SCISPACE
 formerly Typeset

〇 Open access . Posted Content - DOI:10.1101/866947

Boldness and exploration are linked to shell morph but not environmental context in the snail Cepaea nemoralis - Source link \square

Maxime Dahirel, Maxime Dahirel, Valentin Gaudu, Armelle Ansart
Institutions: University of Rennes, Centre national de la recherche scientifique
Published on: 06 Dec 2019 - bioRxiv (Cold Spring Harbor Laboratory)
Topics: Boldness and Cepaea

Related papers:

- Boldness and exploration vary between shell morphs but not environmental contexts in the snail Cepaea nemoralis
- Genetic differences in individual behaviour associated with shell polymorphism in the snail Cepaea nemoralis
- Animal personality adds complexity to the processes of divergence between sympatric morphs of Arctic charr
- Wild songbirds exhibit consistent individual differences in inter-specific social behaviour
- Colour polymorphism torn apart by opposing positive frequency-dependent selection, yet maintained in space

Share this paper: 9 in \square
View more about this paper here: https://typeset.io/papers/boldness-and-exploration-are-linked-to-shell-morph-but-not51kicxaipf

Boldness and exploration vary between shell morphs but not environmental contexts in the snail Cepaea nemoralis

Running title: Personality and shell morph in snails

Maxime Dahirel* ${ }^{* 1,2}$; Valentin Gaudu ${ }^{1}$; Armelle Ansart ${ }^{1}$
*corresponding author: maxime.dahirel@yahoo.fr
${ }^{1}$ Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, F-35042 Rennes, France
${ }^{2}$ INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia-Antipolis, France

Acknowledgments

We thank Youn Henry and Kévin Tougeron for helpful pointers on the link between behavior and thermal tolerance, as well as two anonymous referees and the editor for their comments on previous versions of this article.

Conflicts of interest

The authors have no conflict of interest to declare.

Data accessibility

Data and code to reproduce all analyses are available on GitHub (https://github.com/mdahirel/cepaea-personality-2017) and archived in Zenodo (DOI: 10.5281/zenodo. 3899042 ; version 1.1).

Abstract

Understanding the maintenance of among-individual behavioral variation in populations, and predicting its consequences, are key challenges in behavioral ecology. Studying the association between repeatable behaviors and other traits under selection may shed light on the underlying selective pressures. We used the model snail Cepaea nemoralis to examine whether individual behavior is associated with shell morph, a key trait that has been extensively studied in the context of thermal tolerance and predator avoidance, and which is known to be under strict genetic control in this species. We quantified proxies of boldness and exploration in snails of three morphs coming from two habitats with different thermal contexts. We show that both behaviors were repeatable at the among-individual level (within-state $R_{\text {boldness }}=0.22$ [95% credible interval: $0.15,0.29$]; $R_{\text {exploration }}=$ 0.20 [0.15, 0.25]). Behavior was associated with shell morph, with the darker morph (five-banded) being consistently shyer and slower to explore. There was no evidence that thermal environment of origin influenced behavior. Snails became faster when test temperature increased; we found no evidence morphs differed in their thermal response. Boldness and exploration were correlated among individuals, forming a syndrome ($r=0.28[0.10,0.46]$). We discuss what these results may tell us about the type of selection exerted by predators. We also detail how our results hint to a genetic link between shell morph and behavior, and the evolutionary implications of such a link. Finally, we discuss how our findings combined with decades of evolutionary research make C. nemoralis a very valuable model to study the evolution of behavior in response to environmental changes.

Keywords animal personality; behavioral syndromes; Gastropoda; multivariate multilevel model; shell color; temperature

Introduction

A key question in behavioral ecology, and more broadly in evolutionary ecology, is how to explain the persistence of variation in phenotypic traits. Although behavior is often seen as highly labile and dynamically adjustable to experienced conditions, individuals of many animal species exhibit "personalities", i.e. behave consistently across time and contexts, and differ consistently from each other (Kralj-Fišer \& Schuett, 2014; Réale, Reader, Sol, McDougall, \& Dingemanse, 2007; Sih, Bell, Johnson, \& Ziemba, 2004). This among-individual variation persists even when better adjustments of behaviors to environmental conditions would be adaptive, and the ability to tune behavior to conditions may itself vary among individuals (variation in "behavioral reaction norms"; Dingemanse, Kazem, Réale, \& Wright, 2010). Moreover, behaviors are often correlated with each other and with other traits, forming multivariate syndromes (Réale et al., 2007; Royauté, Berdal, Garrison, \& Dochtermann, 2018; Santostefano, Wilson, Niemelä, \& Dingemanse, 2017), further constraining the range of behavioral phenotypes that are on display in populations (Dochtermann \& Dingemanse, 2013).

State-dependent behavior is often invoked as one of the key mechanisms/frameworks potentially explaining both adaptive correlations/feedbacks between behaviors and other traits, and the maintenance of among-individual variation (Sih et al., 2015; Wolf \& McNamara, 2012; Wolf \& Weissing, 2010). Individuals can differ in morphology, size, past experienced environment, or any other so-called "state variables", typically less labile than behavior or even fixed at the individual level. If the costs and benefits of behaviors vary depending on these state variables, then we should expect individuals differing in state to adaptively differ in behaviors as well (Wolf \& Weissing, 2010). The pace-of-life hypothesis, which ties several axes of behavioral variation to underlying differences in life history and metabolism along a fast-slow axis (Réale et al., 2010; Wolf \& McNamara, 2012; Wright, Bolstad, Araya-Ajoy, \& Dingemanse, 2019), can be seen under this lens. Other examples include cases of phenotypic compensation, where predation risk can either be mitigated by
behavioral changes or morphological defenses, leading to a positive association between risk-taking behavior and defenses (e.g. Ahlgren, Chapman, Nilsson, \& Brönmark, 2015; but see De Winter, Ramalho Martins, Trovo, \& Chapman, 2016 for a contradictory example). In some cases, quantitative genetics and/or experimental evolution approaches may provide evidence of the evolution of statebehavior associations (e.g. Kern, Robinson, Gass, Godwin, \& Langerhans, 2016). In other cases in which this may be difficult, we believe that studying the association between personality and state traits can still provide valuable insights, especially if (i) the state trait is known to be fully genetically determined with little to no plasticity, (ii) we are able to study behavioral variation across a range of environments known to select on the state variable.

The grove snail Cepaea nemoralis (Linnaeus 1758) (family Helicidae) is a simultaneous hermaphrodite, medium-sized land gastropod common in western Europe (adult shell diameter 1825mm; Welter-Schultes, 2012). It has a long history as a model in evolutionary biology, due to its conspicuous shell polymorphism (reviewed by Jones, Leith, \& Rawlings, 1977; Ożgo, 2009)(Fig. 1A-B). Genetic variation in shell background color (from pale yellow to brown, but usually divided in yellow, pink, and brown; Davison, Jackson, Murphy, \& Reader, 2019) and in the number or width of dark bands has been well described (Jones et al., 1977). Shell polymorphism is governed by a limited number of loci with a limited number of alleles (Richards et al., 2013), and by all evidence shows no phenotypic plasticity. Modern genomics studies now aim to pinpoint the actual molecular/physiological underpinnings of shell color (Kerkvliet, Boer, Schilthuizen, \& Kraaijeveld, 2017; Richards et al., 2013).

In C. nemoralis, lighter-colored shells absorb less heat and allow snails to maintain a lower body temperature (Heath, 1975) and higher water content (Chang, 1991). Many studies have shown that lighter (vs. darker) snails have a selective advantage in hotter/sunnier (vs. colder/shaded) environments, whether one looks at continental-scale latitudinal clines (Jones et al., 1977; Silvertown et al., 2011), local-scale habitat comparisons (Kerstes, Breeschoten, Kalkman, \& Schilthuizen, 2019;

Ozgo \& Kinnison, 2008; Schilthuizen, 2013), or historical comparisons in the context of climate change (Ożgo, Liew, Webster, \& Schilthuizen, 2017; Ożgo \& Schilthuizen, 2012). Local variations in morph frequencies have also been linked to predation pressure, generally in the context of visual selection (frequency-dependent selection and/or crypsis; Jones et al., 1977; Surmacki, OżarowskaNowicka, \& Rosin, 2013, and references therein; but see Cook, 2008), but morph differences in shell resistance to crushing have also been described (Rosin, Kobak, Lesicki, \& Tryjanowski, 2013).

Although this has been much less studied, shell morphs also vary in their behavior (Chang, 1991; Jones, 1982; Ożgo \& Kubea, 2005; Rosin et al., 2018). Part of this variation is likely the direct consequence of differences in shell thermal properties and thus effective body temperature, as demonstrated by experiments that created "artificial" morphs by painting shells (Tilling, 1983). However, they probably also reflect, at least partly, intrinsic physiological differences: preferred temperatures can be altered using opioid agonists or antagonists, but banded snails are less responsive to this pharmaceutical manipulation (Kavaliers, 1992). Existing studies, however, have several major shortfalls for our understanding of the association between Cepaea morphology and behavioral syndromes. In particular, individuals are generally assayed once, which means separating within- from among-individual variation is impossible (Dingemanse \& Wright, 2020; Niemelä \& Dingemanse, 2018). This also means the level of total among-individual variation, and how it compares with among-morph variation, has remained to our knowledge unstudied. Additionally, all snails are often sampled from the same habitat, or habitat information is not used in behavioral analyses, meaning there is often no way to determine how behavior responds to selection pressures on shell color.

In this context, we investigated the existence and magnitude of personality variation and behavioral syndromes in C. nemoralis, how behavior is linked to shell variation, and how it is influenced by the environment of origin (sun-exposed or shaded) and currently experienced conditions. More specifically, we make the following hypotheses:
(i) Exploration and boldness (risk-taking behavior) are both repeatable in this species, and positively correlated in a behavioral syndrome (Réale et al., 2010).
(ii) As boldness may increase predation risk (e.g. Hulthén et al., 2017), we may expect phenotypic compensation through shell characteristics to be present in bolder individuals. This would lead to correlations between morph and behavior, the direction of which providing insights into the dominant selection pressures.
(iii) As snails are ectotherms, exploration should increase with temperature due to increased metabolism (over the range of temperatures suitable to movement; Abram, Boivin, Moiroux, \& Brodeur, 2017; Cloyed, Dell, Hayes, Kordas, \& O'Gorman, 2019). We expect this temperatureexploration reaction norm should vary both in its slope and average value according to shell morph and habitat of origin. Populations having evolved in sun-exposed habitats, and lighter (unbanded) snails should be better adapted to maintain activity in the face of high temperatures (e.g. Cloyed et al., 2019), at the possible costs of lower activity at lower temperatures (Tilling, 1983).

Methods

Sampled sites and snail maintenance under laboratory conditions

Snails were sampled in fall 2016 in and close to the village of Arçais, France (Fig. 1C), roughly in the middle of the recorded latitudinal range of Cepaea nemoralis (GBIF Secretariat, 2020). We studied two sites located about 2 km apart and differing in terms of vegetation cover. One was a garden with few isolated trees, and thus under relatively direct sun exposure all year long (hereafter the "open habitat"; approximate location: $46^{\circ} 17^{\prime} 50 " \mathrm{~N}, 0^{\circ} 41^{\prime} 30^{\prime \prime} \mathrm{W}$, Fig. 1D). The other was a 200 by 150 m deciduous forested lot, and thus fully shaded a large part of the year, especially the hottest spring and summer months ("shaded habitat"; approximately $46^{\circ} 18^{\prime} 01^{\prime \prime} \mathrm{N}, 0^{\circ} 42^{\prime} 56^{\prime \prime} \mathrm{W}$, Fig. 1E). Only adult snails were selected (recognizable by a reflected "lip" on their shell opening), as a way to partly control for age. We only sampled snails with the three most abundant shell banding patterns: shells
with no bands, three bands on the lower side of the shell, and five bands (Fig. 1B). Following previous authors (e.g. Kavaliers, 1992), we here focused for simplicity solely on band presence, and thus sampled only snails with yellow background shells, which are the most common in the study region (Silvertown et al., 2011; personal observations) and on which the contrast between shell background and dark bands is the strongest. We acknowledge that this may prevent us from fully generalizing, for now, to natural populations, as the effect of darker background color is not always the same as the effect of increased shell banding (e.g. Kerstes et al., 2019). Snails were hand-collected during the day, their period of inactivity, both by simplicity and to avoid skewing our sample towards more active individuals. If there were nonetheless a bias towards catching more conspicuous/ less likely to hide snails, we believe it would have artificially reduced, rather than increased, our effect sizes: we would have sampled the most active morph and the most active individuals from the least active morph, reducing mean morph differences.

Sampling for the present study was targeted and adjusted in the field to obtain roughly equal numbers of each banding pattern from both landscapes; it therefore did not allow us to make inferences on their relative abundances. The same sites were however sampled again in 2018 for a separate experiment, this time with random sampling relative to banding pattern. As in previous studies (e.g. Schilthuizen, 2013) and reflecting potential thermal selection, the darker five-banded snails were more frequent in the shaded habitat than in the open habitat ($22.3 \mathrm{vs} .13 .5 \%$; see Supplementary Material S1).

We transferred snails to the lab and kept them under dormancy conditions ($6 \pm 1^{\circ} \mathrm{C}$, no light, food or water sources) until March 2017, about 3 weeks before the start of the experiment. We then divided them into groups of 15 individuals from the same landscape, five (randomly chosen) of each shell phenotype. Comparing group size to natural densities is difficult, due to the way natural densities are often reported in the literature (averages over entire habitats, including empty areas). However, groups of 10-20 individuals are commonly seen in the wild (personal observations) and are also often
used in experiments (Oosterhoff, 1977; Rosin et al., 2018; Wolda, 1967). Groups were kept under controlled conditions ($20 \pm 1^{\circ} \mathrm{C}, \mathrm{L}: \mathrm{D} 16: 8$) in $8.5 \times 15 \times 12 \mathrm{~cm}$ polyethylene boxes lined with $1-2 \mathrm{~cm}$ of soil kept humid at the bottom. Snails had ad libitum access to prepared snail food (cereal flour supplemented with calcium, Hélinove, Saint Paul en Pareds, France) in a Petri dish. We gave each snail a unique ID written on the side of their shell with a paint marker (uni Posca, Mitsubishi Pencil Co., Ltd, Tokyo, Japan; Henry \& Jarne, 2007). A total of 360 snails (60 for each habitat \times shell phenotype combination) were used in the experiments described below. By necessity, the observer (see below) was not blind to individual habitat of origin/phenotype; note that the analyst (MD) did not contribute to the actual observations.

Behavioral tests: boldness

We studied boldness using simulated predator attacks as in Dahirel et al. (2017). All tests were done by the same operator (VG) to avoid effects of inter-experimenter variability. Snails were assayed individually during the last four hours of the photophase, i.e. the early part of the daily activity period. Like other helicids, Cepaea nemoralis is nocturnal but tends to start activity sometime before dark (Cameron, 1970). To stimulate activity, we first placed them in a Petri dish with water for 5 minutes, before putting them on individual clean glass plates. After snails had moved at least one shell length $(\approx 20 \mathrm{~mm})$ from their starting position, the operator used a pipette tip to pinch them for 5 seconds on the right side of the foot. Preliminary tests confirmed that this was the shortest time needed to ensure all snails retracted fully in their shell. We then recorded the time snails took to exit the shell and resume activity after the attack (from retraction to the full extension of all tentacles out of the shell), as our measure of boldness (snails with shorter latencies being considered bolder). We stopped observations after 20 min if snails did not exit the shell. Snails from the same test box were tested on the same day, and placed back in their box after testing. To estimate the repeatability of boldness, snails were tested a second time after seven days, using the same protocol. The initial
order in which groups were tested within a sequence was random; this order was conserved for all subsequent tests.

Behavioral tests: exploration/speed

We studied snail movement at four temperatures within the activity range of C. nemoralis (Cameron, 1970): 15, 18, 22, and $25^{\circ} \mathrm{C}$. All tests were again performed by the same operator (VG), and again during the last four hours of the photophase each day. Movement tests started 7 days after the last boldness test for a given individual, successive movement tests were separated by 24 h . Half of the boxes, equally distributed between landscapes of origin, were tested in increasing temperature order (from 15 to $25^{\circ} \mathrm{C}$), the other half in decreasing order $\left(25^{\circ} \mathrm{C}\right.$ to $\left.15^{\circ}\right)$. Twenty-four hours before a given test, we placed snails and their rearing box at the testing temperature for habituation, using temperature-controlled cabinets (ET 619-4, Lovibond, Dortmund, Germany). For testing, each snail was placed individually at the center of a clean $25 \times 25 \mathrm{~cm}$ polyethylene box (height: 9 cm) and left free to move. Snails were deemed active once they had moved more than 2 cm away from their starting point. We used the time snails took to move more than 10 cm from their starting point, minus the time taken to start activity, as our exploration metric (with lower values for snails that moved away faster). We stopped observations after 20 min post-activity initiation. This metric was chosen for its ease of implementation; we acknowledge that it conflates exploration of the environment with movement speed (as both slow-moving individuals and thorough explorers would have higher first-passage times).

Ethical note and compatibility with reporting guidelines

This study complies with all relevant national and international laws, and the ASAB/ABS Guidelines for the use of animals (2020) were adhered to as closely as possible. Potentially stressful experimental treatments (boldness experiment) were limited to the shortest possible time to elicit the behaviors of interest. No ethical board recommendation or administrative authorization was needed to work on or sample Cepaea nemoralis. The marking method used is non-invasive and has
minimal to no documented effects on life-history traits (Henry \& Jarne, 2007). We do not believe there is any potential for bias due to social background, self-selection, experience or other factors indicated in the STRANGE framework (Webster \& Rutz, 2020). To the best of our knowledge, the studied individuals are representative of the local populations studied, except for the two constraints explicitly imposed on collection by our experimental design (only adults, equal numbers of a few morphs of interest). All individuals were subjected to the same experimental conditions once collected.

Statistical analyses

We analyzed snail behavioral data in a Bayesian multilevel/mixed model framework, using the Stan language (Carpenter et al., 2017), with R (version 4.0; R Core Team, 2020) and the brms R package (Bürkner, 2017) as frontends. Scripting, analysis, and plotting relied on the tidybayes, bayesplot, and patchwork packages, as well as the tidyverse family of packages (Gabry, Simpson, Vehtari, Betancourt, \& Gelman, 2019; Kay, 2019; Pedersen, 2019; Wickham et al., 2019).

We used a bivariate generalized linear multilevel model to estimate the effect of shell phenotype, habitat and temperature on behavior, quantify behavioral (co)variances and partition them across hierarchical levels (among-box, among-individual and within-individual variation) (Dingemanse \& Dochtermann, 2013; Houslay \& Wilson, 2017). We did not estimate within-individual trait correlations, as exploration and boldness were tested independently at the within-individual level (that is, boldness measure 1 had no stronger "link" to exploration measure 1 than boldness measure 2; scenario 4 of table 2 in Dingemanse \& Dochtermann, 2013). We present a full write-up of the model as Supplementary Material S2; a general description follows below.

Boldness and exploration were analyzed assuming a lognormal distribution to account for the skewed distribution of time to event data. We accounted for the fact that monitoring was stopped before some individuals could express the behavior of interest by including a censored data indicator in the model. Fixed effects for both behaviors included shell banding (three-level categorical
variable), landscape of origin (binary variable), and their interaction, as well as test order (1 or 2 for boldness, 1 to 4 for exploration). The model for exploration additionally included a test temperature effect as well as its interactions with shell banding and landscape. Categorical variables (shell banding, landscape of origin) were converted to centered dummy variables, and numeric variables (test order, temperature) were centered, following Schielzeth (2010)(temperature was additionally scaled to unit 1SD). This has two benefits. First, it makes main effect coefficients directly interpretable even in the presence of interactions (Schielzeth, 2010). Second, for categorical variables, having the intercept on an "average" rather than on one arbitrary default category avoids the problem of putting a more precise prior on an arbitrary reference category (which would be defined by the intercept only) than on the others (which would be defined by the intercept and one or several other coefficients)(McElreath, 2020). Morph-specific coefficients (intercepts, slopes) remain easy to obtain post-fitting, by simply adding the relevant posterior coefficients. Random effects included box-level and individual-level intercepts as well as, in the case of exploration, the associated slopes for temperature. This allowed us to estimate among-box and among-individual variation in mean behavior and thermal behavioral reaction norms as well as the box- and individuallevel covariances among them (Dingemanse \& Dochtermann, 2013).

We used a $\operatorname{Normal}(\mu=\ln (400), \sigma=0.5)$ prior for the fixed effects intercepts (mean log- latencies), so that $\sim 99 \%$ of the probability mass was within the range of latencies that was observable during the experiment (i.e. 0 to 1200 sec , see above), but not excluding larger values, because of censoring. We set the other priors to be weakly informative and follow some suggestions by McElreath (2020): a Normal $(0,1)$ prior for the other fixed effects, a half-Normal $(0,1)$ prior for both random effect and distributional standard deviations. For the random effects correlation matrices, we use an $\operatorname{LKJ}(\eta=3)$ prior, as it helps reach convergence faster than McElreath (2020)'s $\eta=2$ default. Note that our choice here is more skeptical of high correlations and thus penalizes against our hypotheses of interest (there are detectable correlations).

We partitioned total phenotypic variation V_{P} for each behavior into the following components: $V_{P}=$ $V_{F}+V_{I}+V_{B}+V_{D}$, where V_{F} is the fixed effect variation, including $V_{F(\text { state })}$ the portion of fixed-effect variance attributable to known individual state (banding pattern, environment of origin), i.e. excluding experimental effects (test order, temperature) (estimated following de Villemereuil, Morrissey, Nakagawa, \& Schielzeth, 2018); V/the average among-individual variation (including the effect of random temperature slope, estimated following Johnson, 2014), with $V_{l(\text { intercept })}$ the amongindividual variation at the average test temperature ($V_{I}=V_{l(\text { intercept })}$ for boldness); V_{B} and $V_{B(\text { intercept })}$ are the equivalent box-level variances; and V_{D} is the distributional, or residual, variation. As pointed by Wilson (2018) and de Villemereuil et al. (2018), there is in most cases no one "true" repeatability estimate just as there is no one "true" way of partitioning the phenotypic variance pie; several estimates with differing interpretations can be presented. Therefore, both absolute variance components and analytical choices regarding repeatabilities should be made explicit. We estimated the following two unadjusted repeatabilities (i.e. including the entirety of V_{P} in the denominator; Nakagawa \& Schielzeth, 2010): within-state repeatability $R_{\text {(within-state) }}=V_{l(\text { intercept })} / V_{P}$, and what we term total repeatability, $R_{\text {(total) }}=\left(V_{l(\text { intercept })}+V_{F(\text { state })}\right) / V_{p}$. The proportion of persistent amongindividual variation that is attributable to individual state (banding and landscape of origin) is then denoted by $V_{F(\text { state })} /\left(V_{l(\text { intercept })}+V_{F(\text { state })}\right)$. Variance components and repeatabilities are presented on the observed data scale (sensu de Villemereuil, Schielzeth, Nakagawa, \& Morrissey, 2016). Variance components on the latent log scale (i.e. directly using model coefficients) led to qualitatively and quantitatively similar results.

We ran four chains for 12000 iterations, with the first 2000 iterations of each chain used for warmup. We checked mixing graphically and confirmed chain convergence using the improved \widehat{R} statistic by Vehtari et al. (2020). The chains were run longer than the default number of iterations to ensure the effective sample size was satisfactory for all parameters (both bulk- and tail-effective sample sizes sensu Vehtari et al., 2020 at least >400, here >1000). All posterior summaries are given as mean [95\% highest posterior density interval].

Results

Exploration was related to shell morph (Table 1, Fig. 2), with morph-specific intercepts, i.e. mean loglatencies, for 0,3 and 5-banded snails of 6.65 [6.59, 6.69], 6.64 [6.59, 6.69] and 6.71 [6.66, 6.76], respectively. Five-banded snails were on average slower to explore their surroundings than either three-banded or unbanded snails (in both cases, mean difference: 0.07 [0.01, 0.13])(Fig.2) Snails also became slower as tests went on (Table 1). We found no clear evidence of an effect of the landscape of origin on exploration. Snails explored faster with increasing temperature (Table 1, Fig. 2; temperature slopes for 0,3 , and 5-banded snails: -0.12 [-0.16,-0.07], $-0.11[-0.16,-0.07],-0.10[-$ $0.15,-0.06])$. There was however no clear evidence that the slope of the temperature reaction norm varied between the three morphs, or between snails coming from different landscapes (Table 1; credible intervals for all interactions largely overlap 0).

Morphs also varied in average boldness (Table 1, Fig. 2), with morph-specific intercepts for 0,3 and 5-banded snails of 2.84 [2.65, 3.04], 2.99 [2.79, 3.18] and 3.10 [2.90, 3.30], respectively. Unbanded snails were bolder than five-banded snails (mean difference: -0.26 [-0.47, -0.05]); three-banded snails presenting intermediate values, with no clear difference with either extreme morph. Again, there was no evidence for landscape or landscape \times morph effects.

Both exploration and boldness were repeatable at the individual level, with average repeatabilities in the same range for both behaviors (Table 2). Including fixed effect variation due to individual state (morph and landscape of origin) in the calculation only slightly increased repeatabilities. Indeed, the proportion of persistent among-individual variation attributable to fixed effects was different from zero but small, with over 90% of individual-level variation attributable to other, unmeasured sources (Fig. 3, Table 2). Among-individual variation in temperature slopes was minimal, with variation in intercepts explaining 98\% [89\%, 100\%] of the average exploration V_{l} (Fig. 3, Table 2). Accordingly, we find no clear evidence that the level of among-individual variation changes across the temperature gradient; following equations in Brommer (2013), the ratio between latent-scale V_{1} at the lowest and
highest tested temperatures is not different from $1(0.76[0.39,1.13])$. We also found no evidence of widespread rank switching across the temperature gradient (faster than average individuals in one environment remained overall faster across contexts): indeed, the cross-environmental correlation, which is higher the more predicted individual rankings stay consistent across environmental gradients (Brommer, 2013), was close to 1 when comparing the two extremes of the thermal gradient (0.85 [$0.62,1.00]$ on the latent scale).

Variation among boxes was small but non-negligible, in the same range as the proportion of variation explained by fixed effects for both behaviors. Average exploration and boldness were positively correlated at the individual level (Table 3, Fig. 4). There was no evidence that among-individual variation in responses to temperature was correlated with either mean exploration times or mean boldness (Table 3). There was no evidence for box-level correlations among traits (Table 3).

Discussion

By showing that behaviors linked to boldness and exploration are repeatable in Cepaea nemoralis, we add to a growing list of personality studies in gastropods, highlighting the usefulness of this taxon to address key questions in behavioral ecology (see e.g. Ahlgren et al., 2015; Cornwell, McCarthy, \& Biro, 2020; Cornwell, McCarthy, Snyder, \& Biro, 2019; Dahirel et al., 2017; Goodchild, Schmidt, \& DuRant, 2020; Seaman \& Briffa, 2015). We note however that this list is biased towards freshwater and marine gastropods; more studies are needed to understand among-individual variation in behavior in land mollusks. Additionally, we demonstrated that boldness and exploration are positively correlated in a common syndrome and that their expression varies depending on shell banding, a trait under strictly genetic determinism (little to no plasticity) that has been the focus of a lot of research in this species (Ożgo, 2009; Richards et al., 2013). Given how behavior can shape effective thermal tolerance (Abram et al., 2017) or vulnerability to predation (e.g. Hulthén et al., 2017), we believe these behavioral differences must be taken into account when discussing the evolution of shell color in this model species.

Unbanded snails were both bolder and explored faster than five-banded snails (Table 1, Fig. 2). Three-banded snails behaved similarly to unbanded snails for exploration (but were intermediate between unbanded and five-banded snails for boldness). This shows the "effectively unbanded" category sometimes used in Cepaea studies (Cain \& Sheppard, 1954; Ożgo \& Schilthuizen, 2012) has at least some behavioral relevance (that category groups together snails with little to no banding on the side of their shell exposed to the sun). Exploration and boldness were positively correlated both at the among-individual (Table 2) and among-morph levels (the shyest morph was also the slowest, Fig. 2). At the individual level, while some clutches were laid during the experiments, we were not able to test if this behavioral syndrome was integrated into a broader pace of life syndrome sensu Réale et al. (2010) by linking behavioral and life-history variation. Indeed, we were unable to ascertain the maternal and especially paternal origin of most clutches, and were not able to follow snail fecundity or longevity over their entire life. There are however some indications in the literature that more active/mobile snails are faster-growing (Oosterhoff, 1977), as the pace-of-life syndrome hypothesis would predict.

Five-banded snails were on average shyer than unbanded snails (Fig. 2). Birds, thrushes in particular (genus Turdus), are key predators of Cepaea nemoralis (Rosin, Lesicki, Kwieciński, Skórka, \& Tryjanowski, 2017; Rosin, Olborska, Surmacki, \& Tryjanowski, 2011). Historically, both frequencydependent predation and direct visual selection due to crypsis have been invoked as explanations for predator-dependent morph variation in Cepaea (Jones et al., 1977; Ożgo, 2009), but discussions often used human vision as a baseline. More recently, crypsis explanations have received increased support from an experiment using models of avian vision to more rigorously test how thrushes see different shell morphs (Surmacki et al., 2013). In both our test sites, the boldest morph (unbanded shell) is the least conspicuous (based on Surmacki et al., 2013), not the rarest. Building on the phenotypic compensation hypothesis (i.e. that risk-taking individuals should be better defended; Ahlgren et al., 2015; Kuo, Irschick, \& Lailvaux, 2015), this result then adds support to crypsis-based explanations of Cepaea morph variation. However, phenotypic compensation is not a hard rule, and
risk-taking individuals are sometimes less defended than risk-avoiding ones (De Winter et al., 2016; Goodchild et al., 2020). Besides, snails are also predated by rodents (Rosin et al., 2011), and shell morphs differ in shell strength in ways that go counter to the phenotypic compensation hypothesis (5-banded shells being stronger; Rosin et al., 2013). The combined effect of color and shell thickness/strength on predation risk remains to be studied. Finally, we must remember that (i) our knowledge of how avian predators perceive snails is very limited (Surmacki et al., 2013), (ii) we only tested a small set of the available morphs, which do not include the rarest background colors (pink and brown), and (iii) shell banding is a trait under multiple selection pressures, including thermal selection (see below).

Exploration speed was temperature-dependent: as expected from an ectothermic species, snails were on average faster at higher temperatures (Fig. 2). The temperature reaction norm of exploration was remarkably conserved among individuals (the near-totality of the among-individual variance V_{l} was due to differences in average behavior, rather than in temperature slopes; Table 2, Fig. 3). In addition, there was surprisingly no evidence that behavioral differences among morphs are influenced by the thermal environment, whether we consider the environment of origin (no habitat \times morph interaction) or the current environment (no effect of morph identity on thermal reaction norms) (Table 1). This is despite abundant evidence in the literature for thermal selection on shell morphs, based on both field comparisons (e.g. Richardson, 1974; Schilthuizen, 2013; Kerstes et al., 2019; for this study, see Methods), and experiments (Lamotte, 1959; Tilling, 1983; Wolda, 1967). Studies giving snails a choice between multiple temperatures show snail morphs do have different thermal preferences that align with expectations based on thermal selection (Kavaliers, 1992). Some studies suggest that snails use shade and humidity just as much (and potentially more) as temperature as cues to adjust their behavior to microclimate (Ożgo \& Kubea, 2005; Rosin et al., 2018). Our exploration tests were short, under standardized lighting conditions and with no water, and snails were brought back to favorable humidity soon after. It is possible longer experiments, or experiments comparing the responses of snails from different habitats to realistic climate variation
(including shade and/or humidity) would yield different responses. Maybe more importantly, we only tested temperatures favorable for activity, i.e. the limited part of the thermal niche closer to the optimum. Morph differences in behavior might be stronger closer to critical minimal or maximal temperature thresholds (Tilling, 1983). This can be investigated by using a wider range of temperatures and expanding the reaction norm approach used here to either a character state approach (e.g. Houslay, Earley, Young, \& Wilson, 2019) or a non-linear reaction norm approach (Arnold, Kruuk, \& Nicotra, 2019); both would account for the typical non-linearity of complete thermal performance curves (Arnold et al., 2019). It is very important to note, however, that these results do not mean populations from landscapes differing in sun exposure are identical in behavior, even for the range of situations we tested. Indeed, because morphs differ in their behavior, and because morph frequencies differ among landscapes (see Supplementary Material S1), the average snail from a sun-exposed population may well be bolder and more active than its counterpart from a shaded population.

In any case, the links between behaviors and morphs we observed are conserved across contexts, despite (apparent) selection on shell morph. While this is not a definite proof by itself, we consider this a first hint in favor of a genetic association between morphs and behaviors that cannot be easily broken by environmental changes. In addition to studies aiming to confirm these behavioral traits are heritable, further research into the physiological underpinnings of behavioral differences between morphs (building on e.g. Kavaliers, 1992) and of shell color and pattern determination (Kerkvliet et al., 2017) should help confirm (or infirm) this putative genetic correlation and elucidate its proximate basis.

Assuming this genetic link is confirmed, any discussion about how selection on morph may influence the evolution of behavior (or vice versa) must be tempered by one fact: the greater part of the repeatable among-individual variation in behavior was not explained by shell morph (see Fig. 3, Table 1, and the fact that morph differences are hard to see from raw data in Fig. 2). It is in a way
unsurprising, as we did not expect a single discrete trait to entirely constrain individual behavioral variation. Indeed, the expression of animal personalities can be influenced by many unobserved drivers and state variables which should have a priori limited links to shell morph and its drivers (Burns et al., 2012; Petelle, Martin, \& Blumstein, 2019; Sih et al., 2015; Wright et al., 2019). This includes for instance sex or reproductive history (DiRienzo \& Aonuma, 2017; Kralj-Fišer, Hebets, \& Kuntner, 2017), predation risk (Goodchild et al., 2020), age or life stage (Dahirel et al., 2017), or body size (Santostefano et al., 2017). Snail behavior is particularly sensitive to population density including during development (Cameron \& Carter, 1979; Oosterhoff, 1977), an environmental axis we ignored in the present study. Also, our study focused on relatively short-term repeatability; it is possible that over larger time scales, the variance component related to morph differences plays a more important role. In a fish community, for instance, some differences among species are detectable over long but not short time scales (Harrison et al., 2019). Finally, some level of stochastic behavioral individuality is inevitable even in the total absence of meaningful genetic and environmental variation (Bierbach, Laskowski, \& Wolf, 2017). What must be noted, though, is that some of this "remaining" among-individual variation may still, actually, relate to shell morph. Indeed, because of dominance within loci and especially epistatic relationships among loci, individuals that share the same shell phenotype may actually vary greatly in terms of underlying shell genotype (e.g. having one dominant allele at the «band presence» locus leads to total band absence and masks variation at all other banding genes; Jones et al., 1977). However, while much is known about among-morph variation in thermal tolerance, life history, physiology (Kavaliers, 1992; Kerstes et al., 2019; Lamotte, 1959; Oosterhoff, 1977; Richardson, 1974; Tilling, 1983; Wolda, 1967), we know nothing, as far as we can tell, about within-morph, but among-genotype variation. Investigations using individuals of known genotype obtained through repeated crosses or, as our knowledge of the actual molecular underpinnings increases, through direct genotyping (Gonzalez, Aramendia, \& Davison, 2019; Kerkvliet et al., 2017), may shed light on this "hidden" genetic variation and whether it contributes to the persistence of morph-related behavior differences.

Increased boldness and exploration have been tied to a higher probability of dispersal in many species (Cote, Clobert, Brodin, Fogarty, \& Sih, 2010), including land snails (Dahirel et al., 2017), and non-random dispersal is now acknowledged as a potentially widespread force behind population phenotypic divergence (Edelaar \& Bolnick, 2012; Jacob, Bestion, Legrand, Clobert, \& Cote, 2015). Bolder animals are often thought to trade increased success against a greater predation risk (Hulthén et al., 2017; but see Moiron, Laskowski, \& Niemelä, 2020); predation is generally considered a key driver of morphological differences in Cepaea, and plays a key role in dispersal across taxa (Fronhofer et al., 2018). Although active dispersal can safely be dismissed as a driver of continental-scale differences in morph frequencies, our results point to Cepaea as a good model to understand how existing behavioral differences may drive local-scale morphological differences (and vice versa). By building on, and complementing, a decades-long history of evolutionary research, this will help us better understand the role of behavior, and constraints on behavioral variation, in shaping responses to rapid environmental changes (Candolin \& Wong, 2012), including landscape alteration and climate change.

References

Abram, P. K., Boivin, G., Moiroux, J., \& Brodeur, J. (2017). Behavioural effects of temperature on ectothermic animals?: Unifying thermal physiology and behavioural plasticity. Biological Reviews, 92(4), 1859?1876. doi: 10.1111/brv. 12312

Ahlgren, J., Chapman, B. B., Nilsson, P. A., \& Brönmark, C. (2015). Individual boldness is linked to protective shell shape in aquatic snails. Biology Letters, 11(4), 20150029. doi: 10.1098/rsbl. 2015.0029

Arnold, P. A., Kruuk, L. E. B., \& Nicotra, A. B. (2019). How to analyse plant phenotypic plasticity in response to a changing climate. New Phytologist, 222(3), 1235@1241. doi: 10.1111/nph. 15656

ASAB，\＆ABS．（2020）．Guidelines for the treatment of animals in behavioural research and teaching．
Animal Behaviour，159，I囵XI．doi：10．1016／j．anbehav．2019．11．002

Bierbach，D．，Laskowski，K．L．，\＆Wolf，M．（2017）．Behavioural individuality in clonal fish arises despite near－identical rearing conditions．Nature Communications，8，15361．doi： 10．1038／ncomms15361

Brommer，J．E．（2013）．Variation in plasticity of personality traits implies that the ranking of personality measures changes between environmental contexts［？：Calculating the cross－ environmental correlation．Behavioral Ecology and Sociobiology，67（10），1709？1718．doi： 10．1007／s00265－013－1603－9

Bürkner，P．－C．（2017）．brms？？：An R package for Bayesian multilevel models using Stan．Journal of Statistical Software，80（1），1园28．doi：10．18637／jss．v080．i01

Burns，J．G．，Svetec，N．，Rowe，L．，Mery，F．，Dolan，M．J．，Boyce，W．T．，\＆Sokolowski，M．B．（2012）． Gene－environment interplay in Drosophila melanogaster？：Chronic food deprivation in early life affects adult exploratory and fitness traits．Proceedings of the National Academy of Sciences of the United States of America，109（Suppl 2），17239？17244．doi： 10．1073／pnas． 1121265109

Cain，A．J．，\＆Sheppard，P．M．（1954）．Natural selection in Cepaea．Genetics，39（1），89⿴囗才 116.
Cameron，R．A．D．（1970）．The effect of temperature on the activity of three species of helicid snail （Molluscal？：Gastropoda）．Journal of Zoology，162（3），303？315．doi：10．1111／j．1469－ 7998．1970．tb01267．x

Cameron，R．A．D．，\＆Carter，M．A．（1979）．Intra－and interspecific effects of population density on growth and activity in some helicid land snails（Gastropoda？：Pulmonata）．Journal of Animal Ecology，48（1），237团246．doi：10．2307／4111

Candolin，U．，\＆Wong，B．B．M．（Éds．）．（2012）．Behavioural responses to a changing world？： Mechanisms and consequences（1st edition）．Oxford：Oxford University Press．

Carpenter，B．，Gelman，A．，Hoffman，M．D．，Lee，D．，Goodrich，B．，Betancourt，M．，．．．Riddell，A．（2017）． Stan？：A probabilistic programming language．Journal of Statistical Software，76（1）， 1 ？ 32. doi：10．18637／jss．v076．i01

Chang，H．－W．（1991）．Activity and weight loss in relation to solar radiation in the polymorphic land snail Cepaea nemoralis．Journal of Zoology，225（2），213⿴囗225．doi：10．1111／j．1469－ 7998．1991．tb03812．x

Cloyed，C．S．，Dell，A．I．，Hayes，T．，Kordas，R．L．，\＆O＇Gorman，E．J．（2019）．Long－term exposure to higher temperature increases the thermal sensitivity of grazer metabolism and movement． Journal of Animal Ecology，$O(0)$ ．doi：10．1111／1365－2656．12976

Cook，L．M．（2008）．Variation with habitat in Cepaea nemoralis［？：The Cain \＆Sheppard diagram． Journal of Molluscan Studies，74（3），239？243．doi：10．1093／mollus／eyn011

Cornwell，T．O．，McCarthy，I．D．，\＆Biro，P．A．（2020）．Integration of physiology，behaviour and life history traits［］：Personality and pace of life in a marine gastropod．Animal Behaviour，163， 155回162．doi：10．1016／j．anbehav．2020．03．009

Cornwell，T．O．，McCarthy，I．D．，Snyder，C．R．A．，\＆Biro，P．A．（2019）．The influence of environmental gradients on individual behaviour？：Individual plasticity is consistent across risk and temperature gradients．Journal of Animal Ecology，88（4），511？520．doi：10．1111／1365－ 2656.12935

Cote，J．，Clobert，J．，Brodin，T．，Fogarty，S．，\＆Sih，A．（2010）．Personality－dependent dispersall？： Characterization，ontogeny and consequences for spatially structured populations． Philosophical Transactions of the Royal Society of London B：Biological Sciences，365（1560）， 4065？4076．doi：10．1098／rstb． 2010.0176

Dahirel，M．，Vong，A．，Ansart，A．，\＆Madec，L．（2017）．Individual boldness is life stage－dependent and linked to dispersal in a hermaphrodite land snail．Ecological Research，32，751？755．doi： 10．1007／s11284－017－1484－x

Davison, A., Jackson, H. J., Murphy, E. W., \& Reader, T. (2019). Discrete or indiscrete? Redefining the colour polymorphism of the land snail Cepaea nemoralis. Heredity, 1. doi: 10.1038/s41437-019-0189-z

De Winter, G., Ramalho Martins, H., Trovo, R. A., \& Chapman, B. B. (2016). Knights in shining armour are not necessarily bold?: Defensive morphology correlates negatively with boldness, but positively with activity, in wild threespine stickleback, Gasterosteus aculeatus. Evolutionary Ecology Research, 17, 1 ?12.

Dingemanse, N. J., \& Dochtermann, N. A. (2013). Quantifying individual variation in behaviour?: Mixed-effect modelling approaches. Journal of Animal Ecology, 82(1), 39?54. doi: $10.1111 / 1365-2656.12013$

Dingemanse, N. J., Kazem, A. J., Réale, D., \& Wright, J. (2010). Behavioural reaction norms司: Animal personality meets individual plasticity. Trends in Ecology \& Evolution, 25(2), 81?89. doi: 10.1016/j.tree.2009.07.013

Dingemanse, N. J., \& Wright, J. (2020). Criteria for acceptable studies of animal personality and behavioural syndromes. Ethology, 126(9), 865?869. doi: 10.1111/eth. 13082

DiRienzo, N., \& Aonuma, H. (2017). Individual differences are consistent across changes in mating status and mediated by biogenic amines. Behavioral Ecology and Sociobiology, 71(8), 118. doi: 10.1007/s00265-017-2345-x

Dochtermann, N. A., \& Dingemanse, N. J. (2013). Behavioral syndromes as evolutionary constraints. Behavioral Ecology, 24(4), 806?811. doi: 10.1093/beheco/art002

Edelaar, P., \& Bolnick, D. I. (2012). Non-random gene flow?: An underappreciated force in evolution and ecology. Trends in Ecology \& Evolution, 27(12), 659?665. doi: 10.1016/j.tree.2012.07.009

Fronhofer, E. A., Legrand, D., Altermatt, F., Ansart, A., Blanchet, S., Bonte, D., ... Cote, J. (2018). Bottom-up and top-down control of dispersal across major organismal groups. Nature Ecology \& Evolution, 2(12), 1859?1863. doi: 10.1038/s41559-018-0686-0

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., \& Gelman, A. (2019). Visualization in Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society), 182(2), 389回402. doi: 10.1111/rssa. 12378

GBIF Secretariat. (2020). Cepaea nemoralis (Linnaeus, 1758) in GBIF Backbone Taxonomy. Checklist dataset accessed via GBIF.org on 2020-08-11. Consulté à l'adresse https://doi.org/10.15468/39omei

Gonzalez, D. R., Aramendia, A. C., \& Davison, A. (2019). Recombination within the Cepaea nemoralis supergene is confounded by incomplete penetrance and epistasis. Heredity, 1. doi: 10.1038/s41437-019-0190-6

Goodchild, C. G., Schmidt, L. M., \& DuRant, S. E. (2020). Evidence for the 'behavioural character' hypothesis[: Does boldness programme disparate antipredator strategies? Animal Behaviour, 164, 123 132. doi: 10.1016/j.anbehav.2020.04.010

Harrison, P. M., Keeler, R. A., Robichaud, D., Mossop, B., Power, M., \& Cooke, S. J. (2019). Individual differences exceed species differences in the movements of a river fish community. Behavioral Ecology, arz076. doi: 10.1093/beheco/arz076

Heath, D. J. (1975). Colour, sunlight and internal temperatures in the land-snail Cepaea nemoralis
(L.). Oecologia, 19(1), 29038. doi: 10.1007/BF00377587

Henry, P.-Y., \& Jarne, P. (2007). Marking hard-shelled gastropods?: Tag loss, impact on life-history traits, and perspectives in biology. Invertebrate Biology, 126(2), 138?153. doi: 10.1111/j.1744-7410.2007.00084.x

Houslay, T. M., Earley, R. L., Young, A. J., \& Wilson, A. J. (2019). Habituation and individual variation in the endocrine stress response in the Trinidadian guppy (Poecilia reticulata). General and Comparative Endocrinology, 270, 113团122. doi: 10.1016/j.ygcen.2018.10.013

Houslay, Thomas M., \& Wilson, A. J. (2017). Avoiding the misuse of BLUP in behavioural ecology. Behavioral Ecology, 28(4), 948?952. doi: 10.1093/beheco/arx023

Hulthén, K., Chapman, B. B., Nilsson, P. A., Hansson, L.-A., Skov, C., Brodersen, J., ... Brönmark, C. (2017). A predation cost to bold fish in the wild. Scientific Reports, 7(1), 1239. doi: 10.1038/s41598-017-01270-w

Jacob, S., Bestion, E., Legrand, D., Clobert, J., \& Cote, J. (2015). Habitat matching and spatial heterogeneity of phenotypes?: Implications for metapopulation and metacommunity functioning. Evolutionary Ecology, 29(6), 851?871. doi: 10.1007/s10682-015-9776-5

Johnson, P. C. D. (2014). Extension of Nakagawa \& Schielzeth's $R^{2}{ }_{\text {GLMM }}$ to random slopes models. Methods in Ecology and Evolution, 5(9), 944?946. doi: 10.1111/2041-210X. 12225

Jones, J. S. (1982). Genetic differences in individual behaviour associated with shell polymorphism in the snail Cepaea nemoralis. Nature, 298(5876), 749?750. doi: 10.1038/298749a0

Jones, J. S., Leith, B. H., \& Rawlings, P. (1977). Polymorphism in Cepaea?: A problem with too many solutions? Annual Review of Ecology and Systematics, 8, 109圆143. JSTOR. Consulté à I'adresse JSTOR.

Kavaliers, M. (1992). Opioid systems, behavioral thermoregulation and shell polymorphism in the Iand snail, Cepaea nemoralis. Journal of Comparative Physiology B, 162(2), 172圂178. doi: 10.1007/BF00398344

Kay, M. (2019). tidybayes[?: Tidy data and geoms for Bayesian models. doi: 10.5281/zenodo. 1308151

Kerkvliet, J., Boer, T. de, Schilthuizen, M., \& Kraaijeveld, K. (2017). Candidate genes for shell colour polymorphism in Cepaea nemoralis. PeerJ, 5, e3715. doi: 10.7717/peerj. 3715

Kern, E. M. A., Robinson, D., Gass, E., Godwin, J., \& Langerhans, R. B. (2016). Correlated evolution of personality, morphology and performance. Animal Behaviour, 117, 79?86. doi: 10.1016/j.anbehav.2016.04.007

Kerstes, N. A. G., Breeschoten, T., Kalkman, V. J., \& Schilthuizen, M. (2019). Snail shell colour evolution in urban heat islands detected via citizen science. Communications Biology, 2(1), 264. doi: 10.1038/s42003-019-0511-6

Kralj－Fišer，S．，Hebets，E．A．，\＆Kuntner，M．（2017）．Different patterns of behavioral variation across and within species of spiders with differing degrees of urbanization．Behavioral Ecology and Sociobiology，71（8），125．doi：10．1007／s00265－017－2353－x

Kralj－Fišer，S．，\＆Schuett，W．（2014）．Studying personality variation in invertebrates？：Why bother？ Animal Behaviour，91，41？52．doi：10．1016／j．anbehav．2014．02．016

Kuo，C．－Y．，Irschick，D．J．，\＆Lailvaux，S．P．（2015）．Trait compensation between boldness and the propensity for tail autotomy under different food availabilities in similarly aged brown anole lizards．Functional Ecology，29（3），385国392．doi：10．1111／1365－2435．12324

Lamotte，M．（1959）．Polymorphism of natural populations of Cepaea nemoralis．Cold Spring Harbor Symposia on Quantitative Biology，24（0），65？86．doi：10．1101／SQB．1959．024．01．009

McElreath，R．（2020）．Statistical rethinking？：A Bayesian course with examples in R and Stan（2nd edition）．Boca Raton，USA：Chapman and Hall／CRC．

Moiron，M．，Laskowski，K．L．，\＆Niemelä，P．T．（2020）．Individual differences in behaviour explain variation in survival？？：A meta－analysis．Ecology Letters，23（2），399？408．doi： 10．1111／ele． 13438

Nakagawa，S．，\＆Schielzeth，H．（2010）．Repeatability for Gaussian and non－Gaussian data？？：A practical guide for biologists．Biological Reviews，85（4），935国956．doi：10．1111／j．1469－ 185X．2010．00141．x

Niemelä，P．T．，\＆Dingemanse，N．J．（2018）．On the usage of single measurements in behavioural ecology research on individual differences．Animal Behaviour，145，99？105．doi： 10．1016／j．anbehav．2018．09．012

Oosterhoff，L．M．（1977）．Variation in growth rate as an ecological factor in the landsnail Cepaea nemoralis（L．）．Netherlands Journal of Zoology，27（1），1团132．doi：10．1163／002829677X00072

Ożgo，M．（2009）．Current problems in the research of Cepaea polymorphism．Folia Malacologica， 16（2），55？60．doi：10．12657／folmal．016．009

Ozgo, M., \& Kinnison, M. T. (2008). Contingency and determinism during convergent contemporary evolution in the polymorphic land snail, Cepaea nemoralis. Evolutionary Ecology Research, 10, 721 ? 733.

Ożgo, M., \& Kubea, A. (2005). Humidity and the effect of shell colour on activity of Cepaea nemoralis (Linnaeus, 1758). Folia Malacologica, 13(3).

Ożgo, M., Liew, T.-S., Webster, N. B., \& Schilthuizen, M. (2017). Inferring microevolution from museum collections and resampling??: Lessons learned from Cepaea. PeerJ, 5, e3938. doi: 10.7717/peerj. 3938

Ożgo, M., \& Schilthuizen, M. (2012). Evolutionary change in Cepaea nemoralis shell colour over 43 years. Global Change Biology, 18(1), 74?81. doi: 10.1111/j.1365-2486.2011.02514.x

Pedersen, T. L. (2019). patchwork[回: The composer of plots. Consulté à l'adresse https://CRAN.Rproject.org/package=patchwork

Petelle, M. B., Martin, J. G. A., \& Blumstein, D. T. (2019). Mixed support for state maintaining risky personality traits in yellow-bellied marmots. Animal Behaviour, 150, 177回188. doi: 10.1016/j.anbehav.2019.02.008

R Core Team. (2020). R: a language and environment for statistical computing (Version 4.0.0). Vienna, Austria: R Foundation for Statistical Computing. Consulté à l'adresse https://www.Rproject.org/

Réale, D., Garant, D., Humphries, M. M., Bergeron, P., Careau, V., \& Montiglio, P.-O. (2010). Personality and the emergence of the pace-of-life syndrome concept at the population level. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 365(1560), 4051?4063. doi: 10.1098/rstb. 2010.0208

Réale, D., Reader, S. M., Sol, D., McDougall, P. T., \& Dingemanse, N. J. (2007). Integrating animal temperament within ecology and evolution. Biological Reviews, 82(2), 291?318. doi: 10.1111/j.1469-185X.2007.00010.x

Richards，P．M．，Liu，M．M．，Lowe，N．，Davey，J．W．，Blaxter，M．L．，\＆Davison，A．（2013）．RAD－Seq derived markers flank the shell colour and banding loci of the Cepaea nemoralis supergene． Molecular Ecology，22（11），3077回3089．doi：10．1111／mec． 12262

Richardson，A．M．M．（1974）．Differential climatic selection in natural population of land snail Cepaea nemoralis．Nature，247（5442），572．doi：10．1038／247572a0

Rosin，Z．M．，Kobak，J．，Lesicki，A．，\＆Tryjanowski，P．（2013）．Differential shell strength of Cepaea nemoralis colour morphs－Implications for their anti－predator defence． Naturwissenschaften，100（9），843？851．doi：10．1007／s00114－013－1084－8

Rosin，Z．M．，Kwieciński，Z．，Lesicki，A．，Skórka，P．，Kobak，J．，Szymańska，A．，．．．Tryjanowski，P．（2018）． Shell colour，temperature，（micro）habitat structure and predator pressure affect the behaviour of Cepaea nemoralis．The Science of Nature，105（5），35．doi：10．1007／s00114－018－ 1560－2

Rosin，Z．M．，Lesicki，A．，Kwieciński，Z．，Skórka，P．，\＆Tryjanowski，P．（2017）．Land snails benefit from human alterations in rural landscapes and habitats．Ecosphere，8（7），e01874．doi： 10．1002／ecs2．1874

Rosin，Z．M．，Olborska，P．，Surmacki，A．，\＆Tryjanowski，P．（2011）．Differences in predatory pressure on terrestrial snails by birds and mammals．Journal of Biosciences，36（4），691国699．doi： 10．1007／s12038－011－9077－2

Royauté，R．，Berdal，M．A．，Garrison，C．R．，\＆Dochtermann，N．A．（2018）．Paceless life？A meta－ analysis of the pace－of－life syndrome hypothesis．Behavioral Ecology and Sociobiology，72（3）， 64．doi：10．1007／s00265－018－2472－z

Santostefano，F．，Wilson，A．J．，Niemelä，P．T．，\＆Dingemanse，N．J．（2017）．Behavioural mediators of genetic life－history trade－offs？：A test of the pace－of－life syndrome hypothesis in field crickets．Proc．R．Soc．B，284（1864），20171567．doi：10．1098／rspb．2017．1567

Schielzeth，H．（2010）．Simple means to improve the interpretability of regression coefficients． Methods in Ecology and Evolution，1（2），103⿴囗113．doi：10．1111／j．2041－210X．2010．00012．x

Schilthuizen, M. (2013). Rapid, habitat-related evolution of land snail colour morphs on reclaimed land. Heredity, 110(3), 247-252.

Seaman, B., \& Briffa, M. (2015). Parasites and personality in periwinkles (Littorina littorea) ${ }^{\text {? }}$: Infection status is associated with mean-level boldness but not repeatability. Behavioural Processes, 115, 132圆134. doi: 10.1016/j.beproc.2015.03.014

Sih, A., Bell, A. M., Johnson, J. C., \& Ziemba, R. E. (2004). Behavioral syndromes?: An integrative overview. The Quarterly Review of Biology, 79(3), 241?277. doi: 10.1086/422893

Sih, A., Mathot, K. J., Moirón, M., Montiglio, P.-O., Wolf, M., \& Dingemanse, N. J. (2015). Animal personality and state-behaviour feedbacks[?: A review and guide for empiricists. Trends in Ecology \& Evolution, 30(1), 50?60. doi: 10.1016/j.tree.2014.11.004

Silvertown, J., Cook, L., Cameron, R., Dodd, M., McConway, K., Worthington, J., ... Juan, X. (2011). Citizen science reveals unexpected continental-scale evolutionary change in a model organism. PLOS ONE, 6(4), e18927. doi: 10.1371/journal.pone. 0018927

Surmacki, A., Ożarowska-Nowicka, A., \& Rosin, Z. M. (2013). Color polymorphism in a land snail Cepaea nemoralis (Pulmonata??: Helicidae) as viewed by potential avian predators. Die Naturwissenschaften, 100(6), 533团540. doi: 10.1007/s00114-013-1049-y

Tilling, S. M. (1983). An experimental investigation of the behaviour and mortality of artificial and natural morphs of Cepaea nemoralis (L.). Biological Journal of the Linnean Society, 19(1), 35?50. doi: 10.1111/j.1095-8312.1983.tb00775.x

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., \& Bürkner, P.-C. (2020). Rank-normalization, folding, and localization?: An improved \backslash widehat $\{R\}$ for assessing convergence of MCMC. Bayesian Analysis. doi: 10.1214/20-BA1221

Villemereuil, P. de, Morrissey, M. B., Nakagawa, S., \& Schielzeth, H. (2018). Fixed-effect variance and the estimation of repeatabilities and heritabilities[: Issues and solutions. Journal of Evolutionary Biology, 31(4), 621?632. doi: 10.1111/jeb. 13232

Villemereuil，Pierre de，Schielzeth，H．，Nakagawa，S．，\＆Morrissey，M．（2016）．General methods for evolutionary quantitative genetic inference from Generalized Mixed Models．Genetics， 204（3），1281回1294．doi：10．1534／genetics．115．186536

Webster，M．M．，\＆Rutz，C．（2020）．How STRANGE are your study animals？Nature，582（7812）， 337？340．doi：10．1038／d41586－020－01751－5

Welter－Schultes，F．（2012）．European non－marine molluscs，a guide for species identification． Göttingen：Planet Poster Editions．

Wickham，H．，Averick，M．，Bryan，J．，Chang，W．，McGowan，L．，François，R．，．．．Yutani，H．（2019）． Welcome to the Tidyverse．Journal of Open Source Software，4（43），1686．doi： 10．21105／joss． 01686

Wilson，A．J．（2018）．How should we interpret estimates of individual repeatability？Evolution Letters， 2（1），4？8．doi：10．1002／evl3．40

Wolda，H．（1967）．The effect of temperature on reproduction in some morphs of the landsnail Cepaea nemoralis（L．）．Evolution，21（1），117团129．doi：10．1111／j．1558－5646．1967．tb00135．x

Wolf，M．，\＆McNamara，J．M．（2012）．On the evolution of personalities via frequency－dependent selection．The American Naturalist，179（6），679？692．doi：10．1086／665656

Wolf，M．，\＆Weissing，F．J．（2010）．An explanatory framework for adaptive personality differences． Philosophical Transactions of the Royal Society B：Biological Sciences，365（1560）， 395903968. doi：10．1098／rstb． 2010.0215

Wright，J．，Bolstad，G．H．，Araya－Ajoy，Y．G．，\＆Dingemanse，N．J．（2019）．Life－history evolution under fluctuating density－dependent selection and the adaptive alignment of pace－of－life syndromes．Biological Reviews，94（1），230⿴囗247．doi：10．1111／brv． 12451
scape of origin = shaded
test temperature

Intercept (log-latency of an "average" individual)	$6.67(6.63 ; 6.70)$	$2.98(2.83 ; 3.13)$
banding = 3 bands	$-0.00(-0.06 ; 0.06)$	$0.15(-0.06 ; 0.36)$
banding = 5 bands	$0.07(0.01 ; 0.13)$	$0.26(0.05 ; 0.47)$
landscape of origin = shaded	$0.06(-0.02 ; 0.13)$	$0.20(-0.10 ; 0.50)$
test temperature	$-0.11(-0.15 ;-0.07)$	--
test order	$0.04(0.00 ; 0.07)$	$0.08(-0.04 ; 0.19)$

Fixed effects: interactions

banding $=3$ band \times landscape $=$ shaded	$-0.07(-0.19 ; 0.05)$	$0.16(-0.25 ; 0.56)$
banding $=5$ band \times landscape $=$ shaded	$-0.01(-0.13 ; 0.11)$	$0.24(-0.16 ; 0.65)$
banding $=3$ band \times temperature	$0.00(-0.04 ; 0.04)$	--
banding $=5$ band \times temperature	$0.01(-0.03 ; 0.05)$	--
landscape $=$ shaded \times temperature	$-0.05(-0.13 ; 0.03)$	--
banding $=3$ bands \times landscape $=$ shaded \times	$-0.02(-0.10 ; 0.06)$	--
temperature	$0.02(-0.06 ; 0.10)$	
banding $=5$ band \times landscape $=$ shaded \times		

Tables

Table 1: Estimated fixed effect parameters of the model explaining exploration and boldness latencies (mean and 95\% credible intervals). Continuous explanatory variables are centered and scaled, and categorical variables converted to centered dummy variables; the intercept then refers to the behavior of a hypothetical "average" snail.

Mean effect (95\% credible interval)	
Exploration	Boldness

Fixed effects: main effects

	Posterior mean (95\%	dible interval)
	Exploration	Boldness
Variance partitioning (observed scale, in sec ${ }^{2}$)		
Fixed effects V_{F}	13556 (6349 ; 21112)	49 (6; 110)
- explained by state	2185 (329; 4360)	$46(4 ; 105)$
Among boxes V_{B}	$8468(2984$; 15132)	128 (12; 307)
- random intercept only	3102 (0; 7101)	128 (12; 307)
Among individuals V_{l}	25677 (17966; 33628)	542 (263; 875)
- random intercept only	24346 (17322; 32035)	542 (263; 875)
Residual V_{D}	73976 (63439 ; 84520)	1795 (966-2816)
Total variance V_{P}	121676 (102632 ; 141659)	2513 (1334; 3960)
Repeatabilities (observed scale)		
$R_{\text {(within-state) }}$	0.20 (0.15; 0.25)	0.22 (0.15; 0.29)
$R_{\text {(total) }}$	0.22 (0.17; 0.27)	0.24 (0.17; 0.31)
$R_{\text {(within-state) }} / R_{\text {(total) }}$	0.92 (0.84; 0.98)	0.92 (0.84; 0.99)

Table 2. Variance partitioning and repeatabilities. Estimated variances and 95% credible interval are obtained from a multivariate mixed model. Variances are estimated on the observed scale sensu de Villemereuil et al (2016). Variances are rounded to the nearest unit. Readers looking at the data may note that the total variances V_{P} are higher than the empirically observed variances. This is because the latter are underestimated, due to censoring.

Variance partitioning (observed scale, in sec ${ }^{2}$)

Table 3. Random effect correlation matrices (latent scale, mean and 95% credible intervals). Boxlevel correlations are above the diagonal, individual-level correlations below the diagonal.

	Boldness, intercept	Exploration, intercept	Exploration, temperature slope
Boldness, intercept		$0.12(-0.42 ; 0.63)$	$0.38(-0.05 ; 0.79)$
Exploration, intercept	$\mathbf{0 . 2 8 (0 . 1 0 ; 0 . 4 6)}$		$-0.19(-0.69 ; 0.33)$
Exploration,			
temperature slope	$-0.19(-0.67 ; 0.32)$	$0.29(-0.24 ; 0.76)$	

Figure legends

Figure 1. Study species and sites. (A) An unbanded yellow Cepaea nemoralis, showing the position of individual paint marks on the shell (B) Representative shells of the three studied morphs as seen from above: yellow unbanded, three-banded, and five-banded snails (C) Study sites location in France; the open habitat (D) and the shaded habitat (E) are separated by about 2 km . Photographs were taken during winter, when snails were collected.

Figure 2. (A; B) posterior distributions of median boldness (A) and exploration (B) in relation to shell morph. The model estimates the mean log-latencies, which correspond to the medians on the observed latencies scale. (C) Mean and 95\% credible band for the relationship between exploration latency and test temperature. Grey lines connect trials from the same individual. Values are plotted on a log-transformed axis. $N=360$ individuals (60 per landscape \times morph combination)

Figure 3. Mean (points) and posteriors for the proportion of variance explained by the different variance components. For boldness, V_{B} and $V_{B(\text { intercept })}$ are exactly equal by definition (same for V_{I} and $\left.V_{l(\text { intercept })}\right) ;$ see Methods and Table 2 for details on this and the names of the variance components.

Figure 4. Correlation between individual-level random effects for boldness and exploration, illustrated by plotting their respective Best Linear Unbiased Predictors and 95\% credible intervals. Inset: posterior distribution of the correlation coefficient. BLUPs are plotted, and correlation estimated, on the latent log scale.

bolder
 shyer

