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Abstract. We give a detailed description of the arithmetic Fuch-
sian group of the Bolza surface and the associated quaternion or-
der. This description enables us to show that the corresponding
principal congruence covers satisfy the bound sys(X) > 4

3
log g(X)

on the systole, where g is the genus. We also exhibit the Bolza
group as a congruence subgroup, and calculate out a few examples
of “Bolza twins” (using magma). Like the Hurwitz triplets, these
correspond to the factoring of certain rational primes in the ring of
integers of the invariant trace field of the surface. We exploit ran-
dom sampling combined with the Reidemeister-Schreier algorithm
as implemented in magma to generate these surfaces.
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1. Introduction

This article pursues several related goals. First, we seek to clarify the
algebraic underpinnings of the celebrated Bolza curve which turn out
to be more involved than those of the celebrated Klein quartic. Fur-
thermore, we seek to provide explicit algebraic foundations, in terms of
a quaternion algebra, for calculating out examples of Riemann surfaces
with particularly high systole corresponding to principal congruence
subgroups in the Bolza order. In an effort to make the text intelligible
to both algebraists and differential geometers, we sometimes give de-
tailed proofs that could have been shortened if addressed to a specific
expert audience.
In 2007, Katz, Schaps and Vishne [13] proved a lower bound for

the systole of certain arithmetic Riemann surfaces, improving earlier
results by Buser and Sarnak (1994 [8, p. 44]). Particularly sharp results
were obtained in [13] and [14] for Hurwitz surfaces, namely Riemann
surfaces with an automorphism group of the highest possible order in
terms of the genus g, yielding a lower bound

sys(Xg) >
4

3
log g (1.1)

for principal congruence subgroups corresponding to a suitable Hurwitz
quaternion order defined over Q(cos 2π

7
).

Makisumi (2013 [20]) proved that the multiplicative constant 4
3
in

the bound (1.1) is the best possible asymptotic value for congruence
subgroups of arithmetic Fuchsian groups. Schmutz Schaller (1998 [24,
Conjecture 1(i), p. 198]) conjectured that a 4/3 bound is the best pos-
sible among all hyperbolic surfaces. Additional examples of surfaces
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whose systoles are close to the bound were recently constructed by
Akrout & Muetzel (2013 [1], [2]). The foundations of the subject were
established by Vinberg (1967 [27]).
We seek to extend the bound (1.1) to the case of the family of Rie-

mann surfaces defined by principal congruence subgroups of the (3, 3, 4)
triangle group corresponding to a quaternion order defined over Q(

√
2),

which is closely related to the Bolza surface.
The Fuchsian group of the Bolza surface, which we henceforth de-

note B, is arithmetic, being a subgroup of the group of units, mod-
ulo {±1}, in an order of the quaternion algebra

DB = (−3,
√
2) = K[i, j | i2 = −3, j2 =

√
2, ji = −ij] (1.2)

over the base field K = Q(
√
2). The splitting pattern of this algebra

is determined in Section 5. Let OK = Z[
√
2] be the ring of integers

of K. This is a principal ideal domain, so irreducible elements of OK

are prime.

Lemma 1.1. The standard order

spanOK
{1, i, j, ij}

in the algebra DB is contained in precisely two maximal orders Q
and Q′, which are conjugate to each other.

We will prove Lemma 1.1 in Section 6. This lemma is a workhorse
result used in the analysis of maximal orders below. We let QB = Q.

Theorem 1.2. Almost all principal congruence subgroups of the max-
imal order QB satisfy the systolic bound (1.1).

This is proved in Section 9, where a more detailed version of the
result is given. In fact, Theorem 1.2 is a consequence of the following
more general result. For an order Q in a quaternion algebra D, let Q1

be the group of units of Q and let d be the dimension over Q of the
center of Q. We define a constant ΛD,Q ≥ 1 depending on the local
ramification pattern (see Section 9). Let X1 be the quotient of the
hyperbolic plane H2 modulo the action of Q1.

Proposition 1.3. Suppose 23(d−1)ΛD,Q < 4π
area(X1)

. Then almost all the

principal congruence covers of X1 satisfy the bound sys > 4
3
log g.

Note that this is stronger than the Buser–Sarnak bound sysX(Γ) >
4
3
log g(X(Γ)) − c(Γ0) where the constant c(Γ0) could be arbitrarily

large. Returning to the Bolza order, we have the following result.
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Theorem 1.4. There are elements α and β of norm 1 in the algebra
DB of (1.2) such that QB = OK [α, β] as an order. Let Q1

B = 〈α, β〉 be
the group generated by α and β. Then Q1

B/{±1} is isomorphic to the
triangle group ∆(3,3,4).

In Corollary 10.4 we find that the Bolza group B has index 24 in
Q1

B/{±1} and is generated, as a normal subgroup of Q1
B/{±1}, by the

element (αβ)2(α2β2)2. The choice of α and β implies that B is con-
tained in the principal congruence subgroup Q1

B(
√
2)/{±1}. However,

this congruence subgroup has torsion: it contains an involution closely
related to the hyperelliptic involution of the Bolza surface (see Sec-
tion 11). Working out the ring structure of QB/2QB, we are then able
to compute the quotient BQ1

B(2)/Q1
B(2) and obtain the following.

Theorem 1.5. The fundamental group B of the Bolza surface is con-
tained strictly between two principal congruence subgroups as follows:

Q1
B(2)/{±1} ⊂ B ⊂ Q1

B(
√
2)/{±1}.

This explicit identification of the Bolza group as a (non-principal)
congruence subgroup in the maximal order requires a detailed analysis
of quotients, and occupies Sections 10–13. In contrast, the Fuchsian
group of the Klein quartic (which is the Hurwitz surface of least genus)
does happen to be a principal congruence subgroup in the group of
units of the corresponding maximal order; see [14, Section 4].
It follows from Theorem 1.5 that B is a congruence subgroup. More-

over, we show that Q1
B/〈−1, B〉 ∼= SL2(F3), explaining some of the

symmetries of the Bolza surface. The full symmetry group, GL2(F3),
comes from the embedding of the triangle group ∆(3,3,4) in ∆(2,3,8); see
Corollary 13.4.
In the concluding Sections 14 through 16 we present “twin Bolza”

surfaces corresponding to factorisations of rational primes 7, 17, 23, 31,
and 41 as a product of a pair of algebraic primes in Q(

√
2).

Recent publications on systoles include Babenko & Balacheff [3];
Balacheff, Makover & Parlier [4]; Bulteau [7]: Katz & Sabourau [12];
Kowalick, Lafont & Minemyer [15]; Linowitz & Meyer [16].

2. Fuchsian groups and quaternion algebras

A cocompact Fuchsian group Γ ⊂ PSL2(R) defines a hyperbolic Rie-
mann surface H2/Γ, denoted XΓ, where H2 is the hyperbolic plane.
If Γ is torsion free, the systole sys(XΓ) satisfies

2 cosh
(
1
2
sys(XΓ)

)
= min

M
|trace(M)|,
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or

sys(XΓ) = min
M

2 arccosh
(
1
2
|trace(M)|

)
, (2.1)

where M runs over all the nonidentity elements of Γ. We will construct
families of Fuchsian groups in terms of suitable orders in quaternion
algebras. Since the traces in the matrix algebra coincide with reduced
traces (see below) in the quaternion algebra, the information about
lengths of closed geodesics, and therefore about systoles, can be read
off directly from the quaternion algebra, bypassing the traditional pre-
sentation in matrices.
Let k be a finite dimensional field extension of Q, let a, b ∈ k∗, and

consider the following associative algebra over k:

A = k[i, j | i2 = a, j2 = b, ji = −ij]. (2.2)

The algebra A admits the following decomposition as a k-vector space:

A = k1⊕ ki⊕ kj ⊕ kij .

Such an algebra A, which is always simple, is called a quaternion alge-
bra. The center of A is precisely k.

Definition 2.1. Let x = x0+x1i+x2j+x3ij ∈ A. The conjugate of x
(under the unique symplectic involution) is x∗ = x0 − x1i− x2j− x3ij.
The reduced trace of x is

TrA(x) := x+ x∗ = 2x0,

and the reduced norm of x is

NrA(x) := xx∗ = x2
0 − ax2

1 − bx2
2 + abx2

3.

Definition 2.2 (cf. Reiner 1975 [22]). An order of a quaternion al-
gebra A (over k) is a subring with unit, which is a finitely generated
module over the ring of integers Ok ⊂ k, and such that its ring of
fractions is equal to A.

If a and b in (2.2) are algebraic integers in k∗, then the subring O ⊂ A
defined by

O = Ok1 + Oki+Okj +Okij (2.3)

is an order of A (see Katok 1992 [10, p. 119]), although not every order
has this form; a famous example of an order not having the form (2.3)
is the Hurwitz order in Hamilton’s quaternion algebra over the rational
numbers. Note that in the order the scalars are taken from the ring of
integers Ok; the scalars are taken from the field k when passing to the
ring of fractions.
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3. The (2,3,8) and (3, 3, 4) triangle groups

The Bolza surface can be defined by a subgroup of either the (2,3,8)
or the (3, 3, 4) triangle group. We will study specific Fuchsian groups
arising as congruence subgroups of the arithmetic triangle group of
type (3, 3, 4). First we clarify the relation between the (3, 3, 4) and the
(2,3,8) groups. Let ∆(2,3,8) denote the (2,3,8) triangle group, i.e.

∆(2,3,8) = 〈x, y | x2 = y3 = (xy)8 = 1〉. (3.1)

Let h : ∆(2,3,8) → Z/2Z be the homomorphism sending x to the non-
trivial element of Z/2Z and y to the identity element.

Lemma 3.1. As a subgroup of ∆(2,3,8), the kernel of h is given by

ker(h) = 〈α, β | α3 = β3 = (αβ)4 = 1〉
where α = y and β = xyx.

Proof. The presentation can be obtained by means of the Reidemeister-
Schreier method, but here is a direct proof. Note that xynx = (xyx)n =
βn. Each element t ∈ ker(h) is of one of 4 types:

(1) t = xyn1xyn2 · · ·xynkx;
(2) t = yn1xyn2 · · ·xynkx;
(3) t = xyn1xyn2 · · ·xynk ;
(4) t = yn1xyn2 · · ·xynk ,

with an even number of x’s, where all the exponents ni are either 1
or 2. To show that each element can be expressed in terms of α
and β, we argue by induction on the length of the presentation in terms
of x’s and y’s. Type (1) is reduced to (a shorter) type (2) by noting
that xyn1xyn2 · · ·xynkx = βn1yn2 · · ·xynkx. Type (2) is reduced to (a
shorter) type (1) by noting that yn1xyn2 · · ·xynkx = αn1xyn2 · · ·xynkx.
Type (3) is reduced to type (4) by noting that xyn1xyn2 · · ·xynk =
βn1yn2 · · ·xynk . Type (4) is reduced to (a shorter) type (3) by noting
that yn1xyn2 · · ·xynk = αn1xyn2 · · ·xynk .
To check the relations on ker(h), note that

• α3 = y3 = 1;
• β3 = (xyx)3 = xy3x = xx = 1;
• (αβ)4 = (yxyx)4 = y(xy)8y−1 = 1,

completing the proof. �

For a finitely generated non-elementary subgroup Γ ⊂ PSL2(R), we
define Γ(2) = 〈t2 : t ∈ Γ〉.
Lemma 3.2. For Γ = ∆(2,3,8) we have Γ(2) = ker(h), and therefore the

group ∆
(2)
(2,3,8) is isomorphic to the triangle group ∆(3,3,4).
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Proof. We have α = α4 = (α2)2 and similarly for β. Thus ker(h) ⊂
∆

(2)
(2,3,8). Choosing T to be the right-angle hyperbolic triangle with acute

angles π
3
and π

8
, we note that the “double” of T , namely the union of T

and its reflection in its (longer) side opposite the angle π
3
, is an isosceles

triangle with angles π
3
, π

3
, and π

4
, proving the lemma. �

Definition 3.3 ([19]). Let Γ be a finitely generated non-elementary
subgroup of PSL2(R). The invariant trace field of of Γ, denoted by kΓ,
is the field Q(trΓ(2)).

Definition 3.4. For an (ℓ,m, n) triangle group, let

λ(ℓ,m, n) := 4 cos2
π

ℓ
+ 4 cos2

π

m
+ 4 cos2

π

n
+ 8 cos

π

ℓ
cos

π

m
cos

π

n
− 4.

In particular, λ(3, 3, 4) =
√
2. Therefore by [19, p. 265], the invariant

trace field of ∆(3,3,4) (see Definition 3.3) is

k∆(3,3,4) = Q(
√
2). (3.2)

By Takeuchi’s theorem ([25]; see [19, Theorem 8.3.11]), the (ℓ,m, n)
triangle group is arithmetic if and only if for every non-trivial embed-
ding σ of its invariant trace field in R, we have σ (λ(ℓ,m, n)) < 0.
The field Q(

√
2) has two imbeddings in R. The non-trivial imbed-

ding sends
√
2 to −

√
2 < 0. Therefore by Takeuchi’s theorem, the

group ∆(3,3,4) is arithmetic.

4. Partition of Bolza surface

The Bolza surface M is a Riemann surface of genus 2 with a holo-
morphic automorphism group of order 48, the highest for this genus.
The surface M can be viewed as the smooth completion of its affine
form

y2 = x5 − x (4.1)

where (x, y) ∈ C2. Here M is as a double cover of the Riemann
sphere ramified over the vertices of the regular inscribed octahedron;
this is immediate from the presentation (4.1) where the branch points
are 0,±1,±i,∞. These six vertices lift to the Weierstrass points of M .
The hyperelliptic involution ofM fixes the six Weierstass points. It also
switches the two sheets of the cover and is a lift of the identity map
on the Riemann sphere. The hyperelliptic involution can be thought
of in affine coordinates (4.1) as the map (x, y) 7→ (x,−y). The pro-
jection of M to the Riemann sphere is induced by the projection to
the x-coordinate.
The surface M admits a partition into (2,3,8) triangles, which is

obtained as follows. We start with the (octahedral) partition of the
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sphere into 8 equilateral hyperbolic triangles with angle π/4. We then
consider the barycentric subdivision, so that each equilateral triangle
is subdivided into 6 triangles of type (2,3,8).
Here the Weierstrass points correspond to the vertices of the (2,3,8)

triangle with angle π/8. The partition of the Riemann sphere into
copies of the (2,3,8) triangle induces a partition of M into such trian-
gles. On the sphere, we have 8 triangles meeting at each branch point
(corresponding to a Weierstrass point on the surface), for a total angle
of π around the branch point. This conical singularity is “smoothed
out” when we pass to the double cover to obtain the hyperbolic metric
on M .
To form the (3, 3, 4) partition, we pair up the π/8 angles, by com-

bining the (2,3,8) triangles into pairs whose common side lies on an
edge of the octahedron. This creates a partition of the sphere into
copies of the (3, 3, 4) triangle and induces a partition of M into copies
of the (3, 3, 4) triangle. Therefore the vertex of the (3, 3, 4) triangle
where the angle is π/4 lifts to a Weierstrass point on M .

5. The quaternion algebra

For the benefit of geometers who may not be familiar with quaternian
algebras, we will give a presentation following Maclachlan and Reid
2003 [19, p. 265] but in more detail. To study the (3, 3, 4) case, we will
exploit the quaternion algebra

DB = K
[
i, j | i2 = −3, j2 =

√
2, ij = −ji

]
(5.1)

where K = Q(
√
2). Denote by σ0 the natural embedding of K in R

and by σ the other embedding, sending
√
2 to −

√
2.

Definition 5.1. A quaternion algebra D is said to split under a com-
pletion (archimedean or nonarchimedean) if it becomes a matrix alge-
bra. It is said to be ramified if it remains a division algebra.

Remark 5.2. In general there is a finite even number of places where a
quaternion algebra ramifies, including the archimedean ramified places.1

Our algebra DB ramifies at two places: the archimedean place σ and
the nonarchimedean place (

√
2) (see below).

Proposition 5.3. The algebra DB splits under the natural embedding
of the center in R and remains a division algebra under the other em-
bedding.

1Recall that in the Hurwitz case there are two archimedean ramified places and
no nonarchimedean ones (see [13]).
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Proof. Since
√
2 > 0, we have

DB ⊗σ0 R
∼= M2(R)

by [10, Theorem 5.2.1]. Meanwhile, under σ the algebra DB remains a
division algebra since −

√
2 < 0, and following [10, Theorem 5.2.3], we

have DB ⊗σ R ∼= H where H is the Hamilton quaternion algebra. �

Corollary 5.4. The algebra DB is a division algebra.

Proof. Indeed DB is a domain as a subring of DB ⊗σ R, and being
algebraic over its center, it is a division algebra. �

Proposition 5.5. The algebra DB ramifies at the prime (
√
2) and is

split at all other non-archimedean places.

Proof. The ring of integers of Q(
√
2) is Z[

√
2], in which the ideals (

√
2)

and (3) are prime. The discriminant of DB is −6
√
2, thus the algebra

splits over any prime other than (
√
2) and (3).

Recall that Qp denotes the field of p-adic numbers, where p is a ra-
tional prime. Notice that 2 is not a square in Z/3Z, and therefore
it cannot be a square in Q3, so the completion Q3(

√
2) of Q(

√
2) at

the prime 3 is a quadratic extension of Q3. To show that DB splits
at (3), it suffices to present

√
2 as a norm in the quadratic exten-

sion Q3(
√
2,
√
−3)/Q3(

√
2), namely in the form x2 + 3y2 for x, y ∈

Q3(
√
2). By Hasse’s principle, it suffices to solve the equation in the

residue field Z3[
√
2]/3Z3[

√
2] = F9, where one can take x = 1 −

√
2

and y = 0 (indeed (1−
√
2)2 = 3− 2

√
2 ≡

√
2 (mod 3)).

Finally we show that DB remains a division algebra under the com-
pletion of Q(

√
2) at the prime (

√
2), which is Q2(

√
2). It suffices to

show that
√
2 is not of the form x2 + 3y2 for x, y ∈ Q2(

√
2). Clear-

ing out common denominators, we will show that there is no non-zero
solution to

x2 + 3y2 =
√
2z2

with x, y, z ∈ Z2[
√
2]. We may assume not all of x, y, z are divisible

by
√
2. This equation does have a solution modulo 4 (indeed, take x =

y = 1 and z = 0). We will show that there is no solution modulo 4
√
2.

So assume
x2 + 3y2 ≡

√
2z2 (mod 4

√
2).

Observe that if one of x, y is divisible by
√
2, then they both are. But in

that case z is also divisible by
√
2, contrary to assumption. So we can

write x = 1+
√
2x′ and y = 1+

√
2y′ for x′, y′ ∈ Z2[

√
2]. Substituting,

we have

2
√
2 + 2x′ +

√
2x′2 + 2y′ + 3

√
2y′2 ≡ z2 (mod 4),
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so z is divisible by
√
2 and we can write z =

√
2z′ for z′ ∈ Z2[

√
2]. Now

2 +
√
2x′ + x′2 +

√
2y′ + 3y′2 ≡

√
2z′2 (mod 2

√
2),

so y′ ≡ x′ (mod
√
2), and we write y′ = x′ +

√
2y′′ for y′′ ∈ Z2[

√
2].

Substituting we get

2 + 2y′′ + 2y′′2 ≡
√
2z′2 (mod 2

√
2),

so clearly z is divisible by
√
2, and then

2 + 2y′′ + 2y′′2 ≡ 0 (mod 2
√
2),

which implies

1 + y′′ + y′′2 ≡ 0 (mod
√
2),

a contradiction since y′′ + y′′2 is always divisible by
√
2. �

6. The standard order in DB and maximal orders
containing it

In this section we prove Lemma 1.1. Recall that an order M in
a quaternion algebra D over a number field is maximal if and only
if its discriminant is equal to the discriminant of D [26, Corollaire
III.5.3], where the discriminant of D is the product of the ramified
non-archimedean primes. If M happens to be free as an OK-module,
spanned by x1, . . . , x4, then its discriminant is easily computed as the
square root of the determinant of the matrix of reduced traces (TrD(xixj)).

Since a = −3 and b =
√
2 are in OK = Z[

√
2], we obtain an or-

der O ⊂ DB by setting

O = OK [i, j] = OK1 +OKi+OKj +OKij.

This is the “standard order” resulting from the presentation of DB,
for which we have disc(O)2 = 16a2b2, so that disc(O) = 12

√
2. On the

other hand disc(DB) =
√
2 by Proposition 5.3, soO is not maximal. We

seek a maximal order Q containing O. Comparing the discriminants,
we know in advance that [Q :O] = 144.
Notice that

α =
1

2
(1 + i) (6.1)

is an algebraic integer. We make the following observation.

Proposition 6.1. The order O1 generated over O by α is OK [α, j],
which is spanned as a (free) OK-module by the elements

1, α, j, αj.

In particular disc(O1) = 3
√
2.
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Proof. Since i = 2α−1, clearly O[α] = OK [i, j, α] = OK [α, j]. To show
that this module is equal to OK + OKα + OKj + OKαj, it suffices to
note that j2 =

√
2,

α2 = α−1

and

jα = j − αj.

The claim on the discriminant of O1 then follows from computing the
determinant of the 4× 4 traces matrix, using tr(α) = 1 and tr(jαj) =√
2. �

Now let

γ =
1

6
(3 + i)

[
1− (1 +

√
2)j
]

(6.2)

and consider the OK-module

Q = OK +OKα +OKγ +OKαγ.

Proposition 6.2. The module Q is a maximal order of DB. Moreover,
Q contains O1.

Proof. First note that

j = (1−
√
2)(−1 + 2γ − αγ),

so that O⊆O1⊆Q.
To prove that Q is an order it suffices to show it is closed under

multiplication, which follows by verifying the relations:

α2 = −1 + α

γ2 = (1 +
√
2) + γ

γα = −1 + α + γ − αγ.

Maximality of Q follows by computation of the discriminant, which
turns out to be

√
2. �

Also let γ′ = iγi−1 = 1
6
(3 + i)

[
1 + (1 +

√
2)j
]
, and

Q′ = OK +OKα +OKγ
′ +OKαγ

′.

Notice that Q′ = iQi−1 is conjugate to Q.

Corollary 6.3. The module Q′ is a maximal order containing O1.

Proof. This is immediate because iO1i
−1 = O1. �

Proposition 6.4. The only two maximal orders containing O are Q
and Q′.
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Proof. Let y ∈ DB be an element such that O[y] is an order. Write

y =
1

2
(x0 +

x1

3
i+

x2√
2
j +

x3

3
√
2
ij),

where x0, x1, x2, x3 ∈ Q(
√
2). Since tr(yO)⊆OK , we immediately con-

clude that in fact x0, x1, x2, x3 ∈ Z[
√
2]. Furthermore, the norm of y is

an algebraic integer, proving that 12
√
2 divides

−3
√
2x2

0 −
√
2x2

1 + 3x2
2 + x2

3

in Z[
√
2]. Working modulo powers of

√
2, we conclude as in Proposi-

tion 5.3 that x3 = x2 + 2
√
2x′

3, x1 = x0 + 2x′
1, x2 =

√
2x′

2 for suit-
able x′

1, x
′
2, x

′
3 ∈ Z[

√
2]. The remaining condition is that (x0 − x′

1)
2 ≡√

2(x′
2 − x′

3)
2 (mod 3), so in fact

x0 = x′
1 + θ(1−

√
2)(x′

2 − x′
3) + 3x′

0

for some x′
0 ∈ Z[

√
2] where θ = ±1. But then

y − x′
0 =

1

2
(1 + i)(x′

0 + x′
1) +

1

2
(j + ij)x′

3

+
1

6

[
θ(1−

√
2)(3 + i) + 3j + ij

]
(x′

2 − x′
3)

= (x′
0 + x′

1)α + x′
3αj + (x′

2 − x′
3)(1−

√
2)θγθ,

where γ+1 = γ and γ−1 = γ′. Thus y is an element of Q (if θ = 1) or
of Q′ (if θ = −1). �

Note that Q + Q′ is not an order, since γ + γ′ = 1 + i
3
is not an

algebraic integer.

7. The Bolza order

In order to present the triangle group ∆(3,3,4) as a quotient of the
group of units in a maximal order, we make the following change of
variables. Let

β =
1

6

(
3 + (1 + 2

√
2)i− 2ij

)
. (7.1)

Since
β = α(1− (1−

√
2)γ)

(where γ is defined in (6.2)) and

γ = −(1 +
√
2)(1− β + αβ),

we have that
QB := OK [α, β] = Q.

In particular, QB is a maximal order by Proposition 6.2.
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One has

αβ = −1

6

(
3
√
2− (2 +

√
2)i+ 3j − ij

)
. (7.2)

Theorem 7.1. The order QB is spanned as a module over OK by the
basis {1, α, β, αβ}, so that

QB = OK1⊕OKα⊕ OKβ ⊕ OKαβ. (7.3)

Proof. Let M = OK1 +OKα +OKβ +OKαβ. The following relations
are verified by computation:

(1) α2 = −1 + α,
(2) β2 = −1 + β,
(3) βα = (−1 −

√
2) + α + β − αβ;

and thus α(αβ) = −β + αβ ∈ M and

β(αβ) = (−1−
√
2)β + αβ + β2 − αβ2 = −1 + α−

√
2β ∈ M.

It follows that αM, βM ⊆M , so M is closed under multiplication and
is therefore equal to QB.

�

8. The triangle group in the Bolza order

Let Q1
B denote the group of elements of norm 1 in the order QB.

Through the embedding DB →֒ M2(R), we may view Q1
B as an arith-

metic lattice of SL2(R). Furthermore, by Proposition 5.3 the alge-
bra DB ramifies at all the archimedean places except for the natural
one, so it satisfies Eichler’s condition; see [26, p. 82]. Therefore Q1

B is
a co-compact lattice.
Since N(α) = N(β) = 1, the subgroup generated by α, β in D×

B is
contained in Q1

B.

Proposition 8.1. The elements α, β defined in (6.1) and (7.1) satisfy
the relations

α3 = β3 = (αβ)4 = −1.

Proof. First we note that N(α) = N(β) = 1. The minimal polynomial
of every non-scalar element of DB is quadratic, determined by the
trace and norm of the element. Since tr(α) = tr(β) = 1, both α
and β are roots of the polynomial λ2 − λ + 1, which divides λ3 + 1.
Similarly tr(αβ) = −

√
2, so αβ is a root of λ2 +

√
2λ + 1, which

divides λ4 + 1. �

A comparison of the areas of the fundamental domains shows that
in fact Q1

B = 〈α, β〉 and that Q1
B/{±1} is isomorphic to the triangle

group ∆(3,3,4).
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9. A lower bound for the systole

We give lower bounds on the systole of congruence covers of any
arithmetic surface and then specialize to the Bolza surface. Let K be
any number field, OK its ring of integers, D any central division algebra
over K, and Q an order in D. Let X1 = H2/Q1, where Q1 is the group
of elements of norm 1 in Q. We let d = [K :Q].
We quote the definition of the constant ΛD,Q from [13, Equation (4.9)].

Let T1 denote the set of finite places p of K for which Dp is a division
algebra, and let T2 denote the set of finite places for which Qp is non-
maximal. It is well known that T1 and T2 are finite. We denote

ΛD,Q =
∏

p∈T1\T2

(
1 +

1

N(p)

)
·
∏

p∈T2

2 ·
∏

p∈T2,p | 2
N(p)e(p), (9.1)

where for a diadic prime, e(p) denotes the ramification index of 2 in the
completion Op, namely pe(p)Op = 2Op, and N(I) denotes the norm of
the ideal I. This constant is chosen in [13] to ensure that [Q1 :Q1(I)] ≤
ΛD,QN(I)

3, for any ideal I.
Recall that if I⊳OK is any ideal, then Q1(I) is the kernel of the nat-

ural map Q1→(Q/IQ)1 induced by the ring epimorphism Q→Q/IQ.
This congruence subgroup gives rise to the surface XI = H2/Q1(I),
which covers X1. A bound for the reduced trace was given in [13,
Equation (2.5)] as follows. Let x 6= ±1 in Q1(I). Then we have

|TrD(x)| >
1

22(d−1)
N(I)2 − 2. (9.2)

By [13, Corollary 4.6], we have

[Q1 : Q1(I)] ≤ ΛD,QN(I)3.

Therefore
4π (g(XI)−1) ≤ area(XI)

= [Q1 :Q1(I)] · area(X1)

≤ ΛD,QN(I)3 · area(X1),

i.e.

N(I) ≥
(

4π

ΛD,Q · area(X1)
(g−1)

) 1
3

.

Proposition 9.1. Suppose 23(d−1)ΛD,Q < 4π
area(X1)

. Then all but finitely

many principal congruence covers of X1 satisfy the relation

sys >
4

3
log g.
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Proof. A hyperbolic element x in a Fuchsian group Γ ⊆ PSL2(R) is
conjugate to a matrix (

λ 0
0 λ−1

)
.

Here λ = eℓx/2 > 1, where ℓx > 0 is the length of the closed geodesic
corresponding to x on the Riemann surface H2/Γ. Since

∣∣TrM2(R)(x)
∣∣ =

∣∣λ+ λ−1
∣∣ ≤ |λ|+

∣∣λ−1
∣∣ ≤ |λ|+ 1,

we get

ℓx = 2 log |λ| > 2 log
(∣∣TrM2(R)(x)

∣∣−1
)
.

By (9.2),

sys(XI) > 2 log (|TrD(x)|−1)

> 2 log

(
1

22(d−1)
N(I)2 − 3

)
(9.3)

≥ 2 log

(
1

22(d−1)

[
4π

ΛD,Q · area(X1)
(g(XI)−1)

] 2
3

− 3

)
.

Expanding the argument under the logarithm as a series in g, we find

that the coefficient of the highest term g2/3 is
[

1
23(d−1)

4π
ΛD,Q·area(X1)

] 2
3
.

When this coefficient is strictly greater than 1, for sufficiently large g
we have that

sys(XI) >
4

3
log (g(XI)) . �

A closer inspection of (9.3) enables us to provide an explicit bound
on the genera g for which the inequality of Proposition 9.1 holds.

Remark 9.2. We have that

2 log

(
1

22(d−1)

[
4π

ΛD,Q · area(X1)
(g−1)

] 2
3

− 3

)
>

4

3
log(g)

if and only if
(
1 + 3

g2/3

)3/2

1− 1
g

≤ 4π

23(d−1)ΛD,Q · area(X1)
.

Since (
1 + 3

g2/3

)3/2

1− 1
g

≤ 1 +
6

g2/3
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for every g ≥ 13, we conclude that if 23(d−1)ΛD,Q < 4π
area(X1)

, then

sys > 4
3
log g provided that

g ≥ max



13,

(
6

4π
23(d−1)ΛD,Qarea(X1)

−1

)3/2


.

Corollary 9.3. Principal congruence covers of the Bolza order satisfy
the bound sys > 4

3
log g provided that g ≥ 15.

Proof. Since the order QB is maximal, it follows (e.g. by [19, Corollary
6.2.8]) that all localisations are maximal as well. Therefore the set T2

is empty (see material around [13, formula 4.10]), while T1 consists
of a single nonarchimedean place

√
2 with norm 2 (see Remark 5.2).

Therefore ΛDB ,QB
= 3

2
.

Moreover, since Q1
B/{±1} is the triangle group (3, 3, 4), we have

area(X1) = 2
(
π −

(π
3
+

π

3
+

π

4

))
=

π

6
,

so 4π
area(X1)

= 24. Finally the dimension of the invariant trace field

over Q is d = 2, so the condition 23(d−1)ΛDB,QB
< 4π

area(X1)
of Proposi-

tion 9.1 holds since 12 < 24.
In order to obtain the explicit lower bound on g, we substitute in

Remark 9.2, using the numerical value 63/2 ≈ 14.697. �

10. The Fuchsian group of the Bolza surface

In this section we give an explicit presentation of the Fuchsian group
of the Bolza surface in terms of the quaternion algebra QB. We start
with a geometric lemma that will motivate the introduction of the
special element exploited in Lemma 10.2.

Lemma 10.1. Let Ā and B̄ be antipodal points on a systolic loop of a
hyperbolic surface M . Let A and B be their lifts to the universal cover
such that d(A,B) = 1

2
sys(M). Let τA and τB be the involutions of the

universal cover with centers at A and B. Then the composition τB ◦ τA
belongs to a conjugacy class in the fundamental group defined by the
systolic loop.

Proof. A composition of two involutions gives a translation by twice
the distance between the fixed points of the involutions. Thus, consider
the hyperbolic line ρ in the universal cover passing through A and B.
Then the composition τB ◦ τA is a hyperbolic translation along ρ with
displacement distance precisely sys(M). The image of the projection
of ρ back to M is the systolic loop. �
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We now apply Lemma 10.1 in a situation where the points A and B
are lifts of Weierstrass points on the Bolza surface (see Section 4 for
details). The composition of the involutions (αβ)2 and (βα)2 yields
the desired element. This element was obtained through a detailed
geometric analysis of the action in the upperhalf plane which we will
not reproduce (magma was not used here).

Lemma 10.2. The element (αβ)2(βα)−2 is in the congruence subgroup
Q1

B(
√
2).

Proof. One has (αβ)2(βα)2 = 1 +
√
2(1 + (1 +

√
2)(α− β)). �

Proposition 10.3. The normal subgroup of the (3, 3, 4) triangle group
generated by the element (αβ)2(βα)−2 has index 24. The normal sub-
group is generated by the following four elements:

• c1 = α−1βαβ−1αβ,
• c2 = αβ−1αβα−1β,
• c3 = αβ−1α−1βα−1β−1,
• c4 = βα−1βαβ−1α,

which satisfy a single length-8 relation c−1
4 c−1

3 c2c4c1c
−1
2 c−1

1 c3 = 1. The
reduced traces are

tr(c1) = tr(c2) = tr(c3) = tr(c4) = −2(1 +
√
2).

This was checked directly using the magma package.

Corollary 10.4. The normal subgroup of Q1
B generated by the element

(αβ)2(βα)−2 generates the Fuchsian group of the Bolza surface.

Proof. The presentation of the Fuchsian group given in Proposition 10.3
implies that the surface has genus 2. This identifies it as the Bolza
surface which is the unique genus-2 surface admitting a tiling of type
(3, 3, 4) or (2,3,8); see Bujalance & Singerman (1985 [6, p. 518]). This
surface is known to have the largest systole in genus 2, or equivalently
largest trace 2(1+

√
2) (see e.g., Bavard [5, p. 6], Katz & Sabourau [11],

Schmutz [23]). Therefore all 4 generators specified in Proposition 10.3
correspond to systolic loops. �

11. An elliptic element of order 2

The principal congruence subgroup Q1
B(
√
2) contains the Fuchsian

group of the Bolza surface (see Lemma 10.2), but it also contains torsion
elements. The element

̟ = 1 +
√
2αβ (11.1)
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in Q1
B(
√
2) defines an elliptic (torsion) element of order 2 in the Fuch-

sian group. Indeed, applying the relations given in Theorem 7.1, we
have (αβ)2 = −1 −

√
2αβ. Hence

̟2 = (1 +
√
2αβ)2 = 1 + 2

√
2αβ + 2(αβ)2 = −1

and therefore ̟ is of order 2 in the Fuchsian group.
By the above, ̟ = −(αβ)2. The fixed point of ̟ can be taken to be

the vertex of a (3, 3, 4) triangle where the angle is π/4. The element αβ
gives a rotation by π/2 around this vertex, and therefore ̟ gives the
rotation by π around the vertex of the (3, 3, 4) triangle where the angle
is π/4.

Lemma 11.1. The action of ̟ descends to the Bolza surface and
coincides with the hyperelliptic involution of the surface.

Proof. The involution ̟ is a rotation by π around a Weierstrass point
(see Section 4), namely the vertex of the (3, 3, 4) triangle where the
angle is π/4. Therefore ̟ descends to the identity on the Riemann
sphere. Thus ̟ lifts to the hyperelliptic involution of M . �

12. Quotients of the Bolza order

In the next section we compare the Bolza group with some principal
congruence subgroups of the Bolza order. To this end, we need to
compute quotients of the Bolza order QB.

Remark 12.1. In Theorem 7.1 we obtained the presentation

QB = OK

[
α, β |α2 = −1+α, β2 = −1+β, βα = (−1−

√
2)+α+β−αβ

]
.

The symplectic involution z 7→ z∗ on the quaternion algebra D (of
(5.1)) is defined by i∗ = −i and j∗ = −j. It follows from the definition
of α, β in (6.1) and (7.1) that

α∗ = 1− α, β∗ = 1− β; (12.1)

so in particular the order QB is preserved under the involution. This
is particularly useful for the computation of the groups, because the
norm is defined by N(x) = xx∗ for every x ∈ D.

12.1. The Bolza order modulo 2. Let us compute the ring QB =
QB/2QB, which will be used below to compute the index of Q1

B(2) in
Q1

B.
Notice that OK/2OK = Z[

√
2]/2Z[

√
2] = F2[ǫ | ǫ2 = 0], where ǫ

stands for the image of
√
2 in the quotient ring.
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Proposition 12.2. QB = QB/2QB is a local noncommutative ring
with 256 elements, whose residue field has order 4, and whose maximal
ideal J has nilpotency index 4. Moreover each of the quotients J/J2,
J2/J3 and J3 = J3/J4 is one-dimensional over QB/J ∼= F4.

Proof. Replacing β by β ′ = β + α + 1 + ǫ in the presentation of Re-
mark 12.1, we obtain the quotient

QB = F2[ǫ | ǫ2 = 0][α, β ′ |α2 = 1 + α, β ′2 = ǫ, β ′α + αβ ′ = β ′],

where ǫ is understood to be central (which actually follows from the
relations).
This ring has a maximal ideal J = β ′QB, with J2 = ǫQB and J3 =

ǫβ ′QB, and with a quotient ring

QB/J = F2[α |α2 = 1 + α] ∼= F4.

Taking F4 = F2[α] = F2 + F2α, we obtain

QB = F4 ⊕ F4β
′ ⊕ F4ǫ⊕ F4ǫβ

′,

where β ′ acts on F4 by β ′α = (α+1)β ′, β ′2 = ǫ and ǫ2 = 0, so the ring
has 256 elements. �

12.2. The quotients Q̃B = QB/
√
2QB. Since ǫ stands for the im-

age of
√
2 in QB, we immediately obtain the quotient QB/

√
2QB =

QB/ǫQB:

Proposition 12.3. Q̃B = QB/
√
2QB is a local noncommutative ring

with a maximal ideal with 4 elements and a quotient field of order 4.

Proof. Taking ǫ = 0 in the presentation of QB = QB/2QB obtained
above, we get

Q̃B = F2[α, β
′ |α2 = 1 + α, β ′2 = 0, β ′α + αβ ′ = β ′],

which can be written as

Q̃B = F4 ⊕ F4β
′;

this quotient of QB = QB/2QB has 16 elements. The ideal

β ′Q̃B = F2β
′ + F2αβ

′

has four elements, and (β ′Q̃B)
2 = 0. �
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12.3. Involution and norm. The involution defined on QB clearly
preserves 2QB, so it induces an involution on the quotient QB. Using
(12.1), we conveniently have that β ′∗ = β∗ + α∗ + 1 + ǫ = β ′.
The subring F2[ǫ, α] of QB is commutative, and the involution in-

duces the automorphism σ of F2[ǫ, α] defined by σ(α) = α + 1 and
σ(ǫ) = ǫ. The norm defined above coincides with the Galois norm,

N(x0 + x1α) = (x0 + x1α)(x0 + x1(α + 1)) = x2
0 + x0x1 + x2

1

for x0, x1 ∈ F2[ǫ]. Furthermore, writing

QB = F2[ǫ, α]⊕ F2[ǫ, α]β
′,

we have for y0, y1 ∈ F2[ǫ, α] that (y0 + y1β
′)∗ = y∗0 + β ′y∗1 = y∗0 + y1β

′.
Therefore, for every y0, y1 ∈ F2[ǫ, α],

N(y0 + y1β
′) = (y0 + y1β

′)(y∗0 + y1β
′) = N(y0) +N(y1)ǫ ∈ F2[ǫ].

Together, we have

N(x00+x01α+x10β
′+x11αβ

′) = (x2
00+x00x01+x2

11)+(x2
10+x10x11+x2

11)ǫ

for every x00, x01, x10, x11 ∈ F2[ǫ].
Clearly, an element is invertible if and only if its norm is invertible.

There are two invertible elements in F2[ǫ], namely 1 and 1 + ǫ, and
1 + ǫ = N(1 + ǫα) is obtained as a norm, so we conclude:

Corollary 12.4. The subgroup QB
1
=
{
x ∈ QB : N(x) = 1

}
has in-

dex 2 in the group of invertible elements QB
×
.

In contrast, when we reduce further to the quotient Q̃B = QB/
√
2QB,

which is equal to QB/ǫQB, the induced norm function takes values in
F2[ǫ]/ǫF2[ǫ] = F2, where only the identity is invertible. We therefore
obtain the following corollary.

Corollary 12.5. The subgroup Q̃B

1
=
{
x ∈ Q̃B : N(x) = 1

}
is equal

to Q̃B

×
.

12.4. Subgroups of QB
×
. The ring QB = QB/2QB has a unique

maximal ideal J = β ′QB, and its powers are

0 = J4 ⊂ J3 = ǫβ ′QB ⊂ J2 = ǫQB ⊂ J = β ′QB.

Similarly to congruence subgroup of QB, for every ideal I⊳QB which is
stable under the involution (so that the involution and thus the norm
are well defined on the quotient QB/I), we have the subgroups

QB
1
(I) = QB

1 ∩ (1 + I)
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and
QB

×
(I) = QB

× ∩ (1 + I);

when I = xQB, we write QB
1
(x) and QB

×
(x) for QB

1
(xQB) and

QB
×
(xQB), respectively.

Proposition 12.6. The numbers along edges in Figure 12.1 are the
relative indices of the depicted subgroups.

Proof. The argument leading to Corollary 12.4 also implies that

[QB
×
(β ′) :QB

1
(β ′)] = [QB

×
(ǫ) :QB

1
(ǫ)] = 2,

because the invertible element 1 + ǫα, whose norm is 1 + ǫ and not 1,

is in QB
×
(ǫ). However,

QB
×
(ǫβ ′) = QB

1
(ǫβ ′)

because N(1 + x3ǫβ
′) = 1 for every x3 ∈ F2[α]. Moreover, since QB is

explicitly known, it is easy to compute the quotients

QB
×
/QB

×
(β ′) ∼= F×

4

and
QB

×
(J i)/QB

×
(J i+1) ∼= F+

4 , (i = 1, 2, 3);

together, we have all the indices of the subgroups as depicted in the
diagram. �

Since we encounter several small classical groups, let us record their
interactions.

Remark 12.7. The group A4 of even permutation on 4 letters is iso-
morphic to PSL2(F3), and S4

∼= PGL2(F3). The group A4 has two
central extensions by Z/2Z: the trivial one, namely A4 × Z/2Z, and
the group SL2(F3). Likewise GL2(F3) is a central extension of S4 by
Z/2Z, and we have the short exact sequences

1 // Z/2Z // GL2(F3) // PGL2(F3) ∼= S4
// 1

1 // Z/2Z // SL2(F3) //

?�

OO

PSL2(F3) ∼= A4
//

?�

OO

1

where the image of Z/2Z in both groups is central.
Since A4 has the triangle group presentation

∆(3,3,2)
∼=
〈
x, y | x3 = y3 = (xy)2 = 1

〉
,

it follows that SL2(F3) can be presented as
〈
x, y | x3 = y3 = (xy)4 = 1, [x, (xy)2] = 1

〉
.
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QB
×

2
♠
♠
♠
♠
♠
♠

3QB
1

3 QB
×
(β ′)

2
♥
♥
♥

4QB
1
(β ′)

4 QB
×
(ǫ)

2
♥
♥
♥
♥

8

QB
1
(ǫ)

2

QB
×
(ǫβ ′)

4 〈1 + ǫα〉2

❦
❦
❦
❦
❦
❦

1

Figure 12.1. Subgroups of QB
×
, with relative indices

Proposition 12.8. The following holds for the quotients of QB
1
:

QB
1
/QB

1
(ǫβ ′) ∼= SL2(F3), (12.2)

QB
1
/QB

1
(ǫ) ∼= A4. (12.3)

Proof. The elements α, β ∈ Q1
B, which satisfy α3 = β3 = −1, map to

their images α, β ∈ QB
1
. In QB

1
we have the relations α3 = β3 = 1

(noting that −1 = 1 in QB = QB/2QB), and also, by computation,

(αβ)2 = 1 + ǫ+ ǫαβ ′. Passing to the quotient QB
1
/QB

1
(ǫβ ′), we have

that

α3 = β3 = (αβ)4 = [α, (αβ)2] = [β, (αβ)2] = 1

since in this quotient (αβ)2 = 1 + ǫ, which is central of order 2. By
Remark 12.7, the group with this presentation is SL2(F3), of order 24.
To complete the proof, it remains to show that the image of 〈α, β〉 in
QB

1
/QB

1
(ǫβ ′) has order 24. This can be done by computing in each

quotient separately:

• α generates QB
1
/QB

1
(β ′) ∼= Z/3Z;

• αβ = 1+ ǫα+αβ ′ ≡ 1+αβ ′ (mod QB
1
(ǫ)), and βα = 1+ ǫα+

(1+α)β ′ ≡ 1+(1+α)β ′, which together generateQB
1
(β ′)/QB

1
(ǫ),

isomorphic to Z/2Z× Z/2Z;
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• and (αβ)2 generates QB
1
(ǫ)/QB

1
(ǫβ ′) ∼= Z/2Z as we have seen.

As for the second isomorphism, passing with the previous item to the

quotient QB
1
/QB

1
(ǫ), we have that

α3 = β3 = (αβ)2 = 1,

so we get the triangle group ∆(3,3,2)
∼= A4. (An explicit isomorphism is

obtained by α 7→ (123) and β 7→ (124)). �

Remark 12.9. The following quotients decompose as direct products:

QB
×
/QB

×
(ǫβ ′) ∼= SL2(F3)× (Z/2Z),

QB
×
/QB

1
(ǫ) ∼= A4 × (Z/2Z).

Proof. The element 1 + ǫα, which has order 2, is not in QB
1
because

it has norm 1 + ǫ. To prove the first isomorphism, it suffices to note
that 1 + ǫα commutes with the generators α, β = 1 + ǫ + α + β ′ of

QB
1
/QB

1
(ǫβ ′), because

(1+ ǫα)(1+α+ ǫ+β ′)(1+ ǫα)−1 = 1+α+ ǫ+β ′+ ǫβ ′ ≡ 1+α+ ǫ+β ′.

The second isomorphism follows by taking the first one modulo

QB
1
(ǫ), giving the quotient QB

1
/QB

1
(ǫ), which is isomorphic to A4

by Proposition 12.8. �

Remark 12.10. The group QB
×
(ǫ) is isomorphic to (Z/2Z)4.

Proof. By definition, QB
×
(ǫ) = 1+F2[α]ǫ+F2[α]β

′ǫ has order 16. But
for every f ∈ QB, (1 + fǫ)2 = 1+ 2fǫ+ f 2ǫ2 = 1. This shows that the
group has exponent 2, so it is abelian. �

13. The Bolza group as a congruence subgroup

Our goal is to compare the Fuchsian group B, corresponding to the
Bolza surface, to congruence subgroups of Q1

B modulo {±1}. To sim-
plify notation, we write

PQ1
B = Q1

B/{±1}
and

PQ1
B(I) =

〈
−1,Q1

B(I)
〉
/{±1} (13.1)

for any ideal I⊳Z[
√
2].

By Lemma 10.2, the group B⊆PQ1
B is generated, as a normal sub-

group, by the element δ = (αβ)2(α2β2)2 = 1+
√
2(1+(1+

√
2)(α−β)).

Proposition 13.1. The map Q1
B/Q1

B(
√
2)→QB

1
/QB

1
(ǫ), induced by

the projection QB→QB, is an isomorphism.
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Proof. The projection modulo
√
2 provides an injection

Q1
B/Q1

B(
√
2)→QB

×
/QB

1
(ǫ),

which a priori need not be onto QB
1
/QB

1
(ǫ), even taking into account

that every element of (QB/2QB)
× has norm 1. But in Proposition 12.8

we observed that the images of α, β ∈ Q1
B generate QB

1
/QB

1
(ǫ). �

Theorem 13.2. The Bolza group B satisfies PQ1
B(2) ⊂ B ⊂ PQ1

B(
√
2),

and

PQ1
B/B

∼= QB
1
/QB

1
(ǫβ ′).

Proof. Noting that −1 ∈ Q1
B(2), we investigate the chain of groups

PQ1
B(2) ⊆ BPQ1

B(2) ⊆ PQ1
B(
√
2) ⊆ PQ1

B.

Let φ :Q1
B→QB

1
be the map induced by the projection QB→QB =

QB/2QB. This homomorphism, whose kernel is Q1
B(2), is well de-

fined on PQ1
B = Q1

B/{±1}, since −1 ∈ Q1
B(2). Furthermore, φ carries

PQ1
B onto QB

1
, and the subgroup PQ1

B(
√
2) onto QB

1
(ǫ), by Proposi-

tion 13.1.
At the same time, because φ(δ) = 1 + ǫβ ′ ∈ QB

1
(ǫβ ′), the normal

subgroup it generates is mapped into QB
1
(ǫβ ′). This proves that

[PQ1
B :B · PQ1

B(2)] = [QB
1
:QB

1
(ǫβ ′)] = 24.

But since PQ1
B is isomorphic to ∆(3,3,4), we have by Proposition 10.3

that

[PQ1
B :B] = 24

as well. This proves that B = BPQ1
B(2), so that PQ1

B(2) ⊆ B. It

follows that the injection of Q1
B/Q1

B(2) into QB
1
sends δ to 1 + ǫβ ′,

and the normal subgroup B generated by the former, to the normal

subgroup QB
1
(ǫβ ′) generated by the latter. �

Let Sym(3,3,4)(B) denote the quotient PQ1
B/B, which is the group of

orientation preserving symmetries of the Bolza surface stemming from
the (3, 3, 4) tiling.

Corollary 13.3. The symmetry group Sym(3,3,4)(B) is isomorphic to
SL2(F3).

Proof. Indeed, the automorphism group PQ1
B/B

∼= QB
1
/QB

1
(ǫβ ′) was

computed in Proposition 12.8.(12.2). �
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Let us add this result to the observations made in Section 3, where
we embedded

∆(3,3,4) =
〈
α, β |α3 = β3 = (αβ)4 = 1

〉

as a subgroup of index 2 in

∆(2,3,8) =
〈
x, y | x2 = y3 = (xy)8 = 1

〉

via the map α 7→ y and β 7→ xyx. Since B⊆∆(3,3,4) is the normal
subgroup generated by (αβ)2(α2β2)−2 by Lemma 10.2, its image in

∆(2,3,8) is 〈(yx)4(y−1x)4〉〈y,xyx〉, which happens to be normal in ∆(2,3,8),
and the quotient group is

〈
x, y | x2 = y3 = (xy)8 = (yx)4(y−1x)4 = 1

〉
.

This quotient is isomorphic to GL2(F3) by taking x 7→
(

0 1
1 0

)
and

y 7→
(

1 1
0 1

)
.

Corollary 13.4. The symmetry group Sym(2,3,8)(B) = ∆(2,3,8)/B is
isomorphic to GL2(F3).

We can also compute the quotient of B modulo the principal con-
gruence subgroup it contains:

Remark 13.5. We have that B/PQ1
B(2)

∼= Z/2Z× Z/2Z.

Proof. Indeed, QB
1
(ǫβ ′) has order 4, and as a subgroup of QB

×
(ǫ),

which is of exponent 2 by Proposition 12.10, we obtain

B/PQ1
B(2)

∼= QB
1
(ǫβ ′) ∼= Z/2Z× Z/2Z,

as claimed. �

Corollary 13.6. PQ1
B(
√
2) is generated by B and the torsion element

̟ of (11.1).

Proof. As we have seen before, B is torsion free, so ̟ 6∈ B, and 〈B,̟〉
strictly contains B, so the result follows from [Q1

B(
√
2) :Q1

B(2)] = 8. �

14. Computations in the Bolza twins

In this section and the ones that follow, we will present some ex-
plicit computations with the “twin” surfaces corresponding to the al-
gebraic primes factoring rational primes in K = Q(

√
2). Recall that

OK = Z[
√
2]. We first state a result on quotients co-prime to 6, which

follows from the definition of ramification (and splitting) in a quater-
nion algebra.
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Lemma 14.1. Let I⊳OK be a prime ideal. If 2 and 3 are invertible
modulo I, then QB/IQB

∼= M2(OK/I).

Proof. It is convenient to make the substitution

α = α′ +
1

2
, β = β ′ +

1 + 2
√
2

3
α′ +

1

2
.

Then α′ and β ′ anticommute, and we obtain a standard presentation

QB/IQB = (OK/I)
[
α′, β ′

∣∣∣α′2 = −3
4
, β ′2 =

√
2
3
, β ′α′ = −α′β ′

]
.

Since α′2 and β ′2 are invertible, the quotient QB/IQB is a quaternion
algebra over OK/I. But as a finite integral domain, OK/I is a field, so
by Wedderburn’s little theorem (that the only finite division algebras
are fields), QB/IQB is necessarily isomorphic to M2(OK/I). �

Corollary 14.2. Let I⊳OK be a prime ideal such that 6 is invertible
modulo I. Then

PQ1
B/PQ1

B(I)
∼= PSL2(OK/I).

Proof. By Lemma 14.1 and strong approximation we haveQ1
B/Q1

B(I)
∼=

SL2(OK/I). �

Lemma 14.3. Let p be a rational prime that splits in K, so that pOK =
I1I2 for distinct prime ideals I1, I2⊳OK. There are exactly two normal
subgroups H⊳PQ1

B such that PQ1
B/H

∼= PSL2(Fp), namely PQ1
B(I1)

and PQ1
B(I2).

Proof. Recall that the rational primes p splitting in K are precisely
those satisfying p ≡ ±1 mod 8. Let H⊳PQ1

B be a normal subgroup
such that PQ1

B/H
∼= PSL2(Fp) and choose a surjection ϕ : PQ1

B →
PSL2(Fp) such that ker(ϕ) = H . Clearly ϕ is determined by the triple
(ϕ(α), ϕ(β), ϕ(αβ)−1) ∈ (PSL2(Fp))

3, where we use α, β to denote the
images of these elements in PQ1

B. Note that ϕ(α) must have order 3;
otherwise it would be trivial and ϕ(PQ1

B) would be abelian, contradict-
ing surjectivity. Similarly, ϕ(β) has order 3. Since αβ has order 4 in
PQ1

B, the order of ϕ(αβ) must divide 4. If ϕ(αβ) is trivial, then again
we get that ϕ(PQ1

B) is abelian. If ϕ(αβ)2 is trivial, then it is easy to
show that 〈ϕ(αβ), ϕ(βα)〉 ⊆ PSL2(Fp) is a normal subgroup and hence
all of PSL2(Fp) since the latter is a simple group. However, this is
again absurd because a finite group generated by two involutions must
be dihedral. Thus the order of ϕ(αβ) is 4.
We have thus shown that (ϕ(α), ϕ(β), ϕ(αβ)−1) is a non-exceptional

group triple in the sense of [9, Section 8]. Moreover, since none of
these three elements of PSL2(Fp) can be a scalar matrix, it follows
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that if (g1, g2, g3) ∈ (PSL2(Fp))
3 is any triple such that g1g2g3 = 1

and (tr(g1), tr(g2), tr(g3)) = (trϕ(α), trϕ(β), trϕ(β−1α−1)), then the or-
ders of g1, g2, g3 are 3, 3, 4, respectively. In particular, the subgroup
〈g1, g2, g3〉 is never abelian. Hence the trace triple

(trϕ(α), trϕ(β), trϕ(β−1α−1))

is not commutative, and so it must be projective by [17, Theorem 4].
Since p 6∈ {2, 3}, all the hypotheses of [9, Proposition 8.10] hold. By
that proposition, there are at most two normal subgroups H such that
PQ1

B/H
∼= PSL2(Fp). On the other hand, PQ1

B(I1) and PQ1
B(I2) are

clearly distinct and satisfy this condition by Corollary 14.2. We are
grateful to J. Voight for directing us to the reference [9]. �

Remark 14.4. For every p splitting in K, we obtain a pair of Bolza

twin surfaces M of genus g(M) = p(p2−1)
48

+ 1, i.e., Euler characteristic

χ(M) = −p(p2−1)
24

, and area πp(p2−1)
12

. Since the area of the (3,3,4)
triangle is π

12
and its double is π

6
, the automorphism group generated by

orientation-preserving elements of the triangle group has order p(p2−1)
2

,
namely that of PSL2(Fp).

15. Bolza twins of genus 8

We now apply the results of Section 14 to the pair (1+2
√
2)OK and

(1−2
√
2)OK. Both of these have norm 7, and therefore their principal

congruence quotients are isomorphic to the group PSL2(F7) of order
168. These ideals give rise to twin surfaces analogous to the Hurwitz
triplets (see [14]), namely non-isometric surfaces with the same auto-
morphism group. Note that by estimate (9.2), these Fuchsian groups
contain no elliptic elements.
The normal subgroup of the triangle group generated by each of

these in magma produces a presentation with 16 generators and a single
relation of length 32, corresponding to Fuchsian groups of a Riemann
surface of genus 8. Therefore it coincides with the corresponding con-
gruence subgroup, since it gives the correct order of the symmetry
group (i.e., index in the (3,3,4) triangle group), namely order 168.
To find these groups, we searched for subgroups of index 168 using

magma, and looked for the simplest generator whose normal closure is
the entire group. The results are summarized in Lemmas 15.1 and 15.3
below.
The numerical values reproduced below suggest that the systole of

the surface corresponding to the ideal (1 + 2
√
2)OK should be smaller

than the systole of the surface corresponding to the ideal (1−2
√
2)OK .
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Lemma 15.1. The element −(αβ−1)4 is in Q1
B(1 + 2

√
2). Its nor-

mal closure is the full congruence subgroup corresponding to the ideal
generated by 1 + 2

√
2.

Proof. With respect to the module basis we have

(αβ−1)4 = (5 + 3
√
2)(α− αβ)− (2 + 2

√
2),

which is congruent to −1 modulo the ideal (1 + 2
√
2). On the other

hand, 〈
α, β |α3 = β3 = (αβ)4 = (αβ−1)4 = 1

〉

has order 168, showing that the normal closure of (αβ−1)4 is the full
congruence subgroup. �

Remark 15.2. The element (αβ−1)4 has trace 7+4
√
2 = 12.656 . . . Of

the 16 generators produced by magma, 14 have this trace (up to sign),
and the remaining two generators have trace 19+13

√
2 = 37.384 . . . (up

to sign). The smaller value 7 + 4
√
2 = 12.656 . . . is a good candidate

for the least trace of a nontrivial element for this Fuchsian group.

Lemma 15.3. The element −(β−1α−1β−1αβα)2 is in Q1
B(1 − 2

√
2).

Its normal closure is the full congruence subgroup corresponding to the
ideal generated by 1− 2

√
2.

Proof. A calculation shows that

(β−1α−1β−1αβα)2 = (7+5
√
2)+(5+4

√
2)α−(8+5

√
2)β+(3+

√
2)αβ.

Adding 1, the coefficients 8 + 5
√
2, 5 + 4

√
2 and 3 +

√
2 are divisible

by 1− 2
√
2, so (β−1α−1β−1αβα)2 is congruent to −1 modulo 1− 2

√
2

in the Bolza order. Again, the normal closure is the full congruence
subgroup because the group

〈
α, β |α3 = β3 = (αβ)4 = (β−1α−1β−1αβα)2 = 1

〉

has order 168 as well. �

Remark 15.4. The trace of (β−1α−1β−1αβα)2 is 9+6
√
2 = 17.485 . . .

Of the 16 generators of the Fuchsian group produced by magma, 13 have
this trace (up to sign), and the remaining three have trace 14+11

√
2 =

29.556 . . . The smaller value 9 + 6
√
2 = 17.485 . . . is a good candidate

for the least trace of a nontrivial element for this Fuchsian group.

The traces in Remarks 15.2 and 15.4 can be compared to the trace
bound of [13, Theorem 2.3], cf. (9.2), which, since QB ⊆ 1

6
OK [i, j],

gives for any ideal I⊳Z[
√
2] and any ±1 6= x ∈ Q1

B(I) that |TrD(x)| >
1
4
N(I)2 − 2. In particular since N(1 + 2

√
2) = N(1 − 2

√
2) = 7, we

have for both congruence subgroups mentioned in this section the trace
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lower bound 41
4
= 10.25. Note that the trace appearing in Remark 15.2

exceeds the theoretical bound by less than 25%.

Remark 15.5. It would be interesting to explore possible algorithms
for the computation of the systole of an explicitly given Fuchsian group,
possibly exploiting its fundamental domain using Voight [28].

16. Bolza twins of higher genus

In this section we collect explicit computations, performed in magma,
of Bolza twins for some primes p > 7 that split in K = Q(

√
2). We

briefly sketch the method. Let I1 and I2 be the two places of K di-
viding p. We first obtain presentations of the congruence subgroups
PQ1

B(I1) and PQ1
B(I2). By Lemma 14.3, these are the only two normal

subgroups of PQ1
B such that the corresponding quotients are isomor-

phic to PSL2(Fp).
The most efficient way to find such subgroups in practice is randomly

to generate a homomorphism from the triangle group onto PSL2(Fp).
Thus, we generate pairs (A1, A2) of random elements of SL2(Fp) by
means of the Product Replacement Algorithm and search for pairs that
generate SL2(Fp) and such that the projective orders of A1, A2, A1A2

are 3, 3, 4, respectively. Each such pair corresponds to a surjection
ϕ : PQ1

B → PSL2(Fp) determined by ϕ(α) = A1 and ϕ(β) = A2;
here the bars denote images in PSL2(Fp). We search for two pairs
such that the kernels of the corresponding surjections are distinct; by
Lemma 14.3, these kernels are our two congruence subgroups.
This random search is far faster than any known deterministic algo-

rithm. Finding suitable pairs (A1, A2) is very quick: for p = 71, for
instance, a search through one million random pairs produced twenty
suitable ones and took only a few seconds.
We then rewrite the presentations of these kernels by means of the

Reidemeister-Schreier algorithm, as implemented in magma; this is time-
consuming, taking a few hours to run on a MacBook for p = 71. It may
be necessary to treat more than two surjections ϕ before two different
kernels are found.
In all cases that we have investigated, the Reidemeister-Schreier algo-

rtihm produces presentations with 2gp generators and a single relation
of length 4gp; here gp = p(p2 − 1)/48 + 1. We search through this list
for elements of minimal trace and for generators whose normal closure
in PQ1

B is the full congruence subgroup and present our results below.
In some cases, none of the elements of minimal trace normally generate
the entire congruence subgroup, and for one of the primes dividing 71
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we were unable to find any single element that normally generates the
associated congruence subgroup.

16.1. Bolza twins of genus 103. Factoring the rational prime p = 17
as −(1 − 3

√
2)(1 + 3

√
2), we obtain a pair of Bolza twins of genus

103, with automorphism group PSL2(F17). The order of PSL2(Fp) is
(p2 − 1)p/2. This is 2448 for p = 17. The element

αβα−1β−1α−1βαβ−1αβ−1α−1β−1α−1βαβα−1β−1αβ−1αβ

is congruent to 1 modulo (1− 3
√
2) and normally generates the corre-

sponding congruence subgroup. Its trace is 75 + 53
√
2 ≈ 149.953 . . .,

which is the least trace (in absolute value) among the 206 generators
(with a single relation of length 412). For the “twin” normal subgroup,
we find a generator of the form

(αβ−1α−1β−1αβα−1β−1αβ)2,

equal to −1 mod (1+3
√
2). It generates the full congruence subgroup,

and gives the least trace, namely 79 + 56
√
2 ≈ 158.195 . . ., among all

the generators.

16.2. Bolza twins of genus 254. For p = 23, there are two normal
subgroups of the triangle group whose quotient is PSL2(F23). The
order of PSL2(Fp) is (p

2−1)p/2. This is 6072 for p = 23. One obtains
a generator

β−1αβ−1α−1βα−1βα−1β−1αβ−1αβα−1βα−1βα

with minimal trace of 91+65
√
2, whose normal closure is a group with

508 generators and a single relation of length 1016. This generator is
congruent to +1 modulo 5−

√
2.

For its Bolza twin, the lowest trace appears to be 119 + 84
√
2. An

element that normally generates the congruence subgroup of 5 +
√
2 is

αβαβ−1αβ−1αβ−1αβα2β−1α−1βαβ−1αβ−1αβ−1

This generator is congruent to −1 modulo 5 +
√
2.

By Lemma 14.3, for each prime p satisfying p ≡ ±1(mod 8), there are
precisely two normal subgroups of our triangle group with quotient iso-
morphic to PSL2(Fp), which are congruence subgroups corresponding
to the two algebraic primes factoring p.
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16.3. Bolza twins of genus 621. Consider the decomposition 31 =
(9− 5

√
2)(9 + 5

√
2). The generator

βαβα−1βαβ−1αβ−1αβα−1β−1α−1βα−1β−1αβ−1αβ−1α−1

is equivalent to 1 modulo 9 − 5
√
2 and normally generates the corre-

sponding principal congruence subgroup, producing a surface of genus
g = 621 = 31(312 − 1)/48 + 1. This element has trace 153 + 109

√
2,

which is the smallest among the 2g generators.
For the Bolza twin, the element

(β−1αβα−1β−1αβ−1α−1βα)2

equals −1 mod (9+5
√
2), with normal closure with the same properties,

the least trace being 129 + 90
√
2.

16.4. Bolza twins of genus 1436. Let 41 = (7 − 2
√
2)(7 + 2

√
2).

For both PQ1
B(7−2

√
2) and PQ1

B(7+2
√
2), magma found presentations

with 2g generators and a single relation of length 4g, where g = 1436 =
41(412 − 1)/48 + 1. The generator

βα−1βα−1βα−1β−1αβ−1α−1β−1αβα−1βα−1β−1αβαβ−1αβα−1

is congruent to −1 mod (7 − 2
√
2) and has trace 208

√
2 + 295. Its

normal closure is the full congruence subgroup PQ1
B(7− 2

√
2).

The pair of generators

(β−1α)10

and

βαβα−1βα−1β−1αβ−1α−1βαβ−1α−1β−1αβα−1β−1αβ−1α−1βα−1

are congruent to −1 and 1 mod (7+ 2
√
2), respectively, and they have

traces 281 + 198
√
2 and −(281 + 198

√
2), respectively. The normal

closure of this pair is the congruence subgroup PQ1
B(7 + 2

√
2). While

281 + 198
√
2 is the minimal trace among the 2g = 2872 generators

of PQ1
B(7 + 2

√
2) found by magma, no single generator of this trace

normally generates PQ1
B(7+2

√
2). It is, however, normally generated

by the element

βαβα−1βα−1βα−1βα−1β−1αβα−1β−1α−1βα−1βα−1βα−1βαβ−1α−1,

which is congruent to 1 mod (7 + 2
√
2) and has trace 681 + 481

√
2.
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16.5. Bolza twins of genus 2163. Let p = 47 = (7 −
√
2)(7 +

√
2).

The generator

(β−1αβα−1β−1αβα−1β−1αβ−1α)2

has trace 529+374
√
2 and equals −1 mod (7−

√
2), while the generator

βαβα−1βαβ−1α−1βα−1βα−1βα−1β−1α−1βα−1β−1αβα−1βα−1βα−1

has trace 499 + 353
√
2 and equals 1 mod (7 +

√
2). In both cases,

normal closures are subgroups with 2g generators and a single relation
of length 4g, for g = 2163.

16.6. Bolza twins of genus 7456. Consider p = 71 = (11+5
√
2)(11−

5
√
2). The two elements

βαβα−1βαβ−1α−1βα−1βα−1βαβ−1α−1β−1αβαβ−1α−1βα−1βα−1βα−1

and

βαβα−1βα−1βαβ−1α−1βαβ−1αβ−1α−1β−1αβα−1βαβ−1α−1βαβ−1α−1

are each congruent to 1 modulo (11 + 5
√
2), and they each have trace

−(951 + 672
√
2). The normal closure of this pair of elements is the

corresponding congruence subgroup PQ1
B(11 + 5

√
2). This congruence

subgroup can also be generated by a single element; however, the min-
imal trace that we have found of such a generator is 2299 + 1625

√
2,

for instance for the generator

βαβα−1β−1αβ−1αβα−1βα−1βα−1βα−1β−1α−1βαβ−1αβ−1α−1βα−1βα−1βα−1.

The congruence subgroup has a presentation with 2g generators and
a single relation of length 4g, for the expected g = 7456 = 47(472 −
1)/48 + 1.
For its Bolza twin, we were unable to find any element whose nor-

mal closure is the entire congruence subgroup PQ1
B(11 − 5

√
2). This

congruence subgroup again has a presentation with 2g generators and
a single relation of length 4g; however, the normal closure of each of
these generators have index at least 3 in PQ1

B(11−5
√
2). The smallest

trace among the 2g = 14912 generators is ±(633 + 449
√
2), which is

obtained for eighteen of them. We note that magma was unable the
determine the index in PQ1

B(11 − 5
√
2) of the normal closure of all

eighteen of these generators; this index is likely to be very large or
infinite. However, the congruence subgroup can be normally generated
by the two elements

βαβα−1βαβ−1α−1βα−1β−1α−1βα−1βα−1β−1α−1βα−1β−1αβα−1βαβα−1βα−1
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and

βαβα−1βα−1βα−1β−1αβ−1α−1β−1αβαβ−1α−1β−1αβα−1β−1αβαβ−1αβα−1βα−1,

which are congruent to 1 modulo (11 − 5
√
2) and have traces 633 +

449
√
2 and the next smallest −(1527 + 1080

√
2), respectively.

16.7. Summary of results. To summarize, we collect some of the re-
sults presented above in a table. Each line of the table corresponds to
a prime ideal I⊳OK = Z[

√
2] dividing a rational prime p that splits in

K = Q(
√
2). We present the lowest trace discovered by our magma com-

putations of a non-trivial element in the congruence subgroup PQ1
B(I),

as well as the decimal expansion of this candidate for the lowest trace,
rounded to the nearest thousandth. For comparison, the rightmost
column displays the theoretical lower bound N(I)2/4− 2 for the trace.
For some ideals, such as I = (11 − 5

√
2), we find elements whose

traces are remarkably close to the theoretical bound. For other ideals,
our experimental results are not as close to the theoretical bound; we
ask whether elements of lower trace exist that could be discovered by
other methods.

I N(I) lowest trace N(I)2/4− 2

(1 + 2
√
2) 7 7 + 4

√
2 12.657 10.25

(1− 2
√
2) 7 9 + 6

√
2 17.485 10.25

(1− 3
√
2) 17 75 + 53

√
2 149.953 70.25

(1 + 3
√
2) 17 79 + 56

√
2 158.196 70.25

(5−
√
2) 23 91 + 65

√
2 182.924 130.25

(5 +
√
2) 23 119 + 84

√
2 237.794 130.25

(9 + 5
√
2) 31 129 + 90

√
2 256.279 238.25

(9− 5
√
2) 31 153 + 109

√
2 307.149 238.25

(7 + 2
√
2) 41 281 + 198

√
2 561.014 418.25

(7− 2
√
2) 41 295 + 208

√
2 589.156 418.25

(7 +
√
2) 47 499 + 353

√
2 998.217 550.25

(7−
√
2) 47 529 + 374

√
2 1057.916 550.25

(11− 5
√
2) 71 633 + 449

√
2 1267.982 1258.25

(11 + 5
√
2) 71 951 + 672

√
2 1901.352 1258.25
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