
Bond Bipolarons: Sign-free Monte Carlo Approach

Chao Zhang,1 Nikolay V. Prokof’ev,2 and Boris V. Svistunov2, 3, 4

1State Key Laboratory of Precision Spectroscopy,
East China Normal University, Shanghai 200062, China

2Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
3National Research “Center Kurchatov Institute,” 123182 Moscow, Russia

4Wilczek Quantum Center, School of Physics and Astronomy and T. D. Lee Institute,
Shanghai Jiao Tong University, Shanghai 200240, China

Polarons originating from phonon displacement modulated hopping have relatively light masses
and, thus, are of significant current interest as candidates for bipolaron mechanism of high-
temperature superconductivity [Phys. Rev. Lett. 121, 247001 (2018)]. We observe that the bond
model, when the dominant coupling comes from atomic vibrations on lattice bonds, can be solved by
efficient sign-free Monte Carlo methods based on the path-integral formulation of the particle sector
in combination with either the (real-space) diagrammatic or Fock-path-integral representation of
the phonon sector. We introduce the corresponding algorithms and provide illustrative results for
bipolarons in two dimensions. The results suggest that the route towards high-temperature super-
conductivity (if any) in the multiparametric space of the model lies between the Scylla of large size
of moderately light bipolarons and Charybdis of large mass of compact bipolarons. As a result,
on-site repulsion is helping s-wave superconductivity in sharp contrast with existing expectations.

Introduction. Broad interest in polarons—stable quasi-
particles emerging as a result of strong renormaliza-
tion of properties of a bare particle due to interaction
with this or that environment—comes from their ubiq-
uitous presence across all fields of physics. There ex-
ist electron-phonon polarons [1–8], spin-polarons [9–11],
Fermi-polarons [12, 13], protons in neutron rich matter
[14], etc. Coupling to the environment may also lead
to formation of bound particle states called bipolarons.
Their studies are motivated by the possibility of identi-
fying a possible mechanism for high-temperature super-
conductivity when a gas/liquid of bound pairs of fermions
undergoes a superfluid (SF) transition at temperature

Tc ∼
n2/d

m∗
, (1)

where n is the bipolaron density in a d ≥ 2-dimensional
system and m∗ is the bipolaron effective mass. The esti-
mate for Tc is very robust against repulsive interactions
between bosons: in d = 3 it barely changes between the
gas and liquid densities [15–19], and in d = 2 the de-
pendence on interactions is logarithmically weak [19–22].
Since the SF transition temperature increases with den-
sity, the highest value of Tc for this mechanism is ob-
tained when the inter-particle distance is of the order of
the pair size, or nRd∗ ∼ 1, where R∗ is the bipolaron ra-
dius. By increasing the fermion density further one goes
through the so-called BEC-to-BCS crossover correspond-
ing to a radical change of the microscopic mechanism be-
hind the SF transition—the (quasi) Bose-Einstein con-
densation (BEC) of spatially separated pairs gets grad-
ually replaced by the Bardeen-Cooper-Schreiffer (BCS)
pairing in momentum space—and Tc starts decreasing
exponentially [23, 24]. Thus, the maximum value of tran-
sition temperature can be expressed though the bipolaron

parameters as

Tc ∼
1

m∗R2
∗
. (2)

When the dominant mechanism of electron-phonon
coupling is of the density-displacement type, as in the
Holstein model [5], large values of Tc cannot be reached
[25–27]. The reason is exponentially large effective bipo-
laron masses originating from small phonon overlap inte-
grals for realistic values of the adiabatic parameter

γ =
ωph

W
� 1,

where ωph is the phonon frequency and W is the particle
bandwidth;W ≈ 4dt for tight-binding dispersion relation
with hopping amplitude t between the nearest-neighbor
sites on a simple d-dimensional cubic lattice. The corre-
sponding bipolarons are also very sensitive to the on-site
Hubbard repulsion U . Much stronger electron-phonon
interaction (EPI) is required for their formation when
U ∼ W , leading to an additional exponential increase of
the effective mass [26].

The prospects for obtaining high Tc appear to be far
better when strong EPI originates from hopping depen-
dence on atomic displacements by one of the two mech-
anisms. In mechanism A, tunneling is enhanced (sup-
pressed) when the distance between the sites is reduced
(increased) [28, 29]. In mechanism B, tunneling is mod-
ulated by displacements of atoms in the barrier region
between the sites [30]. Previous studies [8, 31, 32] found
that these bond polarons remain relatively light when en-
tering the strong coupling regime. However, properties
of the corresponding bipolarons remain unexplored: the
only available study [33] considered the d = 1 case in the
antiadiabatic limit ωph = 3t for mechanism A. For real-
istic predictions of high Tc one needs to look at higher
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dimensional systems in the adiabatic limit γ � 1 and ac-
count for large repulsive potential between the electrons.
This poses a significant computational challenge for un-
biased methods based on exact diagonalization [26, 34]
or controlled truncation of the phonon Hilbert space [35]
because bipolaron states in d > 1 are extended and the
number of excited phonon modes quickly increases with
1/γ.

In this Letter, we show that path-integral representa-
tion for particles offers a unique opportunity for conduct-
ing comprehensive studies of n-particle polaronic states
when EPI is based on mechanism B. The simplest Hamil-
tonian can be formulated as Ĥ = Ĥe + Ĥph + Ĥint with

Ĥe = −t
∑

<ij>,σ

(ĉ†jσ ĉiσ + H.c.) +
∑
ijσσ′

Vσσ′(i, j)n̂iσn̂jσ′ , (3)

Ĥph = ωph

∑
<ij>

(b̂†<ij>b̂<ij> + 1/2) , (4)

Ĥint = −g
∑

<ij>,σ

(ĉ†jσ ĉiσ + H.c.)(b̂†<ij> + b̂<ij>), (5)

where Vσσ′(i, j) is the potential of interelectron interac-
tion and g is the strength of EPI. We use standard nota-
tion for creation and annihilation operators for electrons
(on site i with spin σ) and optical phonons (on bonds
< ij >). The model can be further generalized to deal
with several dispersive phonon modes and study effects
of phonon dynamics and polarization. Here we focus on
describing the numerical method and present illustrative
results for bipolaron states in a two-dimensional system.
These results indicate that the search for high-Tc regimes
requires comprehensive exploration of the model param-
eter space because compact states can easily end up to
be heavy while light effective masses come at the price
of larger pair radius, see Eq. (2). One counter-intuitive
effect is that the s-wave transition temperature may in-
crease with the on-site repulsion U because less compact
bipolarons are significantly lighter.

Basic relations. For a generic few-body system, the
mathematical object containing all information about ita
ground-state properties and potentially allowing sign-free
Monte Carlo simulations can be formulated as

Oba(τ) = 〈 b |e−(τ/2)Ĥ Ô e−(τ/2)Ĥ | a 〉 . (6)

Here Ô is a certain observable, Ĥ is the system’s Hamil-
tonian, τ is an appropriately large imaginary-time inter-
val, | a 〉 and | b 〉 are any two states having finite overlap
with the ground state, |g〉. In the asymptotic limit of
τ → ∞ the answer is dominated by the projection onto
the ground state when Oba(τ) is given by the product of
the ground-state expectation value of Ô and the universal
(for all observables) propagator Gba(τ):

Oba(τ) −→
τ→∞

〈 g | Ô | g 〉 〈 b |e−τĤ | a 〉 ≡ Ōg Gba(τ) . (7)

If the states | a 〉 and | b 〉 are free of phonons, Gba is the
standard n-particle Green’s function. Since Gba(τ) ≡
Iba(τ), where Î is the identity operator, the expectation
value of Ô in the ground state can be represented as

Ōg =
Oba(τ)

Iba(τ)
≡

∑
abWabOba(τ)∑
abWab Iba(τ)

. (8)

This is standard for MC methods setup when the stochas-
tic sampling process is designed to sample the prop-
agators Gba while matrix elements of physical proper-
ties are taken care of by Monte Carlo (MC) estimators.
The extended version of the relation—with sums over
any subsets of states | a 〉 and | b 〉 with arbitrary weights
Wab—adds flexibility and efficiency in designing updat-
ing schemes.

According to Eqs. (6) and (7), the imaginary-time de-
pendence of Gba also contains direct information about
the ground-state energy, Eg:

Gba(τ) −→
τ→∞

〈 b | g 〉〈 g | a 〉 e−τEg . (9)

Moreover, by selecting the state | b 〉 or state | a 〉, or both,
to belong to a particular—non-ground-state—symmetry
sector, we can employ (9) to determine energy of the
ground state in a given sector. This way Gba(τ) can be
used to obtain the quasiparticle dispersion relation, and,
in particular, its effective mass.

A direct procedure of extracting m∗ from Gba(τ) is
based on the coordinate representation when for each of
the states | b 〉 and | a 〉 we introduce the notion of the
“center-of-mass” positions, Rb and Ra, respectively, and
consider the relative-coordinate dependence of the propa-
gator Gba(τ, R), where R = Rb−Ra. In the limit of long
time and large distance, (τ,R2) → ∞, this dependence
takes on the characteristic form of a single free particle
propagator with effective mass m∗:

Gba(τ,R) → Abae
−Egτ

τd/2
e−

m∗R2

2τ . (10)

Apart from the coefficient Aba, the r.h.s. of (10) is in-
sensitive to the particular choice of states | a 〉 and | b 〉,
allowing one to average over them as in Eq. (8). In the
asymptotic limit, the difference between the lattice and
continuous space disappears, andm∗ is directly related to
the mean square fluctuations of the relative coordinate:

R2(τ) =

∑
abWab Gba(τ,R)R2∑
abWab Gba(τ,R)

−→
τ→∞

d

m∗
τ . (11)

Starting with zero at τ = 0, the R2(τ) function ulti-
mately saturates to a straight line at long τ leading to
an accurate estimate of the effective mass from its slope.

Perturbative expansion. Our approach to MC sampling
is based on the general scheme proposed in Ref. [36] and
rendered here. Let Ĥ0 and V̂ be the diagonal and off-
diagonal parts of the Hamiltonian with respect to some
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basis B = {|α〉} (out choice is site Fock states for parti-
cles and bond Fock states for phonons): Ĥ0|α〉 = Eα|α〉,
〈α|V̂ |α〉 = 0. Next, we decompose V̂ into elementary
non-vanishing terms, V̂ =

∑
αβ Vβα|β〉〈α|. In the chosen

representation, there are three types of the elementary
terms each corresponding to the particle hopping along a
specific bond in a specific direction: (i) bare hopping (ii)
hopping assisted by the phonon creation, and (iii) hop-
ping assisted by the phonon annihilation. For a sign-free
MC method—apart from, possibly, the negative signs (or
phases) originating from components of the vectors | a 〉
and | b 〉 in the basis B—all matrix elements Vβα need
to be non-negative real numbers. This requirement is
satisfied with our choice of B for model (3)-(5).

Using standard interaction representation for the evo-
lution operator in the imaginary time domain, e−τĤ =

e−τĤ0 σ̂(τ), and expanding σ̂(τ) into Taylor series we ar-
rive at [36]:

σβα(τ) = δαβ +

∫ τ

0

dτ1 Vβα e
τ1Eβα

+
∑
γ1

∫ τ

0

dτ2

∫ τ2

0

dτ1Vβγ1e
τ2Eβγ1Vγ1αe

τ1Eγ1α + . . . , (12)

where Eβα = Eβ − Eα. The MC scheme is based on the
statistical interpretation of the r.h.s. of (12) viewed as an
average over an ensemble of graphs representing strings
of the hopping transitions, or “kinks”, Vγi+1γi . A string is
characterized by the number and types of kinks, as well
as by their space-time positions. Graphs are sampled ac-
cording to their non-negative weights given by the values
of the corresponding integrands in Eq. (12).

Sampling protocol and estimators. Our MC scheme
includes τ into the configuration space of graphs and al-
lows us, on the one hand, to sample the τ -dependence
of Gba(τ) and R2(τ) and then use Eqs. (9) and (13) to
estimate the ground-state energy and the effective mass.
On the other hand, this setup dramatically simplifies the
minimalistic set of updates that deal exclusively with the
last (in the τ -domain) kink in the string. To be spe-
cific, we stochastically (i) add and remove the last bare-
hopping kink using a pair of complementary updates [36],
(ii) switch between the three types of the hopping terms,
and (iii) sample the length of the last time interval sep-
arating the last kink from the state 〈 b |. This scheme
is ergodic and produces states 〈 b | that admit any al-
lowed configuration of excited phonon modes. Clearly,
one can add additional updates dealing with other than
last kinks for better decorrelation of the sting configura-
tion, see [36].

The proposed setup provides access to all the relevant
system’s properties, including the same- and different-
time correlation functions. They are measured when the
value of τ is large enough and the asymptotic limit (7)
is reached; its maximal value τmax is an important pa-
rameter controlling the accuracy of the projection onto
the ground state. Monte Carlo estimators for observables
are based on Eqs. (6) and (8) and their straightforward

generalization for the different-time correlators. In ac-
cordance with the general theory (see, e.g., Refs. [36])
estimators do not involve additional computational costs
(i.e. modifications of the configuration space and the
sampling protocol) when the corresponding operators are
either (i) diagonal in the basis B or (ii) expressed in terms
of elementary V̂ -terms. The estimator for observable of
type (i) is simply the eigenvalue of this observable for the
state |γ〉 ∈ B created by the string of kinks at a certain
moment of imaginary time, τ∗, close to τ/2. The estima-
tor for observable of type (ii) is minus the total number of
the corresponding V̂ -kinks within a certain time interval
divided by the duration of this interval. It can be arbi-
trarily long provided its boundaries are appropriately far
from the string end points τ = 0 and τ ∼ τmax.

Diagrammatics for the phonon sector. In the consid-
ered model, phonons do not interact with each other.
This allows one to treat them diagrammatically, while
keeping the path-integral representation for the parti-
cle sector only. The benefit of the diagrammatic rep-
resentation for phonons (compared to their path-integral
treatment described above) is the flexibility of dealing
with dispersive modes. Here the phonon dispersion is ac-
counted for by simply modifying the zero-temperature
(to comply with the diagrammatic rule that all aver-
ages be specified in terms of the vacuum state) phonon
propagators, Ds(r1, τ1; r2, τ2) ≡ Ds(r1 − r2, τ1, τ2), with
s = 1, . . . , d enumerating directions of lattice bonds. For
sign-free formulation, Ds should be non-negative. One
can still access (i) the particle configurations, (ii) the
distribution of phonon numbers, and the correlations be-
tween (i) and (ii). The path-integral treatment of dis-
persive phonons is also possible, and comes at a price
of dealing with yet another family of kinks originating
from phonon hopping. The benefit of this approach is
detailed information about spatial configurations of ex-
cited phonon modes.

The mathematical structure of the perturbative expan-
sion with diagrammatic treatment of phonons is similar
to the series (12) provided the Greek subscripts are used
exclusively for the particle states. Accordingly, Eα now
refer to energies of the particle subsystem alone, while
each kink in (12) representing the phonon-assisted hop-
ping event is associated with one of the two end-points
of the vacuum phonon propagator Ds(r1, τ1; r2, τ2). The
other end belongs either to states | a 〉 or 〈 b | or another
phonon-assisted hopping event along the bond with the
same direction s.

Illustrative results. For estimates of Tc, apart from the
bi-polaron energy and effective mass, we determine R2

∗
from the probability distribution P (R12) of finding par-
ticles at distance R12 from their center of mass position

R2
∗ =

∑
R12

R2
12 P (R12) . (13)

Figure 1 shows the dependence of the ground-state en-
ergy and the effective mass on the strength of the on-site
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bi 2D: g=t/21/2, ph=0.5t * 0
2D: g=t/21/2, ph=0.5t

2 mP

FIG. 1. Bipolaron energies (left) and effective masses (right)
as functions of on-site repulsion U for coupling constant g =
t/
√
2 and adiabatic parameter γ = 1/16. Error bars for Ebi

are much smaller than symbol size. Dashed lines in all plots
are used to guide an eye.
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FIG. 2. Radial profiles for bipolaron states (left) and esti-
mates of Tc (right) based on Eq. (2) for the same set of pa-
rameters as in Fig. 1.

repulsion for coupling constant g = t/
√

2 and the adia-
batic parameter γ = 1/16. The ground-state energies are
found to be smaller than the energies of two polarons for
any realistic value of U , indicating that we are dealing
with bound states (bipolarons). At U = 0, the bipolaron
effective mass is more than three times larger than its
asymptotic limit 2mp, where mp is the mass of a single
polaron. With increasing U , the effective mass drops sig-
nificantly, and at U & 10 it approaches the limiting value
of 2mp.

In contrast to naive expectations that a significant drop
in the effective mass should result in a substantial in-
crease of Tc, the trend revealed in Fig. 2 is quite differ-
ent. The estimate for the critical temperature remains
relatively flat up to U ∼ 2 and then starts to decrease,
dropping by almost a factor of 3 at U ∼ 10. This is
because the decrease of m∗ is accompanied by a rapid
increase of R∗, so that the product m∗R2

∗ does not show
a pronounced maximum at any finite U .

A pronounced maximum of Tc at a finite U does exist
at a larger value of the coupling constant, as illustrated
by the data for bipolaron states at g = t and γ = 1/16
in Figs. 3 and 4. Here the behavior of both the ground-
state energy and the effective mass is qualitatively sim-
ilar to what we had at g = t/

√
2 (see Fig. 1). But the

increase of R∗ with U is not as dramatic and does not

bi
2D: g=t, ph=0.5t

* 0
2D: g=t, ph=0.5t

P

FIG. 3. Bipolaron energies (left) and effective masses (right)
as functions of on-site repulsion U for coupling constant g = t
and adiabatic parameter γ = 1/16. Error bars for Ebi are
much smaller than symbol size.
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12
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4
6

2

12

24

C

FIG. 4. Radial profiles for bipolaron states (left) and esti-
mates of Tc (right) based on Eq. (2) for the same set of pa-
rameters as in Fig. 3.

overcompensate the decrease of m∗ even at U ∼ 20. The
maximum of Tc at U > 24 with the maximal value of Tc
significantly larger than at U = 0 does exist because for
U → ∞ the energy of the delocalized bipolaron state is
extremely close to the bound state threshold.

Conclusions. Model (3)–(5) of bond (bi)polarons (in
any spatial dimensions) allows a controlled and efficient
numeric solution by Monte Carlo methods formulated in
the path-integral representation for the electron(s) and
either path-integral or real-space-diagrammatic represen-
tation for phonons. This is also true for the generaliza-
tions of (3)–(5) that include (i) dispersive bond phonons
and (ii) additional density-displacement couplings as in
the Holstein model. For illustrative purposes, we pre-
sented simulations of bipolaron states for model (3)–(5)
in two dimensions.

In the context of the bipolaron mechanism of high-
temperature superconductivity, both the effective mass
and the size of bipolaron are equally important [see
Eq. (2)]. Our results show that the positive effect of hav-
ing a smaller effective mass can be readily overcompen-
sated by the negative effect of having a larger bipolaron
size; see Fig. 2.

There is a range of parameters where the net effect of
the strong repulsion between the electrons is a substantial
increase of the critical temperature for the superconduct-
ing transition; see Fig. 4. One may find this result rather
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counterintuitive given that normally the on-site repulsion
suppresses Cooper pairing in the s-channel.
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