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Abstract—This paper introduces into a graphical, computer aided
modelling methodology that is particularly suited for theconcurrent de-
sign of mechatronic systems, viz. of engineering systems with mechan-
ical, electrical, hydraulic or pneumatic components including interac-
tions of physical effects from various energy domains.

Beyond the introduction, bond graph modelling of multibody sys-
tems, as an example of an advanced topic, is briefly addressed in order
to demonstrate the potential of this powerful approach to modelling
mechatronic systems. It is outlined how models of multibody systems
including flexible bodies can be build in a systematic manner.
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I. INTRODUCTION

Bond graphs were devised by Professor H. Paynter at
Massachusetts Institute of Technology (MIT) in Cambridge,
Massachusetts, U. S. A. as early as 1959 [1]. His for-
mer Ph. D. students Professor Karnopp, Professor Margo-
lis (University of California at Davis) and Professor Rosen-
berg (Michigan State University, East Lansing, Michigan)
have elaborated this graphical model representation into a
methodology that has experienced a considerable progress
over the decades due to the steady work of many re-
searchers all over the world. Since the early days, many
research papers, a number of textbooks in different lan-
guages [2, 3, 4, 5], as well as a number of special jour-
nal issues on bond graph modelling have been published
[6, 7, 8] with the aim of reflecting a part of contempo-
rary research on and application of bond graph modelling in
various areas. An excellent exposure of bond graph mod-
elling can be found in the highly recognised textbook of
Karnopp, Margolis and Rosenberg [9] of which the fourth
edition was recently published in December 2005. Readers
who quickly want to become familiar with the concepts of
bond graph modelling and who are looking for a brief intro-
duction are referred to the 28 pages Introduction to Physi-
cal Systems Modelling with Bond Graphs by J. F. Broenink
[10]. Finally, bond graph modelling is supported by a num-
ber of advanced modelling and simulation software pack-
ages. A survey compiled by A. Samantaray is available at
www.bondgraphs.com/software.html.

II. FUNDAMENTAL CONCEPTS

The Bond Graph methodology clearly and intuitively
starts by considering energy flows between the ports of the
(conceptual) components of an engineering system. Physi-
cal effects and their interactions are considered and, in the
first place, are taken into account in a qualitative manner.
At further stages of the modelling process, details are spec-
ified as necessary so that a mathematical model can be gen-

erated and can be evaluated. If properly applied, the Bond
Graph methodology enables to develop a graphical model
that is consistent with the first principle of energy conserva-
tion without having the need to start with establishing and
reformulating equations. The derivation of a mathematical
model from the graphical description that is suitable for the
purpose of a project can be rather left to appropriate soft-
ware tools performing this task automatically. As a con-
sequence, users of the methodology can focus on physical
modelling of a system.

A. Hierarchical Bond Graph models

According to the consideration of energy flows in an en-
gineering system, the vertices of a bond graph denote (con-
ceptual) subsystems, system components or elements, while
the edges, called power bonds or bonds for short, represent
energy flows between them. The nodes of a bond graph have
got so-called power ports where energy can enter or exit.
Therefore, bond graph nodes are also termed multiports.
Some software packages supporting bond graph modelling,
e. g. 20simTM[11], enable to make ports visible on demand
by little black squares (cf. Fig. 1).

Clearly, as with other graphical modelling paradigms,
bond graph models can be developed in a hierarchical com-
bined top-down and bottom-up approach by using compo-
nent models or elements from model libraries. The model
hierarchy may be represented separately by a tree of com-
ponent models. For each hierarchy level, the structure of the
model may be represented by a bond graph. While in iconic
diagrams, or in electrical or hydraulic networks application
specific representations are used for the nodes of the graph,
in bond graphs, nodes are presented by words enclosed by
an optional ellipsis. For that reason the notion of word bond
graphs is common in the process of a bond graph based
model decomposition approach. At the lowest hierarchy
level, bond graph nodes represent basic energetic processes
as the delivery or storage of energy, the irreversible transfor-
mation of energy into heat, or the power conservative distri-
bution of power. For these fundamental energetic processes,
fixed types of nodes are used. For instance, the storage of
kinetic energy in a rigid body, or the storage of magnetic en-
ergy in a coil is represented by a node of type I. Of course,
as with other graphical representations, user defined nodes
may be introduced, e. g., a node labelled orifice repre-
senting a mathematical model of a hydraulic orifice.

B. Power variables and analogies

As energy can flow back and forth between two power
ports of different nodes, a half arrow is added to each bond
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Fig. 1: Power bond connecting two power ports of two component models

indicating a reference direction of the energy flow.

Furthermore, it is a general observation, that the amount
of power at each time instance, t, can be determined by the
product of two conjugate variables, which are called effort,
e, and flow, f , respectively.

Power = Effort × Flow

In translational mechanical engineering, effort and flow can
be identified as force and linear velocity. In electrical engi-
neering, the product of the voltage drop across the two pins
of a port and the joint current in both pins is the instanta-
neous amount of electrical power at this port. Correspond-
ingly, in the thermal domain, these variables are the absolute
temperature and the rate of change of the entropy. Table I
lists the effort and flow variables in the various energy do-
mains. The variables in the third column of Table I are the
time integral of the efforts and the variables in the fourth
column are time integral of the flows. They are called en-
ergy variable because they quantise the amount of energy
in the energy stores of a model. The power variables ef-
fort and flow play an equal role with respect to each other.
They are just characterised by the fact that they are a factor
in the power product. Given a pair of power variables, it
is a matter of preference which of them is chosen as effort
and which consequently serves as the flow. This gives rise
to two possible analogies. One choice could be to relate a
mechanical force, or a moment to an electrical voltage drop.
Consequently, velocities, or angular velocities correspond
to electrical currents. This analogy has been in widely use
for a long time. Therefore, occasionally it is referred to as
classical analogy. The other possible association of a ve-
locity with a voltage drop also makes perfectly sense from
the point of measurements. It has been introduced by Fire-
stone around 1933 and is called mobility analogy. If two
modelling approaches only differ with respect to the anal-
ogy, the resulting bond graph models will look different as
well as the mathematical models derived from the graphs.
However, as to the numerical evaluation of the mathemati-
cal models, simulation results should be the same.

As a bond in a bond graph represents the energy exchange
between two ports of different nodes, all edges of a bond
graph carry two power variables. Bonds may be annotated
by the names of these power variables. It is a convention
to place the name of an effort above a horizontal bond and
the flow below the bond (cf. Fig. 1). For vertical bonds the
convention is to place the effort to the left and the flow to the
right of the bond. For inclinations different from a multiple
of 90◦, a more sophisticated convention is to consider that
variable as flow that is on the same side as the half arrow
denoting the reference direction of the energy flow.

C. Computational causalities

As each bond connecting two ports of different nodes A
and B carries two power variables, one of these two may be
determined by one of the two sub-models, while the other is
delivered by the other model. In other words, from a com-
putational point of view, the effort could be computed by the
evaluation of model A, while the flow is computed in model
B. It could be the other way around as well. The decision,
in which sub-model the effort is computed is indicated by a
perpendicular stroke attached to the bond and is called the
assignment of computational causality. The end of a bond
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Fig. 2: Computational causality: indicating the direction of effort and flow

without perpendicular stroke indicates the model, in which
the effort is computed and in which for that purpose the con-
jugate flow must be known. In other words, the end with
perpendicular stroke point to the model, in which the effort
is used in the computation of the conjugate flow. Another
possible and common view is to consider both power vari-
ables of a bond as signals of opposite direction. That is, the
perpendicular stroke indicates the signal direction of the ef-
fort, which implies that the end without the perpendicular
stroke displays the direction of the conjugate flow. The per-
pendicular stroke is called causal stroke. A bond graph is
called causal bond graph if a causal stroke has been added
to each bond. Note that the half arrow and the causal stroke
are orthogonal concepts. That is, there are four possible pat-
tern of half arrow and causal stroke. Now, if every bond
of a causal bond graph is replaced by two signal arrows of
opposite direction, then apparently, the bond graph can be
transformed into a block diagram as it is common in control
engineering. However, not every block diagram can be con-
verted into a bond graph. Bond graph modelling starts by
considering energy flows in a system. Consequently, bond
graph models should obey the first principle of energy con-
servation. In block diagrams, functional blocks represent
the processing of input signals. The mathematical relations
underlying a block diagram are not necessarily consistent
with energy conservation. Sometimes mathematical rela-
tions between input and output signals of a signal processing
block have not been derived from first principles, but curve
fitting methods, for instance, have been used.

If sensors and instruments are included in the bond graph
modelling of an engineering system, then the power con-
veyed between two ports of different components can be
neglected, if the sensing of signals is of primary concern.
This means that one of the two conjugate power variables
associated with a bond can be dropped turning the bond into
a so-called activated bond or reducing it to a conventional
signal arrow. As a result, the ports linked by a bond that has
become a signal arrow turn into signal ports.

The observation that a causal bond graph can be trans-
formed into a block diagram implies that bond graphs com-



Energy Effort Flow Generalised Generalised
domain momentum displacement

e f p q

Translational Force Velocity Momentum Displacement
mechanics F v p x

[N] [m/s] [Ns] [m]

Rotational Angular Angular Angular Angle
mechanics moment velocity momentum

M ω pω θ
[Nm] [rad/s] [Nms] [rad]

Electro- Voltage Current Linkage flux Charge
u i λ q

[V] [A] [Vs] [As]

magnetic Magnetomotive Magnetic Magnetic flux
domain force flux rate

V Φ̇ – Φ
[A] [Wb/s] [Wb]

Hydraulic Total Volume Pressure Volume
domain pressure flow rate momentum

p Q pp Vc

[N/m2] [m3/s] [N/m2 s] [m3]

Thermo- Temperature Entropy Entropy
dynamic flow rate

T Ṡ – S
[K] [J/K/s] [J/K]

Chemical Chemical Molar flow Molar mass
domain potential

µ Ṅ – N
[J/mole] [mole/s] [mole]

TABLE I: Power and energy variables in various energy domains

bine features of networks and of block diagrams. With net-
works bond graph have in common that they represent the
topological connectivity. Component sub-models are con-
nected in the same way as the physical system components
they model are linked. Furthermore, assigning causalities in
a bond graph means that the bond graph is overlayed with
a block diagram representing the computational structure of
a model. On the other hand, it is well know that informa-
tion about the topological structure of a system is lost in a
conventional block diagram model and can hardly be recon-
structed, in general, from a given block diagram.

The hierarchical development of a bond graph model and
the connection of component sub-models according to the
topological structure of a system implies that bond graphs
of component models must be non-causal. The decision,
which of the two power variables of a power port plays the
role of an input signal forcing the conjugate variable being
an output variable is determined by the component models a
component model under consideration is connected to. That
is, causal strokes cannot be assigned before the hierarchical
development of an overall system model is finished and the
the hierarchy has been flattened. Causal strokes, or causali-



ties, at the ports of one and the same component sub-model
can be different depending on the component sub-models it
is connected to. If the assignment of causalities to power
ports means to decide which variables are input and which
of them are output variables, then all equations derived from
a non-causal bond graph can only take implicit form.

D. Bond graph and object-oriented modelling

The concept of ports representing an interface of a com-
ponent sub-model to its outside world that hides internal
implementation details from its environment, the construc-
tion of bond graph models by connecting ports of sub-
model components and the use of component model hierar-
chies, interestingly has much in common with the modern
paradigm of object-oriented modelling (OOM), although
bond graph modelling was developed long before object
oriented modelling came into existence. For instance, an
electrical diode, or a hydraulic orifice of fixed area can be
considered subclasses of a more general 1-port resistor su-
perclass, which inherit all properties of the abstract 1-port
resistor class. Depending on the application, the constitu-
tive relations are (re-)defined in the derived classes. That is,
bond graph classes can be polymorphic. Instantiations of the
these subclasses are obtained by providing given parameters
resulting in objects, e. g. an orifice model O1 with a given
cross section area and a given discharge coefficient. In fact,
the older bond graph modelling approach can be viewed as a
kind of object oriented modelling approach (Borutzky [12]).

III. BOND GRAPH ELEMENTS

Bond graph modelling uses a small set of nine basic con-
ceptual elements representing fundamental energetic pro-
cesses. They can be grouped into five categories.

A. Supply and absorption of energy

The supply of energy into a system is modelled by source
elements. The absorption of energy flowing out of a system
into its environment can be represented by sinks, which can
be considered negative sources. As a power port has two
variables, two kinds of sources exist. Sources may impose
either an effort or a flow onto a system. A battery serving
as a constant voltage source can be modelled by an effort
source, while a hydraulic pump providing a constant vol-
ume flow rate can be modelled as a flow source. In bond
graphs, sources and sinks respectively are denoted by the
character S (Source). The type is naturally indicated by
adding either the characters e or f respectively (Se or Sf).
Sources may have more than one power port. Moreover,
as there exist, e. g. stabilised voltage sources, or controlled
hydraulic pressure pumps, sources may also have a signal
port for feedback control. In this case the type identifier is
prefixed by the character M standing for modulated source
(MSe, or MSf). The signal port is located on the M side of
the element.

B. Storage of energy

Tab. I shows that the time integral of the power variables,
viz. generalised displacement and generalised momentum,
have a physical meaning in many energy domains. More-
over, in many energy domains, they can be related to a

power variable resulting in the constitutive relation of a 1-
port storage element. That is, one of the two power variables
of the port is the rate of change of a so-called conserved, or
stored quantity, also called a state, while the other power
variable is an equilibrium determining variable. As either
the effort or the flow can be the rate of change of the con-
served quantity, two types of energy stores can be distin-
guished. In a C energy storage element, the flow is inte-
grated and the resulting generalised displacement is related
to the conjugate effort of the port. For the second type of
energy store, the I energy storage element, the role of effort
and flow is just interchanged. The effort is integrated and
the resulting generalised momentum is related to the conju-
gate flow. In this sense, both types are dual. For instance, an
electrical capacitor, or a mechanical spring can be modelled
as a C-type energy store, while a rigid body storing kinetic
energy, or a coil storing magnetic energy can be modelled
by an I type storage element. Energy stores can be multi-
port elements. In contrast to sources, however, they cannot
be modulated because this would violate the principle of en-
ergy conservation.

C. Irreversible transformation of energy into heat

The irreversible transformation of energy into heat, e. g.
in electrical resistors, or due to friction in mechanical and
hydraulic systems, is often modelled as a loss of free energy.
In bond graphs it is represented by an R element (resistive
element). If the production of entropy is taken into account,
a RS element is used. The character S (Source) indicates the
thermal port and expresses the entropy production.
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Fig. 3: Accounting for entropy production

e · f = T · Ṡ (1)

While the relation between the power variables of the non-
thermal port may be linear, for the thermal port it is always
nonlinear. According to the second law of thermodynam-
ics, entropy production must be positive. Consequently, the
graph of the constitutive relation must be within the first and
third quadrant.

Like sources, resistive elements may be modulated. An
electrical potentiometer, for instance, or variable hydraulic
orifices controlled by the displacement of the spool in a
valve may be modelled by displacement controlled R ele-
ments.

D. Reversible transformation of energy

In this kind of process, entropy is neither stored nor pro-
duced. Consequently, it is power conservative. There are
two type of bond graph elements representing this kind pro-
cess. They are denoted by the acronyms TF and GY respec-
tively. In the most simplest case they are 2-port elements.
Power conservation means that the instantaneous power at
one port equals the instantaneous power at the other port.
An element of type TF relates the efforts at the ports and



separately relates the flows, while an element of type GY
relates the effort of one port to the flow of the other port and
vice versa. In the constitutive relations of both elements,
a variable is multiplied by either a constant or by a func-
tion of time. In the second case, the elements must have a
signal port in addition to the power ports. This is pointed
out by prefixing their acronyms with the character M (MTF,
MGY). Physical components that may be modelled by a TF
element are electrical transformers, mechanical gear boxes,
or hydraulic displacement pumps. Examples of physical
system components that can be modelled in the first place
by a GY element are centrifugal pumps and electric mo-
tors. Both types of conceptual elements can be multiport
elements.

E. Power conservative distribution of energy

Modelling of energy flows in a system means that energy
is supplied by sources and conveyed and distributed between
the conceptual elements of the model. As energy storage
and irreversible transformation of energy have already been
taken into account by energy storage elements and by resis-
tors, distribution of energy between elements can be consid-
ered power conservative. There are two types of multiport
interconnection elements called 0-junction and 1-junction.
They both distribute power and have linear constitutive re-
lations. For a 0-junction, the efforts of all power ports are
the same and all conjugate flows sum up to zero taking into
account their signs. The sign is determined by the orienta-
tion of the half arrow for the energy reference direction. If a
half arrow is oriented towards a port, the flow is taken posi-
tive, otherwise the flow has a negative sign. The 1-junction
plays the dual role. That is, the flows of all bonds incident
the node are the same and all conjugate efforts sum up to
zero by taking into account their signs. A 0-junction cor-
responds to an interconnection node in a network. Such a
node has an effort (voltage, pressure) and according to the
generalisation of Kirchhoff’s current law, all flows in the
branches incident to the node sum up to zero. In contrast,
a 1-junction in a bond graph has no node as a counterpart
in networks. The constitutive equation of a 1-junction relat-
ing all efforts is embodied implicitly in networks as it cor-
responds to the generalisation of Kirchhoff’s voltage law.
This entails some inconvenience if bond graph models are
described in the widely used object-oriented modelling lan-
guage Modelica, because in this framework, the descrip-
tion of the model structure is based on generalised networks
[13]. A subgraph build of 0- and 1-junctions is called a
Kirchhoff junction structure. If it also includes (M)TF and
(M)GY elements, it is called a General Junction Structure
(GJS). A bond connecting a 0- or a 1-junction to another 0-
or 1-junction is called an internal bond. The junction struc-
ture of a bond graph is a power conservative multiport that
enables the exchange of energy between all other elements,
e. g., sources, sinks, energy stores and resistors as well as
between component models.

IV. SYSTEMATIC CONSTRUCTION OF BOND GRAPHS

One of the advantages of the bond graph approach is that
the topological connectivity of components in a system can
guide the systematic construction of a bond graph. Two pro-

cedures can be formulated, one for the construction of bond
graphs for mechanical subsystems and one for the construc-
tion of bond graphs for subsystems in energy domains other
than the mechanical domain (non-mechanical subsystems).

Mechanical subsystems

1. Identify distinct velocities and angular velocities, repre-
sent them by a 1-junction.
2. Insert C-, R- TF- and GY-ports via a 0-junction between
two 1-junctions.
3. Attach inertia 1-port elements to their respective 1-
junction.
4. Attach 1-port sources and 1-port sinks to appropriate 1-
junctions
5. Assign a reference direction for the energy flow to each
bond (half arrow).
6. Remove all 1-junctions representing a velocity or angu-
lar velocity ≡ 0 along with all incident bonds, simplify the
bond graph.

Non-mechanical subsystems

1. Identify distinct efforts, represent them by a 0-junction.
2. Insert a power port of a source, energy store, dissipator,
transformer or gyrator via a 1-junction between two proper
0-junctions.
3. Add half arrows to all bonds.
4. Choose a potential as a reference, eliminate its corre-
sponding 0-junction along with all incident bonds. If two
sub-circuits are connected via an isolating transformer, a
reference potential must be chosen in each sub-circuit
5. Simplify the bond graph.

Note that there are intuitive rules for assigning power ref-
erence directions to the ports of all types of bond graph el-
ements. The bond graph in Fig. 9 illustrates the use of half
arrows. As can be seen, for sources, the half arrow points
away from the element’s port, for storage elements and re-
sistors, the orientation of the incident bonds is towards the
element. This is quite intuitive, sources supply energy, en-
ergy storage elements store energy temporarily and resistors
transform the absorbed energy irreversibly into heat. TF and
GY elements exhibit a ’through direction’ of the reference
direction of the energy flow. This also is intuitively un-
derstandable because energy passes through these elements
without storage and without entropy production. In essence,
energy reference directions are from the sources through the
junction structure into energy stores, resistors and sinks. At
0-junctions in bond graphs of mechanical systems and at 1-
junctions in bond graphs of non-mechanical systems, there
must be a difference of power variables.

V. RULES FOR COMPUTATIONAL CAUSALITIES AT

POWER PORTS

As has been explained above, at each power port of a
component model, it can be decided which one of the two
power variables is computed in the component model, or in
other words, which of the two power variables is an outgo-
ing signal, or an output variable in one of the constitutive
relations. However, these decisions cannot be made com-
pletely deliberately. For instance, for sources there is no
choice. For an effort source, the output is the effort, for a Sf
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Fig. 4: Integral and derivative causality at storage ports

source, it is the flow. For storage elements so-called integral
causality is preferred. The power variable that is integrated
with respect to time is the input variable. The conjugate
power variable, related to the state of the energy store, is
taken as output variable. For a C energy store, this is the
effort. Consequently, the causal stroke points away from the
port of the C element. For the dual I element, the effort of
the power port is taken as an input variable. Consequently,
the causal stroke points to the port of the I element. The
effort is integrated with respect to time. The flow related to
the resulting state of the I energy store is its output. If, for a
C energy store, the causal stroke is on the side of the power
port, or if the casual stroke points away from the port of an
I energy store, then this means that the output is obtained by
differentiation of the conjugate power variable. In this case,
so-called derivative causality has been assigned to the port.
For resistors with linear constitutive relations, causal strokes
may be either on the side of a port (conductance causality),
or pointing away from the port (resistance causality). In
some cases, however, there is no such choice. For a resistor
representing dry friction, only the effort (force) can be the
output.

At 0-junctions the effort at all incident bonds is the same.
Consequently, one causal stroke can point to the junction,
while all others must point away from it. For the dual 1-
junctions the role of effort and flow is interchanged. That
is, at one bond the causal stroke may be pointing away from
the junction. At all other bonds it must point towards the 1-
junction. This causal pattern reflects that one effort is equal
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Fig. 5: Causality patterns at linear 1-port resistors

0�� ��

		

��
1�� ��

		

��

TF�� �� TF�� ��

GY�� �� GY�� ��

Fig. 6: Admissible causal patterns for junctions, 2-port TF and 2-port GY

elements

to the sum of all other efforts and simultaneously it indicates
that all flows are the same. One flow may be input to the
junction, while all others are outputs. For 2-port TF and
GY elements causal patterns must be as displayed in Fig. 6.
A TF relates efforts. That is, if the effort at one port is an
input, the effort at the other port must be an output. Since
the constitutive equations of GY elements relate the effort
of one port to the flow of the other one, both causal strokes
must either point to the element or away from it.

Finally, causal pattern other as the admissible ones are
termed causal conflicts. They give clear, valuable indica-
tions to consequences of modelling assumptions and may
give rise to changes of the model.

VI. SEQUENTIAL ASSIGNMENT OF COMPUTATIONAL

CAUSALITIES

Once the admissible causal patterns for all bond graph el-
ements are known, the question arises how causal strokes
are to be assigned to all bonds of a bond graph. The an-
swer to this question is the so-called Sequential Causality
Assignment Procedure (SCAP) introduced by Karnopp and
Rosenberg. Although modifications and alternatives have
been proposed in the literature, this procedure has become a
standard and is recalled in this tutorial.
1. Assign causality to one of the sources according to its
type, propagate this causal information into the bond graph
through its junction structure as far as possible by observing
causality rules at element ports.



2. Repeat step 1 until all ports of sources are assigned an
appropriate causality.
3. Assign preferred integral causality to a port of an energy
store, propagate this causal information into the bond graph
as far as possible. Propagation of the causality of a storage
port may lead to derivative causality at power ports of other
energy stores. If a causal conflict appears, e. g., at a 0- or
1-junction, it must be removed before integral causality can
be assigned to the next storage port.
4. If there are any resistor ports without causality after
causality has been assigned to all storage ports, then the
procedure continues with assignment of causality to resis-
tors with characteristics that do not have a unique inverse,
so that there is no choice of causality.
5. Finally, if there are still resistor ports or internal bonds
without causality, one resistor port or an internal bond must
be chosen. Causality is arbitrarily assigned and propagated
through the junction structure. This step is repeated until no
causally unassigned bonds are left.

VII. DERIVATION OF EQUATIONS FROM CAUSAL BOND

GRAPHS

Once causal strokes have been added to the bonds of a
bond graph, a mathematical model can be derived in a sys-
tematic manner. However, first, it must be decided for which
unknowns a set of mathematical relations is to be derived.
An obvious choice are the states of energy stores with in-
tegral causalities at their ports. These variables determine
the energetic state of a system in the sense that they quan-
tify the content of each energy store at all time instances
t ≥ 0. As the output variable of a 1-port energy store
with integral causality, also called co-energy variable, is
related to its state, it can be chosen as an alternative un-
known. This choice is adopted in this paper. Note that en-
ergy stores with derivative causalities do not contribute to
the system’s state. Their output variable algebraically de-
pends on the output variables of energy stores with integral
causalities. In bond graph models of mechanical systems
with displacement modulated elements, so-called kinematic
displacements must be added to the vector of unknowns that
determines the dynamic system behaviour. For further pre-
sentation of how to derive equations from a causal bond
graph the notion of a causal path is needed. This term is
frequently used in bond graph related literature.

Causal paths:

A sequence of bonds from one power port of an element to
a power port of another element is called a causal path, if
there is no 2-port gyrator in between and if all bonds have
their causal stroke at the same end. If there is a GY in be-
tween, the sequence of bonds is called a causal path, if all
bonds on one side of the GY have their causal stroke at the
same end and if all bonds on the other side of the GY have
their causal stroke on the opposite end. That is, the gyra-
tor switches the direction of efforts on one of its sides (cf.
Fig. 7).

Another remarkable feature of bond graphs is that, once
assignment of causalities has been completed, conclusions
can be drawn with regard to the form of mathematical mod-
els that can be derived from the graph by looking for causal
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Fig. 7: Causal path between two ports

paths in causal graph. There is no need to know the actual
form of nonlinear constitutive relations nor to establish and
to reformulate any equations. For instance, if there are no
energy storage elements with derivative causality, no causal
paths between two ports of different resistors and no closed
causal paths in the junction structure, then a mathematical
model in the form of an explicit state space model can be
derived from the graph. If, in addition, there are no ele-
ments controlled by kinematic displacements, then the order
of the state space model just equals the number of storage
elements.

In the following, this most simple case is considered first.
One straightforward way towards the formulation of a math-
ematical model in a modelling language, well suited for au-
tomation, is to write the constitutive equations for all nodes
of the bond graph and to have all redundancies removed
symbolically. If the aim is to perform a simulation, the
equations can be sorted and transformed into a program-
ming language. If the equations are linear and if the aim
is to come up with the matrices of a state space model in
symbolic form to be processed by a mathematical program,
e. g., the open source software package Scilab, then, clearly,
all algebraic equations must be eliminated. However, auxil-
iary variables can be eliminated already when equations are
derived from the causal bond graph by walking back and
forth along causal paths. For bond graphs that are not too
large, this can even be done manually in a systematic man-
ner. The derivation of an ordered set of equations is guided
by the following procedure (Borutzky [14], Wellstead [15]).

Procedure for the derivation of equations from a causal
bond graph

1. Write the constitutive equations for all independent
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Fig. 8: Circuit schematic of a shunt motor

sources. Their outputs are given functions of time.
2. In contrast, the output of a controlled source is alge-
braically related to its input. If the latter is not an output
of an independent source or an energy store with integral
causality, then it can be expressed by means of such outputs
by back propagation of causal paths in the junction structure
and by eliminating intermediate variables.
3. The outputs of resistors depend algebraically on their in-
puts. By back propagation along causal paths through the
junction structure, their outputs can be expressed by sources
either independent, or controlled ones and outputs of energy
stores. The outputs of dependent sources do not need to be
eliminated, since they have already been determined in the
previous step.
4. For storage ports, the derivative with respect to time of
an output is a function of the input(s). By working back
causal paths, the inputs can be expressed by outputs of other
energy stores, of resistors, or sources.

If there are causal paths between resistor ports, implicit,
algebraic equations will result that are likely to be non-
linear. Implicit algebraic equations also result, if there are
closed causal paths in the junction structure. If there are
storage elements that must accept derivative causality, then
their output variables are algebraically dependent on the out-
puts of the storage elements in preferred integral causality
and the number of states is smaller than the number of stor-
age elements.

VIII. A SIMPLE EXAMPLE OF A MECHATRONIC SYSTEM

What has been presented so far shall be illustrated by
means of a bond graph model of the well known shunt mo-
tor. The circuit schematic and the bond graph are depicted in
Figures 8 and 9 respectively. In the bond graph of the shunt
motor, the 0-junction corresponds to the node with the po-
tential u1 in the electrical circuit schematic. As the flows of
bonds incident to a 0-junction add up to zero, the 0-junction
corresponds to the parallel connection of the field windings
and the armature windings. The armature windings has an
electrical resistance and an inductance that are taken into ac-
count by the lower left R element and the left I energy store.
The left-side 1-junction represents one and the same current
through the resistor and the inductance. At the same time, it
accounts for Kirchhoff’s voltage law that the sum of all volt-
age drops along mesh 1 equals zero. (The voltage drop ua

is induced by the motion of the rotor.) In other words, the
1-junction corresponds to a series connection of elements
with two pins. The upper 1-junction represents the current

through the field winding. As there is no I energy storage
element attached to it, the inductance of the field windings
has been neglected. The transformation between electrical
and mechanical energy is accounted for by the gyrator as
the core element in this model. The gyrator is a bilateral
transducer in the sense that either electrical power can enter
at one port and mechanical power exits at the other port, or
vice versa. In fact, a motor could be operated as generator.
As it is known, the mechanical moment of the motor acting
on the shaft is a nonlinear function of the current in the field
windings due to hysteresis and saturation. Accordingly, the
gyrator is modulated by a variable Ψ, which for simplicity
has been assumed a linear function of the current if through
the field windings.

The 1-junction in the right-side part of the graph denotes
the angular velocity of the mechanical load and simultane-
ously the sum of all moments acting on the load. External
disturbances of the balance of moments has been taken into
account by the right side effort sink.

Half arrows for the reference directions of energy flows
as well as causal strokes are in accordance with the rules
discussed in previous sections.

Application of the above given procedure leads to the fol-
lowing ordered set of equations. For simulation, these equa-
tions can be easily (automatically) formulated in a simula-
tion language, e. g. ACSL, or in a modelling language, e. g.
SIDOPS the underlying modelling language of the mod-
elling and simulation environment 20simTM.

Independent sources and sinks:

E = f1(t) (2)

Mload = f2(t) (3)

Dissipators:

uR = Ra · ia (4)

if =
1

Rf
E (5)

MR = Rm · ω (6)

Modulated gyrator:

Ψ = K · if (7)

ua = Ψ · ω (8)

M = Ψ · ia (9)

Energy stores:

dia
dt

=
1

La
( E − ua − uR ) (10)

dω

dt
=

1
Jm

( M − MR + Mload ) (11)

Right hand side expressions in these equations depend on
the outputs of the storage elements with integral causality
(chosen as states), on the output of the independent sources
(system inputs) and on outputs of resistors previously com-
puted. Thus, the set of equations constitute a (linear) state
space model. Clearly, by substituting the constitutive rela-
tions of the resistors and of the gyrator into the differen-
tial equations of the energy stores, the matrices of the linear
state space vector equation could be obtained.
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Fig. 9: Causal bond graph model of the shunt motor

Fig. 10: Results of the shunt motor simulation

Fig. 10 displays the results of a shunt motor simulation.
At t = 0 s the constant voltage supply (E [V]) is switched on
and immediately jumps to a value of 220 V. At t = 2.5 s the
motor experiences an immediate jump of the load moment
from 0 to a constant level of 100 Nm. The simulation results
show the time evolution of the current through the armature
(I a [A]) and of the angular velocity (omega [rad/s]).

For high precision positioning of a mechanical load, its
position and the actual angular velocity of the motor are
sensed and used in feedback loops for control of the mo-
tor. In modelling and simulation environments supporting
multiformalism, e. g., in 20sim, a bond graph model of the
motor can be part of a block diagram of the control loop as
depicted in Fig. 11. Alternatively, state space matrices in
symbolic form could be derived from a linear bond graph
model of the motor and passed to a block diagram based

simulation program, e. g., Simulink, or to a mathematical
program, e. g., the open source software package Scilab.

Note the signal arrow directly attached to the right side
1-junction in the bond graph of the motor (Fig. 11). In the
bond graph part of this combined representation, it is an ac-
tivated bond which does not affect the power balance of the
1-junction. A 1-junction distributes the flow supplied at one
port to all other ports. The signal arrow as an activated bond
extracts this information common at all ports. The angu-
lar velocity of the load is sensed, integrated into the load’s
position and returned to the controller.

IX. BOND GRAPHS - A CORE MODEL REPRESENTATION

If some storage elements in a causal bond graph must ac-
cept derivative causality and/or if causal paths exist between
ports of different resistors, or if the causality assignment
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procedure leads to closed causal paths in the junction, then
mathematical models derived from the bond graph take the
form of a set of Differential Algebraic Equations (DAEs),
which in general is semi-explicit and has an index ≤ 2,
which can be safely solved with freely available numerical
codes. Bond graphs with many I energy storage elements
with derivative causality easily result in the modelling of
rigid multibody systems if it is assumed that rigid limbs are
rigidly linked by joints. In multibody systems modelling,
it is also common to use Lagrange equations of the second
kind. Karnopp has introduced a procedure that enables to di-
rectly derive Lagrange equations from a causal bond graph.
To that end, so-called artificial flow sources are added to
the bond graph in order to identify generalised coordinates
and all I energy storage elements receive derivative causal-
ity (Karnopp [16]). However, not only mathematical models
in a form suitable for simulation can be derived from causal
bond graphs. Brown has shown that it is not necessary to
derive a signal flow diagram in order to establish transfer
functions (in symbolic form) using Mason’s rule. These can
be directly derived from a causal bond graph (Brown [17]).
Furthermore, the equations of the inverse system with re-
spect to a pair of variables can be derived from a causal
bond graph after just changing appropriately causalities and
adding sources if necessary. Inverse system equations are
needed for the co-called control problem, that is, system in-
puts are to be determined such that the behaviour of a sys-
tem of known structure follows prescribed trajectories. The
determination of inverse system equations is supported by
so-called bicausalities, an extension of the causality concept
introduced by Gawthrop [18]. The basic idea of bicausality
is to decouple the orientation of the effort from that of the
flow at a bond.

Another remarkable feature of causal bond graphs is that
an inspection of causal paths can reveal information about
structural controllability and structural observability of a
system [19]. Further, still ongoing research is concerned
with the application of bond graph modelling for fault de-
tection and isolation and fault diagnosis (Bouamama et. al.
[20], Borutzky, cf. these proceedings).

This brief survey of the capabilities of the bond graph
modelling methodology shows that bond graphs can serve

as a core model representation, from which different infor-
mation can derived depending on the purpose of a study.

X. BOND GRAPHS FOR MULTIBODY SYSTEMS

MODELLING

Multibody systems, e. g., industrial robots, manipulators,
are composed of bodies connected by certain types of joints.
In modelling such systems, some bodies may be considered
rigid, while for others it must be taken into account that they
are flexible. Anyway, a natural approach is to develop li-
brary models for bodies and for various types of joints and
to make use of the object oriented feature of bond graph
modelling that enables to link component models accord-
ing the way the corresponding real world physical compo-
nents are linked. A rigid body, freely moving in space,
has six degrees of freedom and its motion is described by
Newton-Euler equations. The number of degrees of free-
dom is reduced due to joints linking the body to others. One
common approach in rigid multibody system modelling is
to describe the translational motion of the centre of grav-
ity with regard to a reference frame fixed in space and the
body’s rotation with regard to a frame located either in the
body’s centre of gravity or in a joint. For each direction
given by an axis of the reference frame, there is a pair of
power variables (velocity/force or angular velocity and mo-
ment) and a usual bond is attached to a 1-junction repre-
senting the velocity component in that direction. However,
if the 1-junctions for all three components of a velocity are
combined into one 1-junction and the bonds carrying power
variables, say vx, vy, vz , are grouped into a so-called multi-
bond (cf. Fig. 12), then Newton-Euler equations can be rep-
resented by a concise bond graph of clear structure. In a
joint, (angular) velocities are constrained by geometry and
can be affected by a motor operating the joint. A joint model
can be connected to a body model, but it cannot be further
connected to another body model so that the joint model is
sitting between two body models. The reason is that the
rotation of a body is described with respect to a reference
frame attached to the body. Thus, a transformation from one
body fixed reference frame to another is needed. This trans-
formation can be represented in bond graphs by a displace-
ment modulated multiport transformer. The displacements
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Fig. 12: Array of 1-junctions with multibonds

needed are usually Euler angles. As a result, with build-
ing blocks for a rigid body and for various types of joints
and the displacement modulated multiport transformer ac-
counting for changes between reference frames, bond graph
models of rigid multibody systems can be assembled in a
systematic manner. The approach briefly outlined has been
introduced by Bos [21].

For some bodies of a multibody system, e. g., for long,
slim limbs, the assumption of a rigid body may not be ap-
propriate. Classical approaches to the modelling of flexi-
ble bodies are the normal modes analysis and the finite ele-
ment method. Both approaches can be interpreted in terms
of bond graph methodology and enable a lumped parame-
ter model approximation of distributed parameter models.
By application of the modal analysis to beams and rods,
Karnopp has found a bond graph representation as early as
1968 that can be used as a basic building block for bond
graph modelling of flexible mechanical structures [22]. A
weak point of modal analysis is that it is a matter of engi-
neering experience how many so-called modal oscillators
are included. As a rule of thumb, Margolis suggests to take
into account all modal frequencies up to a frequency that is
twice the highest frequency of interest in the model of the
overall system. A recent discussion of the finite element ap-
proach in bond graph terms can be found in [23]. A further
alternative is to adopt the less widely used co-rotational for-
mulation that can be interpreted in terms of bond graphs as
well (cf. Damić in these proceedings).

XI. CONCLUSION

The aim of this paper accompanying a tutorial, given at
the ECMS 2006, has been to outline fundamental concepts
of the bond graph modelling methodology and, furthermore,
to indicate its potential as a powerful uniform approach to
modelling, analysis, control, fault diagnosis of multidisci-
plinary engineering systems. By emphasising on physical
principles, the methodology supports an understanding of a
system’s behaviour and supports the design of systems with
controllers as integral part. It is hoped that readers are en-
couraged to have a more closer look at the vast vault of bond
graph related literature and to apply this methodology and
the results of ongoing research to their engineering prob-
lems.
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