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Abstract

The paper estimates a model that allows for shifts in the aggressiveness of monetary policy

and time variation in the distribution of macroeconomic shocks. These model features induce

variations in the cyclical properties of inflation and the riskiness of bonds. The estimation

identifies inflation as procyclical from the late 1990s, when the economy shifted toward aggressive

monetary policy and experienced procyclical macroeconomics shocks. Since bonds hedge stock

market risks when inflation is procylical, the stock-bond return correlation turned negative in

the late 1990s. The risks of encountering countercyclical inflation in the future could lead to an

upward-sloping yield curve, like in the data.
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1 Introduction

In the current macroeconomic environment several stylized bond market facts are different from

those in the previous decades: inflation risk premium is low and possibly negative; the correlation

between U.S. Treasury bond returns and stock returns, while positive in the 1980s, has turned

negative in the last decade.1,2 There is an understanding in the literature that these new facts can

be reconciled in models that allow for inflation to be exogenously an either good or bad signal for

future consumption growth, for example, Burkhardt and Hasseltoft (2012) and David and Veronesi

(2013). When inflation carries good news to consumption growth (hence procyclical) nominal bonds

are safe and provide a hedge. Since nominal bonds behave similar to real bonds in this environment,

these models imply negative stock-bond return correlation, negative inflation risk premium, and a

downward-sloping nominal yield curve. However, in the data, the nominal yield curve still slopes

up during the same periods in which the stock-bond return correlation and inflation risk premium

are negative. This recent evidence is interesting because it shows the limitations of the existing

approaches and highlights the importance of understanding the sources of inflation and bond market

risks and how they change over time.

This paper provides an economic mechanism underlying the inflation dynamics and bond markets

by introducing three new elements in a consumption-based asset pricing model: (1) a monetary

policy rule with time-varying inflation target, (2) shifts in the strength with which the Federal

Reserve steers actual inflation toward the inflation target, and (3) shifts in the covariance of inflation

target and real consumption growth shocks.3 The first extension leads to “endogenous” inflation,

and the nominal assets inherit the properties of monetary policy. The second and third extensions

induce variations in the cyclical properties of inflation, and these lead to the risk premium and the

correlation between stock and bond returns switching signs. Agents are aware of the possibility of

encountering countercyclical inflation in the future due to changes in the aggressiveness of monetary

policy and the distribution of macroeconomic shocks. Consequently, they demand compensations

for holding nominal bonds that might be exposed to future inflation risks: risks and compensations

are greater for longer-term bonds resulting in an upward-sloping nominal yield curve.

The model features three distinct economic regimes: (1) the CA regime occurs when the condi-

tional covariance between inflation target and real consumption growth is negative (Countercyclical

1See Fleckenstein, Longstaff, and Lustig (2015) and Chen, Engstrom, and Grishchenko (2016).
2Baele, Bekaert, and Inghelbrecht (2010), Campbell, Pflueger, and Viceira (2015), Campbell, Sunderam, and

Viceira (2016), and David and Veronesi (2013).
3The model follows the long-run risk literature on the real side of the economy, and extends the previous literature

to include the nominal sector and changing economic regimes.
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macroeconomic shocks) and the Federal Reserve increases interest rates more than one-for-one with

inflation (Active monetary policy); (2) the CP regime occurs when macroeconomic shocks are Coun-

tercyclical and the Federal Reserve raises interest rates less than one-for-one with inflation (Passive

monetary policy); and (3) the PA regime occurs when the conditional covariance between inflation

target and real consumption growth is positive (Procyclical macroeconomic shocks) and the mone-

tary policy is Active. The model is estimated with Bayesian techniques using monthly information

from asset prices (aggregate stock market and nominal Treasury yield curve) and macrovariables

(consumption growth, CPI inflation) that range across the 1963-2014 period. The estimation of

the model quantifies the role of monetary policy and macroeconomic shocks played in triggering

changes in the inflation dynamics and, ultimately, in the bond market.

The estimation of the model delivers several important empirical findings. First, the model

supports the idea that the U.S. economy was subject to occasional regime switches: the CP regime

was prevalent until the early 80s; the economy switched to the CA regime after the appointment of

Paul Volcker as Chairman of the Federal Reserve; and it switched to the PA regime in the late 90s

and largely remained in that regime throughout the sample. The historical paths of the monetary

policy stance are consistent with the empirical monetary literature.4 According to the estimated

transition matrix, the unconditional regime probabilities for the CA, CP, and PA regimes are 0.35,

0.33, and 0.32, respectively. The unconditional probability of staying in the active monetary policy

regime, as indicated by the sum of the probability of the CA and PA regimes, is around 0.67 twice

larger than that of the passive monetary policy regime, that is, the CP regime.

Second, the model accounts for significant changes in the inflation dynamics observed in the

data. The estimation finds that inflation has become procyclical and less risky as the economy

shifted toward an active monetary policy and experienced procyclical macroeconomic shocks. As

the economy shifted from the CP regime to the CA regime and to the PA regime, the variance

and persistence of inflation decreased substantially. Nevertheless, inflation risks are substantial

in the model because the unconditional probability of experiencing countercyclical macroeconomic

shocks, as indicated by the sum of the probability of the CA and CP regimes, is 0.68.

Third, the model finds that each regime carries distinctly different inflation risks, and uncertainty

about movement across the regimes poses additional risks to bond markets. To understand the

properties of regime risks, two sets of simulation exercises are conducted: one in which the regimes

are fixed and the other in which regime switching is allowed in the economy. I first characterize

4Active monetary policy dominates most of the sample after the early 80s. The paths for monetary policy are

broadly consistent with those found in Bianchi (2012), Clarida, Gali, and Gertler (2000), Ang, Boivin, Dong, and

Loo-Kung (2011), Bikbov and Chernov (2013), and Coibon and Gorodnichenko (2011).
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each regime risk in a fixed-regime economy, and, subsequently, by allowing regime switching, I

isolate the effect of expectations on asset prices. In a fixed-regime economy, agents dislike the CP

regime since there is a large shock to inflation target that comes with low consumption growth

and the Federal Reserve does not react aggressively enough to it. Inflation risks are significant in

this environment. Note that the CP regime is the extreme version of the economy as described

in Piazzesi and Schneider (2006), Wachter (2006), Eraker (2008), and Bansal and Shaliastovich

(2013), who assume inflation is countercyclical and risky. Their intuitions carry over: the implied

risk premium, stock-bond return correlation, and the slope of the yield curve are positive and largest

in magnitude among all regimes. The implications of the CA regime are qualitatively similar to

those of the CP regime, but implied inflation risks are smaller in magnitude. On the other hand,

inflation becomes procyclical and nominal bonds are hedges and safe in the PA regime. The implied

risk premium and the stock-bond return correlation are negative, and the nominal yield curve slopes

downward in the PA regime.

Once regime switching is allowed, the model is able to generate an upward-sloping nominal

yield curve, while maintaining negative risk premium and stock-bond return correlation in the PA

regime. Agents are averse to moving into the CP regime in the future and demand compensation

for holding nominal bonds exposed to inflation risks. Since longer-term bonds demand greater

compensation for inflation risks, the model leads to an upward-sloping nominal yield curve. Note

that this is possible because the unconditional probability of falling into the CP regime, which is

a disaster regime in my model economy, is substantially high, around one-third. Consequently,

an uncertainty about future changes in regimes, combined with an early resolution of uncertainty,

amplifies inflation risk premium and leads to an upward-sloping nominal yield curve. How is it,

then, that the model generates negative risk premium and stock-bond return correlation and, at

the same time, produces an upward-sloping nominal yield curve? Under the estimated parameter

configuration, I find that the risks of moving across regimes have a disproportionately larger impact

on the slope of the yield curve than on the risk premium or on the stock-bond return correlation.

Thus, while the risk premium and the stock-bond return correlation become much less negative in

magnitude (because of the future inflation risks), only the slope of the yield curve switches sign.

The key takeaway is that a regime uncertainty can go a long way in modifying equilibrium outcomes

and is quantitatively very important risk factor in the bond market.

Related Literature. My work is related to a number of recent papers that study the changes

in the stock-bond return correlation. Baele, Bekaert, and Inghelbrecht (2010) utilize a dynamic

factor model in which stock and bond returns depend on a number of economic state variables, for

example, macroeconomic, volatility, and liquidity factors. The authors attribute the changes in the
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stock-bond return correlation to liquidity factors. Campbell, Sunderam, and Viceira (2016) embed

time-varying stock-bond return covariance in a quadratic term-structure model and argue that the

root cause is changes in nominal risks in bond markets. Different from reduced-form studies, my

work builds on a consumption-based equilibrium model with monetary policy to identify the driving

forces behind the changes in the stock-bond return correlation.

The works closest to my paper are those of Burkhardt and Hasseltoft (2012), Campbell, Pflueger,

and Viceira (2015), and David and Veronesi (2013). Burkhardt and Hasseltoft (2012) find an inverse

relation between stock-bond return correlations and correlations of growth and inflation. Burkhardt

and Hasseltoft (2012) rationalize their findings in a consumption-based asset pricing model with

regime switching (in the conditional dynamics of macroeconomic fundamentals) calibrated to data

on fundamentals and asset returns. Campbell, Pflueger, and Viceira (2015) examine the role of

monetary policy in nominal bond risks using a New Keynesian model. Using macroeconomic fun-

damentals and asset prices, Campbell, Pflueger, and Viceira (2015) calibrate the model separately

over three different subsamples. From the simulation analysis, the authors claim that the change in

monetary policy parameters is the main driver of bond risks. David and Veronesi (2013) estimate an

equilibrium model of learning about inflation news and show that variations in market participants’

beliefs about inflation regimes strongly affects the direction of stock-bond return correlation.

My paper is distinct from their works along several important dimensions. First, the structural

changes in the economy are identified from macroeconomic fundamentals and asset prices without

imposing (sometimes ad hoc) assumptions, for example, known break points, like in Burkhardt

and Hasseltoft (2012) and Campbell, Pflueger, and Viceira (2015). Second, I explicitly account

for the role of market participants’ beliefs about regime switches in inflation and bond prices. I

find strong empirical evidence in the data that the anticipation of moving across regimes is one of

the key risk factors priced in the bond market. For example, ignoring the role of beliefs overstates

(understates) the implications of a passive (active) monetary policy regime or countercyclical (pro-

cyclical) macroeconomic shock regime because the risk properties of alternative regimes are not

incorporated. Campbell, Pflueger, and Viceira (2015) do not allow for a beliefs channel to operate.

Third, my model exhibits a richer structure than that of David and Veronesi (2013). By accounting

for time variations in the covariance matrix of macroeconomic shocks and in monetary policy pa-

rameters, I am able to provide extensive descriptions of the bond market transmission mechanism

of monetary policy and macroeconomic shocks. In this regard, my model complements the work of

Burkhardt and Hasseltoft (2012), Campbell, Pflueger, and Viceira (2015), and David and Veronesi

(2013).5

5Ermolov (2015) considers stock-bond return correlation in a model with exogenous consumption and inflation
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By investigating the time variation in the stance of monetary policy, my work also contributes to

the monetary policy literature, for example, Bianchi (2012), Clarida, Gali, and Gertler (2000), Coi-

bon and Gorodnichenko (2011), Davig and Doh (2014), Lubik and Schorfheide (2004), Schorfheide

(2005), and Sims and Zha (2006).6 While most of these papers study the impact of changes in

monetary policy on macroeconomic aggregates, the papers of Ang, Boivin, Dong, and Loo-Kung

(2011), Bikbov and Chernov (2013), Shaliastovich and Yamarthy (2015), and Ireland (2015) focus

on their bond market implications (using reduced-form modeling frameworks). My work distin-

guishes itself from these papers, since I focus on a fully specified economic model and characterize

time-varying bond market exposures to monetary policy risks.

In terms of modeling the term structure with recursive preferences, this paper is closely related to

those of Gallmeyer, Hollifield, Palomino, and Zin (2007), Eraker (2008), Bansal and Shaliastovich

(2013), Le and Singleton (2010), Doh (2012), Creal and Wu (2016), and Piazzesi and Schneider

(2006), who work in an endowment economy setting, and van Binsbergen, Fernández-Villaverde,

Koijen, and Rubio-Ramı́rez (2012) and Kung (2015), who study a production-based economy. While

van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez (2012) and Kung (2015) allow

for capital and labor supply and analyze their interaction with the yield curve, which are ignored

in my analysis, they do not allow for time variation in monetary policy stance, which is key risk

factor in my analysis.

The remainder of the paper is organized as follows. Section 2 discusses the new stylized facts

surrounding U.S. Treasury bond markets. Section 3 introduces the model environment, describes

the model solution and asset pricing implications. Section 4 discusses the data set, Bayesian

inference, and empirical findings. Section 5 provides concluding remarks.

2 Empirical Evidence on Structural Changes

In this section, I empirically document changes in the cyclical properties of inflation, the Treasury

yield curve, and the correlation between bond and stock returns.

A recurrent theme of macrofinance term structure models that underlies risk premiums is that

inflation uncertainty makes nominal bonds risky.7 A common approach, supported by empirical

evidence, is to assume that inflation carries bad news about consumption growth. Inflation erodes

dynamics. Ermolov’s work came out after the first version of my paper.
6Note that I am including those that explicitly account for changes in monetary policy.
7Macrofinance term structure models refer to models in which the pricing kernel directly comes from a utility-

maximization problem. Gürkaynak and Wright (2012) provide a nice overview of macrofinance term structure models.
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the value of nominal bonds precisely at times during which consumption growth is low (or marginal

utility is high). In this environment, investors demand compensation for holding nominal assets

exposed to inflation risk. Since longer-term bonds require greater compensation for this inflation

risk, this implies that the nominal yield curve ought to slope up, for example, Piazzesi and Schneider

(2006) and Bansal and Shaliastovich (2013). Note that since large inflation shocks always come with

low real growth, real stocks are also exposed to inflation risk. Therefore, the implied stock-bond

return correlation is positive. This intuition hinges on the empirical correlation between inflation

and consumption growth. This correlation, however, does not appear to be robust over different

sub-samples.

Following Piazzesi and Schneider (2006), I assume that the vector of inflation (πt) and consump-

tion growth (∆ct) has the following state-space representation

zt = st−1 + εt, zt = [πt,∆ct]
′ (1)

st = φst−1 + φKεt, εt ∼ N(0,Ω).

The state vector st is two dimensional and contains expected inflation and expected consumption

growth; φ is the 2×2 autoregressive matrix; and K is the 2×2 gain matrix. Using Bayesian

methods, I estimate this system with quarterly consumption and inflation data that span 1959 to

2014. Details (about priors and posterior estimates) are provided in Appendix A. The estimation

sample is split into two parts. One is from 1959 to 1997, and the other spans the period 1998 to

2014.8 To understand the key properties of the estimated dynamics, I report the impulse responses

of the system in the first and second panel of Figure 1. Each response represents either the change

in consumption or inflation forecasts following a 1 percent inflation shock.

Several aspects of the results are noteworthy. First, the sign of consumption’s reaction to an

inflation shock changed from negative to positive over the last fifteen years: a 1 percent inflation

surprise predicts that consumption growth will be higher by approximately 10 basis points in

the next year. Inflation carries good news about consumption growth. Second, the own-shock

responses for inflation decayed much faster over the last fifteen years: the impact of a 1 percent

inflation surprise on itself completely dies out over the next 1-2 years. This is mainly due to a

large decline in the persistence of the expected inflation process, for example, the autoregressive

coefficient for inflation dropped from 0.96 to 0.41 (see Appendix A for details). Third, there is

significant reduction in the variance of inflation innovations. Overall, the key aspects of the data

are that the inflation dynamics have substantially changed over time and there are periods in which

an inflation shock can be good news for consumption growth.9

8The point of a structural break is formally identified via Bayesian estimation.
9This evidence is also documented by David and Veronesi (2013).
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Figure 1: Macroeconomic Fundamentals and Treasury Yield Curve
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Notes: (A) and (B) The black (light-gray circled) line represents posterior median consumption and inflation reactions

to 1 percentage point surprises in inflation from 1959-1997 (1998-2014). The black- and light-gray-shaded areas

correspond to 60% credible intervals. (C) The black (light-gray) bars represents the averages of the U.S. Treasury

bond yields (annualized) for maturities of 1-5 years during 1959-1997 (1998-2014). (D) The black (light-gray) bars

represent the correlation between stock market returns and bond returns for a 1-month holding period for maturities

of 1-5 years from 1959-1997 (1998-2014).

The third panel of Figure 1, in fact, shows that yields with longer maturities are, on average,

higher than those with shorter maturities. The perspective of existing term structure models is

puzzling in that during periods from 1998 to 2014, in which inflation is a carrier of good news

to consumption growth, the Treasury yield curve (while shifted down significantly) still slopes

upward.10 That the correlation between bond and stock returns changed from positive to negative

in those periods (the fourth panel of Figure 1) is a particularly interesting observation. The result

is consistent with recent empirical studies that U.S. Treasury bonds have served as a hedge to stock

market risks in the last decade.11

The new set of evidence is interesting not only because it shows the limitations of the existing

approaches but also because it implies that the sources of risk behind the yield curve might have

changed over time. There is an important reason to believe that the yield curve and inflation

dynamics are sensitive to monetary policy shifts or changes in the distribution of economic shocks.12

10As shown in Campbell (1986), positive correlation in consumption growth and inflation implies a downward-

sloping nominal yield curve.
11See Baele, Bekaert, and Inghelbrecht (2010), Campbell, Pflueger, and Viceira (2015), Campbell, Sunderam, and

Viceira (2016), and David and Veronesi (2013).
12See Ang, Boivin, Dong, and Loo-Kung (2011), Bikbov and Chernov (2013), and Shaliastovich and Yamarthy

(2015).
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Despite the extensive study on bond markets, only few papers try to investigate the origins of the

bond market changes. The suggested hypotheses fall into two broad categories. The first view

attributes the cause of the bond market changes to shift in the correlation between the nominal

and real disturbances, for example, Campbell, Sunderam, and Viceira (2016), David and Veronesi

(2013), and Ermolov (2015). The second view argues that the root cause is changes in the conduct

of monetary policy (see Campbell, Pflueger, and Viceira (2015)). This paper puts forward a unified

framework that enables joint assessment of the strength of these two hypotheses which in fact are

not mutually exclusive. In sum, the new stylized empirical facts posit the need to look at the

data from a broader perspective, which calls for a more flexible approach to the joint modeling of

macroeconomic fundamentals, monetary policy, and stock and bond asset prices. I turn to this in

the next section.

3 Model

I develop an asset pricing model that embeds risks through shifts in the strength with which

the Federal Reserve tries to pursue its stabilization policy, as well as in the covariance matrix of

nominal inflation target and real growth innovations. The real side of the model builds on the long-

run risks model of Bansal and Yaron (2004) and assumes that consumption growth contains a small

predictable component (i.e., long-run growth), which, in conjunction with investors’ preference for

an early resolution of uncertainty, determines the price of real assets. The nominal side of the model

extends the model of Gallmeyer, Hollifield, Palomino, and Zin (2007) in that inflation dynamics are

endogenously derived from the monetary policy rule, and the nominal assets inherit the properties

of monetary policy. As a consequence of my model features, cyclical properties of inflation and

bond price dynamics depend on changes in monetary policy aggressiveness and the distributions of

macroeconomic shocks.

Preferences. I consider an endowment economy with a representative agent that has recursive

preferences and maximizes her lifetime utility,

Vt = max
Ct

[
(1− δ)C

1−γ
θ

t + δ
(
Et[V 1−γ

t+1 ]
) 1
θ

] θ
1−γ

,

subject to the budget constraint

Wt+1 = (Wt − Ct)Rc,t+1,

where Wt is the wealth of the agent, Rc,t+1 is the return on all invested wealth, γ is risk aversion,

θ = 1−γ
1−1/ψ , and ψ is intertemporal elasticity of substitution. The log of the real stochastic discount
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factor (SDF) is

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1. (2)

Exogenous Endowment Process. Following Bansal and Yaron (2004), I decompose consump-

tion growth, ∆ct+1, into a (persistent) long-run growth component, xc,t, and a (transitory) short-run

component, σcηc,t+1. The persistent long-run growth component is modeled as an AR(1) process

in which fluctuations are driven by a real growth innovation process, ηxc,t+1, which is correlated

with an innovation to the inflation target, ηxπ,t+1. The inflation target, xπ,t, is modeled by a ran-

dom walk process. The covariance between the inflation target shock ηxπ,t+1 and the real growth

shock ηxc,t+1, which is captured by β(St)σ
2
xc(St), is subject to regime changes, where St denotes

the regime indicator variable St ∈ {1, ..., N} . The economic reasoning follows the view that there

are periods in which the inflation target is above the so-called desirable rate of inflation and that

any positive shock to the inflation target during those periods creates distortions and hampers

long-run growth.13 The negative values (β < 0) correspond to these periods. The periods with

positive values (β ≥ 0) depict periods during which the inflation target is assumed to be lower than

the desirable one, and a positive shock to the inflation target removes distortions and facilitates

long-run growth. Dividend streams, ∆dt+1, have levered exposures to xc,t, for which magnitude is

governed by the parameter φ. I allow σdηd,t+1 to capture the idiosyncratic movements in dividend

streams.

Put together, the joint dynamics for the cash flows, Gt = [∆ct,∆dt]
′, are

Gt+1 = µ+ ϕXt + Σηt+1, ηt+1 ∼ N(0, I), (3)

Xt+1 = Φ(St+1)Xt + ηx,t+1, ηx,t+1 ∼ N(0,Ω(St+1)Σx(St+1)Σx(St+1)′Ω(St+1)′),

where µ = [µc, µd]
′, ηt = [ηc,t, ηd,t]

′, Xt = [xc,t, xπ,t, xi,t]
′, ηx,t = [ηxc,t, ηxπ,t, ηxi,t]

′ and

ϕ =

[
1 0 0

φ 0 0

]
, Σ =

[
σc 0

0 σd

]
,

Φ =


ρc 0 0

0 1 0

0 0 ρi

 , (ΩΣx)(ΩΣx)′ =


σ2
xc βσ2

xc 0

βσ2
xc β2σ2

xc + σ2
xπ 0

0 0 σ2
xi

 .
xi,t is monetary policy shock that follows an AR(1) process (explained later).14

13In a New Keynesian model, the desirable rate of inflation is the rate at which prices can be changed without

costs. See Aruoba and Schorfheide (2011) for a more detailed discussion.
14The variance-covariance matrix of ηx,t is chosen to be of this particular form because the variance of the real

growth shocks, V ar(ηxc,t) = σ2
xc, is independent from β(St).
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Exogenous Monetary Policy Rule. Monetary policy consists of two components: stabilization

and a time-varying inflation target. I assume that the central bank makes informed decisions about

inflation fluctuations at different frequencies. While the central bank attempts to steer actual

inflation toward the inflation target (which itself is time varying) at low frequencies, it aims to

stabilize inflation fluctuations relative to its target at high frequencies.15 In particular, I assume that

the strength with which the central bank tries to pursue its goal—a stabilization policy—changes

over time along the lines explored by Clarida, Gali, and Gertler (2000). Stabilization policy is

“active” (τπ > 1) or “passive” (τπ ≤ 1), depending on its responsiveness to inflation fluctuations

relative to the target.

In sum, monetary policy follows a regime-switching Taylor rule,

it = τ0(St) + τc(St)xc,t︸ ︷︷ ︸
real growth

+ τπ(St)(πt − Γ0 − xπ,t)︸ ︷︷ ︸
inflation around target

+ xπ,t︸︷︷︸
target

+ xi,t,︸︷︷︸
policy shock

(4)

where τc(St) and τπ(St) capture the central bank’s reaction to real growth and to the variation in

short-run inflation, respectively.

Several important features should be discussed. In the context of the term structure models, it is

important to consider an explicit role for the inflation target since the target behaves similar to a

level factor of the nominal term structure. The specification of (4) resembles specifications in which

the level factor of the term structure directly enters into the monetary policy rule (see Rudebusch

and Wu (2008), for example). Second, while policy rule inertia is a more plausible description of

U.S. monetary policy actions (see discussions in Coibon and Gorodnichenko (2011)), it is assumed

to be absent. (4) allows me to apply Davig and Leeper (2007)’s solution method and characterize

inflation as exact affine functions of the “current” state variables, Xt, without any “lagged” term.16

The solution is transparent, tractable, and verifiable—it is not a numerical black box. In summary,

I ignore policy inertia to obtain a payoff in tractability and transparency.

Markov Chain. To achieve flexibility while maintaining parsimony, I assume that the model

parameters evolve according to a three-state Markov chain, St ∈ {1, 2, 3}:

1. Countercyclical Macroeconomic Shocks and Active Monetary Policy (CA): β < 0, τπ > 1,

2. Countercyclical Macroeconomic Shocks and Passive Monetary Policy (CP): β < 0, τπ ≤ 1,

15Note that incorporating a time-varying inflation target is quite common in the monetary policy literature (see

Coibon and Gorodnichenko (2011), Aruoba and Schorfheide (2011), and Davig and Doh (2014)).
16Rudebusch (2002) argues that, to study the term structure, it seems sensible to consider the monetary policy

rule without an interest-rate-smoothing motive. Based on the term structure evidence, Rudebusch (2002) shows that

monetary policy inertia is not due to the smoothing motive but is due to persistent shocks.
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3. Procyclical Macroeconomic Shocks and Active Monetary Policy (PA): β ≥ 0, τπ > 1.

I define a Markov transition probability matrix by Π, which summarizes all 32 transition probabil-

ities. The labeling of the regimes is explained in detail for the asset pricing implications.

Endogenous Inflation Process and Determinacy of Equilibrium. Inflation dynamics can be

endogenously determined from the monetary policy rule (4) and an asset-pricing equation, which

is given below,

it = −Et [mt+1 − πt+1]− 1

2
V art [mt+1 − πt+1] . (5)

Substituting the asset-pricing equation (5) into the monetary policy rule (4), the system reduces

to a single regime-dependent equation

τπ(St)πt = Et [πt+1] + Λ0(St) + Λ1(St)Xt, (6)

where Λ0(St) and Λ1(St) are function of the model structural parameters.

I posit regime-dependent linear solutions of the form

πt = Γ0(St) + Γ1(St)Xt. (7)

For ease of exposition, I introduce a diagonal matrix Ψ, where the ith diagonal component is

τπ(i). According to Proposition 2 of Davig and Leeper (2007), a unique bounded solution (deter-

minate equilibrium) exists provided that the “long-run Taylor principle” (summarized by the two

conditions) is satisfied:

1. τπ(i) > 0, for i ∈ {1, 2, 3} ,

2. All the eigenvalues of Ψ−1 ×Π lie inside the unit circle.

A detailed derivation is provided in Appendix B.6.

In a fixed-regime environment, the equilibrium inflation is not unique, and multiple solutions

exist, including stationary sunspot equilibria when monetary policy is passive, τπ ≤ 1. A strik-

ing feature is that with regime switching, there exists determinate equilibrium, even with passive

monetary policy. Figure 2 provides admissible ranges (black-shaded regions) of monetary policy

coefficients consistent with the long-run Taylor principle. According to Figure 2, monetary policy

can be passive some of the time, as long as the passive regime is sufficiently short-lived (see discus-

sion in Davig and Leeper (2007) and Foerster (2016)). Allowing for (short-lived) passive monetary

policy has several important asset pricing implications that I discuss below.
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Figure 2: Determinacy Regions
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Notes: Parameter combinations in the black-shaded regions imply a unique equilibrium in the regime-switching

model. I fix Π = Π̂ at their posterior median estimates (14) and vary 0.5 ≤ τπ(P ) ≤ 1 and 1 ≤ τπ(A) ≤ 2 to compute

the determinacy regions.

Notations. Before I explain the solution of the model, I introduce some notations. rm,t+1 denotes

the log real stock market return. I use $ to distinguish nominal from real values. The nominal

n-maturity log zero-coupon bond price is p$
n,t, and the respective log bond yield is y$

n,t = − 1
np

$
n,t.

r$
n,t+1 denotes the log return to holding a n-maturity nominal bond from t to t+ 1. rx$

n,t+1 is the

log return to holding a n-maturity nominal bond from t to t+ 1 in excess of the log return to a one

period nominal bond.

Asset Solutions and Asset Pricing Implication. The first-order condition of the agent’s

expected utility maximization problem yields the Euler equations

Et [exp (mt+1 + rk,t+1)] = 1, k ∈ {c,m}, Real Assets, (8)

p$
n,t = logEt[exp(mt+1 − πt+1 + p$

n−1,t+1)], Nominal Assets, (9)

where rc,t+1 is the log return on the consumption claim and rm,t+1 is the log market return. The

solutions to (8) and (9) depend on the joint dynamics of consumption and dividend growth (3) and

inflation (7). Asset prices are determined from the approximate analytical solution described by

Bansal and Zhou (2002), who assume that asset prices are affine function of state Xt conditional

on regime St. Details are provided in Appendix B.

For the sake of exposition, I set monetary policy shock to zero and reduce the state variables

from three to two: real growth and inflation target.17 The nominal n-maturity log bond price is

17Since monetary policy shock is orthogonal to the real growth and inflation target shocks, its role in the asset

markets is not as important as that of the previous two shocks. I am shutting monetary policy shock down for the

purpose of providing intuition of the model.
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an affine function of the state conditional on the current regime St (here I omit St for simplicity)

p$
n,t = C$

n,0 + C$
n,1Xt, (10)

where C$
n,1 = [C$

n,1,c, C
$
n,1,π] and Xt = [xc,t, xπ,t]

′. The respective nominal bond yield loadings can

be expressed by

B$
n,1,c = − 1

n
C$
n,1,c =

(
1/ψτπ − ρcτc
τπ − ρc

)
1

n

(
1− ρnc
1− ρc

)
, B$

n,1,π = − 1

n
C$
n,1,π = 1. (11)

Note that B$
n,1,c decays to zero for long maturity bonds, and B$

n,1,π is always one, implying that any

change in inflation target induces parallel shifts in the entire yield curve. Under 1
ψ min {1, τπ/ρc} >

τc, the sign of bond yield loading B$
n,1,c is positive if τπ > 1, that is, monetary policy is active

and negative when monetary policy is passive, τπ ≤ 1.18 When monetary policy is active (passive),

bond prices rise (fall) in response to decrease in real growth and bond yields become procyclical

(countercyclical).

After some tedious algebra, the sign of the one-period expected excess return of a n-maturity

nominal bond (bond risk premium) is expressed as

sign
(
Et(rx

$
n,t+1) +

1

2
V art(rx

$
n,t+1)

)
≈ −sign

(
(B$

n−1,1,c + β)
(γ − 1/ψ)κ1

1− κ1ρc

)
. (12)

The approximation is accurate for highly persistent real growth process, ρc, and the Campbell-

Shiller log approximation constant, κ1. Similarly, the sign of the conditional correlation between

the real stock market and the n-maturity nominal bond return is characterized by

sign
(
Corrt

(
rm,t+1, rx

$
n,t+1

))
= −sign

(
B$
n−1,1,c + β

)
. (13)

I refer to Appendices B.7 and B.8 for the exact expression.

To build intuition into (12) and (13), I start by considering the limiting case of a fixed-regime

economy. Throughout the analysis, I assume that agents have a preference for an early resolution

of uncertainty (γ > 1/ψ). To facilitate intuition, I ignore inflation non-neutrality, that is, β = 0.19

Suppose if monetary policy is active, then nominal bonds are hedges (B$
n−1,1,c ≥ 0) and bond

risk premium falls in response to increase in real growth and inflation target uncertainty. In this

environment, nominal bonds are qualitatively similar to real bonds.20 The implied stock-bond

18The sign of B$
n,1,c depends on the relative magnitude of τπ and ρc, and I assume that ρc is fairly close to 1 in

this analysis.
19Note that β 6= 0 breaks the long-run dichotomy between the nominal and real sides of the economy.
20It is easy to show that when agents have a preference for an early resolution of uncertainty (γ > 1/ψ), real bonds

are hedges against low growth and real bond risk premiums are always negative. Because these hedging effects are

stronger at longer horizons, this implies a downward-sloping real term structure.
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Table 1: Asset Pricing Implications in a Fixed-Regime Economy

CA CP PA

Unique Inflation Solution Yes No Yes

Bond Loading B$
n,1,c + – +

Stock-Bond Return Correlation Corrt
(
rm,t+1, r

$
n,t+1

)
+ + –

Bond Risk Premium Et(rx
$
n,t+1) + 1

2V art(rx
$
n,t+1) + + –

Notes: The regimes are labeled as (1) the CA regime, countercyclical macroeconomic shocks and active monetary

policy; (2) the CP regime, countercyclical macroeconomic shocks and passive monetary policy; and (3) the PA regime,

procyclical macroeconomic shocks and active monetary policy.

return correlation is negative. The same could be said for the reverse logic: the signs of bond risk

premium and stock-bond return correlation flip and become positive under passive monetary policy

regime.

The introduction of inflation non-neutrality, that is, β 6= 0 complicates the analysis. Suppose

that monetary policy is active. As long as the covariance of inflation target and real growth shocks

is small in magnitude, β ≥ −B$
n−1,1,c, the implication on bond risk premium and stock-bond re-

turn correlation will be identical as before. In such case, the economy experiences “procyclical”

macroeconomic shocks. For the sake of labeling purpose, the respective regime is PA. However,

a sufficiently large “countercyclical” macroeconomic shocks, captured by β < −B$
n−1,1,c, can re-

verse the sign and generate positive bond risk premium and stock-bond return correlation. Here,

the regime is CA. Suppose now that monetary policy is passive. Following large countercyclical

macroeconomic shocks (which are bad news for the economy), the implied bond risk premium and

stock-bond return correlation are positive and largest in magnitude across all cases. This envi-

ronment, called the CP regime, is the extreme version of the economy described by Piazzesi and

Schneider (2006), Wachter (2006), Eraker (2008), and Bansal and Shaliastovich (2013) who assume

inflation is countercyclical and risky.

Table 1 summarizes the model’s intuition. In general, the signs of relevant asset pricing moments

are unambiguously determined in the CP and PA regimes, while they are not in the CA regime.

They ultimately depend on the distribution of macroeconomic shocks (captured by β) and the

aggressiveness of the monetary policy (captured by τπ). The signs will be determined only for

sufficiently large countercyclical macroeconomic shocks, that is, β < −B$
n−1,1,c, which is assumed

in Table 1.

Until now, I have characterized each of the “within-regime” risks. However, it is sensible to
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argue that the economic agents anticipate future regime changes and the associated regime risks

are reflected in today’s asset market. This is called “across-regime” risks—the extent to which the

risk properties of alternative regimes are incorporated due to regime switching dynamics. With

regime switching, it is difficult to understand the asset pricing implications because all regime

risks are mixed together through the iterated expectation over the regimes. Determining what the

driving forces behind the changes in the asset markets is entirely an empirical question. To answer

this, I now turn to the estimation part of the model.

4 Empirical Results

The data set used in the empirical analysis is described in Section 4.1. Bayesian inference is

discussed in Section 4.2. Section 4.3 discusses parameter restrictions of the model and identification

of the regime. Section 4.4 discusses parameter estimates and regime probabilities. The model’s

implications for macroeconomic aggregates and asset prices are explained in Section 4.5. Finally,

Section 4.6 discusses model caveats and provides robustness check on the identification of regimes.

4.1 Data

Monthly consumption data represent per capita series of real consumption expenditures on non-

durables and services from the National Income and Product Accounts (NIPA) tables, which are

available from the Bureau of Economic Analysis. Aggregate stock market data consist of monthly

observations of returns, dividends, and prices of the CRSP value-weighted portfolio of all stocks

traded on the NYSE, AMEX, and NASDAQ. Price and dividend series are constructed on a per

share basis, like in Campbell and Shiller (1988b) and Hodrick (1992). Market data are converted to

real data using the consumer price index (CPI) from the Bureau of Labor Statistics. Growth rates

of consumption and dividends are constructed by taking the first difference of the corresponding

log series. Inflation represents the log difference of the CPI. Monthly observations of U.S. Treasury

bonds with maturities at one to five years are from CRSP. The time series spans the monthly data

from 1963:M1 to 2014:M12. A detailed description of the data is provided in Appendix C.

4.2 Bayesian Inference

Posterior inference is implemented with a Metropolis-within-Gibbs sampler (see the previous work

of Carter and Kohn (1994) and Kim and Nelson (1999)). Y1:T denotes the sequence of observations,
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where

Yt = (∆ct, πt, pdt, y1,t, y2,t, y3,t, y4,t, y5,t).

Moreover, let S1:T be the sequence of hidden states, and let Θ = (Θ1,Θ2), where

Θ1 = (δ, γ, ψ),

Θ2 = (µc, µd, ρc, ρi, φ, σc, σd, σxc, σxπ, σxi, β(−), β(+), τ0(P ), τ0(A), τc(P ), τc(A), τπ(P ), τπ(A)),

Φ = ({Πij}i,j={1,2,3}).

Metropolis-within-Gibbs algorithm involves iteratively sampling from three conditional posterior

distributions. Details are provided in Appendix D.

4.3 Identification and Parameter Restriction

As discussed before, the identification of the regime is achieved by segmenting the economy into

the following three cases:

1. Countercyclical Macroeconomic Shocks and Active Monetary Policy (CA): β < 0, τπ > 1,

2. Countercyclical Macroeconomic Shocks and Passive Monetary Policy (CP): β < 0, τπ ≤ 1,

3. Procyclical Macroeconomic Shocks and Active Monetary Policy (PA): β ≥ 0, τπ > 1.

I allow the standard deviation of the inflation target innovations σxπ to differ across regimes. In

particular, I assume that while σxπ is largest under passive monetary policy regime, it is assumed

to be smallest under procyclical inflation regime.21 The restriction is summarized by

σxπ(CP ) > σxπ(CA) > σxπ(PA).

Since real endowment process is exogenously specified in this economy, I assume that policy response

to real growth is identical across regimes, that is, τc(A) = τc(P ).

Finally, to reduce the number of estimated parameters, a subset of parameters, under (1), (2),

and (3) in Table 2, is fixed based on Schorfheide, Song, and Yaron (2016). I also assume that the

monetary policy shock is not serially correlated, that is., ρi = 0. This restriction is conservative in

terms of the fit of the model because it effectively reduces the number of persistent state variables

from three to two: real growth and inflation target.

21The restriction on σxπ helps identify the different regimes. However, I find that even without this restriction

the identified regimes are qualitatively the same.
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Table 2: Posterior Median Estimates

(1) (2) (3) (4) (5)

Preference Consumption Dividend Factor Shocks Monetary Policy

δ 0.999 µc 0.0016 µd 0.0016 β(−) −2.50
[−3.81, −1.32]

τ0(A) 0.0041
[0.0021,0.0047]

ψ 2 ρc .99 φ 3 β(+) 1.00
[0.08, 2.13]

τ0(P ) 0.0043
[0.0031,0.0052]

γ 8 σc 0.0024 σd/σc 6.25 σxc 0.00015
[0.00011,0.00018]

τπ(A) 1.40
[1.11, 1.75]

σxπ(CA) 0.00019
[0.00017,0.00023]

τπ(P ) 0.94
[0.89, 0.99]

σxπ(CP ) 0.00039
[0.00034,0.00047]

τc(A,P ) 0.48
[0.38, 0.57]

σxπ(PA) 0.00011
[0.00008,0.00014]

σxi 0.0020
[0.0013, 0.0027]

Notes: The estimation results are based on monthly data from 1963:M1 to 2014:M12. A subset of parameters under

(1), (2), and (3) is fixed based on Schorfheide, Song, and Yaron (2016). I show the posterior interquartile range (5%,

95%) in brackets.

4.4 Parameter Estimates and Regime Probabilities

Parameter Estimates. The priors for the parameters are fairly agnostic and are shown in Ap-

pendix D. Percentiles for the posterior distribution are reported in Table 2. The most important

results for the subsequent analysis are provided in (14) and in the fourth and fifth columns of

Table 2.

Π =


0.907

[0.85,0.97]
0.045

[0.035,0.067]
0.050

[0.042,0.071]

0.050
[0.042,0.071]

0.911
[0.85,0.97]

0.045
[0.042,0.070]

0.049
[0.037,0.068]

0.046
[0.035,0.067]

0.905
[0.85,0.97]

 . (14)

First, (14) reports posterior estimates of the Markov-chain transition probabilities. Below each

posterior median parameter estimate, we show the posterior interquartile range (5%, 95%) in

brackets. The regimes are ordered by CA, CP, and PA. The respective unconditional regime

probabilities are 0.35, 0.33, and 0.32. This result can be interpreted as an indication that the

risks of experiencing countercyclical macroeconomic shocks are substantial, as indicated by the

sum of the probability of the CA and CP regimes, 0.68. The unconditional probability of staying

in the active monetary policy regime, as indicated by the sum of the probability of the CA and PA

regimes, is around 0.67, which is twice as large as that of the passive monetary policy regime.



Song (2016): July 14, 2016 18

Figure 3: Regime Probabilities
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Notes: The dark-gray-shaded areas represent posterior medians of regime probabilities. The light-gray-shaded bars

indicate the NBER recession dates.

Second, strong evidence suggests parameter instability in the dynamics of the long-run compo-

nents. Most prominently, the sign change in the correlation structure is notable: the posterior

median estimate of β is -2.5 in the countercyclical macroeconomic shock regime and 1.0 in the

procyclical macroeconomic shock regime; and the correlation between real growth and inflation

target βσxc/
√
β2σ2

xc + σ2
xπ is -0.9, -0.7, and 0.8 under the CA, CP, and PA regimes, respectively.

Third, two very different posterior estimates of the monetary policy rule in the fifth column of

Table 2 support the view of Clarida, Gali, and Gertler (2000) that there has been a substantial

change in the way monetary policy is conducted. Active regime is associated with a larger monetary

policy rule coefficient, 1.40, which implies that the central bank will more aggressively respond to
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short-run inflation fluctuations. Passive regime is characterized by a less responsive monetary policy

rule, in which I find much lower loading, 0.94. Given the posterior transition probabilities, I verify

that the estimated monetary policy coefficients fall into the admissible ranges consistent with the

long-run Taylor principle in Figure 2.

Regime Probabilities. Figure 3 depicts the smoothed posterior regime probabilities. The esti-

mation identifies inflation as countercyclical from the early 1970s through the late 1990s and as

procyclical from the late 1990s onward. This is consistent with the evidence provided in Figure 1.

Figure 3 also suggests that the switch is not a permanent event, but is an occasional one.22 The

historical paths of the monetary policy stance are also consistent with the empirical monetary lit-

erature: Active monetary policy appeared in the early 60s but was largely dormant until the early

80s; it became active after the appointment of Paul Volcker as Chairman of the Federal Reserve

and remained active throughout the sample.23

4.5 Implications for Macroeconomic Aggregates and Asset Prices

While asset pricing moments implicitly enter the likelihood function of the state-space model, it is

instructive to examine the extent to which sample moments implied by the estimated state-space

model mimic the sample moments computed from our actual data set. To do so, I report percentiles

of the posterior predictive distribution for various sample moments based on simulations from the

posterior distribution of the same length as the data.24 The posterior predictive distributions are

obtained conditional on posterior median estimates of the parameters and only reflect sampling

uncertainty. Except for a few cases, to facilitate comparison across different regimes, I only report

the median values in the tables. Broadly speaking, I compare two cases: one in which regimes are

fixed and the other in which regime switching is allowed in the economy. When regime switching

is allowed, the solutions of the model account for “across-regime” risks through the iterated ex-

pectation over the regimes. When simulation allows for actual transition to different regimes, the

results are reported under “Mix”. If simulation results under regime switching are reported under a

specific regime identity, for example, “CA”, this means that, even though agents take into account

possible regime switches in their expectations formation, regime switches do not occur along the

simulated paths ex post. By comparing these outcomes to those from the fixed-regime economy, I

am able to isolate the expectations effect on asset prices.

22This evidence is also supported by David and Veronesi (2013).
23The smoothed paths for monetary policy are broadly consistent with those found in Bianchi (2012), Clarida,

Gali, and Gertler (2000), Ang, Boivin, Dong, and Loo-Kung (2011), Bikbov and Chernov (2013), and Coibon and

Gorodnichenko (2011).
24This is called a posterior predictive check; see Geweke (2005) for a textbook treatment.
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Table 3: Model-Implied Moments: Macroeconomic Aggregates

Consumption

Data Regime-Switching Model Fixed-Regime Model

Mix CA CP PA CA CP PA

E(∆c) 1.90 1.93 1.93 1.86 1.87 1.94 1.90 1.90

σ(∆c) 0.93 0.85 0.86 0.85 0.85 0.88 0.88 0.88

corr(∆c, π) -0.05 -0.04 -0.18 -0.09 0.14 -0.18 -0.14 0.14

Inflation

Data Regime-Switching Model Fixed-Regime Model

Mix CA CP PA CA CP PA

E(π) 3.71 3.58 3.54 4.24 3.26 3.26 3.93 3.29

σ(π) 1.10 1.30 1.41 1.63 0.74 1.42 1.81 0.76

AC(π) 0.62 0.84 0.86 0.90 0.56 0.87 0.93 0.51

Expected Inflation

Data Regime-Switching Model Fixed-Regime Model

Mix CA CP PA CA CP PA

1-Year Ahead 3.60 3.32 3.42 3.30 3.26 3.21 3.44 3.27

5-Year Ahead 3.33 3.33 3.33 3.33 3.21 3.44 3.27

Notes: The 1-year-ahead inflation forecasts for the Survey of Professional Forecasters are provided

by the Federal Reserve Bank of Philadelphia and are available from 1970 to 2014 at https://https:

//www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/

historical-data/inflation-forecasts. I report the mean of the forecasts. Detailed descriptions of the data are

provided in Appendix C.

Macroeconomic Aggregates. The model-implied distributions for the first and second moments

of the macroeconomic aggregates are provided in Table 3. By construction, the sample moments for

consumption do not differ across regimes. Yet the sample moments for inflation are quite different

across regimes: inflation in the CP regime is most volatile and persistent, while inflation in the PA

regime is the exact opposite; the sample correlation between consumption and inflation is positive

only in the PA regime; and the averages of inflation are also lowest in the PA regime, which is

about 1% lower than those in the CP regime. Based on the regime probabilities in Figure 3, I find

that the model is able to account for significant changes in the inflation dynamics observed in the

data (see Figure 1). As the economy shifted from the CP regime to the CA regime and to the PA

https://https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/historical-data/inflation-forecasts
https://https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/historical-data/inflation-forecasts
https://https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/historical-data/inflation-forecasts
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regime, the variance and persistence of inflation decreased substantially. Overall, the model finds

that inflation has become procyclical and less risky as the economy shifted towards active monetary

policy and experienced procyclical macroeconomic shocks.

Importantly, the model shows that monetary policy does impact the expected inflation process

(since shocks themselves do not impact the expectations). The one-year-ahead expected inflation in

the CP regime is largest in a fixed-regime economy, but not in a regime-switching economy. Since

real growth is a mean-reverting process and inflation target expectation is based on the random-

walk forecast (hence is identical across regimes), the long-run expectation of inflation converges in

a regime-switching economy. In sum, the first and second moments for consumption and inflation

implied by the model replicate the actual counterparts well.

Bond Yields, Term Premiums, and Bond Risk Premiums. Now, to evaluate whether the

model can reproduce key bond market features in the data, the model-implied distributions of bond

yields, term premiums, and bond risk premiums are reported in Table 4. The model performs well

along this dimension since the model-implied median values are fairly close to their data estimates.

Yet important distinctions arise across regimes. Let’s first focus on the fixed-regime case. Under the

estimated parameter configuration, I find that the term structure is upward- (downward-) sloping

and term premiums and bond risk premiums are positive (negative) in the CA regime and the

CP (PA) regime consistent with the implications in Table 1. Once regime switching is allowed,

the striking feature is that the model is able to generate an upward-sloping term structure in all

regimes, including the PA regime. Agents are aware of the possibility of encountering countercyclical

inflation in the future (either the CA or CP regime) and demand compensations for holding nominal

bonds that might be exposed to future inflation risks. Since risks and compensations are greater for

longer-term bonds, the model leads to an upward-sloping nominal yield curve in all regimes. Note

also that term premium for the 5-year maturity bond becomes positive. I find that the magnitudes

of term premiums and bond risk premiums become much smaller in the CA and CP regimes because

the PA regime risks are mixed together through the iterated expectation over the regimes. Overall,

the key takeaway from this exercise is that “across-regime” risks are quantitatively important risk

factors and bring about very different asset market implications.

Excess Bond Return Predictability. Under the expectations hypothesis (EH), the expected

holding returns from long-term and short-term bonds should be the same (strong form) or should

only differ by a constant (weak form). However, even the weak form has been consistently rejected

by empirical researchers. For example, Campbell and Shiller (1991), Dai and Singleton (2002),

Cochrane and Piazzesi (2005), and Bansal and Shaliastovich (2013) all argue that the EH neglects

the risks inherent in bonds and provide strong empirical evidence for predictable changes in future
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Table 4: Model-Implied Moments: Bond Market

Average Bond Yield

Data Model

Regime-Switching Fixed-Regime

Maturity Mix CA CP PA CA CP PA

1-Year Bond 5.26 5.28 5.18 5.33 4.92 4.89 5.05 4.47

2-Year Bond 5.47 5.43 5.27 5.40 4.92 4.99 5.34 4.28

3-Year Bond 5.65 5.58 5.30 5.47 4.97 5.24 5.59 4.11

4-Year Bond 5.81 5.76 5.38 5.52 5.01 5.46 5.79 3.94

5-Year Bond 5.92 5.84 5.41 5.63 5.52 5.69 6.01 3.75

Average Term Premiums

Data Model

Regime-Switching Fixed-Regime

Maturity Mix CA CP PA CA CP PA

1-Year Bond 0.16 0.17 0.09 0.17 -0.10 0.20 0.24 -0.15

2-Year Bond 0.39 0.22 0.16 0.27 -0.11 0.42 0.50 -0.34

3-Year Bond 0.58 0.30 0.22 0.37 -0.09 0.63 0.74 -0.52

4-Year Bond 0.75 0.37 0.27 0.42 -0.01 0.85 0.95 -0.69

5-Year Bond 0.90 0.42 0.34 0.55 0.04 1.05 1.16 -0.86

Average Bond Risk Premiums

Data Model

Regime-Switching Fixed-Regime

Maturity Mix CA CP PA CA CP PA

1-Year Bond 0.08 0.08 0.07 -0.07 0.10 0.13 -0.08

2-Year Bond 0.20 0.18 0.18 -0.16 0.24 0.29 -0.18

3-Year Bond 0.34 0.28 0.30 -0.25 0.38 0.45 -0.27

4-Year Bond 0.49 0.39 0.43 -0.33 0.52 0.61 -0.36

5-Year Bond 0.65 0.51 0.55 -0.41 0.66 0.77 -0.45

Notes: Detailed descriptions of the data are provided in Appendix C. Treasury term premia estimates for maturities

from one to five years from 1963 to the present are based on Adrian, Crump, and Moench (2013) and are available

at https://www.newyorkfed.org/research/data_indicators/term_premia.html.

excess returns. The first panel of Table 5 compares model-implied distributions for the slope

coefficient to the corresponding data estimates. Since the presence of regime switching gives rise to

https://www.newyorkfed.org/research/data_indicators/term_premia.html
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Table 5: Model-Implied Moments: Bond Excess Return Predictability

Campbell-Shiller Regression: Slope

Data Regime-Switching Model

Maturity 5% 50% 95%

2-Year Bond -0.62 -0.63 -0.49 -0.37

3-Year Bond -1.01 -1.22 -1.00 -0.68

4-Year Bond -1.42 -1.89 -1.50 -0.96

5-Year Bond -1.45 -2.44 -1.96 -1.34

Cochrane-Piazzesi Regression: R2

Data Regime-Switching Model

Maturity 5% 50% 95%

2-Year Bond 0.19 0.32 0.42 0.49

3-Year Bond 0.20 0.20 0.27 0.33

4-Year Bond 0.23 0.15 0.22 0.30

5-Year Bond 0.21 0.13 0.19 0.28

time variations in risk premiums, I only focus on simulation results that allow for actual transition to

different regimes (which correspond to results under “Mix” in previous Tables). Here, I also report

the posterior interquartile range (5%, 95%), in addition to median values. The first thing to note

is that the model generates very comparable results. The model produces slope coefficients that

are significantly negative, lower than unity, and whose absolute magnitudes rise over maturities,

like in the data. Another exercise consists of running regressions that predict excess bond returns.

Following Cochrane and Piazzesi (2005), I focus on regressing the excess bond return of a n-maturity

bond over the 1-year bond on a linear combination of forward rates that includes a constant term,

a 1-year bond yield, and four forwards rates with maturities of 2 to 5 years. The model-implied

R2 values (in percents) from the regression are provided in the second panel of Table 5 and are

comparable to (but slightly overshoot) the corresponding data estimates.

Market Returns and Log Price-Dividend Ratio. Now, I examine the stock market impli-

cations of the model in Table 6. The regime-switching model with actual transitions to different

regimes (values under “Mix”) is able to explain large part of the equity premium E[rm,t+1− rf,t] +

1/2σ(rm)2 ≈ (0.049− 0.017) + 0.5× 0.17892 ≈ 5% (the mean of the model-implied risk-free rate is
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Table 6: Model-Implied Moments: Stock Market

Average Stock Market Moments

Data Model

Regime-Switching Fixed-Regime

Maturity Mix CA CP PA CA CP PA

E(rm) 5.75 4.92 4.78 4.25 4.85 4.94 4.80 4.85

σ(rm) 15.48 17.89 11.76 11.94 11.73 11.78 11.80 11.78

E(pd) 3.60 3.53 3.47 3.65 3.46 3.53 3.53 3.54

σ(pd) 0.37 0.19 0.16 0.17 0.16 0.17 0.16 0.17

Average (Conditional) Stock-Bond Return Correlation

Data Model

Regime-Switching Fixed-Regime

Maturity Mix CA CP PA CA CP PA

1-Year Bond 0.08 0.16 0.71 0.47 -0.72 0.83 0.68 -0.92

2-Year Bond 0.08 0.18 0.71 0.50 -0.72 0.84 0.68 -0.92

3-Year Bond 0.09 0.19 0.72 0.52 -0.70 0.84 0.68 -0.91

4-Year Bond 0.10 0.20 0.73 0.53 -0.70 0.84 0.68 -0.91

5-Year Bond 0.10 0.20 0.73 0.54 -0.69 0.85 0.68 -0.91

Notes: Detailed descriptions of the data are provided in Appendix C.

around 1.7%). The standard deviation of the market returns σ(rm) = 17.89% and price-dividend

σ(pd) = 0.19% are comparable to their data counterparts. This feature owes, in part, to the fact

that the regime-switching model can accommodate some non-Gaussian features in the data.

Stock-Bond Return Correlation. Since the estimated model is quite successful in explaining

several bond and stock market phenomena, I can proceed to examine the interactions between the

two. The second panel of Table 6 reports the averages of the model-implied conditional stock-bond

return correlation. When transitions to different regimes are allowed (values under “Mix”), the

model generates mildly positive stock-bond return correlation. It is because inflation risks are sub-

stantial in the model: the unconditional probability of experiencing countercyclical macroeconomic

shocks, as indicated by the sum of the probability of the CA and CP regimes, is 0.68. Now I

look at the conditional stock-bond return correlation implied by each regime. This experiment is
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useful because it isolates “within-regime” risks in the stock-bond return correlation. I find that the

active monetary policy stance tends to generate stronger positive stock-bond return correlation.

My results are consistent with the findings in Campbell, Pflueger, and Viceira (2015) in which they

argue that a more aggressive response of the central bank to inflation fluctuations increases the

stock-bond return correlation. Through the estimation, I have identified that (while the stance of

the monetary policy remained active) the economy faced changes in the covariance between the

inflation target and real growth shocks, that is, transition from the countercyclical to the procycli-

cal macroeconomic shock regime, in the late 90s. From Table 1, we learned that as the economy

shift towards active monetary policy and experience procyclical macroeconomic shocks, nominal

bonds become hedges and nominal bonds behave qualitatively similarly to real bonds. Simulation

results in Table 6 confirm that quantitatively the effects are strong enough to generate negative

stock-bond return correlation.

How is it, then, that the model generates negative risk premium and stock-bond return correlation

and at the same time produces an upward-sloping nominal yield curve? Under the estimated

parameter configuration, I find that the risks of moving across regimes have a disproportionately

larger impact on the slope of the yield curve than on the risk premium and the stock-bond return

correlation. Thus, while the risk premium and the stock-bond return correlation become much less

negative in magnitude, only the slope of the yield curve switches sign. Specifically, I can express

the slope of the nominal yield curve by

E
(
y$
n,t − y$

1,t

)
≈ C$

1,0(St)−
1

n
C$
n,0(St). (15)

With regime switching, through the iterated expectations over the regimes, 1
nC

$
n,0(PA) can actually

be smaller than C$
1,0(PA) and the corresponding slope of the yield curve becomes positive. For

a fixed-regime economy, that is, without the expectations formation effects, the slope is always

negative in the PA regime. The key takeaway is that the expectations formation effect can go a

long way in modifying equilibrium outcomes and is quantitatively very important risk factor in the

bond market.

4.6 Robustness Checks

The model is successful in quantitatively accounting for both new and old bond market stylized

facts. The key ingredients of the model include preference for an early resolution of uncertainty,

time variation in expected real consumption growth and inflation target, and especially regime

switches in the monetary policy action, as well as in the distribution of macroeconomic shocks.
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Having said that, there are two potential caveats that need to be taken into account in this

paper. First, as recently pointed out by Duffee (2015), standard term structure models (especially

these type of long-run risks models with recursive preferences) have known problem of embedding

too much inflation risks in the model. I investigate how my model performs along this dimension

and demonstrate that allowing for regime switching could be an economically appealing way of

modeling inflation dynamics. Second, the empirical results heavily rely on the identification of the

regimes. One may question the validity of the identification of the monetary policy regimes defined

in a simple endowment economy. To provide robustness of the identification of monetary policy

regimes, I estimate a prototypical New Keynesian model.

Inflation Risks and Bond Yields. Duffee (2015) suggests that the role of news about expected

future inflation in driving the variation of nominal yields has to be small for well-behaved term

structure models. Duffee (2015) decomposes shocks to nominal bond yields εy$,n,t into news about

expected future inflation επ,n,t, news about expected future real short rates εy1,n,t, and expected

excess returns εx,n,t. A yield shock is the sum of news

εy$,n,t = επ,n,t + εy1,n,t + εx,n,t, (16)

where

εy$,n,t = y$
n,t − Et−1

(
y$
n,t

)
(17)

επ,n,t = Et

(
1

n

n∑
i=1

πt+i

)
− Et−1

(
1

n

n∑
i=1

πt+i

)

εy1,n,t = Et

(
1

n

n∑
i=1

y1,t+i−1

)
− Et−1

(
1

n

n∑
i=1

y1,t+i−1

)

εx,n,t = Et

(
1

n

n∑
i=1

rx$
n−i+1,t+i

)
− Et−1

(
1

n

n∑
i=1

rx$
n−i+1,t+i

)

denotes the news.25 The calculation of (17) is explained in detail in Appendices B.9, B.10, and

B.11.

Duffee (2015) defines a measure of inflation risk by

inflation risk =
V ar(επ,n,t)

V ar(εy$,n,t)
(18)

and provides both survey- and model-based measures of (18) that are estimated to be around 10 to

20 percent. He argues that this magnitude of inflation risk is strongly at odds with values implied

25The accounting identity lets us decompose the n-maturity nominal bond into future expected average inflation,

real rates, and excess log returns: y$n,t = 1
m

∑m
i=1Et(πt+i) + 1

m

∑m
i=1Et(y1,t+i−1) + 1

m

∑m
i=1Et(rx

$
n−i+1,t+i).
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Table 7: Decompositions of Variances of Yield Innovations: Expected Inflation News

Without Measurement Errors

Regime-Switching Model Fixed-Regime Model

Maturity CA CP PA CA CP PA

1-Year Bond 1.30 1.15 0.59 1.27 1.19 0.55

2-Year Bond 1.28 1.13 0.61 1.25 1.18 0.57

3-Year Bond 1.26 1.12 0.63 1.23 1.17 0.58

4-Year Bond 1.23 1.11 0.64 1.20 1.16 0.60

5-Year Bond 1.22 1.10 0.65 1.18 1.15 0.62

With Measurement Errors

Regime-Switching Model Fixed-Regime Model

Maturity CA CP PA CA CP PA

1-Year Bond 0.42 0.52 0.13 0.46 0.63 0.11

2-Year Bond 0.42 0.53 0.14 0.46 0.63 0.11

3-Year Bond 0.42 0.53 0.14 0.46 0.62 0.11

4-Year Bond 0.41 0.53 0.14 0.45 0.62 0.11

5-Year Bond 0.41 0.54 0.14 0.45 0.61 0.11

Notes: The size of the measurement error variance is less than 5% of the sample variance.

by standard equilibrium models of inflation and bond yields. In particular, the standard term

structure models (with recursive preferences and long-run risks) counterfactually imply too high of

an inflation risk, which often exceeds one.

Table 7 shows the model-implied inflation risks (18), which exceed one in the CA and CP regimes

and are less than one in the PA regime. The results are expected since inflation is countercyclical

and risky in the CA and CP regimes. Based on the unconditional probabilities of regimes, I can

compute the averages of inflation risks to be around one. This evidence speaks against the empirical

validity of my model. However, if the measure of a yield shock, εy$,n,t = y$
n,t −Et−1

(
y$
n,t

)
, includes

measurement errors (whose variance is less than 5% of the sample variance), model-implied inflation

risks (18) become significantly smaller.26

26Bauer and Rudebusch (2015) and Cieslak and Povala (2015) show that the presence of small yield measurement

errors can have a large impact on the spanning ability of interest rates and on the analysis of term premium,

respectively.
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Figure 4: Regime Probabilities: New Keynesian Model
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Notes: The dark-gray-shaded areas represent posterior medians of regime probabilities. The light-gray-shaded bars

indicate the NBER recession dates.

Having said that, I can draw two important lessons from this exercise. First, it is important

to relax the constant (time-invariant) parameter assumption since it overemphasizes the role of

inflation risk in the yield curve. Second, allowing for regime switching is an economically appealing

way of modeling inflation dynamics. Since each regime corresponds to a different level of inflation

risk, a richer description of inflation dynamics is possible. As a result, it provides us a more

comprehensive understanding of the sources of risk behind the yield curve.

Identification of Monetary Policy Regimes. To provide robustness in identifying the monetary

policy regimes, I estimate the New Keynesian model proposed by Campbell, Pflueger, and Viceira

(2015). The model has the following three structural equations (IS curve, Phillips Curve, and

Monetary Policy rule) and law of motion for time-varying inflation target

1. IS Curve : xt = ρx−(St)xt−1 + ρx+(St)Etxt+1 − ψ(St)(it − Etπt+1),

2. Phillips Curve : πt = ρπ(St)πt−1 + (1− ρπ(St))Etπt+1 + κ(St)xt + uPCt ,

3. Monetary Policy : it = ρi(St)it−1 + (1− ρi(St))
(
γx(St)xt + γπ(St)(πt − πTGt ) + πTGt

)
+ uMP

t ,

4. Inflation Target : πTGt = πTGt−1 + uTGt ,
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where xt is the log output gap, πt is the inflation rate, it is the log yield of a one month maturity

at time t, and πTGt is inflation target. Note that I am using the same notations like in Campbell,

Pflueger, and Viceira (2015). To satisfy the Lucas critique, I assume that all model coefficients are

regime dependent and there are three distinct monetary policy regimes in total. The identification

restriction is that γπ is less than one in the passive regime; and greater than one in the other two

active regimes. It is possible to believe that within the active monetary policy regimes, the central

bank might respond more aggressively in one regime than the other. In this regard, I assume

that the magnitude of γπ is greater in “Active(+)” regime than that in “Active” regime. The

vector of shocks, ut = [uPCt , uMP
t , uTGt ]′, is independently and conditionally normally distributed

with mean zero and diagonal variance-covariance matrix, Et−1[utu
′
t] = Σu(St). I refer to Campbell,

Pflueger, and Viceira (2015) for a detailed description of the model. I employ the solution algorithm

proposed by Farmer, Waggoner, and Zha (2011) and use Bayesian method to make inference on

model coefficients and regime probabilities. The details are explained in Appendix E.

There are several takeaways from this exercise. First, the estimated monetary policy coefficients

(reported in Appendix E) and the smoothed regime probabilities in Figure 4 are broadly consistent

with Table 2 and Figure 3 in that the central bank’s response to inflation (and to the output

gap) has been active since the mid-1980s. Second, the variances of the structural innovations

(reported in Appendix E) were largest from the 1970s to the mid-1980s (passive regime) which

are consistent with Table 2 (captured by larger inflation innovation variance). Third, data do not

strongly support the existence of the third monetary policy regime. It suffices to have a single

active regime in addition to the passive regime.

Overall, I find that the paths for monetary policy under the New Keynesian model are broadly

consistent with my proposed model.27

5 Conclusion

The paper studies the behavior of the nominal U.S. Treasury yield curve and the changing stock-

bond return correlations in a model that allows for regime switches in the aggressiveness of monetary

policy and in the conditional covariance of macroeconomic shocks. The model follows the long-run

risk literature for the real side of the economy and extends it to add the nominal sector and changing

regimes. The estimation identifies inflation as countercyclical from the early 1970s through the late

27It is important to note that the regimes in Figure 4 are estimated with output gap, inflation, and the federal

funds rate (without asset data). It is possible that the regime probabilities might change with the inclusion of asset

data.
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1990s and as procyclical from the late 1990s onward. This is overlaid with the “active” monetary

policy regime that dominates most of the sample outside of the 1970s period, which is classified

as “passive.” The model is used to study the key moments of the yield curve and the correlation

between bond-stock returns. It approximately matches the timing during which the stock-bond

correlation switches signs from positive to negative in the late 1990s.
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Online Appendix

A Piazzesi and Schneider (2006) Revisited

Following Piazzesi and Schneider (2006), I assume that the vector of inflation and consumption

growth has the following state space representation

zt = st−1 + εt, zt = [πt,∆ct]
′ (A.1)

st = φst−1 + φKεt, εt ∼ N(0,Ω).

The state vector st is two dimensional and contains expected inflation and consumption; φ is the

2×2 autoregressive matrix; and K is the 2×2 gain matrix, where,

φ =

[
φ1 φ12

φ21 φ2

]
, K =

[
k1 k12

k21 k2

]
, Ω =

[
Ω1 Ω12

Ω12 Ω2

]
.

Using the Bayesian method, I estimate this system with data for consumption and inflation. Ta-

ble A-1 provides the details of parameter prior and posterior distributions. Because the complete

estimation information in the tables can be difficult to absorb fully, I briefly present aspects of the

results in a more revealing way. The parameters to be estimated are those in the transition equa-

tion φ,K and those in the covariance matrix Ω. Hence, I simply display the estimated transition

equation and the estimated Ω matrices.

1. From 1959:Q1 to 1997:Q4,

st =

 0.96
[0.92,0.98]

0.14
[0.03,0.25]

−0.06
[−0.10,−0.02]

0.52
[0.36,0.69]

 st−1 +

 0.63
[0.57,0.73]

0.25
[0.07,0.50]

−0.21
[−0.22,−0.16]

0.27
[0.11,0.57]

 εt

εt ∼ N(0,

 2.35
[2.13,2.60]

−0.14
[−0.21,−0.05]

−0.14
[−0.21,−0.05]

2.68
[2.40,2.96]

), var(φKεt) =

 1.06
[0.68,2.10]

−0.14
[−0.26,0.52]

−0.14
[−0.26,0.52]

0.32
[0.14,1.02]

.
2. From 1998:Q1 to 2014:Q4,

st =

 0.41
[0.28,0.55]

0.26
[0.12,0.39]

0.07
[−0.03,0.18]

0.83
[0.72,0.91]

 st−1 +

 0.33
[0.12,0.69]

0.43
[0.14,0.86]

−0.02
[−0.20,0.24]

0.71
[0.48,1.02]

 εt

εt ∼ N(0,

 5.42
[4.63,6.37]

−0.01
[−0.09,0.07]

−0.01
[−0.09,0.07]

1.10
[0.93,1.30]

), var(φKεt) =

 0.78
[0.08,4.14]

0.29
[0.01,2.28]

0.29
[0.01,2.28]

0.55
[0.42,1.77]

.
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Table A-1: Posterior Estimates

1959:Q1 - 1997:Q4 1998:Q1 - 2014:Q4

Prior Posterior Posterior

Distr. 20% 80% 20% 50% 80% 20% 50% 80%

φ1 NT [-.35 .99] 0.92 0.96 0.98 0.28 0.41 0.55

φ12 N [-.82 .82] 0.03 0.14 0.25 0.12 0.26 0.39

φ21 N [-.82 .82] -0.10 -0.06 -0.02 -0.03 0.07 0.18

φ2 NT [-.35 .99] 0.35 0.52 0.69 0.72 0.83 0.91

k1 N [.15 1.81] 0.63 0.71 0.80 0.53 0.87 1.26

k12 N [-.82 .82] 0.07 0.18 0.29 0.22 0.53 0.90

k21 N [-.82 .82] -0.44 -0.32 -0.20 -0.26 -0.10 0.02

k2 N [.15 1.81] 0.33 0.55 0.83 0.68 0.81 0.95

Ω1 IG [0.80 5.78] 2.13 2.35 2.60 4.63 5.42 6.37

Ω12 N [-.82 .82] -0.21 -0.14 -0.05 -0.09 -0.01 0.07

Ω2 IG [0.80 5.78] 2.40 2.68 2.96 0.93 1.10 1.30

Notes: The estimation results are based on (annualized) quarterly consumption growth data and inflation data from

1959:Q1 to 2014:Q4. N , NT , and IG are normal, truncated (outside of the interval (−1, 1)) normal, and inverse

gamma distributions, respectively.

Here, I mention a few of many noteworthy aspects of the results. First, the autoregressive matrix

φ estimates are quite different across the two periods. More specifically, I find a large decline in

the persistence of the expected inflation process. Also, the lagged inflation used to predict negative

future consumption, but in the last fifteen years it positively forecasts consumption. Second, the

sign of the estimated covariance (in the reduced-form covariance matrix var(φKεt)) changed from

negative to positive during the recent periods.

B Asset Pricing Solution of a Regime-Switching Model

B.1 Derivation of Approximate Analytical Solutions

The Euler equation for the economy is

1 = Et [exp (mt+1 + rk,t+1)] , k ∈ {c,m} , (A.2)
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where mt+1 = θ log δ − θ
ψ∆ct+1 + (θ− 1)rc,t+1 is the log stochastic discount factor, rc,t+1 is the log

return on the consumption claim, and rm,t+1 is the log market return. All returns are given by the

approximation of Campbell and Shiller (1988a):

rc,t+1 = κ0,c + κ1,czc,t+1 − zc,t + gc,t+1, (A.3)

rm,t+1 = κ0,m + κ1,mzm,t+1 − zm,t + gd,t+1.

The first-order condition of the agent’s expected utility maximization problem yields the Euler

equations

Et [exp (mt+1 + rk,t+1)] = 1, k ∈ {c,m}, Real Assets, (A.4)

p$
n,t = logEt[exp(mt+1 − πt+1 + p$

n−1,t+1)], Nominal Assets, (A.5)

where rc,t+1 is the log return on the consumption claim, rm,t+1 is the log market return, and p$
n,t

is the nominal n-maturity log bond price. The solutions to (A.4) and (A.5) depend on the joint

dynamics of consumption, dividend growth, and inflation.

Asset prices are determined from the approximate analytical solution described by Bansal and

Zhou (2002). Let It denote the current information set {St, Xt} and define It+1=It ∪ {St+1}, which

includes information regarding St+1 in addition to It. The derivation of (A.4) follows Bansal and

Zhou (2002), who repeatedly use the law of iterated expectations. For example, real asset returns

are determined by

1 = E
(
E [exp (mt+1 + rm,t+1) | It+1] | It

)
=

3∑
j=1

ΠijE
(

exp (mt+1 + rm,t+1) | St+1 = j,Xt

)

0 =
3∑
j=1

Πij

(
E [mt+1 + rm,t+1 | St+1 = j,Xt] +

1

2
V [mt+1 + rm,t+1 | St+1 = j,Xt]

)
︸ ︷︷ ︸

B

.

The first line uses the law of iterated expectations; the second line uses the definition of Markov

chain; and the third line applies log-linearization (i.e., exp(B) − 1 ≈ B) and a log-normality

assumption. The derivation of (A.5) can be done analogously.

B.2 Real Endowments

With regime switching coefficients, the joint consumption and dividend dynamics are

Gt+1 = µ+ ϕXt + Σηt+1, ηt ∼ N(0, I),

Xt+1 = Φ(St+1)Xt + Ω(St+1)Σx(St+1)ηx,t+1, ηx,t ∼ N(0, I),
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where Gt = [∆ct,∆dt]
′, µ = [µc, µd]

′, ηt = [ηc,t, ηd,t]
′, Xt = [xc,t, xπ,t, xi,t]

′, ηx,t = [ηxc,t, ηxπ,t, ηxi,t]
′

and

ϕ =

[
1 0 0

φ 0 0

]
, Σ =

[
σc 0

0 σd

]
,

Φ =


ρc 0 0

0 1 0

0 0 ρi

 , Ω =


1 0 0

β 1 0

0 0 1

 , Σx =


σxc 0 0

0 σxπ 0

0 0 σxi

 .
It is important to mention that I conveniently decompose ηx,t+1 in (3), which is (A) below, into

ηx,t+1︸ ︷︷ ︸
(A)

= Ω(St+1)Σx(St+1) ηx,t+1︸ ︷︷ ︸
(B)

. (A.6)

ηxt in (B) are now orthogonalized.

B.3 Real Consumption Claim

If the conjectured solution to log price-consumption ratio is

zc,t = A0(St) +A1(St)Xt,

then the return on the consumption claim can be written as

rc,t+1 = κ0 + µc + κ1A0(St+1)−A0(St) +

(
e1 + κ1A1(St+1)Φ(St+1)−A1(St)

)
Xt

+ κ1A1(St+1)Ω(St+1)Σx(St+1)ηx,t+1 + e1Σηt+1.

The solutions for the A’s that describe the dynamics of the price-consumption ratio are determined

from

Et(mt+1 + rc,t+1) +
1

2
V art(mt+1 + rc,t+1) = 0.


A1(1)′

A1(2)′

A1(3)′

 =


I − p11κ1Φ(1) −p12κ1Φ(2) −p13κ1Φ(3)

−p21κ1Φ(1) I − p22κ1Φ(2) −p23κ1Φ(3)

−p31κ1Φ(1) −p32κ1Φ(2) I − p33κ1Φ(3)


−1

(1− 1

ψ
)


e′1

e′1

e′1

 ,

A0(1)

A0(2)

A0(3)

 = (I − κ1Π)−1Π


log δ + κ0 + (1− 1

ψ )µc + θ
2(1− 1

ψ )2e1ΣΣ′e′1 + θ
2Ψ(1)Ψ(1)′

log δ + κ0 + (1− 1
ψ )µc + θ

2(1− 1
ψ )2e1ΣΣ′e′1 + θ

2Ψ(2)Ψ(2)′

log δ + κ0 + (1− 1
ψ )µc + θ

2(1− 1
ψ )2e1ΣΣ′e′1 + θ

2Ψ(3)Ψ(3)′

 ,
Ψ(St) = κ1A1(St+1)Ω(St+1)Σx(St+1).
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The log pricing kernel is

mt+1 = θ log δ + (θ − 1)
(
κ0 + κ1A0(St+1)−A0(St)

)
− γµc

− 1

ψ
e1Xt + (θ − 1)

(
(1− 1

ψ
)e1 + κ1A1(St+1)Φ(St+1)−A1(St)

)
Xt

− γe1Σηt+1 + (θ − 1)κ1A1(St+1)Ω(St+1)Σx(St+1)ηx,t+1.

B.4 Real Dividend Claim/Market Return

Analogously, the conjectured solution to log price-dividend ratio is

zm,t = A0,m(St) +A1,m(St)Xt,

and the return on the dividend claim can be written as

rm,t+1 = κ0,m + µd + κ1,mA0,m(St+1)−A0,m(St) +

(
φe1 + κ1,mA1,m(St+1)Φ(St+1)−A1,m(St)

)
Xt

+ κ1,mA1,m(St+1)Ω(St+1)Σx(St+1)ηx,t+1 + e2Σηt+1.

The solutions for Ams are
A1,m(1)′

A1,m(2)′

A1,m(3)′

 =


I − p11κ1,mΦ(1) −p12κ1,mΦ(2) −p13κ1,mΦ(3)

−p21κ1,mΦ(1) I − p22κ1,mΦ(2) −p23κ1,mΦ(3)

−p31κ1,mΦ(1) −p32κ1,mΦ(2) I − p33κ1,mΦ(3)


−1

(φ− 1

ψ
)


e′1

e′1

e′1

 ,

A0,m(1)

A0,m(2)

A0,m(3)

 = (I − κ1,mΠ)−1

(
Π


(θ − 1)κ1A0(1) + 1

2Ψm(1)Ψm(1)′

(θ − 1)κ1A0(2) + 1
2Ψm(2)Ψm(2)′

(θ − 1)κ1A0(3) + 1
2Ψm(3)Ψm(3)′

+


Ξm(1)

Ξm(2)

Ξm(3)

),
Ξm(St) = θ log δ + (θ − 1)(κ0 −A0(St))− γµc + κ0,m + µd +

1

2

(
γ2e1ΣΣ′e′1 + e2ΣΣ′e′2

)
,

Ψm(St) =

(
(θ − 1)κ1A1(St+1) + κ1,mA1,m(St+1)

)
Ω(St)Σx(St).

B.5 Linearization Parameters

Let p̄j =
∑

i∈3 p̄iΠij . For any asset, the linearization parameters are endogenously determined by

the following system of equations

z̄i =

3∑
j=1

p̄jA0,i(j),

κ1,i =
exp(z̄i)

1 + exp(z̄i)
,

κ0,i = log(1 + exp(z̄i))− κ1,iz̄i.
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The solution is numerically determined by iteration until reaching a fixed point of z̄i for i ∈ {c,m} .

B.6 Endogenous Inflation Process under a Regime-Switching Monetary Policy

Rule

The inflation target augmented monetary policy rule is

it = τ0(St) + τc(St)xc,t + τπ(St)(πt − Γ0(St)− xπ,t) + xπ,t + xi,t, (A.7)

and the conjectured solution for inflation process is

πt = Γ0(St) +
[

Γ1,c(St), Γ1,π(St), Γ1,i(St)
]

︸ ︷︷ ︸
Γ1(St)

Xt. (A.8)

Combining equations (A.7) and (A.8), I rewrite the monetary policy rule as

it = τ0(St) +
[
τc(St) + τπ(St)Γ1,c(St), 1− τπ(St) + τπ(St)Γ1,π(St), 1 + τπ(St)Γ1,i(St)

]
Xt. (A.9)

Setting equation (A.9) equal to

it = −Et(mt+1 − πt+1)− 1

2
V art(mt+1 − πt+1),

we can solve for
Γ1,c(1)

Γ1,c(2)

Γ1,c(3)

 =

(
τπ(1) 0 0

0 τπ(2) 0

0 0 τπ(3)

−Π


ρc(1) 0 0

0 ρc(2) 0

0 0 ρc(3)

)−1


1
ψ − τc(1)
1
ψ − τc(2)
1
ψ − τc(3)

 ,


Γ1,π(1)

Γ1,π(2)

Γ1,π(3)

 =

(
τπ(1) 0 0

0 τπ(2) 0

0 0 τπ(3)

−Π


ρπ(1) 0 0

0 ρπ(2) 0

0 0 ρπ(3)

)−1


τπ(1)− 1

τπ(2)− 1

τπ(3)− 1

 ,


Γ1,i(1)

Γ1,i(2)

Γ1,i(3)

 = −
(

τπ(1) 0 0

0 τπ(2) 0

0 0 τπ(3)

−Π


ρi(1) 0 0

0 ρi(2) 0

0 0 ρi(3)

)−1


1

1

1

 ,
and the constant 

Γ0(1)

Γ0(2)

Γ0(3)

 = Π−1

(
Ψπ(1)

Ψπ(2)

Ψπ(3)

)+


Ξπ(1)

Ξπ(2)

Ξπ(3)

 ,
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where

Ξπ(St) = (θ − 1)κ1A0(St)

+
1

2

{(
(θ − 1)κ1A1(St)− Γ1(St)

)
Ω(St)Σx(St)

}{(
(θ − 1)κ1A1(St)− Γ1(St)

)
Ω(St)Σx(St)

}′
,

Ψπ(St) = τ0(St) +

(
θ log δ + (θ − 1)κ0 − γµc +

γ2

2
e1ΣΣ′e′1

)
− (θ − 1)A0(St).

B.7 Nominal Bond Prices

The log nominal pricing kernel is

m$
t+1 = mt+1 − πt+1

= θ log δ + (θ − 1)
(
κ0 + κ1A0(St+1)−A0(St)

)
− γµc − Γ0(St+1)

−
(

1

ψ
e1 + Γ1(St+1)Φ(St+1)

)
Xt + (θ − 1)

(
(1− 1

ψ
)e1 + κ1A1(St+1)Φ(St+1)−A1(St)

)
Xt

− γe1Σηt+1 +

(
(θ − 1)κ1A1(St+1)− Γ1(St+1)

)
Ω(St+1)Σx(St+1)ηx,t+1.

The nominal n-maturity log bond price satisfies

p$
n,t(St) = C$

n,0(St) + C$
n,1(St)Xt,

= Et(p
$
n−1,t+1(St+1) +mt+1 − πt+1) +

1

2
V art(p

$
n−1,t+1(St+1) +mt+1 − πt+1),

where the bond loadings follow the recursions
C$
n,1(1, :)

C$
n,1(2, :)

C$
n,1(3, :)

 = Π


{
C$
n−1,1(1, :)− Γ1(1)

}
Φ(1){

C$
n−1,1(2, :)− Γ1(2)

}
Φ(2){

C$
n−1,1(3, :)− Γ1(3)

}
Φ(3)

+
1

ψ


e1

e1

e1



C$
n,0(1)

C$
n,0(2)

C$
n,0(3)

 = Π


C$
n−1,0(1)− Γ0(1) + (θ − 1)κ1A0(1) + 1

2Ψn−1,c(1)Ψn−1,c(1)′

C$
n−1,0(2)− Γ0(2) + (θ − 1)κ1A0(2) + 1

2Ψn−1,c(2)Ψn−1,c(2)′

C$
n−1,0(3)− Γ0(3) + (θ − 1)κ1A0(3) + 1

2Ψn−1,c(3)Ψn−1,c(3)′

+


Ξc(1)

Ξc(2)

Ξc(3)


Ξc(St) = θ log δ + (θ − 1)(κ0 −A0(St))− γµc +

1

2
γ2e1ΣΣ′e′1

Ψn−1,c(St) =
{
C$
n−1,1(St) + (θ − 1)κ1A1(St)− Γ1(St)

}
Ω(St)Σx(St).

The loadings on nominal bond yields are

B$
n,0 = − 1

n
C$
n,0, B$

n,1 = − 1

n
C$
n,1.
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The log return to holding a n-maturity nominal bond from t to t+ 1 is

r$
n,t+1 = C$

n−1,0(St+1)− C$
n,0(St) +

(
C$
n−1,1(St+1)Φ(St+1)− C$

n,1(St)

)
Xt

+C$
n−1,1(St+1)Ω(St+1)Σx(St+1)ηx,t+1.

The log return to holding a n-maturity nominal bond from t to t+ 1 in excess of the log return to

a one-period nominal bond is

rx$
n,t+1 = C$

n−1,0(St+1)− C$
n,0(St) + C$

1,0(St) +

(
C$
n−1,1(St+1)Φ(St+1)− C$

n,1(St) + C$
1,1(St)

)
Xt

+C$
n−1,1(St+1)Ω(St+1)Σx(St+1)ηx,t+1.

The one-period expected excess return on nominal bonds can be written in the following form

E(rx$
n,t+1|St = k) +

1

2
V ar(rx$

n,t+1|St = k) = −Cov(m$
t+1, rx

$
n,t+1|St = k)

= −Π(k, :)×
(

Λ1(k, 1)Λ2(k, 1) + Λ3(k, 1)

Λ1(k, 2)Λ2(k, 2) + Λ3(k, 2)

Λ1(k, 3)Λ2(k, 3) + Λ3(k, 3)

)

≈ −Π(k, :)×


Λ3(k, 1)

Λ3(k, 2)

Λ3(k, 3)


where the approximation is exact in a fixed-regime economy and

Λ1(k, j) = K ′tC(j)′ −Π(k, :)


K ′tC(1)′

K ′tC(2)′

K ′tC(3)′



Λ2(k, j) = M(j)Kt −Π(k, :)


M(1)Kt

M(2)Kt

M(3)Kt


Λ3(k, j) =

(
(θ − 1)κ1A1(j)− Γ1(j)

)
Ω(j)Σx(j)Σx(j)′Ωx(j)′(C$

n−1,1(j))
′

and

M(j) =
[

(θ − 1)κ1A0(j)− Γ0(j) (θ − 1)κ1A1(j)Φ(j)− Γ1(j)Φ(j)
]

C(j) =
[
C$
n−1,0(j) C$

n−1,1(j)Φ(j)
]

Kt =

[
1

Xt

]
.
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Intuitively, I consider the limiting case in which the regime is fixed. The one-period expected excess

return is Et(rx
$
n,t+1) + 1

2V art(rx
$
n,t+1)

= −
(
(θ − 1)κ1A1 − Γ1

)
ΩΣxΣ′xΩ′x(C$

n−1,1)
′

= −(n− 1)σ2
xc

{
(γ − 1

ψ
)

κ1
1− κ1ρc

+
1/ψ − τc
τπ − ρc

}{(
1/ψτπ − ρcτc
τπ − ρc

)
1

n− 1

(
1− ρn−1c

1− ρc

)
+ β

}
−(n− 1)σ2

xc

{(
1/ψτπ − ρcτc
τπ − ρc

)
1

n− 1

(
1− ρn−1c

1− ρc

)}
β − (n− 1)σ2

xc

(
β2 +

σ2
xπ

σ2
xc

)
where

−
(
(θ − 1)κ1A1 − Γ1

)
=

[
(γ − 1

ψ ) κ1
1−κ1ρc + 1/ψ−τc

τπ−ρc , 1
]

ΩΣxΣ′xΩ′x =

[
σ2
xc βσ2

xc

βσ2
xc β2σ2

xc + σ2
xπ

]

C$
n−1,1 =

[
−
(

1/ψτπ−ρcτc
τπ−ρc

)(
1−ρn−1

c
1−ρc

)
, -(n− 1)

]
.

After some tedious algebra, the sign of the one-period expected excess return can be expressed as

sign

(
Et(rx

$
n,t+1) +

1

2
V art(rx

$
n,t+1)

)
= −sign

[
(B$

n−1,1,c + β)

{
(γ − 1/ψ)κ1

1− κ1ρc
+

1/ψ − τc
τπ − ρc

+ β

}
+
σ2
xπ

σ2
xc

]
.

B.8 Real Stock and Nominal Bond Return Correlation

The return on dividend claim (i.e., market return) is

rm,t+1 = κ0,m + µd + κ1,mA0,m(St+1)−A0,m(St) +

(
φe1 + κ1,mA1,m(St+1)Φ(St+1)−A1,m(St)

)
Xt

+ κ1,mA1,m(St+1)Ω(St+1)Σx(St+1)ηx,t+1 + e2Σηt+1.

The conditional covariance between the two is

Cov(r$
n,t+1, rm,t+1|St = k) = Π(k, :)×

(
Λ1(k, 1)Λ2(k, 1) + Λ3(k, 1)

Λ1(k, 2)Λ2(k, 2) + Λ3(k, 2)

Λ1(k, 3)Λ2(k, 3) + Λ3(k, 3)

)

≈ Π(k, :)×


Λ3(k, 1)

Λ3(k, 2)

Λ3(k, 3)
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where the approximation is exact in a fixed-regime economy and

Λ1(k, j) = K ′tC(j)′ −Π(k, :)


K ′tC(1)′

K ′tC(2)′

K ′tC(3)′



Λ2(k, j) = Am(j)Kt −Π(k, :)


Am(1)Kt

Am(2)Kt

Am(3)Kt


Λ3(k, j) = κ1,mA1,m(j)Ω(j)Σx(j)Σx(j)′Ωx(j)′(C$

n−1,1(j))
′

and

Am(j) =
[
κ1,mA0,m(j) κ1,mA0,m(j)Φ(j)

]
C(j) =

[
C$
n−1,0(j) C$

n−1,1(j)Φ(j)
]

Kt =

[
1

Xt

]
.

I consider the limiting case in which the regime is fixed. The stock-bond return covariance is

Covt(r
$
n,t+1, rm,t+1) = −κ1,mσ

2
xc

(
φ− 1/ψ

1− κ1,mρc

)
(n− 1)

(
B$
n−1,1,c + β

)
,

from which I can deduce that

sign(Covt(r
$
n,t+1, rm,t+1)) = −sign

(
B$
n−1,1,c + β

)
.

Since rx$
n,t+1 = r$

n,t+1 − y$
1,t,

sign(Covt(rx
$
n,t+1, rm,t+1)) = −sign

(
B$
n−1,1,c + β

)
.

B.9 k Step ahead Expectations

Any variable Kt+1 that can be expressed as

Kt+1 = Λ0(St+1) + Λ1(St+1)Xt+1

Xt+1 = Φ(St+1)Xt + Ω(St+1)Σx(St+1)ηx,t+1, ηx,t ∼ N(0, I)
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has the following k-step-ahead expectation form of

E(Kt+k|St) = E(Λ0(St+k)|St)︸ ︷︷ ︸
Λ
(k)
0

+E(Λ1(St+k)Φ(St+k)Φ(St+k−1) . . .Φ(St+1)|St)︸ ︷︷ ︸
Λ
(k)
1

Xt (A.10)

Kt+k = Λ0(St+k) + Λ1(St+k)Φ(St+k)Φ(St+k−1) . . .Φ(St+1)Xt

+ Λ1(St+k)Ω(St+1)Σx(St+1)ηx,t+k

+

k−2∑
i=0

Λ1(St+k)

i∏
j=0

Φ(St+k−j)Ω(St+k−i−1)Σx(St+k−i−1)ηx,t+k−i−1.

We can characterize the constant and the slope coefficients as

Λ
(k)
0 (j) =

[
Λ0(1) Λ0(2) Λ0(3)

]
p11 p12 p13

p21 p22 p23

p31 p32 p33


(k−1)

×


p1j

p2j

p3j

 ,

Λ
(k)
1 (j) =

[
Λ1(1) Λ1(2) Λ1(3)

]
p11Φ(1) p12Φ(1) p13Φ(1)

p21Φ(2) p22Φ(2) p23Φ(2)

p31Φ(3) p32Φ(3) p33Φ(3)


(k−1)

×


Φ(1) 0 0

0 Φ(2) 0

0 0 Φ(3)



p1j

p2j

p3j

 .
The cumulative k-step-ahead expectation is

k−1∑
i=0

E(Kt+i|St = j) =

(
Λ

(0)
0 (j) + Λ

(1)
0 (j) + . . .+ Λ

(k−1)
0 (j)

)
(A.11)

+

(
Λ

(0)
1 (j) + Λ

(1)
1 (j) + . . .+ Λ

(k−1)
1 (j)

)
Xt.

B.10 Yield Decomposition

The log yield for n-maturity nominal bond can be expressed as

y$
n,t = − 1

n
C$
n,0(St)−

1

n
C$
n,1(St)Xt.

The term premium for n-maturity bond is

ξn,t = y$
n,t −

1

n

n−1∑
i=0

E(y$
1,t+i|St = j), (A.12)

=
1

n

(
C

$,(0)
1,0 (j) + . . .+ C

$,(n−1)
1,0 (j)− C$

n,0(j)

)
+

1

n

(
C

$,(0)
1,1 (j) + . . .+ C

$,(n−1)
1,1 (j)− C$

n,1(j)

)
Xt.
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The real rate for n-maturity bond is

yn,t = y$
n,t −

1

n

n∑
i=1

E(πt+i|St = j)− ξn,t. (A.13)

B.11 News and Shock Decomposition

For illustrative purposes, I assume that St−1 = m and St = j.

η
(k)
K,t = Et

(
1

k

k∑
i=1

Kt+i

)
− Et−1

(
1

k

k∑
i=1

Kt+i

)
(A.14)

= E

(
1

k

k∑
i=1

Kt+i|St = j

)
− E

(
1

k

k∑
i=1

Kt+i|St−1 = m

)
=

1

k

(
Λ

(1)
0 (j) + . . .+ Λ

(k)
0 (j)

)
+

1

k

(
Λ

(1)
1 (j) + . . .+ Λ

(k)
1 (j)

)
Xt

−1

k

(
Λ

(2)
0 (m) + . . .+ Λ

(k+1)
0 (m)

)
− 1

k

(
Λ

(2)
1 (m) + . . .+ Λ

(k+1)
1 (m)

)
Xt−1

=
1

k

(
Λ

(1)
0 (j) + . . .+ Λ

(k)
0 (j)

)
+

1

k

(
Λ

(1)
1 (j) + . . .+ Λ

(k)
1 (j)

)(
Φ(j)Xt−1 + Ω(j)Σx(j)ηx,t

)
−1

k

(
Λ

(2)
0 (m) + . . .+ Λ

(k+1)
0 (m)

)
− 1

k

(
Λ

(2)
1 (m) + . . .+ Λ

(k+1)
1 (m)

)
Xt−1

=
1

k

(
Λ

(1)
0 (j) + . . .+ Λ

(k)
0 (j)

)
− 1

k

(
Λ

(2)
0 (m) + . . .+ Λ

(k+1)
0 (m)

)
+

1

k

(
Λ

(1)
1 (j) + . . .+ Λ

(k)
1 (j)

)
Φ(j)Xt−1 −

1

k

(
Λ

(2)
1 (m) + . . .+ Λ

(k+1)
1 (m)

)
Xt−1

+
1

k

(
Λ

(1)
1 (j) + . . .+ Λ

(k)
1 (j)

)
Ω(j)Σx(j)ηx,t

=
1

k

({
Λ

(1)
0 (j)− Λ

(2)
0 (m)

}
+ . . .+

{
Λ

(k)
0 (j)− Λ

(k+1)
0 (m)

})
+

1

k

({
Λ

(1)
1 (j)Φ(j)− Λ

(2)
1 (m)

}
+ . . .+

{
Λ

(k)
1 (j)Φ(j)− Λ

(k+1)
1 (m)

})
Xt−1

+
1

k

(
Λ

(1)
1 (j) + . . .+ Λ

(k)
1 (j)

)
Ω(j)Σx(j)ηx,t

denotes the news.

εK,t = Kt − E
(
Kt|St−1

)
(A.15)

= Λ0(j) + Λ1(j)Xt − Λ
(1)
0 (m)− Λ

(1)
1 (m)Xt−1

= Λ0(j) + Λ1(j)

(
Φ(j)Xt−1 + Ω(j)Σx(j)ηx,t

)
− Λ

(1)
0 (m)− Λ

(1)
1 (m)Xt−1

=

(
Λ0(j)− Λ

(1)
0 (m)

)
+

(
Λ1(j)Φ(j)− Λ

(1)
1 (m)

)
Xt−1 + Λ1(j)Ω(j)Σx(j)ηx,t
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denotes the shocks.

If St−1 = j and St = j, we can express η
(k)
K,t and εK,t by

η
(k)
K,t =

1

k

({
Λ

(1)
0 (j)− Λ

(2)
0 (j)

}
+ . . .+

{
Λ

(k)
0 (j)− Λ

(k+1)
0 (j)

})
(A.16)

+
1

k

({
Λ

(1)
1 (j)Φ(j)− Λ

(2)
1 (j)

}
+ . . .+

{
Λ

(k)
1 (j)Φ(j)− Λ

(k+1)
1 (j)

})
Xt−1

+
1

k

(
Λ

(1)
1 (j) + . . .+ Λ

(k)
1 (j)

)
Ω(j)Σx(j)ηx,t

≈ 1

k

(
Λ

(1)
1 (j) + . . .+ Λ

(k)
1 (j)

)
Ω(j)Σx(j)ηx,t,

εK,t =

(
Λ0(j)− Λ

(1)
0 (j)

)
+

(
Λ1(j)Φ(j)− Λ

(1)
1 (j)

)
Xt−1 + Λ1(j)Ω(j)Σx(j)ηx,t

≈ Λ1(j)Ω(j)Σx(j)ηx,t.

C Data
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Table A-2: Data (Annualized)

Consumption Inflation

E(∆c) 1.90 E(π) 3.71

σ(∆c) 0.93 σ(π) 1.10

corr(∆c, π) -0.05 AC(π) 0.62

Log Price-Dividend Ratio Stock Market Returns

E(pd) 3.60 E(rm) 5.75

σ(pd) 0.37 σ(rm) 15.48

Bond Yields Stock-Bond Return Correlation

E(y$
1) 5.26 E(corr(rm, y

$
1)) 0.08

E(y$
2) 5.47 E(corr(rm, y

$
2)) 0.08

E(y$
3) 5.65 E(corr(rm, y

$
3)) 0.09

E(y$
4) 5.81 E(corr(rm, y

$
4)) 0.10

E(y$
5) 5.92 E(corr(rm, y

$
5)) 0.10

Notes: The data moments for consumption are based on the measurement-error-free monthly consumption growth

series from Schorfheide, Song, and Yaron (2016). I use daily stock market returns and k-year bond returns to compute

the realized conditional correlation, corrt(rm,t+1, r
$
ky,t+1), where k = 1, ..., 5. The sample ranges from 1963:M1 to

2014:M12.
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Figure A-1: Data (Annualized)
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Notes: All data are annualized. The light-gray shaded bars indicate the NBER recession dates.
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D Bayesian Inference

Posterior inference is implemented with a Metropolis-within-Gibbs sampler, which builds on the

work of Carter and Kohn (1994) and Kim and Nelson (1999). Y1:T denotes the sequence of obser-

vations, where

Yt = (∆ct, πt, pdt, y1,t, y2,t, y3,t, y4,t, y5,t).

Moreover, let S1:T be the sequence of hidden states, and let Θ = (Θ1,Θ2), where

Θ1 = (δ, γ, ψ),

Θ2 = (µc, µd, ρc, ρi, φ, σc, σd, σxc, σxπ, σxi, β(−), β(+), τ0(P ), τ0(A), τc(P ), τc(A), τπ(P ), τπ(A)),

Φ = ({Πij}i,j={1,2,3}).

The Metropolis-within-Gibbs algorithm involves iteratively sampling from three conditional pos-

terior distributions. To initialize the sampler, I start from (Θ0,Φ0).

Algorithm: Metropolis Sampler

For i = 1, . . . , N :

1. Draw Si+1
1:T conditional on Θi, Φi, and Y1:T . This step is implemented using the multi-move

simulation smoother described in Section 9.1.1 of Kim and Nelson (1999).

2. Draw Φi+1 conditional on Θi, Si+1
1:T , and Y1:T . If the dependence of the distribution of the

initial state S1 on Φ is ignored, then it can be shown that the conditional posterior of Φ is of

the Dirichlet form. I use the resultant Dirichlet distribution as a proposal distribution in a

Metropolis-Hastings step.

3. Draw Θi+1, conditional on Φi+1, Si+1
1:T , and Y1:T . Since the prior distribution is nonconjugate,

I am using a random-walk Metropolis step to generate a draw from the conditional posterior

of Θ. The proposal distribution is N(Θi, cΩ).

I obtain the covariance matrix Ω of the proposal distribution in Step 2 as follows. Following

Schorfheide (2005), I maximize the posterior density,

p(Θ|Y1:T ) ∝ p(Y1:T |Θ)p(Θ),

to obtain the posterior mode Θ̃. I then construct the negative inverse of the Hessian at the mode. I

choose the scaling factor c to obtain an acceptance rate of approximately 40 percent. We initialize

our algorithm choosing (Θ0) in the neighborhood of (Θ̃) and use it to generate N = 100, 000 draws

from the posterior distribution.
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Table A-3: Prior Distributions

Distr. 5% 50% 95% Distr. 5% 50% 95%

Factor Shocks Transition Probability

β(+) U 0.5 5.0 9.5 p11 Dir 0.85 0.90 0.95

β(−) U -9.5 -5.0 -0.5 p21 Dir 0.02 0.05 0.09

σ IG 0.0008 0.0019 0.0061 p31 Dir 0.02 0.05 0.09

Monetary Policy p12 Dir 0.02 0.05 0.09

τ0 U 0.0014 0.0055 0.0095 p22 Dir 0.85 0.90 0.95

τπ(A) U 1.10 2.00 2.90 p32 Dir 0.02 0.05 0.09

τπ(P ) U 0.05 0.50 0.95 p13 Dir 0.02 0.05 0.09

τc U 0.05 0.50 0.95 p23 Dir 0.85 0.90 0.95

p33 Dir 0.02 0.05 0.09

Notes: Dir, IG, and U denote the dirichlet, inverse gamma, and uniform distributions, respectively.

E Campbell, Pflueger, and Viceira (2015) Revisited

I estimate the New Keynesian model proposed by Campbell, Pflueger, and Viceira (2015). The

model has three structural equations (IS curve, Phillips curve, and Monetary policy rule) and uses

the law of motion for time-varying inflation target.

1. IS curve : xt = ρx−(St)xt−1 + ρx+(St)Etxt+1 − ψ(St)(it − Etπt+1)

2. Phillips curve : πt = ρπ(St)πt−1 + (1− ρπ(St))Etπt+1 + κ(St)xt + uPCt

3. Monetary policy : it = ρi(St)it−1 + (1− ρi(St))
(
γx(St)xt + γπ(St)(πt − πTGt ) + πTGt

)
+ uMP

t

4. Inflation target : πTGt = πTGt−1 + uTGt ,

where xt is the log output gap, πt is the inflation rate, it is the log yield of a one month maturity

at time t, πTGt is inflation target, and ut = [uPCt , uMP
t , uTGt ]′, Et−1[utu

′
t] = Σu is diagonal and

homoskedastic.
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I employ the solution algorithm proposed by Farmer, Waggoner, and Zha (2011) (minimal state

variable solutions to Markov-switching rational expectations models)

αt =
[
xt, Etxt+1, πt, Etπt+1, it, π

TG
t

]′
ηt = [xt − Et−1xt, πt − Et−1πt]

Γ0(st)αt = Γ1(st)αt−1 + Ψ(st)ut + Π(st)ηt

and cast the model into state-space representation

Yt = Λαt, Yt = [xt, 4πt, 4it]
′ ,

αt = Φ(st)αt−1 + Σ(st)ut.

I use the Bayesian method (described in the previous section) to make inference on model coefficients

and the regime probabilities

Θ|(st = i) =
{
ρx−, ρx+, ψ, ρπ, κ, ρi, γx, γπ,Σu

}
,

P r(st = i), i ∈ {Passive, Active, Active(+)} .

The state space is estimated with output gap, inflation, and the federal funds rate (without asset

data).
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Table A-4: Posterior Estimates: New Keynesian Model

Prior Posterior

Passive Active Active(+)

Distr. 5% 95% 50% 5% 95% 50% 5% 95% 50% 5% 95%

Preferences

ρx− U [0.03 0.47] 0.258 [0.184 0.340] 0.072 [0.010 0.145] 0.087 [0.017 0.173]

ρx+ U [0.54 1.45] 0.777 [0.699 0.856] 0.967 [0.896 1.045] 0.945 [0.852 1.018]

ψ U [0.01 2.25] 0.031 [0.016 0.053] 0.059 [0.030 0.100] 0.036 [0.021 0.063]

ρπ B [0.74 0.99] 0.924 [0.867 0.965] 0.959 [0.902 0.990] 0.816 [0.752 0.884]

κ U [0.03 0.47] 0.101 [0.039 0.195] 0.045 [0.010 0.099] 0.027 [0.005 0.063]

Monetary Policy Rule Coefficients

ρi B [0.74 0.99] 0.833 [0.814 0.868] 0.852 [0.837 0.880] 0.938 [0.910 0.960]

γπ U [0.01 2.25] 0.719 [0.676 0.752] 1.379 [1.215 1.453] 1.439 [1.356 1.557]

γx U [0.01 2.25] 0.419 [0.339 0.494] 0.635 [0.514 0.733] 0.672 [0.564 0.812]

Standard Deviations of Macro Shocks

σPC IG [0.05 1.25] 0.373 [0.319 0.441] 0.130 [0.097 0.201] 0.210 [0.178 0.259]

σMP IG [0.05 1.25] 0.361 [0.325 0.404] 0.113 [0.090 0.149] 0.061 [0.050 0.073]

σTG IG [0.05 1.25] 0.716 [0.568 0.902] 0.302 [0.248 0.356] 0.192 [0.147 0.238]

Notes: B, U , and IG denote the beta, uniform, and inverse gamma distributions, respectively.
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