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ABSTRACT

This paper studies time variation in expected excess bond returns. We run regressions of

annual excess returns on forward rates. We find that a single factor predicts 1-year excess returns

on 1-5 year maturity bonds with an R2 up to 43%.  The single factor is a tent-shaped linear function

of forward rates. The return forecasting factor has a clear business cycle correlation: Expected

returns are high in bad times, and low in good times, and the return-forecasting factor forecasts long-

run output growth. The return-forecasting factor also forecasts stock returns, suggesting a common

time-varying premium for real interest rate risk. The return forecasting factor is poorly related to

level, slope, and curvature movements in bond yields. Therefore, it represents a source of yield curve

movement not captured by most term structure models. Though the return-forecasting factor

accounts for more than 99% of the time-variation in expected excess bond returns, we find

additional, very small factors that forecast equally small differences between long term bond returns,

and hence statistically reject a one-factor model for expected returns.
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1 Introduction

This paper studies time-varying risk premia in the term structure of interest rates. We
run regressions of one year excess returns — borrow at the one year rate, buy a long term
bond, and sell it in one year — on all forward rates available at the beginning of the
period. We find R2 values as high as 43%. The forecasts are statistically significant for
all maturities, even taking into account the small sample properties of test statistics. The
forecasts survive in subsamples, in real time, and across two datasets. Most importantly,
the pattern of regression coefficients is the same for all maturities. A single “return-
forecasting factor,” a single linear combination of forward rates (or yields), describes
time-variation in the expected return of all bonds. A rise in the return-forecasting factor
implies steadily greater expected excess returns for longer maturity bonds.

This work extends Fama and Bliss’s (1987) and Campbell and Shiller’s (1991) classic
regressions. Fama and Bliss found that the spread between the n-year forward rate and
the 1-year yield predicts the 1-year excess return of the n-year bond, with R2 about 15%.
Campbell and Shiller found similar results forecasting yield changes with yield spreads.
(Campbell 1995 is an excellent summary.) We more than double the R2. We find that the
same linear combination of forward rates predicts bond returns at all maturities, where
Fama and Bliss relate each bond’s expected excess return to a different forward spread.
Our return-forecasting factor completely drives out Fama and Bliss’s forward spread in
a multiple regression. Our regressions improve on Fama and Bliss’s statistical evidence
for forecastable returns, especially in small samples.

We explore extensively the macroeconomic and financial interpretation and implica-
tions of our bond return forecasts, both for their own interest and to make the forecasts
more concrete and believable. Fama and Bliss (1989), Harvey (1989) and many others
document that the term spreads which forecast bond returns are correlated with eco-
nomic conditions and forecast output and stock returns. It is natural to see how the
return-forecasting factor behaves in these roles. We find that the return-forecasting
factor has a clear business cycle correlation. Expected excess returns are high in bad
times, and low in good times. However, business cycle variables do not forecast bond
returns. The return-forecasting factor apparently reflects additional or better-measured
information. The return-forecasting factor forecasts GDP growth, but only at horizons
over a year, in contrast to the yield spread which forecasts output over short horizons.
Thus, we overturn the link between bond excess return forecasts and short term (mon-
etary?) output fluctuations suggested by term spreads. The return-forecasting factor
also forecasts stock returns, about as much as it would forecast the return of an 8-year
duration bond. The return-forecasting factor is a bit stronger in the 1990s, when interest
rate changes were largely real, than it is in the 1970s when inflation had a strong effect
on interest rates, and the return-forecasting factor is poorly correlated with inflation. All
of this evidence points to a time-varying, business cycle related premium for holding real
interest rate risk.

The return-forecasting factor also forecasts changes in short-term interest rates. The
classic expectations hypothesis predicts that a forward rate higher than the short rate
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should forecast a rise in the short rate. Fama and Bliss’s (1987) rejection of the expec-
tations hypothesis showed that this is not true — there is no tendency for the short rate
to rise in the first year after we observe a high forward rate. This phenomenon is the flip
side of Fama and Bliss’s return forecasts: since the interest rate does not rise, long term
bond prices do not fall to offset their higher initial yields, so long-term bond holders make
money. Our return-forecasting factor does forecast changes in 1-year rates. However, our
forecast is roughly speaking in the “wrong direction.” When the return-forecasting factor
signals high returns on long term bonds, it forecasts a decline in the short rate that will
raise long term bond prices, so long term bond holders make even more money than by
Fama and Bliss’s mechanism.

We also relate our findings to the term structure literature in finance, especially the
“multifactor affine model” literature in which all bond yields are driven by a few factors.
The return-forecasting factor is a tent-shaped linear combination of forward rates. It is
not a “curvature factor” in yields, though. Expressed as a function of yields rather than
forward rates, it is curved through the 4-5 year maturity rather than curved at the short
end. As a result, the return-forecasting factor is poorly related to the level, slope, and
curvature factors that describe the vast bulk of moments in bond yields and that form
the basis of most term structure models. Much of the variation in the return-forecasting
factor is related to the small additional yield curve factors that are conventionally ignored.
In addition, most term structure models are specified and estimated at monthly or even
weekly frequency. We find a moving average structure in the monthly yield data, possibly
induced by measurement error, so a monthly AR(1) yield representation raised to the
12th power misses much of the one-year bond return predictability and completely misses
the single-factor representation. To see the return forecasts, you must look directly at
the one year horizon, or more complex time series models.

These two facts may explain why the return-forecasting factor has gone unrecognized
for so long in this well-studied data, and these facts carry important implications for term
structure modeling. If you first posit a factor model for yields, estimate it on monthly
data, and then look at one year expected returns, you will completely miss excess return
forecastability. To incorporate our evidence on risk premia, a yield curve model must
include something like our return-forecasting factor in addition to traditional factors such
as “level,” “slope,” and “curvature,” even though the return-forecasting factor does little
improve the model’s fit for yields, and it must reconcile the difference between our direct
annual forecasts and those implied by short horizon regressions.

The return-forecasting factor accounts for more than 99% of the time-variation of
bond expected excess returns. However, additional very small factors forecast very small
spreads between long-term bond returns with statistical significance. These additional
factors cause a statistical rejection of a single factor model for expected returns. The
additional factors correspond to small, idiosyncratic, transitory movements in bond prices
or yields. These movements may represent small liquidity premia, exploitable by extreme
long-short positions (such as the famous 29.5 - 30 year LTCM bond spread), or they may
reflect measurement error in prices.
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The expectations hypothesis remains a workhorse in applied work in macroeconomics
and finance. For example, central banks care a lot about interest rates — how to forecast
interest rates, how monetary policy affects long term rates through its dynamic effect on
short term rates, or how to read market interest rate and inflation expectations from the
yield curve. Yet central bank researchers routinely impose the expectations hypothesis in
these exercises (Clews 2002, Scholtes 2002, Söderlind and Svensson, 1997). The European
Central Bank “Monthly Bulletin” explicitly uses the expectations hypothesis to compute
expected future short rates from futures (see, for example, page 13 of the August 2002
issue). The monetary VAR literature, when it does not simply ignore the information in
the term structure, routinely imposes the expectations hypothesis to distinguish expected
from unexpected movements in interest rates, for example Rudebusch (1998), Krueger
and Kuttner (1996). Our strong evidence against the expectations hypothesis casts doubt
on these and related applications.

Our single factor model is similar to the “single index” or “latent variable” models
used by Hansen and Hodrick (1983) and Ferson and Gibbons (1985) to capture time-
varying expected returns. Stambaugh (1988) ran regressions similar to ours of 2-6 month
bond excess returns on 1-6 month forward rates. After correcting for measurement error,
Stambaugh found a pattern of coefficients similar to ours (Figure 2, page 53). Stambaugh
rejected a one or two factor representation of this forecast. Ilmanen (1995) ran regressions
of monthly excess returns on bonds in different countries on a term spread, the real
short rate, stock returns, and bond return betas. Ilmanen did not reject a one factor
representation for expected international excess returns consisting of a linear combination
of these variables.

2 Bond return regressions

2.1 Notation

We use the following notation for log bond prices:

p
(n)
t = log price of n-year discount bond at time t.

We use parentheses to distinguish maturity from exponentiation in the superscript. The
log yield is

y
(n)
t ≡ −

1

n
p
(n)
t .

We write the log forward rate at time t for loans between time t+ n− 1 and t+ n as
f
(n−1→n)
t ≡ p(n−1)t − p(n)t ,

and we write the log holding period return from buying an n-year bond at time t and
selling it as an n− 1 year bond at time t+ 1 as

r
(n)
t+1 ≡ p(n−1)t+1 − p(n)t .
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We denote excess log returns by

rx
(n)
t+1 ≡ r(n)t+1 − y(1)t .

We use the same letters without n index to denote vectors across maturity, e.g.

rxt+1 =
h
rx

(2)
t rx

(3)
t rx

(4)
t rx

(5)
t

i>
.

When used as right hand variables, these vectors include an intercept, e.g.

yt =
h
1 y

(1)
t y

(2)
t y

(3)
t y

(4)
t y

(5)
t

i>
,

ft =
h
1 y

(1)
t f

(1→2)
t f

(2→3)
t f

(3→4)
t f

(4→5)
t

i>
.

We use overbars to denote averages across maturity, e.g.

rxt+1 ≡ 1
4

5X
n=2

rx
(n)
t+1.

2.2 Excess return forecasts

Our objective is to understand time-variation in expected excess bond returns. Hence,
we run regressions of bond excess returns at time t+1 on variables at time t. The natural
right hand variables are time t bond prices, yields or forward rates. Prices, yields and
forward rates are linear functions of each other, so the forecasts are the same. We find
that forward rates produce more elegant and interpretable results. Section 3 considers
the addition of macroeconomic variables to forecast bond returns, and finds that they do
not help. We focus on an annual horizon. We use the Fama-Bliss data (available from
CRSP) of 1 through 5 year zero coupon bond prices, so we can compute annual returns
directly.

Table 1 presents regressions of excess returns on all forward rates. The top panel of
Figure 1 graphs the regression coefficients as a function of the maturity on the right hand
side — each row of Table 1 is a line of the graph. (For now, ignore the bottom panel.)
The plot makes the pattern clear — the same function of forward rates forecasts holding
period returns at all maturities. Longer maturities just have greater loadings on this same
function. The pattern of coefficients suggests a common return-forecasting factor that is
a tent-shaped linear combination of forward rates.
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Table 1. Regressions of 1-year excess returns on all forward rates

n const. y(1) f (1→2) f (2→3) f (3→4) f (4→5) R2 R̄2 Level R2 χ2(5)
2 −1.96 −0.94 0.74 1.15 0.24 -0.91 0.34 0.33 0.38 143.0

Large T (0.64) (0.18) (0.43) (0.30) (0.27) (0.18) h0.00i
Small T (0.81) (0.30) (0.50) (0.40) (0.30) (0.27) [0.20, 0.55]
EH [0.00, 0.17] h0.00i

3 −3.28 −1.66 0.74 2.96 0.29 −1.90 0.34 0.34 0.37 107.7
Large T (1.21) (0.32) (0.72) (0.49) (0.50) (0.32) h0.00i
Small T (1.45) (0.53) (0.88) (0.70) (0.54) (0.49) [0.22, 0.56]
EH [0.00, 0.17] h0.00i

4 −4.57 −2.40 1.11 3.46 1.18 −2.78 0.37 0.36 0.39 104.0
Large T (1.68) (0.46) (0.94) (0.62) (0.67) (0.42) h0.00i
Small T (1.92) (0.71) (1.18) (0.93) (0.72) (0.67) [0.24, 0.58]
EH [0.00, 0.17] h0.00i

5 −5.78 −2.98 1.48 3.93 1.14 −2.88 0.34 0.33 0.36 77.8
Large T (2.13) (0.58) (1.12) (0.73) (0.80) (0.53) h0.00i
Small T (2.38) (0.89) (1.46) (1.14) (0.89) (0.85) [0.21, 0.56]
EH [0.00, 0.17] h0.00i

NOTE: The regression equation is

rx
(n)
t+1 = β0 + β1y

(1)
t + β2f

(1→2)
t + ...+ β5f

(4→5)
t + ε

(n)
t+1.

R̄2 reports adjustedR2. “LevelR2” reports theR2 from a regression using the
level, not log, excess return on the left hand side, er

(n)
t+1−ey(1)t . Standard errors

are in parentheses. “Large T”standard errors use the Hansen-Hodrick GMM
correction for overlap. “Small T” standard errors are based on 50,000 boot-
strapped samples from an unconstrained 12 lag yield VAR. Square brackets
“[]” are 95% bootstrap confidence intervals for R2. “EH” imposes the expec-
tations hypothesis on the bootstrap: We run a 12 lag autoregression for the
1-year rate and calculate other yields as expected values of the 1-year rate.
Details are in the Appendix. “χ2” is the Wald statistic that tests whether the
slope coefficient is zero. All χ2 statistics are computed with 18 Newey-West
lags to ensure a positive definite covariance matrix. Pointed brackets “<>”
report asymptotic and bootstrapped p-values. Data source CRSP, sample
1964:1-2001:12.

The expectations hypothesis predicts coefficients of zero — nothing should forecast
bond excess returns. The regressions in Table 1 provide strong evidence against the
expectations hypothesis. The p-values for the χ2 test that all coefficients are zero are
below 1%, for all maturities. We also compute small sample distributions1 for our test

1Bekaert, Hodrick and Marshall (1997) and others have questioned the small sample properties of
expectations hypothesis tests.
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Figure 1: Coefficients in a regression of holding period excess returns on the one-year
yield and 4 forward rates. The top panel presents unrestricted estimates from Table 1.
The bottom panel presents restricted estimates from a single-factor model reported in
Table 2. The legend (2, 3, 4, 5) refers to the maturity of the bond whose excess return
is forecast. The x axis gives the maturity of the forward rate on the right hand side.

statistics. To construct standard errors, we run an unrestricted 12 monthly lag vector
autoregression of all 5 yields, and bootstrap the residuals. To test the expectations
hypothesis (“EH” in the table), we run an unrestricted 12 monthly lag autoregression
of the one year yield, bootstrap the residuals, and calculate other yields according to
the expectations hypothesis. (See the Appendix for details.) Table 1 shows that the
small-T standard errors are indeed slightly larger than their asymptotic counterparts.
However, inferences are not strongly affected. The small T p-values for the χ2 test still
overwhelmingly reject the expectations hypothesis.

The regressions give an impressive R2 (for excess return forecasts) of 0.34-0.37, sug-
gesting that the forecastability is economically as well as statistically important. The
R2 is consistent across maturities. One might worry that the R2 comes from the large
number of right hand variables. For reassurance, we report in Table 1 the conventional
adjusted R̄2, and it is nearly identical. However, that adjustment presumes i.i.d. data
which is not valid in this case. The point of adjusted R̄2 is to test whether the fore-
castability is spurious, and the χ2 test that the coefficients are jointly zero addresses
that issue properly. To assess sampling error and overfitting bias in R2 directly, we also
compute small-sample 95% confidence intervals for the unadjusted R2. Our 0.34-0.37 R2
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lie well above the 0.17 upper end of the 95% R2 confidence interval calculated under the
expectations hypothesis.

One might worry about logs versus levels; that actual excess returns are not fore-
castable, so the coefficients in Table 1 only reflect 1/2σ2 terms and conditional het-

eroskedasticity.2 We repeated the regressions using actual excess returns, er
(n)
t+1 − ey(1)t

on the left hand side. The coefficients are nearly identical. The penultimate column of
Table 1 reports the R2 from these regressions, labeled “Level R2,” and they are in fact
slightly higher than the R2 for the regression in logs.

2.3 A single factor for expected bond returns

The beautiful pattern of coefficients in Figure 1 cries for us to describe expected excess
returns of bonds on all maturities in terms of a single factor, as follows:

rx
(n)
t+1 = bn

³
γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t

´
+ ε

(n)
t+1. (1)

bn and γn are not separately identified by this specification, since you can double all the
bs and halve all the γs. We normalize the coefficients by imposing that the average value
of bn is one,

1

4

5X
n=2

bn = 1.

With this normalization, we estimate (1) in two steps. First, we estimate the γ by
running the regression

1

4

5X
n=2

rx
(n)
t+1 = γ0 + γ1y

(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t + ε̄t+1. (2)

rxt+1 = γ>ft + ε̄t+1.

The second equality reminds us of the notation γ, f for corresponding 6× 1 vectors and
the notation rx for the average (across maturities) excess return. Then, we estimate bn
by running the four regressions

rx
(n)
t+1 = bn

¡
γ>ft

¢
+ ε

(n)
t+1, n = 2, 3, 4, 5.

(We explain in Section 6 why we use this two-step procedure rather than efficient GMM.)

Table 2 presents the estimated values of γ and b and standard errors. The γ estimates
are just about what one would expect from inspection of Figure 1. The loadings bn of
expected returns on the common return-forecasting factor γ>f increase smoothly with
maturity. TheR2 in Table 2 are essentially the same as in Table 1. This fact indicates that

2We thank Ron Gallant for raising this important question.
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the cross-equation restrictions implied by the model (1) — that bonds of each maturity
are forecast by the same portfolio of forward rates — do little damage to the forecast
ability.

Table 2. Estimates of the return-forecasting factor.

γ0 γ1 γ2 γ3 γ4 γ5 R2 χ2(5)
−3.90 −2.00 1.02 2.87 0.71 −2.12 0.35 97.2

Large T (1.41) (0.38) (0.79) (0.53) (0.56) (0.36) h0.00i
Small T (1.62) (0.60) (1.00) (0.79) (0.61) (0.57) [0.22, 0.56]
EH [0.00, 0.17] h0.00i

Standard Errors
n bn Large T Small T R2 Small T
2 0.47 (0.05) (0.02) 0.32 [0.19, 0.54]
3 0.87 (0.03) (0.02) 0.34 [0.21, 0.55]
4 1.23 (0.02) (0.02) 0.37 [0.24, 0.58]
5 1.43 (0.04) (0.03) 0.34 [0.21, 0.55]

NOTE: The top panel regression is

rxt+1 = γ0 + γ1y
(1)
t + γ2f

(1→2)
t + ...+ γ5f

(4→5)
t + ε̄t+1

where rxt+1 denotes the average (across maturities) excess log return. The
lower panel regression is

rx
(n)
t+1 = bn

¡
γ>ft

¢
+ ε

(n)
t+1.

γ is the parameter estimate from the upper panel, and f denotes the vector
of all forward rates. “Large T” standard errors in the lower panel correct for
the fact that γ is estimated, by considering this estimate together with the
regression in the top panel as a single GMM estimation. “χ2” tests whether
all slope coefficients are jointly zero. Standard errors are in parentheses,
bootstrap 95% confidence intervals in square brackets “[]” and p-values angled
brackets “<>”. See notes to Table 1 for details.

The single factor model (1) is a restricted model. If we write the 4 unrestricted
regressions of excess returns on all forward rates as

rxt+1 = βft + εt+1, (3)

where β is a 4 × 6 matrix of regression coefficients, the single factor model amounts to
the restriction

β = bγ>.
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A single linear combination of forward rates γ>ft is the state variable for time-varying
expected returns of all maturities.

The bottom panel of Figure 1 plots the coefficients of expected returns on each of the
forward rates implied by the restrictedmodel, i.e. for each n, it presents

£
bnγ1 · · · bnγ5

¤
.

Comparing this plot with the unrestricted estimates of the top panel, you can see that the
single-factor model almost exactly captures the unrestricted parameter estimates. The
specification (1) constrains the constants (bnγ0) as well as the regression coefficients plot-
ted in Figure 1. Figure 2 plots the restricted and unrestricted estimates of the constant,
and you can see similarly that the estimates are very close.

1 2 3 4
-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

lhv maturity

Unrestricted
Restricted

Figure 2: Restricted and unrestricted estimates of the constants. Restricted estimates
are from Table 2, and unrestricted estimates are from Table 1. The x axis represents the
maturity of the bond whose excess return is forecast.

The individual restricted and unrestricted estimates are close statistically as well as
economically. We could not fit standard error bounds into Figures 1 and 2, but we
computed t-statistics for the hypothesis that each parameter is individually equal to its
restricted value.3 The largest t-statistic is 0.9 and most of them are around 0.2. (Section
6 considers whether the restricted and unrestricted coefficients are jointly equal.)

3The test statistic is vec(bγ>)−vec(β) divided by the GMM standard error of unrestricted parameter
estimates diag(cov(vec(β))1/2.
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2.4 Fama-Bliss regressions

Fama and Bliss (1987) regressed each excess return against the same maturity forward
spread. This is the classic regression that provided first evidence against the expectations
hypothesis in this data set. Table 3 updates Fama and Bliss’s regressions to include more
recent data.

Table 3. Fama-Bliss excess return regressions

Maturity
n α β R2 χ2(1)
2 0.04 0.94 0.14 14.2

Large T (0.30) (0.28) h0.00i
Small T (0.15) (0.34) [0.01, 0.35]
EH [0.00, 0.13] h0.02i

3 −0.14 1.24 0.14 13.5
Large T (0.54) (0.38) h0.00i
Small T (0.31) (0.44) [0.01, 0.36]
EH [0.00, 0.14] h0.02i

4 −0.41 1.50 0.15 11.6
Large T (0.76) (0.50) h0.00i
Small T (0.45) (0.51) [0.01, 0.38]
EH [0.00, 0.14] h0.03i

5 −0.11 1.10 0.06 3.7
Large T (1.05) (0.62) h0.11i
Small T (0.59) (0.70) [0.00, 0.28]
EH [0.00, 0.14] h0.20i

NOTE: The regressions are

rx
(n)
t+1 = α+ β

³
f
(n−1→n)
t − y(1)t

´
+ ε

(n)
t+1.

Standard errors are in parentheses, bootstrap 95% confidence intervals in
square brackets “[]” and p-values angled brackets “<>”. See notes to Table
1 for details.

The expectations hypothesis predicts a coefficient of zero. Instead, Table 3 shows
that the forward spread moves essentially one-for-one with expected excess returns on
long term bonds. Fama and Bliss’s regressions have held up well since publication, unlike
many other anomalies.

The multiple regressions in Table 1 and the single factor model in Table 2 provide
stronger evidence against the expectations hypothesis than do the updated Fama-Bliss
regressions in Table 3 in many respects. For 3 of the 4 bonds, the Fama-Bliss regressions
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forecast excess returns with statistical significance, whether using asymptotic or boot-
strap confidence intervals and p-values.4 Tables 1 and 2 show stronger χ2 rejections, and
do so for all maturities. They more than double Fama and Bliss’s R2 from below 0.15
in Table 3 to 0.34-0.37 in Tables 1 and 2. The 5-year rate R2 is particularly dramatic,
jumping from 0.06 in Table 3 to 0.34 in Table 1. In the Fama-Bliss regressions, 3 of the
4 bonds show R2 just above the 95% confidence interval, mirroring the narrow, but still
significant statistical rejections. The R2 in Tables 1and 2 are nearly double the upper
end of their expectations hypothesis confidence intervals. The 0.20-0.24 lower end of the
R2 confidence intervals in Table 1 lie above the 0.15 R2 of the Fama- Bliss regression.

If the return-forecasting factor really is an improvement, it should drive out other
variables, and the Fama-Bliss spread in particular. The individual coefficient standard
errors in Table 1 already suggest that the additional right hand variables are important.
Table 4 presents multiple regressions contrasting the single factor model of Table 2 with
the Fama-Bliss regressions.

Table 4. Contest between γ>f and Fama-Bliss

n an σ (an) bn σ(bn) cn σ(cn) R2

2 0.13 (0.25) 0.47 (0.03) −0.05 (0.19) 0.33
3 0.13 (0.52) 0.88 (0.10) −0.07 (0.37) 0.34
4 −0.03 (0.67) 1.22 (0.15) 0.05 (0.46) 0.37
5 −0.31 (0.75) 1.42 (0.17) 0.15 (0.35) 0.34

NOTE: Multiple regression of excess holding period returns on the return-
forecasting factor and Fama-Bliss slope. The regression is

rx
(n)
t+1 = an + bn

¡
γ>ft

¢
+ cn

³
f
(n−1→n)
t − y(1)t

´
+ ε

(n)
t+1.

Standard errors in parentheses use the Hansen-Hodrick GMM correction for
overlap.

In the presence of the Fama-Bliss forward spread, the coefficients and significance
of the return-forecasting factor from Table 2 are unchanged in Table 4. The R2 is also
unaffected, meaning that the addition of the Fama-Bliss forward spread does not help to
forecast bond returns. On the other hand, in the presence of the return-forecasting factor,
the Fama-Bliss slope is destroyed as a forecasting variable. The coefficients decline from 1
or even more to almost exactly zero, and are insignificant. Clearly, the return-forecasting
factor subsumes all the predictability of bond returns captured by the Fama-Bliss forward
spread.

4We use χ2 rather than a t test as we report χ2 tests that multiple parameters are jointly zero in
other tables. The χ2 values are not squared t statistics, because we use Hansen-Hodrick weights to
compute individual standard errors, but Newey-West weights with more lags to compute χ2 statistics.
Newey-West weights are necessary to ensure positive definite covariance matrices in tests of multiple
parameters.
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The most important comparison is economic, not statistical. The single factor model
of Table 2 describes expected excess returns on all bonds with a single state variable,
γ>ft. The Fama-Bliss regressions describe the expected return of each bond with a
separate state variable, its own forward spread. It is a much more useful specification to
think of a common element to expected returns, at least across a range of maturities.

This comparison is not a criticism of Fama and Bliss. The Fama-Bliss specification
is exactly right for Fama and Bliss’s purpose. They wanted to explore the expectations
hypothesis and, eventually, to reject it. The individual forward spreads have important
interpretations in the expectations hypothesis, so they are natural right hand variables
if one is guided by that null. Our purpose is different. We want to characterize expected
excess returns, knowing the expectations hypothesis is false. The multiple regression is
a more natural specification when we are guided by that null, and it’s not surprising in
retrospect that it works better for its purpose.

2.5 Short rate forecast

Fama and Bliss also regressed changes in the 1-year rate on forward spreads. Short rate
forecasts and excess return forecasts are mechanically linked, but seeing the same phe-
nomenon as a short rate forecast provides a useful complementary intuition and suggests
many additional implications.

Here, the expectations hypothesis predicts a coefficient of 1.0 — if the forward rate
increases one percentage point over the short rate, we should see the short rate rise one
percentage point on average. Corresponding to the expectations hypothesis failure in
Table 4, the Fama Bliss regression in Table 5 shows that the 2-year forward rate has no
power to forecast a 1-year change in the 1-year rate. The coefficient is essentially zero,
and one fourth of a standard error away from zero. Under the expectations hypothesis
null the R2 confidence interval is from 7 to 32% — short rates should be predictable,
given there is variation in the forward spread. Yet the R2 is zero, and the test for a zero
coefficient passes at a 98% probability value.

The unconstrained regression in Table 5 again contrasts strongly with the Fama-Bliss
regression. All the forward rates taken together have substantial power to predict one-
year changes in the short rate. The R2 for short rate changes jumps to a substantial
23%. The χ2 test strongly rejects the null that the parameters are jointly zero.

This forecastability of the short rate does not revive the expectations hypothesis.
Instead, the short rate becomes forecastable precisely because the expectations hypothesis
is even more wrong than Fama and Bliss suspected. To understand this claim, suppose
the forward spread rises one percentage point, so long term bond yields are higher than
the 1-year rate. According to the expectations hypothesis, the 1-year rate is expected
to rise one percentage point. This rise will lower prices of long term bonds, offsetting
their now higher yields and generating no change in expected return. In Fama and
Bliss’s regressions, the 1-year rate moves sluggishly. When the forward spread is high,

13



the offsetting rise in 1-year rates does not materialize for a few years, so long term bond
holders make an extra return from the higher yield of long term bonds. In the regressions
of Tables 1 and 2, we see much larger variation in the expected excess return. Fama and
Bliss’s mechanism has been exhausted. To generate larger expected returns, we must be
able to forecast short rate movements, roughly speaking in the “wrong” direction. If our
regression forecasts a 2% excess return on long term bonds, it must predict a decline in
short rates, which will raise long term bond prices.

Table 5. Predicting short rate changes

const. f
(1→2)
t − y(1)t y

(1)
t f

(1→2)
t f

(2→3)
t f

(3→4)
t f

(4→5)
t R2 χ2

Fama-Bliss
-0.04 0.06 0.00 0.1

Large T (0.30) (0.28) <0.98>
EH [0.07,0.32] <1.00>

Unconstrained
1.96 −0.06 0.26 −1.15 −0.24 0.91 0.23 118.5

Large T (0.64) (0.18) (0.43) (0.30) (0.27) (0.18)
Small T (0.82) (0.30) (0.50) (0.40) (0.30) (0.27) [0.16, 0.41] h0.00i
EH [0.08, 0.35] h0.00i

NOTE: The Fama-Bliss regression is

y
(1)
t+1 − y(1)t = β0 + β1

³
f
(1→2)
t − y(1)t

´
+ εt+1.

The unconstrained regression equation is

y
(1)
t+1 − y(1)t = β0 + β1y

(1)
t + β2f

(1→2)
t + ...+ β5f

(4→5)
t + εt+1.

χ2 tests whether all slope coefficients are jointly zero (5 degrees of freedom
unconstrained, one degree of freedom for Fama-Bliss). Standard errors are in
parentheses, bootstrap 95% confidence intervals in square brackets “[]” and
p-values angled brackets “<>”. See notes to Table 1 for details.

To see the same points more formally, start with the definition,

rx
(2)
t+1 = p

(1)
t+1 − p(2)t − y(1)t = −y(1)t+1 − p(2)t + p

(1)
t = −y(1)t+1 + f (1→2)t

rx
(2)
t+1 =

³
y
(1)
t+1 − y(1)t

´
+
³
f
(1→2)
t − y(1)t

´
,

and hence, using any set of forecasting variables,

Et
³
rx

(2)
t+1

´
= Et

³
y
(1)
t+1 − y(1)t

´
+
³
f
(1→2)
t − y(1)t

´
. (4)
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Under the expectations hypothesis, expected excess returns are constant, so any move-
ment in the forward spread must be matched by movements in the expected 1-year rate
change. In Fama and Bliss’s regressions, the expected yield change term is constant, so
changes in the forward spread must move one for one with changes in the expected ex-
cess return. In our regressions, expected returns move more than changes in the forward
spread. The only way to generate such changes is if the 1-year rate becomes forecastable
as well.

Equation (4) also means that the regression coefficients which forecast the 1-year rate
change in Table 5 are exactly equal to our return-forecasting factor b2γ>ft which forecasts
Et
³
rx

(2)
t+1

´
minus a coefficient of one on the 2-year forward spread. The same factor that

forecasts excess returns is also the state variable that forecasts the short rate.

(Fama and Bliss found that the expectations hypothesis works better over longer
horizons. Though the 2 year forward rate has little power to forecast the one year change
in the one year rate, the 5-year forward rate moves nearly one-for-one with the expected
four-year change in the 1-year rate. This means that the 5-year forward spread does not
forecast the four year return on 5-year bonds, though it does forecast the one-year return
on 5-year bonds. They relate this pattern to a slow moving AR(1) for the one year rate.
The extension of our work to longer horizons is not straightforward, so in the interest of
length we do not pursue it in this paper.)

3 Macroeconomic interpretation

What is the intuition and economic significance of the return-forecasting factor? We start
by relating the return-forecasting factor to macroeconomic variables and to stock returns.
The slope of the term structure is correlated with recessions and forecasts stock returns
(Fama and French 1989) and it forecasts output growth (Harvey 1989, Stock and Watson
1989, Estrella and Hardouvelis 1991, Hamilton and Kim 1999). Since we substitute the
return-forecasting factor for the term structure slope in forecasting bond excess returns,
we naturally want to see how it performs in these other roles.

Figure 3 presents the return-forecasting factor together with the unemployment rate
and the NBER peaks and troughs. The return-forecasting factor is closely associated
with business cycles. Expected returns are high in bad times and low in good times. The
return-forecasting factor is a “level” variable rather than a “growth” variable. It is high
when the level of unemployment is high, or the level of income is low, rather than being
high during recessions defined as periods of poor GDP growth. Campbell and Cochrane
(1999) model this kind of business cycle related risk premium.

The correlation between the return-forecasting factor and unemployment is also ev-
ident at lower frequencies than usual business cycles. The return-forecasting factor in-
creases throughout the 70s and decreases throughout the 80s, mirroring the unemploy-
ment rate as it mirrors many measures of a two-decade-long productivity dip.
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The return-forecasting factor is correlated with many other recession indicators as
well, including industrial production growth, Lettau and Ludvigson’s (1999) consump-
tion/wealth ratio, the investment/GDP ratio, and so on. It is much less correlated with
inflation. We present the graph for unemployment as it has the highest correlation among
the cyclical indicators we examined.

3.1 Macroeconomic forecasts of bond returns

Given the high correlation between the return factor and the unemployment rate, a nat-
ural question is whether we can use unemployment or other macro variables to forecast
bond excess returns, either alone or in addition to the return-forecasting factor. The
answer is no, or at least not among the variables we have tried. The fact that macro
variables by themselves do not forecast bond excess returns is an unfortunate result for
economic interpretation. (This is equally true for Fama and Bliss’s 1987 or Campbell
and Shiller’s 1991 specifications). It would be much nicer if we could understand bond
expected excess returns as a simple mirror of macroeconomic conditions. It appears
instead that bond market prices reflect information beyond that available in macroeco-
nomic aggregates, and this information is crucial to forecasting bond excess returns. On
the other hand, the fact that macro variables add nothing to the return-forecasting factor

1965 1970 1975 1980 1985 1990 1995 2000
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Return forecast
Unemployment

Figure 3: Return forecasting factor γ0ft and unemployment rate. Both series are trans-
formed to [xt −E(x)]/σ(x) so that they fit on the same graph. Shaded areas are NBER
recessions.
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in multiple regressions is a fortunate result for empirical analysis: it means we can stick
to the model Et (rxt+1) = γ>ft with great accuracy, even in VAR systems that include
macroeconomic variables.

Table 6 contrasts forecasting regressions of the average (across maturities) 1-year
bond excess return rxt+1 on the return-forecasting factor γ>ft, the unemployment rate
Ut, and other macroeconomic variables. The first row reminds us of the 0.35 R2 and
high t statistic when we forecast bond excess returns from γ>ft. Despite its beautiful
correlation with the return-forecasting factor, unemployment U forecasts bond excess
returns only 0.05 R2. In a multiple regression, unemployment does not affect the size
and significance of the γ>ft coefficient, and only raises the R2 to 0.38. The Stock-Watson
(1989) leading index XLI is designed to forecast output growth at a 6 month horizon.
Alas, it forecasts bond excess returns with an even lower R2 of 0.01 and has no effect
in a multiple regression. Lettau and Ludvigson’s (2001) consumption-wealth ratio cay,
which forecasts income growth and stock returns, does no better. Finally, CPI inflation
is just as useless as the others.

Table 6. Macro forecasts of bond excess returns

γ>f (t) U (t) XLI (t) cay (t) cpi (t) R2

1 (7.2) 0.35
0.54 (1.5) 0.05

1.19 (7.6) -0.50 (-1.6) 0.38
-0.11 (-0.6) 0.01

1.01 (6.8) -0.14 (-1.2) 0.36
0.44 (1.03) 0.02

1.01 (7.8) −0.08 (−0.2) 0.35
−0.24 (−0.84) 0.03

0.99 (7.6) -0.5 (1.6) 0.38

NOTE: Forecasts of average (across maturities) bond returns rxt+1. U =
the unemployment rate. XLI = Stock-Watson leading indicator. cay =
the Lettau-Ludvigson consumption-wealth ratio using end of period wealth.
cpi = inflation, the one-year growth in the CPI index. Overlapping annual
forecasts, 1964:01-2001:12. Standard errors in parentheses are corrected for
overlap and heteroskedasticity by GMM.

It is tempting to conclude from the fact that unemployment does not forecast out-
put that the “level” movement of the return-forecasting factor shown in Figure 3 is
irrelevant; that only the high frequency blips matter. This would be a mistake. The
return-forecasting factor could easily have chosen not to load on the level of interest
rates, producing a much flatter graph. It did not; the regression coefficients γ sum to
about one (a level of interest rate) rather than zero (just spreads).
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3.2 Term structure forecasts of output growth

The term structure slope forecasts output growth as well as bond returns. Does the
return-forecasting factor γ>f forecast output growth? Figure 4 contrasts regressions of
GDP growth using the return forecasting factor γ>f and the yield spread y(5) − y(1).
We look at GDP growth multiple periods ahead. For example, the regression using the
return-forecasting factor is

ln (GDP )t+x − ln(GDP )t+x−1/4 = α+ β
¡
γ>ft

¢
+ εt+x,

where x is the number of years ahead, plotted on the x axis of Figure 4. For horizons
out to a year, the term structure slope forecasts GDP growth well. However, the return-
forecasting factor has absolutely no power to forecast GDP growth for the first year.
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Figure 4: Coefficients, t-statistics and R2 in long-run GDP growth forecasts. The un-
derlying regressions forecast one-quarter GDP growth x years ahead using the return-
forecasting variable γ>f and the term structure slope y(5) − y(1). Sample is quarterly,
1964-2001.

The fact that the slope forecasts output and bond returns has long pointed to an
attractive common element to these forecasts. Our regressions overturn this conclusion.
The component of the yield spread that forecasts near-term output growth is uncorrelated
with the component that forecasts bond excess returns, and conversely, the component
(correlated with the return-forecasting factor) that forecasts bond returns does not fore-
cast near-term output growth. .
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For horizons beyond a year, however, the pattern changes. Now the return-forecasting
factor forecasts GDP growth, while the slope has less and less power to do so. We conclude
again that bond expected excess returns are “level” variable like the unemployment rate,
the consumption-income ratio (Cochrane 1994) or the consumption-wealth ratio (Lettau
and Ludvigson 2001) that forecasts long-term output growth, rather than a variable like
the slope that forecasts near-term growth, possibly due to short-term financial or mone-
tary factors. (Multiple regressions show the same pattern of coefficients and t-statistics.
A wide variety of other output forecast variables, including the consumption-wealth ratio,
the Stock-Watson leading index, etc., and other definitions of output, including industrial
production and the coincident index, lead to similar results.)

3.3 Forecasting stock returns

The slope of the term structure forecasts stock returns, as emphasized by Fama and
French (1989). This is important evidence that the forecast corresponds to a real risk
premium and not to a bond-market fad or measurement error in bond prices. We can
view a stock as a long term bond plus risk; unless time-varying stock market risk premia
move exactly opposite to time-varying bond market risk premia, a bond return forecasting
factor should forecast stock returns much as it would a long-term bond. Table 7 evaluates
how well our return-forecasting factor forecasts stock returns.

Table 7. Forecasts of excess stock returns

Regression d/p (t) y(5) − y(1) (t) γ>f (t) R2

1 (Full sample) 2.51 (1.18) 0.03
2 (1964 -1989) 7.08 (2.43) 0.14

3 4.16 (1.68) 0.05
4 2.50 (1.25) 4.15 (1.84) 0.08
5 2.10 (3.00) 0.10
6 1.00 (0.38) 1.89 (2.54) 0.10
7 1.09 (0.56) 1.94 (2.86) 0.11

8 (all f) 0.13

NOTE: The left hand variable is the one-year return on the value-weighted
NYSE stock return, less the 1-year bond yield. The right hand variables are
as indicated in the column headings. Overlapping monthly observations of
annual returns, 1964-2001, except regression 2 from 1964-1989. The dividend
price ratio is based on the return with and without dividends for the preced-
ing year. T-statistics are in parentheses. Standard errors are corrected for
overlap.

The first 4 regressions remind us of stock return forecastability from the dividend
price ratio and term spread. Regressions 1 and 2 study the dividend price ratio. Until
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the 1990s, the dividend price ratio was a strong return forecaster, with a 14% R2. The
long boom of the 1990s cut down this forecastability dramatically, especially in our rather
short sample (for these purposes) starting only in 1964. Of course, one good crash will
restore the d/p forecastability. The term spread in the third regression forecasts the
VW stock return with a 4.2 coefficient — one percentage point term spread corresponds
to 4.2 percentage point increase in stock return. The R2 is only 5% however. The
fourth regression shows that the term spread and dividend price ratio forecast different
components of returns, since the coefficients are unchanged in multiple regressions and
the R2 increases, though to a still low 8%.

The fifth regression introduces the return-forecasting factor. It is significant, which
neither d/p (in this sample) nor the term spread are, and at 10%, its R2 is slightly higher
than that of the term spread and d/p combined. The coefficient is 2.10. The return-
forecasting factor is the average expected return across 2-5 year bonds. The 5-year bond
in Table 2 had a coefficient of 1.43 on the return-forecasting factor, and the coefficients
rose 0.2-0.4 per year of maturity. Thus, the stock return coefficient of 2.10 is what would
expect of a bond with about 8-year duration, which is sensible. (8 year duration is also
the result of fitting a linear plus square root function of maturity to the coefficients in
Table 2.)

The sixth and seventh regressions compare the bond return-forecasting factor with
the term spread and d/p. The bond return forecasting factor’s coefficient and significance
are hardly affected in this multiple regression, while the d/p and term coefficients are cut
more than in half and rendered even less significant.

Last, we consider an unrestricted regression of stock excess returns on all forward
rates. Of course, this estimate will be noisy, since stock returns are more volatile than
bond returns. All forward rates together produce an R2 of 13%, only slightly more than
the γ>f R2 of 10%. The stock return forecasting coefficients (not reported) recover a
similar tent shape pattern, though not exactly the same as those of the return-forecasting
factor.

4 Finance interpretation

We now relate the return-forecasting factor to term structure models in finance. These
models decompose yield curve movements into linear combinations of yields, or “factors,”
that explain the majority of the variance of yield changes.5 Most such decompositions
find “level,” “slope,” and “curvature” factors that move the yield curve in corresponding
shapes. It is tempting to look at our tent-shaped function of forward rates, and to
conclude that the return-forecasting factor is a “curvature” factor in the yield curve.

5For example, Dai and Singleton 2002 and Duffee 2002 construct affine multifactor models consistent
with Fama and Bliss’s 1987 regressions. Much effort in these models, which we do not address here, goes
in to specifying short rate dynamics and market prices of risk to derive a linear factor representation for
bond yields. We simply characterize the results, i.e. we examine directly the linear factor representations
which affine models would spend a lot of time deriving.
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This temptation is misleading, however, because our tent-shaped function is a function
of forward rates, not yields. Forward rates and yields span the same bond prices of course,
so we can also express the forecasting factor as a function of yields, γ∗>yt = γ>ft. The
forecasts are exactly the same, but the weights γ∗ are different than the weights γ.

The top of Figure 5 plots the return-forecasting factor as a function of yields. The
return-forecasting factor is curved at the long end, not the short end of the yield curve. It
loads most strongly on the 4-5 year spread, not short spreads. To make an explicit com-
parison, the bottom of Figure 5 plots the first 3 principal components of yield changes.
We calculate these principal components from an eigenvalue decomposition of the covari-
ance matrix of yield changes. (A similar factor analysis of the covariance matrix of yield
levels produces very similar results.) We label the principal components “level,” “slope,”
and “curvature” based on the shape of these loadings. As the figure shows, the curva-
ture factor is curved at the short end of the yield curve. The return-forecasting factor
is clearly not this “curvature” factor in yields, or any other of the first three principal
components.
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Figure 5: The top graph shows coefficients γ∗ in a regression of average (across maturities)
holding period returns on all yields, rxt+1 = γ∗>yt + εt+1. The bottom graph shows the
loadings of the first three principal components of yield changes labeled “level,” “slope,”
and “curvature.”

Table 8 collects facts about these principal components and comparisons with the
return-forecasting factor. We dub the fourth yield factor “spreads” since it loads on the
spread between 3 and 2,5 year yields, and we dub the fifth yield factor “zigzag” for a
zigzag shape of its loadings. (We don’t plot these loadings in Figure 5 for clarity.) The

21



first row of Table 8 shows that as usual in such decompositions, the first two or three
factors explain the vast majority of the variance of yield changes. The last column shows
how γ>f does in the factor model’s job — explaining variance of yield changes. γ>f
explains only 0.3% of the variance of yield changes. Not a very useful factor.

Table 8. Yield factors

Level Slope Curvature Spreads Zigzag γ>f
% of var(∆y) explained by this factor 93.7 4.4 0.8 0.6 0.6 0.3
% of var(γ>f) explained by this factor 0.5 37 0.4 42 21 100
R2 forecasting rxt+1 from this factor (%) 2.6 5.2 7.3 8.9 9.1 35.1
R2 forecasting rxt+1 from up to this (%) 2.6 22.6 26.5 26.7 35.1

NOTE: The yield curve factors xt are formed from an eigenvalue decomposi-
tion of the covariance matrix of yield changes var(∆y) = QΛQ>. The first row
is the fraction yield change variance due to the kth factor, Λ(k, k)/

P
k Λ(k, k).

In the γ>f column of the first row, we first run a regression∆y(n)t = a+bγ>ft+
εt, and then calculate 100 × trace(cov(bγ>f))/trace(cov(∆y)). The second
row decomposes the variance of γ>f into components due to each factor. We
find α in γ>ft = α>xt and then calculate 100×α(k)2Λ(k, k)2/var(γ>f). The
third row presents R2 from forecasting regressions of the average (across ma-
turities) excess return on the factors, rxt+1 = α + βx

(k)
t + εt+1. The fourth

row presents R2 from corresponding multiple regressions rxt+1 = α+β1x
(1)
t +

...+ βkx
(k)
t + εt+1. Sample 1964-2001.

In the second row, we ask how γ>f is related to the yield curve factors. The loadings
(regression coefficients of γ>ft on the yield curve factors at time t) are not that interesting,
so we calculate the fraction of the variance of γ>f due to each of the (orthogonal) factors
in turn. γ>f is correlated with the slope factor, so the slope factor explains the largest
fraction, 37% of γ>f variance. Curvature accounts for only 0.4% of γ>f variance - the
return-forecasting factor γ>f really does have nothing to do with the curvature factor.
The spreads factor, essentially insignificant for yields turns out to be quite significant at
42% for explaining expected returns through γ>f . The zigzag factor is also important,
explaining 21%.

The third row of Table 8 asks how well we can forecast returns using yield curve factors
in place of γ>f . The yield curve factors individually do a poor job of forecasting returns
with R2 under 10%. Worse, the order is reversed – the “level” factor has the worst
forecast performance, while the tiny “zigzag” factor has the best forecast performance.

The fourth row forecasts returns using the factors up to and including the factor listed
in the column. For example, in the “slope” column, we forecast returns using level and
slope factors. By the time we reach the zigzag column, of course, the actual γ>f is in the
span of the included factors, so we recover the 35% R2. What’s interesting about this
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row is how deep into the small factors we have to go to forecast returns. Level and slope
together only produce a 23%R3, little better than the single Fama-Bliss slope. Curvature
and spreads add little. Even though 99.4% of yield change variance has already been
explained, we have to include the tiny zigzag factor to reproduce the yield curve patterns
that forecast excess returns.

Summary and implications

Our return-forecasting factor — the linear combination of yields that captures variation
over time in bond expected returns — turns out to have little to do with yield curve factors
— the linear combinations of yields that capture variation over time in bond yields. The
return-forecasting factor does nothing to explain variation in yields, and the important
yield curve factors turn out to have little forecast power for excess returns. Most variation
in γ>f and hence in expected excess returns is due to linear combinations of yields that
are orthogonal to traditional yield curve factors, are tiny sources of yield curve movement,
and are typically ignored in explicit term structure models.

If yields or forward rates followed an exact factor structure then all state variables
including γ>f would be functions of that exact factor structure. However, when as in fact
yields do not follow an exact factor structure, an important state variable like γ>f can be
hidden in the small idiosyncratic factors that are often dismissed as minor specification
or measurement errors.

This suggests a reason why the return forecast factor γ>f has not been noticed before.
Most studies first reduce yield data to a small number of factors and then look at expected
returns. To see expected returns, it’s important first to look at expected returns and then
investigate reduced factor structures. A reduced factor representation for yields that is to
capture the expected return facts in this data must include the return-forecasting factor
γ>f as well as yield curve factors such as the level and slope, even though inclusion of
the former will do almost nothing to fit yields, i.e. to reduce pricing errors.

5 Checks and extensions

5.1 Historical and subsample performance

Figure 6 plots the forecast of the holding period excess returns on 3-year bonds implied
by the Fama-Bliss regression of Table 3 (top), the forecast from the regression on the
return-forecasting factor from Table 2 (middle, i.e. b3

¡
γ>ft

¢
) and the actual holding

period returns (bottom). The forecast made at time t− 1 for time t is plotted at time t,
so you can directly compare each forecast with its outcome.

For many episodes, the return-forecasting factor and the forward spread agree. This
pattern is particularly visible in the three swings from 1975 to 1982. The return-
forecasting factor is correlated with the forward spread. However, the figure shows the
much better fit of the return-forecasting factor in many episodes, including the late 1960s,
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Figure 6: Forecast and actual excess returns of 3-year bonds. Top: Fitted value using
Fama-Bliss regression, 3-year forward spread. Middle: Fitted value using the restricted
regression on all forward rates, b3γ>f . Bottom: ex-post excess returns. The forecasts
in the top two lines are graphed at the date of the return; the forecast made at t − 1
is graphed at year t to line up with the ex-post return at year t. The top and bottom
graphs are shifted up and down 15% for clarity.

the turbulent early 1980s, the late 1980s, and the mid 1990’s. (Campbell 1995 highlights
the latter as a particularly challenging episode for yield curve models.) The improved
R2 is not driven by spurious forecasting of one or two unusual data points. Both the
return-forecasting factor and the Fama-Bliss regression badly miss the last two years of
the sample — they predict slightly negative returns where instead bond returns have been
strongly positive as interest rates declined.

Table 9 reports a breakdown by subsamples of a regression of average (across ma-
turity) excess returns rxt+1 on forward rates. The first set of columns run the average
return on the forward rates separately. The second set of columns runs the average re-
turn on the return-forecasting factor γ>f where γ is estimated from the full sample.
This regression moderates the tendency to find spurious forecastability with 5 right hand
variables in short time periods.

The first row of Table 9 reminds us of the full sample result — the pretty tent-shaped
coefficients and the 0.35 R2. Of course, if you run a regression on its own fitted value
you get a coefficient of 1.0 and the same R2, as shown in the two right hand columns of
the first row.
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The second row shows the effect of the last two years in the sample, in which γ>f and
the Fama-Bliss regression both forecast slightly negative expected excess returns, but in
fact long term bonds did well. Without these last two years, the R2 rises to 0.40.

Table 9. Subsample analysis

γ0 γ1 γ2 γ3 γ4 γ5 R2 γ>f R2

1964:01-2001:12 −3.9 −2.0 1.0 2.9 0.7 −2.1 0.35 1.00 0.35
1964:01-1999:12 -4.4 −2.0 0.9 2.9 0.8 -2.1 0.40 1.05 0.40
1964:01-1979:08 −5.4 −1.3 1.3 2.5 -0.1 −1.7 0.32 0.78 0.28
1979:08-1982:10 −32.6 0.8 0.5 1.2 0.6 −0.7 0.78 0.84 0.29
1982:10-2001:12 −3.5 −1.0 1.1 1 1.7 −2.1 0.27 0.88 0.23
1964:01-1969:12 0.6 −1.3 0.2 2.0 0.5 −1.9 0.31 0.71 0.24
1970:01-1979:12 −9.7 −1.4 0.5 2.4 0.3 −0.6 0.22 0.71 0.17
1980:01-1989:12 −11.9 -2.2 1.5 2.6 1.0 −1.8 0.42 1.15 0.37
1990:01-1999:12 −13.8 -1.6 0.5 4.3 1.5 −2.5 0.71 1.83 0.51
2000:01-2001:12 0.09 0.005

NOTE: Subsample analysis of average return-forecasting regressions. For each
subsample, the first set of columns present the regression

rxt+1 = γ>ft + εt+1.

The second set of columns report the coefficient estimate b and R2 from

rxt+1 = b
¡
γ>ft

¢
+ εt+1

using the γ parameter from the full sample regression. Overlapping annual
forecasts using monthly data 1964-2001.

The third set of rows examine the period before, during, and after the momentous
period 1979:8-1982:10, when the Fed changed operating procedures, interest rates were
very volatile, and inflation declined and became much less volatile. The broad pattern of
coefficients is the same before and after. The 0.73 R2 looks dramatic in the experiment,
but this period really only has three data points and 5 right hand variables. When we
constrain the pattern of the coefficients in the right hand pair of columns, the R2 is the
same as the earlier period. It is comforting that the forecasts are so similar in the vastly
different regimes of the pre and post experiment periods.

The last set of rows break down the regression by decades. Again, we see the pattern
of the coefficients is quite stable. The R2 is worst in the 70s, a decade dominated by
inflation. This suggests that the forecast power derives from changes in the real rather
than nominal term structure. The R2 rises to a dramatic 0.71 in the 1990s, and still
0.51 when we constrain the coefficients γ to their full sample values. The first two years
of the 2000 decade are too little to say anything meaningful about the unconstrained
regression, but the regression on γ>f shows again the low R2 in these two years — the
forecast was small, and the outcome was large.
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5.2 Real time forecasts

Investors in, say, 1982, do not have access to our full sample to estimate the parameters
of the return-forecasting model, so they will not forecast as well. How well can one
forecast bond excess returns using real time data? Of course, the conventional rational-
expectations answer to this question is that investors have historical information and
evolved rules of thumb that summarize far longer time series than our data set, so their
expectations will have converged long before ours. Still, it is an interesting robustness
exercise to see how well an investor could do who has to estimate the forecasting rule
based only on our data from 1964 up to the time the forecast must be made, and it would
be discomforting if we could only see forecast power in sample.

Figure 7 contrasts the full sample and the real time forecasts. The top line, marked
“full sample” presents the fitted value of the regression rxt+1 = γ>ft+ εt+1 using the full
sample 1964:1-2001:12 to estimate the parameters γ. The bottom line presents the same
fitted values, but at each time t, the regression is reestimated using data from 1964:1 to
time t only.

1970 1975 1980 1985 1990 1995 2000

-5
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15

20

Full sample

Real time

Figure 7: Comparison of full sample and real time forecasts of average (across bond
maturities) one year excess returns. “Full sample” is the fitted value of the regression
rxt+1 = γ>ft+ εt+1 using 1964:1-2001:12 data to estimate the parameter γ. “Real time”
uses data from 1964:1 to time t only to estimate the same regression.

The full sample and real time forecasts are quite similar. Even though the regression
only starts the 1970s with 6 years of data, it still captures the same pattern of bond
expected returns. By the big forecasts of 1987, the full sample and real time forecasts are
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essentially identical. The only significant discrepancy is in the 1983-1984 period. Here,
the real time forecast is a good deal lower than the full sample forecast.

The forecasts are similar, but are they similarly successful? Figure 8 compares them
with a simple calculation. We calculate “trading rule returns” as

rxt+1 ×Et(rxt+1) = rxt+1 ×
¡
γ>ft

¢
,

and then we cumulate these returns so that the different cases can be more easily com-
pared. (If one follows a linear trading rule to invest $1×Et(Ret+1) in each end of a zero -
cost portfolio with excess returnRet+1, then the profit from this strategy isR

e
t+1×Et(Ret+1).

We use logs rather than levels, hence quotes around “trading rule.” The calculation is
also T times the covariance of the forecasted variable rxt+1 with the forecast Etrxt+1, i.e.
the numerator of the forecast regression coefficient, so it has a purely statistical interpre-
tation as well.) For the Fama - Bliss regressions, the figure calculates the expected excess
return of each bond from its matched forward spread, and then finds the average expected
excess return across maturities. The full sample lines use full sample estimates of the
regressions. The real time lines use regression estimates only up to time t to calculate
Et(rxt+1). We start in 1975, with 10 years of data to estimate the return forecasts.

1975 1980 1985 1990 1995 2000
0
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1000
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2000

CP full sample

CP real time

FB full sample

FB real time

Figure 8: Cumulative profits fromr ‘trading rules’ using full sample and real time infor-
mation. Each line plots the cumulative value of rxt+1 ×Et(rxt+1). Et(rxt+1) are formed
from the full 1964-2001 sample or “real time” data from 1964-t as marked. The CP lines
use the forecast rxt+1 = γ>ft . The FB (Fama-Bliss) lines forecast each excess return
from the corresponding forward spread, and then average the forecasts across maturities.

The full sample line of Figure 8 shows vividly the character of this return-forecasting
exercise: it produces occasional spectacular gains, as in 1983, 1987, and 1994, while
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producing nearly nothing (and recommending small positions) for long periods. The last
two years of the sample lost a little money, as the forecast was for slightly negative bond
returns, while in fact long term bonds made money as interest rates declined. The loss
of R2 was primarily due to a large residual, rather than a forecast of a wrong sign.

The real time forecast overall produces only about half of the cumulative profits as
does the full sample estimate. This underperformance essentially all comes from the 1983
period. The real time forecast had not quite settled on the coefficients that would let it
forecast the spectacular return obtained by the full sample estimate in this period. This
finding mirrors the difference in forecast for 1983 shown in Figure 7. At this point, the
regression has had only 19 years to estimate the 6 γ from colinear forward rates. However,
the real time forecast captures almost all of the impressive gains of the 1987 and 1994
episodes. Interestingly, neither the Fama-Bliss full sample or real time estimates capture
this 1983 episode either. In fact, they lose money here.

Overall, we conclude that while the forecasts do degrade somewhat using real-time
data (and given the limitations of our particular data set), the overall pattern remains.
It does not seem to be the case that the forecast power, or the improvement over the
Fama-Bliss forecasts, requires the use of ex-post data.

5.3 Other data

The Fama-Bliss data are interpolated zero-coupon yields. To check whether the pre-
dictability results are generated by the interpolation scheme, we run the regressions with
McCulloch-Kwon data, which use a different interpolation scheme to derive zero-coupon
yields from treasury data.

Table 10 compares the R2 and γ estimates using McCulloch-Kwon and Fama-Bliss
data over the McCulloch-Kwon sample (1964:1-1991:2). The R2 are very similar across
the two datasets. The tent-shape of γ estimates is even more pronounced in McCulloch-
Kwon data than in the Fama-Bliss data. (Interestingly, the low 0.05 R2 for the Fama-
Bliss 5-year bond regression is raised to 0.12, comparable to the other maturities, in the
McCulloch-Kwon data.)

5.4 Additional Lags

Do additional lags of forward rates help to forecast bond returns? We start with unre-
stricted regressions. Table 11 reports the R2 in the columns labeled “all f.” Specification
(1) repeats the baseline regression of excess returns on one lag of forward rates from Ta-
ble 1 for comparison. Specification (2) presents the R2 with additional one-month lagged
forward rates, ft−1/12. The R2 rise by about 0.05 to 0.39-0.43. A χ2 test overwhelmingly
rejects the hypothesis that the coefficients on the additional lag of forward rates are zero.
The extra lag helps.
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Table 10. Comparison with McCulloch-Kwon data

R2

All ft γ>ft f
(n−1→n)
t − y(1)t

n M-K F-B M-K F-B M-K F-B
2 0.39 0.39 0.39 0.38 0.16 0.15
3 0.37 0.39 0.37 0.40 0.15 0.16
4 0.36 0.41 0.36 0.42 0.13 0.17
5 0.35 0.37 0.35 0.38 0.12 0.05

Coefficients
γ0 γ1 γ2 γ3 γ4 γ5

McCulloch-Kwon −5.11 −2.52 1.78 3.19 1.94 −3.82
Fama-Bliss −4.73 −1.84 0.95 2.98 0.52 −2.10

NOTE: The data are McCulloch-Kwon and Fama-Bliss CRSP zero-coupon
yields starting 1964:1 until the end of the McCulloch-Kwon dataset, 1991:12.
The upper panel shows R2 from the regressions corresponding to Tables 1-3.
The regressions run excess log returns rx(n)t+1 on the regressors indicated on top
of the table: forward spread f (n−1→n)t − y(1)t , all forwards ft, and the return-
forecasting factor γ>ft. The lower panel shows the estimated γ coefficients
in the regression of average returns on forward rates rxt+1 = γ>ft + εt+1.
McCulloch-Kwon data are downloaded from
http://www.econ.ohio-state.edu/jhm/ts/mcckwon/mccull.htm.

The coefficients in these regressions (not reported) have the familiar tent shape, and
are roughly the same for the first and second lag. These fact suggests that a one-month
moving average of forward rates predicts bond returns. Specification (3) presents the
R2 with a moving average

¡
ft + ft−1/12

¢
/2 regressor. The R2 is nearly the same, and

the restriction is not rejected statistically, so this moving average seems a good way to
include the lagged information.

Since the unrestricted coefficients have the usual tent shape, Table 11 specification (2)
investigates a regression of excess returns on an additional lag of the return-forecasting
factor γ>ft. The R2 goes up from the corresponding specification (1) to 0.38-0.41, nearly
equal to the 0.39-0.43 values from the unconstrained two-lag regression in the all f
column. Once again, the single factor seems to capture all of the information in all 5
forward rates. The coefficients again suggest a moving average γ>

¡
ft + ft−1/12

¢
/2 as a

state variable. Specification (3) examines this regression. The additional constraint on
the coefficients makes little difference to the R2, and the coefficients themselves are very
close to the value in the first regression.
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Table 11. Regressions of excess returns on additional lags of forward rates

(1) Baseline (2) One extra lag (3) Moving average
all f γ>f all f γ>f all f γ>f

n R2 R2 γ>ft R2 γ>ft γ>ft−1/12 R2 R2 R2
γ>(ft+ft−1/12)

2

2 0.34 0.33 0.46 0.39 0.26 0.27 0.38 0.39 0.38 0.53
3 0.34 0.34 0.86 0.41 0.50 0.47 0.39 0.40 0.39 0.97
4 0.37 0.37 1.23 0.43 0.74 0.66 0.41 0.43 0.41 1.40
5 0.34 0.34 1.45 0.41 0.74 0.94 0.40 0.41 0.40 1.68

NOTE: Specification (1) forecasts excess returns with one lag of forward rates.
The “all f” column reports the R2 from unrestricted regressions, rx(n)t+1 =
β>ft + ε

(n)
t+1. The γ>f columns report slope coefficients bn and the R2 from

restricted regressions rx(n)t+1 = bn
¡
γ>ft

¢
+ ε

(n)
t+1. Specification (2) forecasts

excess returns with one extra lag of forward rates. The “all f” column reports
the R2 from the unrestricted regression rx(n)t+1 = β>1 ft + β>2 ft−1/12 + ε

(n)
t+1.

The γ>f columns report slope coefficients b1, b2 and the R2 from regressions
rx

(n)
t+1 = bn,1

¡
γ>ft

¢
+ bn,2

¡
γ>ft−1/12

¢
+ ε

(n)
t+1. Specification (3) forecasts excess

returns with a moving average of forward rates. The “all f” column reports
the R2 from unrestricted regressions rx(n)t+1 = βn

¡
ft + ft−1/12

¢
/2 + ε

(n)
t+1. The

γ>f columns report slope coefficients bn and R2 from restricted regressions
rx

(n)
t+1 = bnγ

> ¡ft + ft−1/12¢ /2+ε
(n)
t+1. OLS on overlapping monthly data 1964-

2001.

In sum, one additional lag enters with statistical and economic significance, and a
moving average of the return-forecasting factor offers an excellent summary of the extra
information. Additional monthly or annual lags are not much help.

The extra lag means that an VAR(1) monthly representation, of the type specified by
nearly every explicit term structure model, does not capture the patterns we see in annual
return forecasts. To see the annual return forecastability, one must either look directly
at annual horizons, or adopt more complex time-series models. To quantify this point,
we fit an unconstrained monthly yield VAR, yt+1/12 = Ayt + εt, and found the implied
annual VAR representation yt+1 = A12yt + ut. Yields, forward rates, and returns are all
linear functions of each other, so we can calculate return forecasts and R2 directly from
an annual VAR representation, and the return forecasts implied by a directly estimated
annual VAR yt+1 = Byt + vt+1 are precisely the same as we found above using forward
rates. The implied annual return forecasts from a monthly VAR hide the tent-shaped
pattern of coefficients. Most importantly, they hide the single-factor structure: The
yield on n-year bonds stands out as a much more important forecaster of the n-year
bond return, so no single combination of yields or forward rates summarizes bond return
forecastability. The forecast R2 are cut to 0.21-0.26 instead of 0.34-0.39.

What do we do with these facts? This data summary must be a prelude to the
construction of an economic model of the term structure. But additional lags are awkward
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forecasting variables for bond yields. In any model, bond prices are period t expected
values of future discount factors, so a full set of time t bond yields drive out time t−1/12
yields in forecasting anything. To integrate the lagged yields into the analysis, and to
reconcile VAR representations at different horizons, it may be more fruitful to specify a
model for monthly yields in which date t yields are truly sufficient state variables, but
they are contaminated with i.i.d. measurement error so lagged yields help to reveal the
true date-t yield. This effort also requires an extension to additional maturities and
integration with an explicit term structure model. In the interest of space, we leave this
large project for future work.

6 Multiple return-forecasting factors

6.1 Testing the single-factor model

The parameters of the unrestricted (rxt+1 = βft + εt+1) return forecasting regressions
and those of the restricted single-factor model (rxt+1 = b

¡
γ>ft

¢
+ εt+1) are individually

indistinguishable (Figure 1 and 2), but are they jointly equal? Does an overall test of
the single-factor model’s restrictions reject?

The moments underlying the unrestricted regressions (3) are the regression forecast
errors multiplied by forward rates (right hand variables),

gT (β) = E (εt+1 ⊗ ft) = 0. (5)

By contrast, our two-step estimate of the single factor model sets to zero the moments

E
£¡
1>4 εt+1

¢⊗ ft¤ = 0, (6)

E
£
εt+1 ⊗

¡
γ>ft

¢¤
= 0. (7)

We use these moments to compute the GMM standard errors in Table 2. The restricted
model β = bγ> does not set all the moments (5) to zero, gT (bγ>) 6= 0. We can compute
the “JT” χ2 test that the remaining moments are not too large. To do this, we express the
moments (6)-(7) that define the estimate of the one-factor model as linear combinations of
the moments (5) that are set to zero, aTgT = 0. Then we apply Hansen’s (1982) Theorem
3.1 (Details are in the Appendix). We also compute a Wald test of the joint parameter
restrictions β = bγ>. We find the standard GMM distribution cov(vec(β)), and then
compute the χ2 statistic

£
vec(bγ>)− vec(β)¤> cov(vec(β))−1 £vec(bγ>)− vec(β)¤. (vec

since β is a matrix of coefficients).

The tests all reject the single factor model. The precise χ2 values are sensitive to the
number of lags, weighting scheme, and the use of restricted or unrestricted moments in
the S matrix calculation, but the tests all reject with well below 1% probability values
for all reasonable choices of these specifications. We have reproduced both JT and Wald
tests in finite samples by simulation, and the rejection is confirmed.
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To understand the rejection, consider forecasting a linear combination of bond excess
returns, δ>rxt+1, where the weights are orthogonal to the b loadings, δ>b = 0. The single
factor model predicts that all such linear combinations of excess returns are not fore-
castable: it predicts Et

¡
δ>rxt+1

¢
= δ>bγ>ft = 0. If the single factor model is rejected,

it must mean that such linear combinations are forecastable. It means there are multiple
factors in expected excess bond returns—additional linear combinations of forward rates
that forecast these bond portfolios. Clearly, we should understand these extra factors.

6.2 A multiple-factor model

To understand and interpret the additional forecastability of bond returns that rejects
the single factor model, we express the regression coefficients β from the unconstrained
regressions

Et (rxt+1) = βft

into an exactly-identified multi-factor model,

Et(rxt+1) = BΓ
>ft = βft. (8)

Γ is a 6 × 4 matrix and Γ>ft is a 4 × 1 vector of factors that drive expected returns.
B is a 4 × 4 matrix of loadings, that describe how each expected return is affected
by a movement in each factor. Something like the b and γ we have found above will
be the first columns of B and Γ. The remaining columns will help us to interpret the
additional linear combinations of forward rates Γ>ft that evidently can forecast additional
linear combinations of returns. Obviously, this rewriting adds nothing to the unrestricted
regression, and there are an infinite number of ways to break up β in this way; we present
a decomposition that gives economic intuition and verifies the statistical significance of
all the remaining factors’ forecasting ability.

We can interpret a factor decomposition of the form (8) in terms of forecasting re-
gressions. Consider the expected return of a portfolio δ of bonds,

Et
¡
δ>rxt+1

¢
= δ>βft = δ>BΓ>ft.

We will choose the B matrix to have orthonormal columns. Then, the portfolio choice
δi = B(:, i) will reveal the ith factor, since δ>i B(:, i) = 1, δ>i B(:, j 6= i) = 0. (We use
MATLAB notation B(:, i) to denote the ith column of the matrix B.) Once we have
identified an interesting B, we can estimate Γ and evaluate the economic and statistical
significance of multiple factors by running forecasting regressions of B(:, i)>rxt+1 on
forward rates,

B(:, i)>rxt+1 = Γ(:, i)>ft +B(:, i)>εt+1, (9)

a simple generalization of our regression of average (across maturities) excess returns on
forward rates to estimate γ above. The B(:, i) tell us which portfolio takes maximum
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advantage of factor i’s forecast power, and the regression tests and R2 tell us how great
that power is. (Of course we can also calculate the Γ directly from (8) by Γ> = B−1β.)

Now, what is an interesting identification of B and hence Γ?We start with an eigen-
value decomposition of the expected return covariance matrix, in the same way that we
often define factor models for yields by an eigenvalue decomposition of the yield covari-
ance matrix,

QΛQ> = cov
£
Et(rxt+1), Et(rxt+1)

>¤ = βcov(ft, f
>
t )β

>.

Q is an orthogonal matrix of eigenvectors Q>Q = I and Λ is a diagonal matrix of
eigenvalues. We identify B = Q, and, inverting (8), we can calculate Γ> = Q>β. As
usual, the eigenvalue decomposition produces orthogonal factors that each explain the
largest possible fraction of expected return variance in turn. (For example, see Mardia,
Kent and Bibby 1979, p.215-218.)

The first factor computed by this eigenvalue decomposition turns out to be almost
exactly our return-forecasting factor, and it captures 99.4% of the variance of expected
returns. As often happens in eigenvalue decompositions, however, the B and Γ loadings
of factors past the first don’t tell much of a story. Their relative variances are similar
at 0.28%, 0.16% and 0.11%. They are selected to explain fractions of variance; when
as here the remaining factors all have about the same and tiny variance, the eigenvalue
decomposition is not very good at sorting them out.

Therefore, we find a recursive identification of the remaining factors more insightful.
We identify the second factor to affect only 4 and 5 year bond returns and be orthogonal
to the first,

B(:, 2)>B(:, 1) = 0,

B(:, 2)>B(:, 2) = 1,

B(1:2, 2) = 0.

We identify the third factor to affect 3, 4, and 5 year returns while remaining orthogonal
to the first two, and so forth.

Results

The result of this exact identification procedure is

B =



Factor:
1 2 3 4

rx
(2)
t+1 0.22 0 0 −0.97

Return: rx
(3)
t+1 0.41 0 −0.91 0.09

rx
(4)
t+1 0.58 −0.76 0.27 0.13

rx
(5)
t+1 0.67 0.65 0.32 0.15


.

We calculate Γ> = B>β from (8) (B is orthonormal so B−1 = B>), and Figure 9 plots
the corresponding columns of Γ, i.e. how factors are formed from forward rates. Table
12 summarizes the forecast power of the factors by regressions of the form (9).
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Table 12. Multi-factor excess return forecasts.

Factor
1 2 3 4

σ
£
Γ(:, i)>ft

¤
5.13 0.19 0.26 0.14

Variance % 99.4 0.13 0.26 0.14
R2 0.35 0.18 0.27 0.16
EH upper 95% 0.14 0.12 0.12 0.12
χ2(5) 92.4 93.8 107.4 31.7
EH p-value 0.00 0.00 0.00 0.01

NOTE: Regressions of linear combinations of excess returns on forward rates,

B(:, i)>rxt+1 = Γ(:, i)>ft + ε
(i)
t+j .

σ
£
Γ(:, i)>ft

¤
is the standard deviation of the right hand variable in percent.

“Variance %” gives the same information as variance divided by total (sum
across factors) variance. The χ2 statistic is the test for joint insignificance
of all right hand variables except the constant. “EH upper 95%” are the
upper bounds of 95% confidence intervals computed from the bootstrap that
imposes the expectations hypothesis. “EH p-value” reports the p-values of
Wald tests for joint significance of the right hand variables from the same
bootstrap. Coefficient estimates are plotted in Figure 9.

The first factor is almost exactly the return-forecasting factor γ>ft we found above.
The first column of B shows that the first factor moves all expected excess returns in the
same direction, and long maturity returns more than short maturity returns. This column
is almost exactly (up to normalization

P
i b
2
i = 1 rather than

P
i bi = 4) the b loading

that we found in Table 2. We omitted the first column of Γ from Figure 9 for clarity; it is
the familiar tent-shaped function of forward rates, visually indistinguishable from Figure
1. The first two rows of Table 12 show that this factor accounts for the overwhelming
majority of the variance of return forecasts. Thus, just about any linear combination
of returns regressed on forward rates will give almost exactly this factor; the fact that
above we regressed 1

4
× 1>4 rxt+1 on forward rates and now we regress B(:, 1)>rxt+1 on

forward rates makes almost no difference whatever in the estimate of Γ(:, 1). The other
factors are so much smaller (first and second rows, Table 12) that you have very carefully
to define portfolio weights orthogonal to B(:, 1) in order to see them.

The second column of B shows that the second factor moves the 5-year return up
and the 4-year return down, by almost the same amounts. The corresponding factor
Γ(:, 2) in Figure 9 — the function of yields that signals a high return to the long 5, short 4
portfolio — is basically the 5-4 year yield spread. The second column of Table 12 verifies
that although this factor is tiny — normalizing its effect on expected excess returns so
that B(:, 2)>B(:, 2) = 1, the standard deviation of Γ(:, 2)>ft is only 0.19 % — it does
significantly forecast its corresponding bond return portfolio (long 5, short 4). The R2 is
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Figure 9: Expected excess return factors. The lines are the second through fourth columns
of the matrix Γ in the representation Et (rxt+1) = BΓ>ft. The lines are scaled by their
sum of squares to fit on the same graph.

0.18, about the size of the Fama-Bliss R2, and the GMM and small sample tests soundly
reject lack of forecastability.

These results paint an intuitive picture. When the 5-4 yield spread is high — when
the 5 year price “low” and the 4 year price is “high”— a portfolio that buys 5 and shorts
4 does well. This is the classic “spread trade” or “convergence trade.”

The remaining factors work the same way. Looking at the B matrix, the third factor
lowers the 3-year bond return, balanced by raising the 4 and 5 year returns, while the
fourth factor lowers the 2-year bond return, raising all the others. Looking at Figure 9,
the signal for the third factor is primarily a high 3-year bond yield, and the signal for
the fourth factor is primarily a high 2-year bond yield. Like the second factor, these
are small idiosyncratic movements in the yield curve that are reversed, giving a profit
to those who buy low and sell high, hedging movements in the overall level of the yield
curve. In Table 12, these factors again are tiny (first two rows), but significantly forecast
the tiny returns on their corresponding bond portfolios.

Interpretation of additional factors

What should we make of these additional factors? They are very small. There are
only small idiosyncratic movements of the individual bond yields, and they forecast small
returns to the corresponding portfolios. But the forecasted returns form a nearly zero-cost
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portfolio (columns of B), so a huge short position matched by a huge long position can
make money, as in the famous LTCM 29.5 - 30 year trade. Furthermore, since most bond
return risk is “level” risk that moves all long-term bond prices together, these portfolios
have small variance and potentially large Sharpe ratios. This low variance — equivalently,
the respectable forecast R2 values — means that the small forecastable movements in
expected returns are well-measured and hence statistically significant, accounting for the
statistical rejection of the appealing single factor model.

They could be real. The 29.5-30 year spread trade was real (among others, see
Krishnamurthy 2002). Much of what bond traders do is precisely to pick bonds that
are a little over or underpriced relative to a yield curve, leverage like mad, and wait for
the small price fluctuations to melt away. On the other hand, measurement error also
induces small transitory variation in prices. Our CRSP data are interpolated by Fama
and Bliss from Federal Reserve surveys; surely not the kind of data on which one would
recommend highly leveraged spread trades. The analysis in Section 5.4 also suggests i.i.d.
measurement error in our data.

In any case, our main focus is to characterize the economically interesting variation
in expected bond returns. For that purpose, the single factor model that explains 99.4%
of the variance of bond expected returns is obviously the model on which we want to
focus, even though our data show the kind of tiny fluctuations that may give bond traders
profitable spread trades as well, and for this reason the single factor model is statistically
rejected.

Two step vs. efficient estimates

At this point, we can finally answer the question, “Why estimate the model in Table 2
with an ad-hoc two step procedure, rather than use efficient GMM?” Under the null that
the single factor model is true, efficient GMM (min{b,γ} gT (bγ>)>S−1gT (bγ>)) produces
asymptotically more efficient estimates. However, our model is statistically rejected. We
want good estimates of a rejected model, not efficient estimates of a true single-factor
model. Efficient GMM can do a poor job of that task, even in samples in which one can
trust estimation and inversion of a 24× 24 spectral density estimate with 12 lags.
The crucial question is, what moments will GMM use to choose γ, the linear combi-

nation of forward rates that forms the single factor? Once the single-factor parameter γ
is estimated, even efficient GMM estimates the remaining b coefficients by regressions of
each return on γ>ft. In turn, taking linear combinations of moments is the same thing
as forming a portfolio, so the crucial question becomes, “which portfolio of excess returns
δ>rxt+1 will efficient GMM regress on all forward rates to estimate γ?” The answer is
that efficient GMM pays attention to well-measured linear combinations of moments,
guided by S, not “large” or “economically interesting” moments. For example, suppose
that one of the tiny additional factors (say, Γ(:, 3)) forecasts its corresponding tiny linear
combination of returns (B(:, 3)>rxt+1) with 100% R2. No regression error means that
this moment is exactly measured, so efficient GMM will estimate parameters γ to make
the moments of this regression E(εt+1(b, γ) ⊗ ft) equal to zero exactly. It will proudly
return the estimate γ = Γ(:, 3). Efficient GMM will completely miss the economically
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interesting factor Γ(:, 1) that describes 99.4% of the variance of expected returns. It will
leave extremely large values for the corresponding moments, and it will produce a factor
that explains almost none of the variance of expected returns.

In our data, the R2 for all factors are roughly comparable. That means that efficient
GMM pays about equal attention to all the regressions of Γ(:, i) on forward rates, pro-
ducing a factor that is a combination of the Γ coefficients rather than an estimate of
Γ(:, 1) or any of the other factors identified above. Still, the resulting single factor model
explains very little of the variance of expected excess returns.

We want a GMM estimate of the approximate single factor that explains most of the
variance of expected returns, not the one that minimizes the best measured, even if tiny,
moments. For that purpose, we want to force GMM to pay attention to a portfolio such
as B(:, 1)>rxt+1 or 1>rxt+1 as we did with the two step procedure. The return-forecasting
factor is such an overwhelming factor for the variance of expected returns that it doesn’t
really matter which linear combination we choose, so long as we keep GMM from paying
attention to the special linear combinations B(:, 2:4) that produce our very small, but
well measured additional factors.

7 Concluding remarks

This analysis is admittedly incomplete in many respects. We have confined ourselves to
a one year horizon. Understanding how expected returns vary across investment horizon
is of course a very important issue. We also confined ourselves to 1-5 year maturity
bonds, and linking the analysis to shorter maturity bonds is important and challenging.
However, these extensions require some subtle time-series analysis, probably including
an explicit treatment of the measurement error we seem to see in our analysis of multiple
lags. They also require extending our data beyond zero coupon bonds at one year spaced
maturities and hence integration with an explicit term structure model since all returns
cannot be measured directly. We have not mentioned variances or covariances, and
hence we have not mentioned Sharpe ratios or optimal portfolios. Modeling time-varying
second moments is likely to require as much effort as modeling the first moments in
this paper. Finally, we have not tied the time-varying premia to macroeconomic or
monetary fundamentals in more than a suggestive way. All these and more are important
extensions, but we have strained space and the reader’s patience enough for now.
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Appendix

A. Small sample distributions

The data-generating process is a vector autoregression with 12 lags for the vector of yields

yt = A0 +A1yt−1/12 + . . .+A12yt−1 + εt.

Vector autoregressions based on fewer lags (such as one or two) are unable to replicate
the long-horizon forecastability of the short rate documented in Table 10.

To impose the expectations hypothesis we start with an AR(12) for the short rate

y
(1)
t = a0 + a1y

(1)
t−1/12 + . . .+ a12y

(1)
t−1 + εt.

We then compute long yields as

y
(n)
t =

1

n
Et

Ã
nX
i=1

y
(n)
t+i−1

!
, n = 2, . . . , 5.

To compute the expected value in this last expression, we expand the state space to
rewrite the dynamics of the short rate as a vector autoregression with 1 lag. The 12-

dimensional vector xt =
h
y
(1)
t y

(1)
t−1/11 . . . y

(1)
t−11/12

i>
follows

xt = B0 +B1xt−1/12 + Σut

for

B0 =

µ
a0
0

¶
, B1 =

µ
a1 · · · a12
I11×11 011×1

¶
,Σ =

µ
1 01×11

011×1 011×11

¶
.

The vector e1 = [1 01×11] picks the first element in xt, which gives y
(1)
t = e1xt. Longer

yields can then be easily computed recursively as

y
(n)
t =

n− 1
n

y
(n−1)
t +

1

n
e1

ÃÃ
n−1X
i=0

Bi1

!
B0 +B

n
1xt

!
, n = 2, . . . , 5,

with the understanding that Bi1 for i = 0 is the 12×12 identity matrix.

B. GMM estimates and tests

The unrestricted regression is

rxt+1 = βft + εt+1,
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The moment conditions of the unrestricted model are

gT (β) = E(εt+1 ⊗ ft) = 0. (10)

The restricted model is β = bγ>, with the normalization b>14 = 4.

We focus on a 2-step OLS estimate of the restricted model — first estimate average
(across maturities) returns on f , then run each return on γ̂>f :

rxt+1 = γ>ft + ε̄t+1, (11)

rxt+1 = b
¡
γ̂>ft

¢
+ εt+1. (12)

The estimates satisfy 1>4 b = 4 automatically.

To provide standard errors for the two-step estimate, we use the moments correspond-
ing to the two OLS regressions (11) and (12),

g̃T (b, γ) =

·
E (ε̄t+1(b, γ)× ft)
E
£
εt+1(b, γ)× γ>ft

¤ ¸ = 0.
Since the estimate is exactly identified from these moments (a = I) Hansen’s (1982)
Theorem 3.1 gives the standard error,

var

µ
γ̂

b̂

¶
=
1

T
d̃−1S̃d̃−1>

where

d̃ =
∂g̃T

∂ [γ> b>]
=

∂

∂ [γ> b>]

·
E
£
ft
¡
rxt+1 − f>t γ

¢¤
E
£¡
rxt+1 − bγ>ft

¢ ¡
f>t γ

¢
)
¤ ¸

=

· −E ¡ftf>t ¢ 06×4
E(rxt+1f

>
t )− 2bγ>E

¡
ftf

>
t

¢ − £γ>E ¡ftf>t ¢ γ¤ I4
¸
.

Since the upper right block is zero, the upper left block of d−1 is E
¡
ftf

>
t

¢−1
. Therefore,

the variance of γ is not affected by the b estimate, and is equal to the usual GMM
formula for a regression standard error, var(γ̂) = E(ff>)−1S̃(1 : 6, 1 : 6)E(ff>)−1/T .
The variance of b̂ is affected by the generated regressor γ, via the off diagonal term in
d̃−1.

To test the (inefficient) two step estimate, we apply Hansen’s Lemma 4.1 — the coun-
terpart to the JT test that handles inefficient as well as efficient estimates. To do this, we
must first express the restricted estimate as a GMM estimate based on the unrestricted
moment conditions (10). The two step OLS estimate of the restricted model sets to zero
a linear combination of the unrestricted moments:

aTgT = 0, (13)
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where

aT =


I6 I6 I6 I6
γ> 01×6 01×6 01×6
01×6 γ> 01×6 01×6
01×6 01×6 γ> 01×6

 = · 1>4 ⊗ I6
I3 ⊗ γ> 03×6

¸
.

The first row of identity matrices in aT sums across return maturities to do the
regression of average returns on all forward rates. The last three rows sum across forward
rates at a given return maturity to do the regression of each return on γ>f . An additional
row of aT of the form

£
01×6 01×6 01×6 γ>

¤
to estimate the last element of b would

be redundant — the b4 regression is implied by the first three regressions. The estimate
is the same whether one runs that regression or just estimates b4 = 1− b1 − b2 − b3. We
follow the latter convention since the GMM distribution theory is written for full rank a
matrices. It is initially troubling to see a parameter in the a matrix. Since we use the
OLS γ estimate in the second stage regression, however, we can interpret γ in aT as its
OLS estimate, γ = ET (ff>)−1ET (rx f). Then aT is a random matrix that converges to
a matrix a as it should in the GMM distribution theory. (I.e. we do not choose the γ in
aT to set aT (γ)gT (γ, b) = 0.)

We need the d matrix,

d ≡ ∂gT

∂
£
b> γ>

¤ .
Recalling b4 = 4− b1 − b2 − b3, the result is

d =



−1

−1
−1

1 1 1

⊗E(ff>)γ − b⊗E(ff>)
 .

Now, we can invoke Hansen’s Lemma 4.1, and write the covariance matrix of the
moments under the restricted estimate,

cov(gT ) =
1

T
(I − d(ad)−1a)S(I − d(ad)−1a)>.

The test statistic is

g>T cov(gT )
+gT˜χ

2
15.

There are 4 × 6 = 24 moments and 6(γ) + 3(b) parameters, so there are 15 degrees of
freedom. The cov(gT ) matrix is singular, so the + operator represents pseudoinversion.
We use an eigenvalue decomposition for cov(gT ) and then retain only the largest 15
eigenvalues, i.e. write cov(gT ) = QΛQ> where Q is orthogonal and Λ is diagonal and
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then cov(gT )+ = QΛ+Q> where Λ+ inverts the 15 largest diagonal elements of Λ and
sets the remainder to zero.

To conduct the corresponding Wald test, we first find the GMM covariance matrix of
the unrestricted parameters. We form a vector of those parameters, vec(β), and then

cov(vec(β)) =
1

T
d−1S (d)−1> ,

d =
∂gT

∂(vec(β)>)
= I4 ⊗E(ff>).

C. Recursive identification of the multifactor model

The first row of B is the eigenvector corresponding to the largest eigenvalue of the
covariance matrix of expected returns, i.e. with

QΛQ> = cov
£
Etrxt+1, Etrx

>
t+1

¤
= βcov(f, f>)β>,

we identify

B(:, 1) = Q(:, 1).

We identify the rest of B recursively. The zero restrictions are

B =


Q(1, 1) 0 0 f
Q(2, 1) 0 c g
Q(3, 1) a d h
Q(4, 1) b e i

 .
We need the coefficients a− i. The columns must be orthonormal.
We simplify the algebra by postponing the normalization. We pick b, e, i arbitrarily at

1. Then we pick the other coefficients ones so that the columns are orthogonal. Finally,
we rescale the columns numerically, i.e. choosing b, e, i, so that the sum of squares is one.
The second column:

Q(3, 1)a+Q(4, 1)b = 0

a = −bQ(4, 1)
Q(3, 1)

.

The third column:

Q(2, 1)c+Q(3, 1)d+Q(4, 1)e = 0

ad+ be = 0

43



d = −eb
a

c = −Q(3, 1)d+Q(4, 1)e
Q(2, 1)

.

The fourth column:

Q(1, 1)f +Q(2, 1)g +Q(3, 1)h+Q(4, 1)i = 0

ah+ bi = 0

cg + dh+ ei = 0

h = −bi
a

c = −dh+ ei
g

f = −Q(2, 1)g +Q(3, 1)h+Q(4, 1)i
Q(1, 1)

.
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