthes, H. W., Maldonado, R., Simonin, F., Valverde, O., Stowe, S., Kitchen, I.,

et al. (1996). Loss of morphine-induced analgesia, reward effect and withdrawal

symptoms inmice lacking theµ-opioid-receptor gene.Nature 383, 819823. doi:

10.1038/383819a0

McCarthy, P. S., Walker, R. J., and Woodruff, G. N. (1977). Depressant actions of

enkephalins on neurones in the nucleus accumbens [proceedings]. J. Physiol.

267, 40P–41P.

Menétrey, D., and De Pommery, J. (1991). Origins of spinal ascending pathways

that reach central areas involved in visceroception and visceronociception in

the rat. Eur. J. Neurosci. 3, 249259. doi: 10.1111/j.1460-9568.1991.tb00087.x

Meredith, G. E. (1999). The synaptic framework for chemical signaling in

nucleus accumbens. Ann. N.Y. Acad. Sci. 877, 140–156. doi: 10.1111/j.1749-

6632.1999.tb09266.x

Miquel, M., Vazquez-Sanroman, D., Carbo-Gas, M., Gil-Miravet, I., Sanchis-Seura,

C., Carulli, D., et al. (2016). Have we been ignoring the elephant in the room?

Seven arguments for considering the cerebellum as part of addiction circuitry.

Neurosci. Biobehav. Rev. 60, 1–11. doi: 10.1016/j.neubiorev.2015.11.005

Moskowitz, A. S., and Goodman, R. R. (1984). Light microscopic autoradiographic

localization of µ and δ opioid binding sites in the mouse central nervous

system. J. Neurosci. 4, 13311342.

Norris, D. G. (2006). Principles of magnetic resonance assessment of brain

function. J. Magn. Reson. Imaging 23, 794–807. doi: 10.1002/jmri.20587

Perciavalle, V., Apps, R., Bracha, V., Delgado-García, J. M., Gibson, A. R.,

Leggio, M., et al. (2013). Consensus paper: current views on the role of

cerebellar interpositus nucleus in movement control and emotion. Cerebellum

12, 738–757. doi: 10.1007/s12311-013-0464-0

Petrovic, P., Kalso, E., Petersson, K. M., and Ingvar, M. (2002). Placebo and opioid

analgesia– imaging a shared neuronal network. Science 295, 1737–1740. doi:

10.1126/science.1067176

Pradhan, A. A., Smith, M. L., Kieffer, B. L., and Evans, C. J. (2012). Ligand-directed

signalling within the opioid receptor family. Br. J. Pharmacol. 167, 960–969.

doi: 10.1111/j.1476-5381.2012.02075.x

Rogers, T. D., Dickson, P. E., Heck, D. H., Goldowitz, D., Mittleman, G., and Blaha,

C. D. (2011). Connecting the dots of the cerebro-cerebellar role in cognitive

function: neuronal pathways for cerebellar modulation of dopamine release in

the prefrontal cortex. Synapse 65, 1204–1212. doi: 10.1002/syn.20960

Ross, F. B., and Smith, M. T. (1997). The intrinsic antinociceptive effects of

oxycodone appear to be κ-opioid receptor mediated. Pain 73, 151–157. doi:

10.1016/S0304-3959(97)00093-6

Rutten, K., E. L., van der Kam, De Vry, J., and Tzschentke, T. M. (2011). Critical

evaluation of the use of extinction paradigms for the assessment of opioid-

induced conditioned place preference in rats. Pharmacology 87, 286–296. doi:

10.1159/000327680

Schadrack, J., Willoch, F., Platzer, S., Bartenstein, P., Mahal, B., Dworzak, D.,

et al. (1999). Opioid receptors in the human cerebellum: evidence from

[11C]diprenorphine PET,mRNA expression and autoradiography.Neuroreport

10, 619624. doi: 10.1097/00001756-199902250-00032

Seah, S., Asad, A. B., Baumgartner, R., Feng, D., Williams, D. S., Manigbas, E., et al.

(2014). Investigation of cross-species translatability of pharmacological MRI

in awake nonhuman primate - a buprenorphine challenge study. PLoS ONE

9:e110432. doi: 10.1371/journal.pone.0110432

Shah, Y. B., Haynes, L., Prior, M. J., Marsden, C. A., Morris, P. G., and

Chapman, V. (2005). Functional magnetic resonance imaging studies of opioid

receptor-mediated modulation of noxious-evoked BOLD contrast in rats.

Psychopharmacology 180, 761–773. doi: 10.1007/s00213-005-2214-6

Sharif, N. A., and Hughes, J. (1989). Discrete mapping of brain µ and δ

opioid receptors using selective peptides: quantitative autoradiography, species

differences and comparison with κ receptors. Peptides 10, 499–522. doi:

10.1016/0196-9781(89)90135-6

Shih, Y. Y., Chen, C. C., Shyu, B. C., Chiang, Y. C., Jaws, F. S., Chen, Y. Y.,

et al. (2009). A new scenario for negative functional magnetic resonance

imaging signals: endogenous neurotransmission. J. Neurosci. 29, 3036–3044.

doi: 10.1523/JNEUROSCI.3447-08.2009

Shih, Y. Y., Chiang, Y. C., Shyu, B. C., Jaws, F. S., Duong, T. Q.,

and Chang, C. (2012). Endogenous opioid-dopamine neurotransmission

underlie negative CBV fMRI signals. Exp. Neurol. 234, 382–388. doi:

10.1016/j.expneurol.2011.12.042

Shih, Y. Y., Wey, H. Y., De La Garza, B. H., and Duong, T. Q. (2011). Striatal and

cortical BOLD, blood flow, blood volume, oxygen consumption, and glucose

consumption changes in noxious forepaw electrical stimulation. J. Cereb. Blood

Flow Metab. 31, 832–841. doi: 10.1038/jcbfm.2010.173

Skoubis, P. D., Hradil, V. P., Chin, C. L., Luo, Y., Fox, G. B., and

McGaraughty, S. (2006). Mapping brain activity following administration

of a nicotinic acetylcholine receptor agonist, ABY-594, using functional

magnetic resonance imaging in awake rats. Neuroscience 137, 583–591. doi:

10.1016/j.neuroscience.2005.08.072

Slowe, S. J., Simonin, F., Kieffer, B., and Kitchen, I. (1999). Quantitative

autoradiography of µ-, δ- and κ 1 opioid receptors in κ-opioid receptor

knockout mice. Brain Res. 818, 335–345. doi: 10.1016/S0006-8993(98)0

1201-3

Snider, R. S., and Maiti, A. (1976). Cerebellar contributions to the Papez circuit. J.

Neurosci. Res. 2, 133–146. doi: 10.1002/jnr.490020204

Sobanski, P., Krajnik, M., Shagurra, M., Bloch-Boguslawska, E., Schafer, M., and

Mousa, S. A. (2014). The presence of µ-, δ- and κ-opioid receptors in human

heart tissue. Heart Vessels 29, 855–863. doi: 10.1007/s00380-013-0456-5

Sora, I., Takahashi, N., Funada, M., Ujike, H., Revay, R. S., Donovan, D. M., et al.

(1997). Opiate receptor knockout mice define µ receptor roles in endogenous

nociceptive responses and morphine-induced analgesia. Proc. Natl. Acad. Sci.

U.S.A. 94, 1544–1549. doi: 10.1073/pnas.94.4.1544

Stoops,W.W., Hatton, K.W., Lofwall, M. R., Nuzzo, P. A., andWalsh, S. L. (2010).

Intravenous oxycodone, hydrocodone, and morphine in recreational opioid

users: abuse potential and relative potencies. Psychopharmacology (Berl) 212,

193–203. doi: 10.1007/s00213-010-1942-4

Takasu, K., Ogawa, K., Nakamura, A., Kanbara, T., Ono, H., Tomii, T., et al. (2015).

Enhanced GABAergic synaptic transmission at VLPAG neurons and potent

modulation by oxycodone in a bone cancer pain model. Br. J. Pharmacol. 172,

2148–2164. doi: 10.1111/bph.13039

Tempel, A., and Zukin, R. S. (1987). Neuroanatomical patterns of the µ,

δ and κ opioid receptors of rat brain as determined by quantitative in

vitro autoradiography. Proc. Natl. Acad. Sci. U.S.A. 84, 4308–4312. doi:

10.1073/pnas.84.12.4308

Frontiers in Neuroscience | www.frontiersin.org 15 November 2016 | Volume 10 | Article 471

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Moore et al. Oxycodone fMRI in MuKO Mice

Tenney, J. R., Duong, T. Q., King, J. A., Ludwig, R., and Ferris, C. F.

(2003). Corticothalamic modulation during absence seizures: a functional

MRI approach. Epilepsia 44, 1133–1140. doi: 10.1046/j.1528-1157.2003.

61002.x

Tenney, J. R., Marshall, P. C., King, J. A., and Ferris, C. F. (2004). fMRI

of generalized absence seizures in conscious marmoset monkeys reveals

corticothalamic activation. Epilepsia 45, 1240–1247. doi: 10.1111/j.0013-

9580.2004.21504.x

Turner, B. M., Paradiso, S., Marvel, C. L., Pierson, R., Boles Ponto, L. L., Hichwa,

R. D., et al. (2007). The cerebellum and emotional experience.Neuropsychologia

45, 1331–1341. doi: 10.1016/j.neuropsychologia.2006.09.023

Ugurbil, K., Adriany, G., Andersen, P., Chen, W., Gruetter, R., Hu, X. P., et al.

(2000). Magnetic Resonance studies of brain function and neurochemistry.

Ann. Rev. Biomed. Eng. 2, 633–660. doi: 10.1146/annurev.bioeng.2.1.633

Vander Weele, C. M., Porter-Stransky, K. A., Mabrouk, O. S., Lovic, V., Singer,

B. F., Kennedy, R. T., et al. (2014). Rapid dopamine transmission within the

nucleus accumbens: dramatic difference between morphine and oxycodone

delivery. Eur. J. Neurosci. 40, 3041–3054. doi: 10.1111/ejn.12709

Vaughan, C. W., Ingram, S. L., Connor, M. A., and Christie, M. J. (1997). How

opioids inhibit GABA-mediated neurotransmission. Nature 390, 611–614. doi:

10.1038/37610

Wagner, K. J., Sprenger, T., Kochs, E. F., Tolle, T. R., Valet, M., and Willoch,

F. (2007). Imaging human cerebral pain modulation by dosedependent

opioid analgesia: a positron emission tomography activation study using

remifentanil. Anesthesiology 106, 548–556. doi: 10.1097/00000542-200703000-

00020

Wiebelhaus, J. M., Walentiny, D. M., and Beardsley, P. M. (2016). Effects of

acute and repeated administration of oxycodone and naloxone-precipitated

withdrawal on intracranial self-stimulation in rats. J. Pharmacol. Exp. Ther. 356,

43–52. doi: 10.1124/jpet.115.228940

Wise, R. G., Rogers, R., Painter, D., Bantick, S., Ploghaus, A., Williams, P., et al.

(2002). Combining fMRI with a pharmacokinetic model to determine which

brain areas activated by painful stimulation are specifically modulated by

remifentanil. Neuroimage 16, 999–1014. doi: 10.1006/nimg.2002.1146

Wong, T. M., and Shan, J. (2001). Modulation of sympathetic actions on

the heart by opioid receptor stimulation. J. Biomed. Sci. 8, 299–306. doi:

10.1007/BF02258370

Xi, Z. X., Wu, G., Stein, E. A., and Li, S. J. (2004). Opiate tolerance by heroin

self-administration: an fMRI study in rat.Magn. Reson. Med. 52, 108–114. doi:

10.1002/mrm.20119

Yacoub, E., Duong, T. Q., Van De Moortele, P. F., Lindquist, M., Adriany, G.,

Kim, S. G., et al. (2003). Spin-Echo fMRI in humans using high spatial

resolutions and high magnetic fields. Magn. Reson. Med. 49, 655–664. doi:

10.1002/mrm.10433

Yacoub, E., Shmuel, A., Logothetis, N., and Uğurbil, K. (2007). Robust
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