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1 Introduction

Term premia, risk premia in the bond market, are a key object of interest for central banks.

They influence how monetary policy implementation via the short term interest rate gets

transmitted into the real economy through borrowing costs at longer maturities, and ul-

timately determines its effectiveness. Policy speeches – made by the current Fed Chair

Yellen(2014) and past Chairs Bernanke(2006) and Greenspan(2005), for example – call for

the importance of understanding how and why term premia fluctuate. Our paper aims to

answer these questions by proposing a new consumption based asset pricing model.

Central banks around the world rely on reduced form Gaussian affine term structure

models (ATSM) to produce estimates of term premia for policy discussion, because of the

tractability and reliability resulting from the affine structure. This class of models generate

variability in term premia through a time-varying price of risk that is a function of the

conditional mean of yields; see, e.g. Duffee(2002), Wright(2011) and Bauer, Rudebusch, and

Wu(2012). Conversely, structural consumption-based asset pricing models studying bond

risk premia often use recursive preferences, Bansal and Shaliastovich(2013) for example.

In these models, time-variation in term premia are driven only by stochastic volatility of

consumption growth and inflation, meaning that the levels of these macro variables play no

role. This conclusion is at odds with the empirical evidence from reduced form ATSMs.

We reconcile the two literatures by building a structural model with both time-varying

prices and quantities of risk. We introduce a time-varying price of risk through a new

formulation of habit formation. Just as in Abel(1999), the agent’s period utility relies on

the ratio of consumption to habit. Our habit specification depends on current and past

consumption and inflation, with the latter accounting for inflation non-neutrality as argued

by Piazzesi and Schneider(2007) and Bansal and Shaliastovich(2013). The novelty is that

the state dependent risk sensitivity function – how habit growth loads on economic shocks

– is chosen to make bond prices analytical and retain an affine structure. The tractability

gained from the affine structure allows us to empirically disentangle the roles that habit,
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recursive preferences, and stochastic volatility have on term premia. We introduce time-

varying quantities of risk through stochastic volatility, similar to the long run risk literature.

The difference is that the volatility process in our paper is guaranteed to remain positive,

unlike most of the literature.

We evaluate the empirical performance of our model by first quantifying the information

contained in observed inflation and consumption data about macroeconomic state variables

using Markov chain Monte Carlo and particle filters. We then ask how well these macroe-

conomic state variables do in terms of matching the bond yield data by least squares. We

show that empirically our model can adequately capture the time-variation of term premia.

It fits other key moments of Treasury bonds as well: it has an upward slope for the yield

curve; and it also mimics the time series dynamics of the average yield and slope of the yield

curve well.

Next, we turn to the key question that motivates our research: is a time-varying price

or quantity of risk the key driver for the time variation in term premia? We answer this

question by shutting down one channel at a time. First, we shut down the price of risk

channel. This model is similar to a long run risk model with stochastic volatility studied in

the literature. We find that although such a model produces time variation in term premia,

the implied term premia are implausible: they are economically insignificant, and have the

wrong sign.

On the other hand, a model with habit but not stochastic volatility mimics the time

variation of term premia produced by the reduced form Gaussian ATSM and our benchmark

model. Overall, our empirical evidence attributes the time variation in the term premia

primarily to a time-varying price of risk through habit.

We further examine whether it is inflation or consumption that drives this price of risk,

and we find the crucial component is the price of the expected inflation risk that comoves

with the expected inflation itself. This is consistent with inflation non-neutrality as argued by

Piazzesi and Schneider(2007) and Bansal and Shaliastovich(2013) in a structural framework.
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The important contribution inflation makes to bond price dynamics are also highlighted in

the ATSM literature, see Ang and Piazzesi(2003) and Rudebusch and Wu(2008).

Introducing habit also has important implications for the unconditional slope of the

yield curve, which has been the main focus for the majority of the literature. Another

counterfactual implication of the long run risk model with stochastic volatility is a downward

sloping yield curve, once the macro latent factors are pinned down by the observed macro

data. Adding habit formation reverts the situation completely, and implies an unconditional

slope just like what we see in the data.

Habit formation grants an economic interpretation to a long standing intuition in the

ATSM literature: In a structural model without habit, the key parameters that determine

the autocorrelation of consumption growth and inflation are the same as the parameters

controlling the slope of the yield curve. This strong link between the two parameters has

undesirable implications. For example, in our sample, the time series properties of the data

dictate a downward sloping yield curve. Conversely, Gaussian ATSMs separate these two

parameters. This property of the model is the main reason for their success in fitting the

data because it is the mechanism that allows the price of risk to be time-varying. Habit

formation provides an economic motivation for this separation in a structural model.

This separation alone provides the same implications for bond slope and term premia

even when other preference parameters of the model – including the time discount factor,

intertemporal elasticity of substitution and risk aversion – vary substantially over regions

with different economic interpretations. We demonstrate this point using two local maxima

with these three structural parameters taking economically different values yet with the same

implications for bonds.

The empirical examination of the asset pricing implications discussed above requires

solving for the stochastic discount factor.1 However, such a solution does not always exist

1Specifically, we implement a solution method developed by Bansal and Yaron(2004) that is widely used
in the macroeconomics and finance literatures; see, e.g. Bollerslev, Tauchen, and Zhou(2009), Bansal, Kiku,
and Yaron(2012) and Schorfheide, Song, and Yaron(2014). Rudebusch and Swanson(2012) and Caldara,
Fernández-Villaverde, Rubio-Ramı́rez, and Yao(2012) describe other solution methods.
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for regions of the parameter space that researchers have traditionally found plausible. This is

an issue for all models in the literature that use recursive preferences with a few exceptions,

and not specific to our model. We provide conditions on the model’s parameters guaranteeing

the existence of a solution. The general rule is that agents cannot be too patient. A direct

implication is that an extremely patient agent faces strong restrictions in their risk aversion

and intertemporal elasticity of substitution. These conditions partition the parameter space

and make it cumbersome for econometricians implementing either an optimization-based

frequentist estimator or Bayesian Markov chain Monte Carlo algorithm.

This paper continues as follows. Subsection 1.1 discusses the literature. We introduce

the new model with habit formation and recursive preferences in Section 2, and discusses

its properties in Section 3. Section 4 describes empirical strategy for estimation and the

consequent estimates. Section 5 examines the model’s implication for bonds. In Section 6,

we discuss the conditions for a solution to exist. The paper concludes in Section 7.

1.1 Relationship to the literature

Our specification for habit is motivated by Abel(1999) and Campbell and Cochrane(1999).

Campbell and Cochrane(1999) introduce a risk sensitivity function that generates time-

varying risk premia that are functions of the past history of shocks to consumption growth.

Our model uses ratio habits as in Abel(1999) and allows the habit to be influenced by a risk

sensitivity function as in Campbell and Cochrane(1999), albeit with a different functional

form. The combination of the two allow the representative agent’s period utility and their

marginal rate of substitution to depend on the state of the economy. Wachter(2006) studies

bonds with Campbell and Cochrane(1999) style habit formation. Dew-Becker(2014) intro-

duces a multiplicative habit to study bonds in a DSGE model. Our primary contribution to

the habit literature is that we develop a model that has an analytical bond prices, making

this class of models tractable.

A large literature in macroeconomics and finance uses recursive preferences as developed
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by Kreps and Porteus(1978), Epstein and Zin(1989), and Weil(1989). These preferences

separate intertemporal substitution from risk aversion, which are directly linked under power

utility. An endowment economy with recursive preferences and affine dynamics of the state

variables is particularly attractive because it generates (approximate) closed-form solutions

for bond and equity prices. A prime example is the long-run risk model of Bansal and

Yaron(2004). Several authors have studied the yield curve using this framework. Piazzesi

and Schneider(2007) study an economy with recursive preferences when the elasticity of

intertemporal substitution equals one and shocks to consumption growth and inflation are

homoskedastic; see also, e.g. Tallarini(2000), and Hansen, Heaton, and Li(2008). Bansal

and Shaliastovich(2013) evaluate a model where expected inflation and consumption growth

are slow moving and have stochastic volatility. The difference between our work and these

papers is the existence of habit formation, which is critical for introducing a time-varying

price of risk.

Albuquerque, Eichenbaum, and Rebelo(2014) and Schorfheide, Song, and Yaron(2014)

analyze models where the period utility has a time varying preference. We show how this

formulation relates to habit formation. In their specifications, shocks to preferences introduce

additional latent factors that can influence asset prices. But, these shocks do not introduce

time-varying risk premia, which is the key focus of our paper.

Another class of consumption-based models that have recently drawn attention for their

ability to explain asset pricing anomalies are models with rare consumption disasters; see,

e.g. Barro(2006), Gabaix(2012), and Wachter(2013). Wachter(2013) considers a model with

recursive preferences with a time-varying probability of a jump in consumption growth.

When applied to the yield curve, this model will generate time-varying term premia that are

driven by the time-varying intensities of jumps to consumption growth and/or inflation. This

mechanism can be seen as an alternative to stochastic volatility for generating a time-varying

quantity of risk. Note that the model has a constant price of risk.
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2 Model

In this section, we build a structural model that encompasses the two competing channels

that drive time variation in term premia: time-varying price and quantity of risk. We do

so by introducing external habit into recursive preferences in a tractable framework. The

novelty is two fold. First, unlike a standard model with recursive preferences, such a model

generates a time-varying market price of risk. Moreover, different from the popular habit

formation models in the literature, our model gains its tractability by retaining an affine

form.

2.1 Agent’s problem

We consider an endowment economy, where the representative agent optimizes over his

lifetime utility

Vt = max
Ct

[
(1− β)

(
Ct
Ht

)1−η

+ β
{

Et

[
V 1−γ
t+1

]} 1−η
1−γ

] 1
1−η

(1)

with respect to consumption Ct. Ht is the level of the external habit. For the same amount of

consumption, a higher habit makes the agent less happy. The same as Abel(1999), we assume

that agent’s utility depends on the ratio between consumption and habit. For example,

doubling both the consumption and habit does not change the agent’s utility. β is the

time discount factor, γ measures risk aversion, and ψ = 1
η

is the elasticity of intertemporal

substitution when there is no uncertainty.

Agents maximize utility (1) subject to the budget constraint

Wt+1 = (Wt − Ct)Rc,t+1, (2)

where Wt is wealth and Rc,t+1 is the gross return on the consumption asset between t and

t+ 1.
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The first order condition of the agent’s problem implies that the log stochastic discount

factor (SDF) is

mt+1 = ϑ ln (β) + ϑ∆υt+1 − ηϑ∆ct+1 + (ϑ− 1) rc,t+1, (3)

where ϑ ≡ 1−γ
1−η , ∆ct+1 = ln (Ct+1) − ln (Ct) is consumption growth, and rc,t+1 = ln (Rc,t+1)

is the continuously compounded return. These terms are standard in models with recursive

preferences.

The new term ∆υt+1 ≡ (η − 1)(lnHt+1 − lnHt) measures the stochastic growth rate of

habit, and it is unique to our new model. It is this term that enables enough variation in

the pricing kernel to capture the time-varying risk premium in bond prices through a time-

varying price of risk. For a derivation, see Appendix A. Nominal assets are priced using the

nominal pricing kernel

m$
t+1 = mt+1 − πt+1, (4)

where inflation is πt+1 = ln (Πt+1)− ln (Πt) and Πt is the nominal price level.

2.2 Dynamics

The state of the economy is summarized by a G× 1 vector gt, which includes consumption

growth ∆ct and inflation πt

∆ct = Z ′cgt, (5)

πt = Z ′πgt, (6)
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where Zc and Zπ are G×1 selection vectors containing only zeros and ones. The state vector

follows a heteroskedastic vector autoregressive process, summarized in companion form as

gt+1 = µg + Φggt + Φghht + Σghεh,t+1 + Σg,tεg,t+1 εg,t+1 ∼ N (0, I) (7)

Σg,tΣ
′
g,t = Σ0,gΣ

′
0,g +

H∑
i=1

Σi,gΣ
′
i,ghit

ht+1 ∼ NCG (νh,Φh,Σh) (8)

εh,t+1 = ht+1 − Et [ht+1|ht]

where ht is a H × 1 vector following a non-central gamma (NCG) process as in Creal and

Wu(2015b). This process guarantees the non-negativity of volatility. This contrasts with

the Gaussian process that is prevalent in most of the literature, for example, see Bansal and

Yaron(2004) and Bansal and Shaliastovich(2013).

This is an affine process that is the exact discrete time equivalent of a multivariate

Cox, Ingersoll, and Ross(1985) process. The conditional mean is Et [ht+1|ht] = Σhνh + Φhht

meaning that Φh controls the autocovariance of ht+1 and Σhνh is the drift. Σh is a matrix of

scale parameters and νh are a vector of shape parameters. The vector εh,t+1 are mean zero,

heteroskedastic shocks to volatility and Σgh measures the covariance between Gaussian and

non-Gaussian shocks, i.e. the volatility feedback effect. Further details on properties of the

model can be found in Appendix B.2

The general process (7) - (8) nests popular models in the literature. Consider a model

with long-run risks for consumption growth as in Bansal and Yaron(2004) and a time-varying

2The timing of how volatility scales the shocks in discrete-time models such as (7) is an outstanding issue
in financial econometrics. Both timings Σg,tεg,t+1 and Σg,t+1εg,t+1 lead to log-SDF’s that are linear in the
state variables and produce affine bond prices. Our analysis focuses on the timing in (7), which is common
in finance. However, the alternative timing Σg,t+1εg,t+1 means the representative agent faces greater short
term uncertainty. Volatility has an immediate and potentially more significant impact on the short rate (and
consequently all yields) even when there is no volatility feedback effect.
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trend in inflation similar to Stock and Watson(2007). The model is

πt+1 = π̄t + επ1,t+1 επ1,t+1 ∼ N (0, ht,π1) (9)

∆ct+1 = c̄t + εc1,t+1 εc1,t+1 ∼ N (0, ht,c1) (10)

π̄t+1 = µπ + φππ̄t + φπ,cc̄t + επ2,t+1 επ2,t+1 ∼ N (0, ht,π2) (11)

c̄t+1 = µc + φc,ππ̄t + φcc̄t + σc,πεπ2,t+1 + εc2,t+1 εc2,t+1 ∼ N (0, ht,c2) (12)

where c̄t is the expected consumption growth rate and π̄t is expected inflation. The shocks

εc1,t and επ1,t are transitory, and determine the high-frequency movements in their respective

series whereas επ2,t and εc2,t are shocks to their persistent components. In our model, shocks

to expected inflation have a contemporaneous impact on expected consumption growth,

and all shocks have stochastic volatility. The state vectors are gt = (πt,∆ct, π̄t, c̄t)
′ and

ht = (ht,π1 , ht,c1 , ht,π2 , ht,c2)
′. See Appendix B.2 for more details.

Although our empirical implementation will focus on this popular long run risk specifica-

tion, note that our general framework in (7) - (8) can also nest a vector autoregressive moving

average model for consumption growth and inflation, like the one studied in Wachter(2006).

2.3 Habit

The empirical conclusion in the GATSM literature is that risk premia are driven by the

levels of the state variables through the price of risk. Motivated by this empirical finding, we

build this channel in our model through the time varying growth rate of habit. We discipline

our model using this empirical fact, and only allow habit growth to depend on the levels

of macroeconomic variables. Then we will empirically test whether such a parsimonious

specification generates enough variation in the term premium from our structural model to

capture the data. The habit growth is

∆υt+1 = Λ1 (gt) + Λ2 (gt)
′ εg,t+1, (13)
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which depends on the levels of past inflation and consumption as well as their shocks in the

current period. The dependence on inflation is motivated by the real effect of inflation as

argued by Piazzesi and Schneider(2007) and Bansal and Shaliastovich(2013).

The key term, the risk sensitivity function Λ2 (gt), works through a similar mechanism

as in Campbell and Cochrane(1999) and Wachter(2006) to generate a time-varying price of

risk, and hence risk premium. The difference is that our choice of functional form allows the

model to stay within the affine family and have analytical bond prices:

Λ2 (gt) = −ηΣ−1
g,t (λ0 + λggt) , (14)

and Λ1 (gt) = −ϑη2

2
(λ0 + λggt)

′ (Σg,tΣ
′
g,t

)−1
(λ0 + λggt). This specification can be readily

extended to a more complex model where changes in habit ∆υt+1 also depend on the volatil-

ities and their shocks, see the earlier working paper version of Creal and Wu(2015a). This

extension could potentially introduce more complex channels to explain movements in asset

prices. Instead, we keep the model intentionally simple and examine how well the current

channels can explain yields.

When γ = η, the model with recursive preferences reduces to power utility with habit.

In this case, if one chooses

Λ1t = (1− φ) (ῡ − υt)

Λ2t =
1

H̄

√
η + 2 (υt − ῡ) + ησc,

∆ct+1 = c̄+ σcεc1,t+1, and εg,t+1 = εc1,t+1, then the resulting SDF in (3) becomes the SDF of

the habit formation model in Wachter(2006). Consequently, asset prices in the two models

are observationally equivalent.

There are two main differences. First, our choice for the risk sensitivity functions yield

an affine structure. This implies analytical bond prices which provide tractability. Second,

we allow not only consumption, but inflation risk to be priced. It turns out the price of
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expected inflation is the key driving factor.

2.4 Solving rc,t+1

The SDF in (3) is a function of the return on the consumption asset rc,t+1, which is generally

regarded as unobserved in the data. We solve for it using the log-linearization technique of

Campbell and Shiller(1989), applied by, for example, Bansal and Yaron(2004) and Bansal,

Kiku, and Yaron(2012).3 We express the return as a function of the price to consumption

ratio

rc,t+1 ≡ ln

(
Pt+1 + Ct+1

Pt

)
= ∆ct+1 − pct + ln (1 + exp (pct+1))

≈ κ0 + κ1pct+1 − pct + ∆ct+1, (15)

where Pt+1 is the price of consumption goods, pct = ln
(
Pt
Ct

)
is the log price to consump-

tion ratio. κ0 and κ1 are log-linearization constants that depend on the average price to

consumption ratio p̄c = E [pct]. The derivation can be found in Appendix C.1.

As the real pricing kernel in (3) must also price the consumption good

1 = Et [exp (mt+1 + rc,t+1)] (16)

we can guess and verify a solution for

pct = D0 +D′ggt +D′hht. (17)

This is a fixed point problem: pct depends on κ0, κ1 through D0, Dg, Dh, which in turn

depend on p̄c. We discuss the details of this fixed point problem in Appendix C, and the

existence of a solution in Section 6.

3The solution method used by Campbell, Giglio, Polk, and Turley(2014) for their ICAPM model is similar,
only they substitute out consumption instead of the return on the consumption asset.
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Finally, (15) and (17) together express rc,t+1 and hence the pricing kernel mt+1 as func-

tions of the underlying state variables gt and ht.

2.5 Relation to preference shock

The habit Ht can be re-parameterized to take on the interpretation of time-varying preference

in the recent macroeconomics literature, see Albuquerque, Eichenbaum, and Rebelo(2014)

and Schorfheide, Song, and Yaron(2014). If we define Υt ≡ Hη−1
t , then (1) becomes

Vt = max
Ct

[
(1− β) ΥtC

1−η
t + β

{
Et

[
V 1−γ
t+1

]} 1−η
1−γ

] 1
1−η

, (18)

where Υt is the time preference. To demonstrate the basic intuition why these two interpre-

tations are equivalent, let us suppose η < 1 for now. When the habit Ht is higher, agents

become less satisfied with the same amount of consumption. This is equivalent to saying

that agents reduce their preference for consumption this period, hence a smaller Υt.

The preference shock can be defined as ∆υt+1 = ln Υt+1 − ln Υt. If we re-parameterize

the process in (13) as ∆υt+1 = Z ′υgt+1 and allow ∆υt+1 to be represented by a new latent

factor, then this gets us the specification in the macroeconomics literature, for example, Al-

buquerque, Eichenbaum, and Rebelo(2014) and Schorfheide, Song, and Yaron(2014). Note,

we can readily incorporate this ingredient into our model; see the original working paper

version of Creal and Wu(2015a). Adding this feature is expected to improve the model’s fit

to the data because the role of a preference shock factor is similar to the latent factors that

are present in reduced form Gaussian ATSMs. However, a key difference is that the latent

preference shock factors do not introduce a time-varying market price of risk, which is one

of the key ingredients of our paper.
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3 Model properties

This section examines the different components contributing to time variation in bond risk

premia. Specifically, we examine how the new specification of habit in the previous section

translates into a time-varying price of risk, and hence time-varying risk premium. We then

analyze habit’s implication for bond prices.

3.1 Sources of risk premia

Using the solution method described, in Subsection 2.4, the nominal log-SDF in deviation

from the mean form becomes

m$
t+1 − Et

[
m$
t+1

]
= −λ$,′

g,tΣg,tεg,t+1 − λ$,′
h Σh,tε̃h,t+1 (19)

where the vector of shocks to volatility ε̃h,t+1 = Σ−1
h,tεh,t+1 have been standardized to have

unit variance. Due to the risk sensitivity functions, shocks to the SDF are heteroskedastic

with time-varying price of level risks λ$
g,t being

λ$
g,t = γZc + Zπ ← power utility

+κ1
γ − η
1− η

Dg ← recursive preferences

+ϑη
(
Σg,tΣ

′
g,t

)−1
(λ0 + λggt) . ← habit formation (20)

The first two terms are inherited from power utility, the second line comes from recursive

preferences, and the terms in the third line are due to habit.

The key term in (20) is λggt. Only when λg is non-zero does the model have a time-

varying price of level risk and produce time-varying term premia that are functions of gt.

This channel remains the same even when we shut off the stochastic volatility in the dynamics

(7) - (8). Conversely, if there were no habit, i.e. λ0 = 0, λg = 0, the price of level risk is a

constant as in the literature. A time-varying price of risk that co-moves with the levels of
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macroeconomic variables and yields is a feature of Gaussian ATSMs that makes it successful

empirically, and it is a feature that is absent in standard models with recursive preferences.

If there were no habit, i.e. if λ0 = 0 and λg = 0 ⇒ Ht = 1, then the price of short run

consumption risk is equal to the risk aversion coefficient γ, the price of short run inflation

risk is 1 for the nominal pricing kernel, and 0 for the real pricing kernel. These are consistent

with the literature.

Next, we decompose the prices of risk for the non-Gaussian shocks as

λ$
h = Σ′gh (γZc + Zπ) ← power utility

+κ1
(γ − η)

(1− η)

(
Σ′ghDg +Dh

)
← recursive preference

These terms have similar features and functional forms as those in (20). Power utility only

has an impact on the price of volatility risk if there is a volatility feedback effect and Σgh 6= 0,

while recursive preferences generates a price of risk even when Σgh = 0. To keep our model

simple and tractable, as in the standard models with recursive preferences, our model does

not have time-varying prices of volatility risk. Like the standard models, we also have time-

varying quantities of risk through stochastic volatility.

3.2 Bond prices and term premium

The price of a zero-coupon nominal bond with maturity n at time t is the expected price of

the same asset at time t+ 1 discounted by the stochastic discount factor

P
$,(n)
t = Et

[
exp

(
m$
t+1

)
P

$,(n−1)
t+1

]
. (21)

Affine representation Following Creal and Wu(2015b), nominal yields are an affine func-

tion of both the Gaussian state vector and volatility

y
$,(n)
t = a$

n + b$,′
n,ggt + b$,′

n,hht, (22)
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where the key coefficient b$
n,g = − 1

n
b̄$
n,g, and b̄$

n,g follows this recursion

b̄$
n,g = (Φg − ηϑλg)′ b̄$

n−1,g + b̄$
1,g. (23)

This and the rest of the bond-loadings detailed in Appendix D are similar to those found in

ATSMs.

One key insight from the Gaussian ATSM literature is ΦQ
$

g ≡ Φg−ηϑλg 6= Φg. The basic

intuition is this separates the autoregressive coefficient driving the physical dynamics Φg

from the coefficient driving the cross section slope of the yield curve ΦQ
$

g . It is this feature

that enables Gaussian ATSM to fit the data and generate enough variation in term premia.

We micro found this key channel through habit. Another contribution of our paper is to map

a consumption-based model with habits and recursive preferences into an affine framework.

Consumption-inflation representation To gain more economic insight, we can express

yields as functions of expected consumption growth and expected inflation. Assume Σgh = 0

for the sake of intuition, the short term nominal interest rate is

r$
t ≡ − log

(
P

$,(1)
t

)
= − ln (β) + ηEt [∆ct+1] + Et [πt+1]

−ηϑ(ηZc + Zπ)′(λ0 + λggt)

+Jensen’s ineq.

It captures the time discount through β, expected consumption growth, and expected infla-

tion. The third line adjusts for risk compensation, and is newly introduced in our model

through the risk sensitivity function in habit specification.

If consumption growth increases, then the short term interest rate increases between t

and t + 1. This is due to the agent’s motive to smooth intertemporally. With relatively

higher expected consumption tomorrow, the representative agent borrows today against
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tomorrow’s consumption goods to smooth consumption. This pushes the interest rate higher.

If consumption growth is expected to be negative, this motivates the agent to save. They

are willing to do so even at a lower nominal interest rate. If inflation is expected to increase,

then the nominal interest rate is higher.

Term premium The nominal term premium is defined as the difference between the model

implied yield y
$,(n)
t and the average of expected future short rates over the same period

tp
$,(n)
t = y

$,(n)
t − 1

n
Et

[
r$
t + r$

t+1 + . . . ,+r$
t+n−1

]
. (24)

The term premium has a simple portfolio interpretation. An investor can buy an n-period

bond and hold it until maturity or he can purchase a sequence of 1 period bonds, repeatedly

rolling them over for n periods. The term premium measures the additional compensation a

risk averse agent needs to choose one option over another. Under the expectations hypothesis,

term premia are constant. For Gaussian models with homoskedastic shocks, this coincides

with setting λg = 0 and eliminating time-variation in the risk sensitivity functions.

4 Estimation

Stacking (22) in order for N different maturities n1, n2, ..., nN and adding a vector of pricing

errors et, the observation equations for yields are

y$
t = A$ +B$

ggt +B$
hht + et, et ∼ i.i.d. (0,Ω) (25)

where y$
t =

(
y

$,(n1)
t , y

$,(n2)
t , . . . , y

$,(nN )
t

)
, A$ = (a$

n1
, . . . , a$

nN
)′, B$

g = (b$,′
g,n1

, ..., b$,′
g,nN

)′,and

B$
h = (b$,′

h,n1
, ..., b$,′

h,nN
)′.

Let θQ = (β, γ, ψ, θλ) denote the structural parameters that enter the bond loadings,

where θλ are the habit parameters. We estimate θQ by minimizing the average of the squared
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pricing errors et as

min
1

NT

T∑
t=1

e′tΩ
−1et. (26)

Computing the pricing error et involves estimating the latent state variables gt and ht, which

capture aspects of inflation and consumption and their volatilities we do not directly observe

from the data.

To quantify the latent variables and capture uncertainty around them, we resort to their

joint posterior distributions with corresponding parameters in (7) - (8) given the observed

macroeconomic data p(gt, ht, θ
P|m1:T ). This distribution is approximated by a Particle Gibbs

sampler detailed in Subsection 4.2.

We then minimize (26) with respect to θQ where the pricing error is computed with

et = y$
t − A$ − B$

g ĝt − B$
hĥt, and ĝt, ĥt, θ̂

P are evaluated at their posterior means. This

procedure is similar to Piazzesi and Schneider(2007), who estimated a stochastic process

for consumption and inflation and calibrated the structural parameters. The difference is

that we estimate these parameters by minimizing the pricing errors. This procedure has the

benefit of ensuring that the latent factors (expected inflation, expected consumption growth,

and their stochastic volatilities) maintain their intended economic interpretation because it

only uses macroeconomic data to extract them. Given the macroeconomic factors, we then

ask the question: how much variation in asset prices can we explain with the structural

model? See details in Subsection 4.3. We then comment on the estimation method popular

in the literature in Subsection 4.4.

4.1 Data and restrictions

Data The data we use are standard in the literature. Our measure of monthly real per

capita consumption growth is constructed from nominal non-durables and services data

downloaded from the NIPA tables at the U.S. Bureau of Economic Analysis. We deflate
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each of these series by their respective price indices, add them together, and divide by the

civilian population. The population series and monthly U.S. CPI inflation are downloaded

from the Federal Reserve Bank of St. Louis. Yields are the Fama and Bliss(1987) zero

coupon bond data available from the Center for Research in Securities Prices (CRSP) with

maturities of (3, 12, 24, 36, 48, 60) months. The data spans from February 1959 through

June 2014 for a total of T = 665 observations.

Parameter restrictions For the dynamics of consumption and inflation, Σ0,g is imposed

to be 0 for identification.4 We also impose Φh, Σh to be diagonal, and Φgh = 0 and Σgh = 0

for simplicity.

If there is no habit, there are three structural parameters (β, ψ, γ) to fit the cross section

of yields. In models with habit, to keep the model simple, we only introduce four new

parameters into the matrix λg (the elements related to expected consumption, expected

inflation, and their cross terms) while we set λ0 = 0. There are a total of seven free

structural parameters. We assume the variance for the pricing errors is the same across

different maturities Ω = ω2I.

4.2 Estimation of macroeconomic factors

We quantify the distribution of the latent macroeconomic factors related to consumption

growth and inflation by Bayesian methods. We use a particle Gibbs sampler which is an

MCMC algorithm that uses a particle filter to draw from distributions that are intractable;

see Creal and Wu(2015b) for an application on interest uncertainty, and Creal(2012) for a

survey on particle filtering.

Given a prior distribution p
(
θP
)

for the P parameters in (7) - (8), we sample from the

joint posterior distribution

p
(
θP, g1:T , h0:T |m1:T

)
∝ p

(
m1:T |g1:T , h0:T , θ

P
)
p
(
g1:T |h0:T , θ

P
)
p
(
h0:T |θP

)
p
(
θP
)

(27)

4This assumption is lifted in the Gaussian model with ht = 0.
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Table 1: Estimates of time series parameters

µπ µ̄π φπ φπ,c – µ̄h,π2 φh,π2 σh,π2 µ̄h,π1 φh,π1 σh,π1
– 0.0033 0.975 0 1.97e−7 0.975 1.70e−11 4.04e−6 0.975 6.23e−9

(0.708e−3) (0.10) (0.05) (9.20e−7) (0.009) (2.51e−11) (5.08e−6) (0.009) (5.35e−10)
µc µ̄c φc,π φc σh,c µ̄h,c2 φh,c2 σh,c2 µ̄h,c1 φh,c1 σh,c1
– 0.0015 0 0.90 0.00 3.77e−8 0.975 1.30e−12 1.08e−5 0.975 1.02e−8

(0.750e−3) (0.05) (0.10) (3.5) (8.32e−8) (0.009) (1.73e−12) (6.57e−6) (0.009) (1.57e−9)

µπ µ̄π φπ φπ,c – µ̄h,π2 φh,π2 σh,π2 µ̄h,π1 φh,π1 σh,π1
−0.096e−4 0.0031 0.978 0.057 0.269e−6 0.984 0.317e−9 0.333e−5 0.989 0.724e−8

0.734e−4 (0.497e−3) (0.014) (0.033) (0.091e−6) (0.007) (0.120e−9) (0.077e−5) (0.004) (0.0729e−8)
µc µ̄c φc,π φc σc,π µ̄h,c2 φh,c2 σh,c2 µ̄h,c1 φh,c1 σh,c1

0.856e−4 0.0014 -0.002 0.941 −0.394 0.664e−6 0.980 0.340e−10 0.891e−5 0.992 0.137e−7

(0.592e−4) (0.278e−3) (0.010) (0.029) (0.190) (0.372e−6) (0.009) (0.169e−10) (0.216e−5) (0.003) (0.225e−8)

Prior (top) and posterior (bottom) mean and standard deviation (in parentheses) of our benchmark model
in (9)-(12).

where mt = (∆ct, πt) and xt:t+k = (xt, . . . , xt+k). Starting with an initial value for the

parameters θP,(0), the particle Gibbs sampler draws from this distribution by iterating for

j = 1, . . . ,M between the two full conditional distributions

(g1:T , h0:T )(j) ∼ p
(
g1:T , h0:T |m1:T , θ

P,(j−1)
)

(28)

θP,(j) ∼ p
(
θP|m1:T , g

(j)
1:T , h

(j)
0:T

)
(29)

This produces a Markov chain whose stationary distribution is the posterior (27). The

models for consumption growth and inflation (9)-(12) are non-linear, non-Gaussian state

space models. In these models, the full conditional distribution of the latent state variables

given the data and model’s parameters (28) is not easy to sample. The particle Gibbs

sampler overcomes this limitation by using a particle filter to jointly sample paths of the

state variables (g1:T , h0:T ) in large blocks. Consequently, it improves the mixing of the

MCMC algorithm and the efficiency with which the Markov chain explores the parameter

space. Further details of the algorithm can be found in Appendix F.1, see also Creal and

Tsay(2015) for a longer discussion.

Using the particle Gibbs sampler, we estimate the long-run risk model of consumption

and inflation in (9)-(12). Posterior means and standard deviations for the parameters of the

model are in Table 1. Filtered (in red) and smoothed (in blue) estimates of the latent state
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Figure 1: Estimated factors from the long run risk model.

Filtered (red) and smoothed (blue) estimates of the factors from the long-run risk model. Top row is consump-

tion growth and bottom row is inflation. Top left to right: long-run risk c̄t, variance of long-run risk ht,c2 ,

variance of high-frequency component ht,c1 . Bottom left to right: inflation trend π̄t, variance of expected

inflation ht,π2 , variance of high-frequency component ht,π1 .

variables are plotted in Figure 1.

There is considerable variation in the long-run risk factor c̄t of consumption growth (top

left). It shows a noticeable decline during each recession, with the largest decline during

the Great Recession. The pattern replicates the long run risk in the literature. While

the volatility of the long run growth rate (top middle) is economically small and does not

vary much, the stochastic volatility of the high frequency component (top right) is larger

with more variation. The volatility of trend inflation increases during the mid-1970’s, peaks

during the early 1980’s, and declines gradually until the mid 1980s and keeps at a low level

afterwards. The estimates of stochastic volatility from this model of inflation are similar to

those found by Stock and Watson(2007) and Creal(2012).
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4.3 Cross sectional regression

Given the estimated parameters θ̂P and the factors ĝt and ĥt from Subsection 4.2, we estimate

the structural parameters θQ = (β, γ, ψ, θλ) through non-linear least squares. We compute

the pricing error by

et = y$
t − A$

(
θQ, θ̂P

)
−B$

g

(
θQ, θ̂P

)
ĝt −B$

h

(
θQ, θ̂P

)
ĥt, (30)

and then minimize the objective function in (26) with respect to θQ.

The structural parameter estimates are in Table 2. With the restrictions in Subsec-

tion 4.1, θλ = λg. Note that estimating (β, γ, ψ, λg) is equivalent to estimating (β, γ, ψ,ΦQ
$

g ).

We implement the latter as we have a better prior knowledge of the scale of ΦQ
$

g . The left

panel reports the global maximum. The time discount factor β is 0.9998, the intertemporal

rate of substitution ψ is 1.02, and the risk aversion parameter γ is about 7. The risk-neutral

autoregressive matrix ΦQ
$

g is much more persistent than its time series counterpart Φg in

Table 1, with both eigenvalues around 0.995. This high persistence generates the upward

sloping yield curve discussed in Subsection 5.3. In the right panel, we report a local maxi-

mum. This maximum also generates an upward sloping yield curve as the global, see Table 4,

and its implied term premium is qualitatively similar to the global maximum. However, the

structural parameters take economically different values.

There exists a long standing debate about the qualitative feature of the structural param-

eters, for example, whether ψ > 1. The long run risk literature (Bansal and Yaron(2004))

argues that values of ψ > 1 should be the case. On the other hand, Campbell(2011) argues

the opposite to be consistent with the aggregate evidence. Although the estimate in the

global maximum is consistent with the former ψ > 1, our local maximum features ψ < 1.

β is smaller than 1 in the global, and is bigger than 1 in the local. γ varies from 7 in the

global to about 2 in the local.

The differences in these preference parameters do not change the model’s implication for
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Table 2: Structural parameter estimates

global local

Preference ψ 1.02 0.70
(0.03) (0.04)

β 0.9998 1.003
(0.0000) (0.000)

γ 6.75 1.73
(2.02) (0.16)

Habit ΦQ
$

g

0.993 0.018 0.994 -0.015
(0.002) (0.007) (0.003) (0.005)

0.000 0.997 -0.005 0.996
(0.001) (0.000) (0.002) (0.000)

λg 1e−3×
0.05 -0.12 -0.007 0.030
0.00 0.18 0.001 -0.023

Structural parameters estimates for our benchmark model. Left: the global estimates. Right:
one local maximum. Standard errors are Newey and West(1987).

bond prices. The key that is consistent across the two maxima is how persistent ΦQ
$

g is.

It is this feature that enables both maxima to capture the feature of the data, generating

upward sloping yield curve, and realistic term premia. This feature is also consistent with

the findings in the Gaussian ATSM literature.

4.4 Alternative methods in the literature

A popular alternative approach adopted, for example, by Bansal and Shaliastovich(2013)

among others, is to assume a subset of yields are measured without error and invert the

latent macroeconomic factors as linear combinations of yields. Specifically, a researcher could

assume that the pricing errors et in (25) are zero for N1 yields: yo,$t = Ao,$ +Bo,$
g gt +Bo,$

h ht.

Then, the N1 latent factors among gt and ht can be estimated by inverting this relationship

making the estimated factors linear functions of yo,$t . Note that N1 does not have to be equal

to G+H. For example, Bansal and Shaliastovich(2013) choose N1 = 3 and estimate expected

consumption growth and the two volatilities for expected components as linear combinations
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of yields. By construction, the latent macroeconomic factors are completely made of yields.

The factors can lose their intended interpretation as ‘macroeconomic’ factors.

Table 3 illustrates this point by computing the R2’s of regressing implied macroeconomic

factors on yields. The first column uses our estimated macro factors described in Sub-

section 4.2 as the dependent variables, and yields only account for less than 50% of their

variation for most variables. Put differently, macroeconomic variables and volatilities have

their own rich dynamics which are not spanned by the yields. This is consistent with the

ATSM literature, see Collin-Dufresne, Goldstein, and Jones(2008) and Creal and Wu(2015b).

If we use the alternative procedure that inverts all the latent factors from yields, the R2 are

100% by construction (the second column). That is because macro factors are linear com-

bination of yields, and they look similar to the level and slope factors one would typically

estimate from a reduced-form GATSM.

The loss of economic interpretation resulting from the inversion method does not change

completely when we allow measurement errors on all the yields. More precisely, we use the

particle Gibbs sampler as discussed in Subsection 4.2 to estimate a long run risk model with

stochastic volatility but not habit when yields and macroeconomic variables are observed

simultaneously. In this case, we assume that all the yields are priced with errors.5 We report

the R2’s from this model in column 3. The R2’s are still extremely high, especially, the

numbers are still close to 100% for the level factors in the first two rows. This is because the

estimated latent factors load predominantly on the yields as we observe an entire cross section

of yields, and they display smaller idiosyncratic variance than macroeconomic data. The

forecasting errors for the macroeconomic data from this model are significantly larger than

our estimates, to the degree that the estimated latent factors do not resemble macroeconomic

variables themselves. The R2 for the expected growth volatility is 72% percent, much higher

than its counterpart in the first column. The only exception is the volatility of expected

inflation, only 36% of which is explained by yields. The explanation is intuitive: as expected

5We impose η = 1 so the model has an analytical solution. This model generalizes the model in Piazzesi
and Schneider(2007) to include stochastic volatility.
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Table 3: R2 regressing macro factors on yields

our estimates inversion
w/o p.e w/ p.e.

expected inflation 57% 100% 98%
expeted growth 31% 100% 96%
expected inflation vol 48% 100% 36%
expected growth vol 31% 100% 72%

R2s from regressing macro factors on 6 observed yields. First column: our estimates of latent macro factors
using only information from macro data as detailed in Subsection 4.2. Second column: we assume some of
the yields are priced without error and the latent factors are estimated from yields by inverting the pricing
equation. Third column: we estimate a long run risk model, with SV and without habit. The factors are
jointly estimated from both macroecomomic variables and yields, where the latter have pricing errors. Row
1-4: expected inflation, expected consumption growth and their volatilities.

inflation is basically a linear combination of yields with 98% of its variation explained,

therefore, much of its volatility can be explained by yield volatility rather than yields. The

R2 of a regression of this factor on yield volatility is 75%, when we use a simple GARCH

model to estimate the regressors.

The inversion approach is not without merit. As the estimated factors are close to the

level and slope factors associated with reduced-form ATSMs, it can fit the cross section of

yields well as expected.6 Therefore, from an econometric perspective, it lowers the prediction

errors overall by trading off an improved fit for yields while sacrificing the fit of macroeco-

nomic variables. However, from an economic point of view, it is questionable whether these

objects should still be labeled as macroeconomic factors, as they do not resemble the true

dynamics of the observed macroeconomic data.

Instead, our goal is to take the macroeconomic factors as given, and ask how much

variation in asset prices the structural model can explain. To do this, we impose a strong

discipline on the estimation procedure such that the macroeconomic factors are estimated

using only information from macroeconomic data. This makes it harder for the model to fit

the yield data. But, we view retaining the factors’ intended economic interpretation as an

appealing feature of our approach.

6Bansal, Gallant, and Tauchen(2007) demonstrate a similar point studying equity returns and dividends.
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5 Bond term premium and habit

Bond term premia are a crucial input for central banks to implement monetary policy and

the key object of interest for our paper. In this section, we empirically study whether

the model proposed in Section 2 adequately captures the time-variation of term premia.

Then, we decompose this time variation into the alternative channels that contribute to

it. Empirically, we find the predominant channel is the time-varying habit that drives the

variation in the price of risk. Specifically, the key term is the price of expected inflation risk,

which loads on expected inflation itself. We then study the property of habit and its role

for the consumption based models to fit the slope of the yield curve, the key moment of the

term structure discussed in the literature.

5.1 Term premium and its sources

We plot the 1 year (in blue) and 5 year (in red) term premia from our model in the top left

panel of Figure 2. The long term (5-year) term premium displays more variation than the

medium term (1-year) term premium. The 5-year term premium was low (less than 1%) at

the beginning of our sample. It increased through the 1960s and 70s, peaked in the early

1980s at about 4%, and then it trended down. It became negative during the Great Recession.

This can be attributed to a flight to quality or the Fed’s large-scale asset purchases. For

comparison, we plot the output from a three factor reduced form Gaussian ATSM in the top

right panel, which serves as a benchmark for many policy discussions (for implementation

details, see for example, Hamilton and Wu(2012) and Creal and Wu(2015b)). Both the size

and time variation of our estimates resemble the reduced form ATSM estimates.

With both time-varying price and quantity of risk built in, our model does an adequate

job of capturing the pattern of term premia exhibited in the data. The question is then which

channel contributes more? The literature provides two opposite answers: the reduced form

Gaussian ATSM attributes the time-varying term premia completely to a time-varying price
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Figure 2: Estimated term premia from alternative models
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Estimated 1 and 5 year term premia from alternative models. Top left: SV model with habit; Top right:

reduced-form 3 factor Gaussian ATSM. bottom left: SV model with no habit; Bottom right: Gaussian model

with habit; Y-axis: interest rates measured in annualized percentage points.

of risk; while the literature on recursive preferences, especially the long run risk literature,

attributes it completely to a time-varying quantity of risk. Our unifying framework equips

us with a more comprehensive view to answer this question. We do so by studying how much

time variation there would be if we shut down one channel at a time.

First, we shut down the price of risk channel by setting λg = 0, or equivalently ΦQ
$

g = Φg.

This model is similar to those in the long run risk literature, Bansal and Shaliastovich(2013),

for example. The difference is that we model the volatility process with a non-central Gamma

process guaranteeing its non-negativity, whereas the literature models it with a Gaussian

process. We re-optimize the objective function subject to the constraint λg = 0, and plot

the implied term premium in the bottom left panel of Figure 2. Without habit, although

non-constant, the term premia are economically insignificant: the one year term premium is

essentially zero over time, and the five year term premium peaks at about -5 basis points,
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orders of magnitude smaller than the estimates in the top panels. Moreover, the term premia

generated by this model are negative, which is the wrong sign.7 All these are counter-intuitive

and implausible. Hence, only time-varying quantity of risk is not sufficient to account for

variation in term premium.

The conclusion seems to be at odds with the long run risk literature. As discussed in de-

tail in Subsection 4.4, the difference is a consequence of different estimation techniques. Our

approach disciplines the macroeconomic factors, such as expected inflation and consump-

tion, to fit the observed macroeconomic data. Consequently, the estimated factors retain

their economic interpretations whereas the literature obtains these macroeconomic factors

as linear combinations of bond yields, potentially compromising their interpretation, see a

more detailed discussion in Subsection 4.4.

Next, we shut down the time variation in the quantity of risk channel by setting ht = 0 in

(7) - (8), but still allow habit λg 6= 0. Then the factor dynamics follow a Gaussian VAR. The

resulting term premia from re-optimizing this restricted model are depicted in the bottom

right panel. Interestingly, both the size and time variation of the term premia resemble the

estimates in the top panels. Hence, the price of risk alone generates the amount of variation

of term premia as we observe from the reduced form estimates.

We have established that a time-varying price of risk through habit is a channel that

can explain almost all of the variation in the bond term premia. We then further ask: is

the price of inflation risk or consumption risk time varying? What drives the variation in

this price? First, we only allow the price of expected inflation risk to vary over time, and

also restrict it to comove with the expected inflation itself. We implement this by imposing

the following restrictions on our estimates in Table 2: all components in λg are zero but the

λπ̄,π̄, or equivalently ΦQ
$

g = Φg for all but one component φQ
$

π̄,π̄ 6= φπ̄,π̄. This is plotted in the

red line in Figure 3. As a comparison, we plot our benchmark estimate in blue, which is

7Our results are not specific to our estimates for the structural parameters. If we calibrate the structural
parameters using the values from Bansal and Yaron(2004) for (β, γ, η), the model still produces the same
pattern.
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Figure 3: Term premia
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Estimated 5 year term premia. Blue: benchmark. Red: λg is all set to 0 but the component relating to price

of expected inflation risk loading on itself. Yellow: λg is all set to 0 but the component relating to price of

expected consumption risk loading on itself.

identical to the red line in the top left panel of Figure 2. We can see the variation in blue

is primarily coming from the price of expected inflation risk loading on itself, and this one

single component allows us to capture the predominant variation in the term premium. As

a contrast, we plot in yellow estimates of the term premia when we only allow the price of

expected consumption risk to be non-zero, and to vary with itself. Although displaying as

much variation, it does not resemble the key economic feature in the term premium. For

example, the term premium was lower in the 1960s, and peaked in the early 1980s in the

benchmark model. The yellow line showed an opposite pattern: it was high in the middle

of 1960s, and became negative during the 1970-1980s when the term premium was generally

considered to be extremely high. This is counter-intuitive.

The overall picture is that the key driver for the time variation in term premium of the

Treasury bond is a time-varying price of expected inflation, and the time variation comoves

with the expected inflation itself.
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Figure 4: Habit and habit growth
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Top panel: demeaned ∆υt/(η − 1), black dashed line is 0. Middle panel: Ht accumulated by the demeaned

∆υt/(η − 1), and then initialized to have mean 1, black line is 1. Bottom panel: consumption to habit ratio

Ct/Ht, initializing at 1. Shades: NBER recessions.

5.2 Habit

In the previous subsection, we established that the time varying price of risk through habit

is the main channel that drives the dynamics of bond term premia. We now turn to study

the property of habit. Figure 4 plots the historical dynamics of habit and its growth rate.

Habit growth is lnHt+1 − lnHt = ∆υt+1/(η − 1). We plot the demeaned version in the top

panel. Note, the habit growth is heteroskedastic, and the time-varying conditional variance

is determined by the risk sensitivity function. The habit growth rate fluctuates around its

mean. It peaked twice between 1970 and 1980. Then it dropped to its lowest point during the

first recession in 1980s. Since then it was mostly negative, and only went back to persistently

positive during the Great Recession.

The middle panel plots the habit Ht itself, which intuitively summarizes how agents

shift their desire for consumption goods over time. We initialize it such that the mean is 1.
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The habit above 1 means that agents require more consumption to achieve the same utility;

when it is below 1, agents require less consumption goods. The bottom panel plots the

consumption-habit ratio Ct/Ht, where we take out the deterministic trend for both series8,

and initialize the consumption and habit at the same level, hence the ratio starts at 1.

The habit started at 0.8, and it was kept below 1 until the onset of the second recession in

the 1970s. For this period, a lower habit than average allows agents to be satisfied with less

consumption goods. The overall effect on agents’ utility reflected in the consumption-habit

ratio is above 1, meaning consumption is higher than habit, and agents are happier. Then

the habit kept increasing until the first recession in the early 1980s reaching a maximum of

about 1.9. At that point, 90% more consumption than average is required to maintain the

same satisfaction. Similarly, consumption dropped to about 46% of habit, making agents

least satisfied. Since then, habit displayed a downward trend for the second half of the

sample. It bottomed at 0.6 during the Great Recession. The consumption to habit ratio went

the opposite direction and peaked right before the Great Recession at about 1.5, meaning

consumption is 50% more than habit, making agents happier. Finally, habit leveled out at

about 0.8 since, which is the same level as the beginning of the sample. At the same time,

the consumption to habit ratio returned to 1.

The dynamics of habit is persistent, and it is this slow moving nature of the habit that

generates enough variation in (3), and hence capture the risk premium in asset prices. This

is consistent with the intuition in the literature on habit, see Campbell and Cochrane(1999)

and Wachter(2006) for examples.

5.3 Slope of the yield curve

This section assesses the role habit plays in capturing a key moment of the yield curve, its

unconditional slope. Table 4 shows the cross section of the yield curve, averaged over time.

The top row represents the data. A well established feature of the cross section of the yield

8The deterministic trend of consumption to habit ratio is mathematically indistinguishable from β.
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Table 4: Unconditional yield curves

3 12 24 36 48 60 average slope

data 4.94 5.33 5.54 5.72 5.88 5.98 5.57 1.04

SV w/ habit global 4.91 5.27 5.63 5.85 5.92 5.84 5.57 0.93
local 4.95 5.20 5.49 5.74 5.95 6.13 5.58 1.18

Gaussian w/ habbit 5.08 5.25 5.47 5.69 5.89 6.09 5.58 1.01
SV w/o habit 5.64 5.63 5.61 5.59 5.57 5.56 5.60 -0.08

Average yields in annualized percentage points across time in the data (first row), our benchmark model

with both stochastic volatility and habit (second and third row), model without stochastic volatility (fourth

row), and model without habit (last row) for maturities of 3 - 60 months. Each column corresponds to one

maturity. The last two columns are the average level of yields across all 6 maturities, and the slope is defined

as the difference between the 60 month and 3 month yields.

curve is that it slopes upwards, and the difference between the long end and the short end

(i.e. slope) is 1.04%. The second row captures our model, it mimics the first row closely, and

implies a slope of 0.93%. The third row is the local maximum of our model in Table 2. It

shows a similar slope of 1.18%. Row 4 allows habit but shuts down the stochastic volatility

channel, and it paints the same picture as our benchmark model.

In contrast, if we do not allow habit to play a roll by imposing λg = 0, then the 5th row

in Table 4 shows a counterfactual downward slope, and the number is -0.08%. The basic

intuition is: the stochastic volatility models seem to be flexible with 4 Gaussian factors and 4

volatility factors. However, the main constraint is that there are only 3 structural parameters

(β, γ, ψ) to control the cross section, and all of them mainly enter the intercept term a$
n

in (22). Without habit λg = 0, the autoregressive coefficient determining the time series

dynamics Φg controls the slope of the yield curve at the same time reflected in the key term

b̄$
n,g in (23). In the Gaussian ATSM literature, Duffee(2002) has shown that the separation

between the two is important for capturing key features of the data. With habit, we are able

to achieve this separation, and allow the risk neutral parameter ΦQ
$

g ≡ Φg − ηϑλg 6= Φg to

fit the cross section of the yield curve, and not be constrained by the time series dynamics.

We have demonstrated that our model fits the cross section of the yield curve well where
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Figure 5: Level and slope
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Left panel: level defined as average of yields across all maturities. Right panel: slope defined as the 5 year -

3 month yield. Blue dashed line: data. Red line: model. Y-axis: annulized percentage points

habit is a key ingredient. The more challenging task is to see if it fits the time series as

well. We showed its success in the dynamics of term premia in Subsection 5.1. Although

term premia have been studied elaborately in the ATSM literature, it is fundamentally an

unobserved object. Now we turn to our model’s ability to fit the observable moments in the

data: level and slope of the yield curve.

In the left panel of figure 5, we plot the level of the yield curve over time, defined as the

average of yields across all maturities in our sample. The red line is our model, and the blue

dashed line is the data. In the right panel, we plot the slope of the yield curve defined as

5 year yield minus 3 month yield. Our model implied level and slope trace the data well,

considering our model uses macro factors rather than latent yield factors.

6 Model properties

Empirical examination of the asset pricing implications of recursive preferences requires

solving for the SDF. We base our analysis on the approximation method of Campbell

and Shiller(1989), used by Bansal, Kiku, and Yaron(2012) and Schorfheide, Song, and

Yaron(2014), among many others. With this approach, we need to solve for the return

on the consumption asset rc,t+1 as a function of the underlying state of the economy as in
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Subsection 2.4. Whether such a solution exists mathematically amounts to a fixed point

problem. In this section, we characterize the conditions that lead to a valid solution for the

Euler equation and asset prices.9

We partition the vector of all parameters of the model θ = (β, ψ, γ, θP, θλ) into the

preference parameters (β, ψ, γ), the parameters governing the physical dynamics θP, and the

parameters controlling habit θλ. We condition our analysis on (θP, θλ) and characterize the

restrictions on the parameter space for the more intuitive parameters (β, ψ, γ).

6.1 General case

Laid out briefly in Subsection 2.4, the fixed point problem can be rephrased more explicitly

as follows. Define the function f(p̄c, θ) as

f(p̄c; θ) = D0 (p̄c, θ) +Dg (p̄c, θ)′ ḡ +Dh (p̄c, θ)′ h̄. (31)

For a given value of θ, a solution to the fixed point problem is obtained when f(p̄c; θ) = p̄c.

Such a solution does not always exist. Instead, the parameters must lie in a restricted space

that ensures a solution.

Before we discuss the solution for the fixed point problem to exist, the parameters need

to satisfy some conditions that are specific to models with stochastic volatility.10

Assumption 1 The parameters θ ∈ Θr must satisfy that for any real p̄c,

1. the loadings Dh(p̄c, θ) are real,

2. the expectation in (16) exists for Dh (p̄c, θ).

The first part of the assumption is used to guarantee that f(p̄c, θ) is real. It amounts to

a real solution for a system of H quadratic equations in H unknowns, i.e. their respective

9 Hansen and Scheinkman(2012) also discuss conditions that guarantee a solution to the representative
agent’s problem under recursive preferences.

10Models with rare consumption disasters with time-varying jump intensities following a Cox, Ingersoll,
and Ross(1985) process will require similar conditions.
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discriminant must be positive.11 Second, the guess and verify technique used to solve the

coefficients in (17) requires the expectation in (16) to exist. This expectation does not always

exist when stochastic volatility follows a multivariate Cox, Ingersoll, and Ross(1985) process.

The second part of Assumption 1 guarantees the existence of the integral. These conditions

are discussed in more detail in Appendix E.

Given these conditions, the following proposition provides a general condition that guar-

antees a solution to the representative agent’s problem.

Proposition 1 Given Assumption 1, there is a value β̄(ψ, γ, θP, θλ) such that if β < β̄, then

there exists a real solution for the fixed point problem.

Proof: See Appendix E.1.

We use the proposition to characterize the joint restrictions that exist among all the param-

eters. Given the dynamics of the economy in θP and the parameters determining habit in θλ,

agents’ risk appetite γ, and the intertemporal elasticity of substitution ψ, the representative

agent needs to be sufficiently impatient (small β) in order for a solution to exist. The nature

of the fixed point problem requires that all three conditions be jointly satisfied.

6.2 Special cases

In this section, we provide more intuition by discussing a special case where the dynamics

are Gaussian by imposing ht = 0 in (7) - (8). In this case, we are no longer constrained by

Assumption 1. We can provide stronger conditions that apply to any β ≤ 1, i.e., it reduces

to relationships between γ and ψ. The following corollary also characterizes the upper bound

β̄ as a monotonic function in γ.

Corollary 1 1. If Z∞′1 µ∗g ≤ 0 and β ≤ 1, then 1−γ
1−ψ > 0 guarantees the existence of a

solution.

11This condition is similar to an existence condition discussed by Campbell, Giglio, Polk, and Turley(2014)
in their ICAPM model. They do not provide a condition guaranteeing a solution to the fixed point problem.
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2. If β ≤ 1, then there is a value γ̄(θP, θλ) such that γ̄−γ
1−ψ > 0 guarantees a solution.

3. For any ψ, β̄ is monotonic in γ: for ψ > 1, then dβ̄
dγ
> 0; for ψ < 1, then dβ̄

dγ
< 0.

Under the condition specified in part 1 of Corollary 1, a solution exists if (γ > 1, ψ > 1) or

(γ < 1, ψ < 1). This divides the parameter space for (γ, ψ) into four quadrants, and only

two of these four have a solution. Part 2 of Corollary 1 says that (γ > γ̄, ψ > 1) or (γ < γ̄,

ψ < 1) guarantees a solution, regardless of how patient the agent is. Again, two out of the

four quadrants have a solution, similar to part 1. The intuition is also similar. Although the

cutoff for ψ is always 1, the difference is the boundary on γ now depends on the parameters

θP and θλ.

The separation of the parameter space into quadrants makes estimation more challenging.

For example, if the optimum is within the upper-right region and we start from the lower left

region, a numerical optimization algorithm or a Bayesian MCMC algorithm, can have a hard

time getting through the tiny bottleneck and reaching the correct part of the parameter space.

In practice, we observe these algorithms hitting the regions where no solution exists and

often stopping. Estimation gets more complicated when the structural parameters interact

with the remaining parameters of the model as the boundaries can shift creating strong

dependencies among the model’s parameters.

Corollary 1 part 3 states the relationship between the upper bound for β and γ. If ψ < 1,

then an agent cannot have a high risk aversion and be patient at the same time. The more

risk averse he is, the less patient he needs to be, vice versa. If ψ > 1, the opposite is true.

6.3 Numerical illustrations

Figure 6 provides numerical illustrations of Proposition 1 and Corollary 1. The top row

takes a special case without stochastic volatility or habit. The upper left panel provides

a demonstration for part 2 of Corollary 1. β = 0.9998 is taken from the global estimates

of Table 2. A similar pattern holds for other values of β ≤ 1 as well. Blue dots indicate
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the existence of a solution, and red stars imply no solution. The green dashed lines mark

the boundaries ψ = 1 and γ = γ̄ = 146.5. Consistent with part 2 of Corollary 1, when γ

and ψ are both bigger than their corresponding boundaries (upper right quadrant) or both

smaller than the boundaries (lower left quadrant), a solution exists. The top right panel

illustrates part 3 of Corollary 1. We take ψ = 0.7 from the local of Table 2. As prescribed

by the Corollary, when ψ < 1, we see a downward sloping line that separates the parameter

space for (β, γ) into feasible (blue) and infeasible (red) regions. The larger the value of risk

aversion γ gets, the smaller the discount rate β needs to be to remain in a region with a

valid solution.

While the top panels brings a visualization for Corollary 1, the bottom panels demonstrate

how restrictive the space looks in the benchmark setting. In the bottom left, we take the

estimates from Table 1 and the global solution of Table 2. The upper-left and lower-right

regions remain infeasible as before with similar intuition as Gaussian models. The difference

is now the upper-right region becomes infeasible in addition to the earlier regions in order

to satisfy Assumption 1. This emphasizes that in stochastic volatility models both the

intertemporal elasticity of substitution and risk aversion need to be modest. We find although

the lower left region is still feasible, the region is much smaller. For ψ = 0.97, γ cannot exceed

4.8. For ψ = 0.52, γ cannot exceed 6.9. The upper bound for γ in the Gaussian case marked

by the green line is 146.5.

The implications are two-fold. First, much of the economics literature evaluates a model’s

success according to whether or not it can produce a small value for the risk aversion param-

eter γ. We need to interpret this result with caution. As we show, for stochastic volatility

models, a small value of γ is required to satisfy the constraints of the model. Second, stochas-

tic volatility models have much smaller feasible regions of the parameter space, and they are

more likely to encounter numerical problems and boundaries.

The bottom right panel takes the estimates from Table 1 and the local solution of Table 2.

It is similar to the upper right plot. Again the downward sloping line that divides the blue
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Figure 6: Feasible and infeasible regions of the parameter space.

γ

50 100 150 200

ψ

0.5

1

1.5

2

2.5

3

Gaussian: β  = 0.9998

γ

50 100 150 200

β

0.998

0.9982

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1
Gaussian: ψ = 0.7

feasible
infeasible

γ

50 100 150 200

ψ

0.5

1

1.5

2

2.5

3

SV: β  = 0.9998

γ

50 100 150 200

β

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1
SV: ψ = 0.7

Feasible (blue dots) and infeasible (red stars) regions of the parameters space. Green dashed lines are the

theoretical bounds derived in Corollary 1 part 2. The top row is a simplified model without stochastic volatility:

θP is taken from the estimates of this model, and λg = 0. The bottom row shows our benchmark model with

stochastic volatility. Parameters θP are taken from Table 1. θλ is taken from the global solution of Table 2

for the bottom left, and local solution for the bottom right. Left: parameter space for (γ, ψ) with β = 0.9998.

Right: Parameter space for (γ, β) with ψ = 0.7.

and red regions indicates that with the intertemporal elasticity of substitution less than 1,

an agent needs to be less patient as their risk aversion increases. The difference is that the

feasible region again is much smaller. For example, for γ = 244, β can be as big as 0.9996

in the Gaussian model, but it will not be able to exceed 0.93 in the SV setting.
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7 Conclusion

Two strands of related literature attribute the time variation in bond term premia to two

different sources: Gaussian ATSMs credit time-varying prices of risk, whereas structural

models with recursive preferences and long run risk attribute it to time-varying quantities of

risk. We developed a consumption based model to capture both of these competing sources.

We introduced time-varying prices of risk through an external habit that depends on current

and past components of consumption growth and inflation. This generates a time-varying

risk premia even when the shocks are homoskedastic. Our novel formulation of habit yields

analytical bond prices, gaining tractability for this class of model. We introduce time varying

quantity of risk through stochastic volatility, which follows a non-negative NCG process. We

found that the time-varying price of expected inflation risk driven by expected inflation itself

is the primary channel empirically. On the contrary, once habit is a component in the model,

the presence of stochastic volatility does not alter the economic implication of the dynamics

of term premia. Moreover, a stochastic volatility model without habit cannot match the

upward sloping unconditional yield curve, the fundamental moment in the term structure.

Adding habit solves this problem as well.

Empirical implementation of recursive preferences requires careful attention when solving

for the stochastic discount factor. A solution does not exist for certain combinations of

structural parameters. Our paper provided conditions that guaranteed the existence of a

solution. We use these conditions to provide guidelines for empirical implementation.

Several authors have studied term structure models with recursive preferences in DSGE

models, e.g. Rudebusch and Swanson(2008), Rudebusch and Swanson(2012), van Binsber-

gen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez(2012), and Dew-Becker(2014). How

to introduce our technology of capturing realistic dynamics of term premia and other key

aspects of bonds and other assets into a DSGE framework remains an open question, and

logical next step for the literature.
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Appendix A Stochastic discount factor

This appendix provides the derivation for the stochastic discount factor for the agent’s problem in (1) - (2).
Guess that the solution is Vt = φtWt for some coefficients φt, then the agent’s problem becomes

φtWt = max
Ct

[
(1− β)Hη−1

t C1−η
t + β

{
Et

[
(φt+1Wt+1)

1−γ
]} 1−η

1−γ
] 1

1−η

.

Substitute in Wt+1 from the constraint (2)

φ1−η
t = max

Ct

[
(1− β)Hη−1

t

(
Ct
Wt

)1−η

+ β

(
1− Ct

Wt

)1−η {
Et

[
(φt+1Rc,t+1)

1−γ
]} 1−η

1−γ

]
. (A.1)

Take the first-order condition w.r.t. Ct, we get

(1− β)Hη−1
t

(
Ct
Wt

)−η
= β

(
1− Ct

Wt

)−η {
Et

[
(φt+1Rc,t+1)

1−γ
]} 1−η

1−γ
. (A.2)

Use the first order condition to substitute out the expectation term in (A.1) to solve φt,

φt = (1− β)
1

1−η H−1
t

(
Ct
Wt

)− η
1−η

.

Substitute back to the FOC in (A.2), and and use the budget constraint to get the pricing equation

1 = βϑEt

(Hη−1
t+1

Hη−1
t

)ϑ(
Ct+1

Ct

)−ηϑ
Rϑc,t+1

 .
Therefore, the pricing kernel is

Mt+1 = βϑ

(
Hη−1
t+1

Hη−1
t

)ϑ(
Ct+1

Ct

)−ηϑ
Rϑ−1
c,t+1,

and the log SDF is shown in (3).

Appendix B Dynamics of the state vector

Appendix B.1 General Model

The dynamics of the Gaussian state vector gt driving ∆ct and πt are

gt+1 = µg + Φggt + Φghht + Σghεh,t+1 + Σg,tεg,t+1, εg,t+1 ∼ N (0, I) ,

Σg,tΣ
′
g,t = Σ0,gΣ

′
0,g +

H∑
i=1

Σi,gΣ
′
i,ghit,

εh,t+1 = ht+1 − Et [ht+1|ht] ,

where the volatility dynamics are a non-central gamma process. They can be written as a Gamma distribution
and a Poisson distribution

ht+1 = Σhwt+1,

wi,t+1 ∼ Gamma (νh,i + zi,t+1, 1) , i = 1, . . . ,H (B.3)

zi,t+1 ∼ Poisson
(
e′iΣ
−1
h ΦhΣhwt

)
, i = 1, . . . ,H. (B.4)
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This is a discrete-time, multivariate Cox, Ingersoll, and Ross(1985) process. To guarantee positivity and
existence of ht, the process requires Σh > 0, Σ−1

h ΦhΣh > 0 and the Feller condition νh,i > 1 for i = 1, . . . ,H.
The conditional mean and variance of the process are

Et [ht+1|ht] = Σhνh + Φhht, (B.5)

Vt [ht+1|ht] = Σh,tΣ
′
h,t

= Σhdiag (νh) Σ′h + Σhdiag
(
2Σ−1

h Φhht
)

Σ′h, (B.6)

where Σh is a H×H matrix of scale parameters, Φh is a H×H matrix of autoregressive parameters and the in-
tercept is equal to Σhνh. The unconditional mean and variance of ht are µ̄h = (IH − Φh)

−1
Σhνh and Σ̄hΣ̄′h =

(IH − Φh)
−1

Σhdiag (νh) Σ′h (IH − Φh)
−1,′

. The unconditional mean of gt is µ̄g = (IG − Φg)
−1

(µg + Φghµ̄h).
The transition density of ht is

p (ht+1|ht, νh,Φh,Σh) = |Σ−1
h |

H∏
i=1

(
e′iΣ
−1
h ht+1

) νh,i−1

2
(
e′iΣ
−1
h Φhht

)− νh,i−1

2

exp

(
−

H∑
i=1

e′iΣ
−1
h ht+1 + e′iΣ

−1
h Φhht

)

Iνh,i−1

(
2
√(

e′iΣ
−1
h ht+1

) (
e′iΣ
−1
h Φhht

))
(B.7)

where Iν (x) is the modified Bessel function. The Laplace transform needed to solve the model with recursive
preferences and for pricing assets is

Et [exp (u′ht+1)] = exp

(
H∑
i=1

e′iΣ
′
hu

1− e′iΣ
′
hu

e′iΣ
−1
h Φhht −

H∑
i=1

νh,i log (1− e′iΣ
′
hu)

)
,

which exists only if e′iΣ
′
hu < 1 for i = 1, . . . ,H. Further properties of the univariate process are developed

by Gouriéroux and Jasiak(2006).

Appendix B.2 Long run risk

Non-Gaussian model The model with long-run risk to consumption growth and trend inflation maps
into the general form as follows

gt =


πt

∆ct
π̄t
c̄t

 Zc =


0
1
0
0

 Zπ =


1
0
0
0

 Φg =


0 0 1 0
0 0 0 1
0 0 φπ φπ,c
0 0 φc,π φc

 µg =


0
0
µπ
µc

 µ̄g =


µ̄π
µ̄c
µ̄π
µ̄c



Φgh =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 Σgh =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 Σ0,g =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 Σ1,g =


1√

12000
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0



Σ2,g =


0 0 0 0
0 1√

12000
0 0

0 0 0 0
0 0 0 0

 Σ3,g =


0 0 0 0
0 0 0 0
0 0 1√

12000
0

0 0
σc,π√
12000

0

 Σ4,g =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1√

12000


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We have scaled these matrices by 1/
√

12000 so that the volatility factors ht are roughly the same magnitude
as the Gaussian factors gt. For the volatility processes, the matrices are

µ̄h =


µ̄h,π1

µ̄h,c1
µ̄h,π2

µ̄h,c2

 νh =


νh,π1

νh,c1
νh,π2

νh,c2

 Φh =


φπ1

0 0 0
0 φc1 0 0
0 0 φπ2 0
0 0 0 φc2

 Σh =


σh,π1

0 0 0
0 σh,c1 0 0
0 0 σh,π2 0
0 0 0 σh,c2


During estimation, we parameterize the model in terms of the unconditional mean of volatilities µ̄h.

Gaussian model For the Gaussian model, we keep everything the same as above except for the scale
matrix which is equal to

Σ0,g =


σπ1

0 0 0
0 σc1 0 0
0 0 σπ2 0
0 0 σc,π σc2

 ,

while Σi,g = 0 for i > 0, and µ̄h, νh = 0,Φh = 0,Σh = 0.

Appendix C Recursive preferences model solution

Appendix C.1 Solution for rc,t+1

In order to simplify the expressions, we introduce the following notation

Z1 = (1− η)Zc + κ1Dg

Z2 = −γZc + (ϑ− 1)κ1Dg

Z3 = Σ′gh ((1− η)Zc + κ1Dg) + κ1Dh

= Σ′ghZ1 + κ1Dh

Z4 = Σ′gh (−γZc + (ϑ− 1)κ1Dg) + (ϑ− 1)κ1Dh

= Σ′ghZ2 + (ϑ− 1)κ1Dh

where the vectors Zc, Zπ are selection vectors and the vectors Dg and Dh are part of the price to consumption
ratio pct = D0 +D′ggt +D′hht.

Step 1: Campbell-Shiller approximation

Let pct = ln
(
Pt
Ct

)
be the log price to consumption ratio. The return on the consumption asset is

rc,t+1 ≡ ln

(
Pt+1 + Ct+1

Pt

)
= ln (Ct+1) + ln

(
Pt+1 + Ct+1

Ct+1

)
− ln (Pt)

= ln (Ct+1)− ln (Ct) + ln

(
1 +

Pt+1

Ct+1

)
− ln (Pt) + ln (Ct) = ∆ct+1 − pct + ln (1 + exp (pct+1)) .

Take a first order Taylor expansion of the function f (x) = ln (1 + exp (x)) around x̄.

rc,t+1 ≈ ∆ct+1 − pct + ln (1 + exp (p̄c)) +
exp (p̄c)

1 + exp (p̄c)
(pct+1 − p̄c)

= κ0 + κ1pct+1 − pct + ∆ct+1 (C.8)

where κ0 = ln (1 + exp (p̄c))− κ1p̄c and κ1 = exp(p̄c)
1+exp(p̄c) .
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Step 2: Solve for the price/consumption ratio

The real pricing kernel in (3) prices the consumption asset.

1 = Et [exp (mt+1 + rc,t+1)] = Et [exp (ϑ ln (β) + ϑ∆υt+1 − ηϑ∆ct+1 + ϑrc,t+1)]

= exp (ϑ ln (β) + ϑκ0 − ϑpct) Et [exp (ϑ∆υt+1 + ϑ (1− η) ∆ct+1 + ϑκ1pct+1)] (C.9)

where we have used (C.8). Conjecture a solution for the price to consumption ratio

pct = D0 +D′ggt +D′hht (C.10)

for unknown coefficients D0, Dg and Dh. Substitute the guess, (5) and (13) into (C.9)

1 = exp (ϑ ln (β) + ϑκ0 + ϑκ1D0 − ϑpct + ϑΛ1 (gt)) (C.11)

exp (ϑZ ′1 (µg + Φggt + Φghht − Σgh (Σhνh + Φhht))) (C.12)

Et

[
exp

((
ϑΛ2 (gt) + ϑΣ′g,tZ1

)′
εg,t+1

)]
Et [exp (ϑZ ′3ht+1)] (C.13)

Calculate the expectations using the Laplace transform

0 = ϑ ln (β) + ϑκ0 + ϑκ1D0 − ϑpct + ϑΛ1 (gt)

+ϑZ ′1 (µg + Φggt + Φghht − Σgh (Σhνh + Φhht)) +
ϑ2

2

(
Λ2 (gt) + Σ′g,tZ1

)′ (
Λ2 (gt) + Σ′g,tZ1

)
−

H∑
i=1

νh,i ln (1− e′iΣ
′
hϑZ3) +

H∑
i=1

e′iΣ
′
hϑZ3

1− e′iΣ
′
hϑZ3

e′iΣ
−1
h Φhht

The solution exists if e′iΣ
′
hϑZ3 < 1 for i = 1, . . . ,H. Solve for pct by plugging in the risk sensitivity functions

and cancel terms

pct = ln (β) + κ0 + κ1D0

+Z ′1 (µg + Φggt + Φghht − Σgh (Σhνh + Φhht))

−ηϑZ ′1 (λ0 + λggt)

+
ϑ

2
Z ′1Σg,tΣ

′
g,tZ1 −

1

ϑ

H∑
i=1

νh,i log (1− e′iΣ
′
hϑZ3) +

H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

e′iΣ
−1
h Φhht

We now solve for the coefficients. Both D0 and Dg are analytical

D0 =
1

(1− κ1)
[ln (β) + κ0 + Z ′1 (µg − ΣghΣhνh − ηϑλ0)

− 1

ϑ

H∑
i=1

νh,i ln (1− e′iΣ
′
hϑZ3) +

ϑ

2
Z ′1Σ0,gΣ

′
0,gZ1

]
Dg =

(
IG − κ1 (Φg − ηϑλg)′

)−1
(Φg − ηϑλg)′ (1− η)Zc

A solution for Dg only exists when (IG − κ1 (Φg − ηϑλg)) is invertible. The vector Dh is the solution to the
system of equations

Dh = (Φgh − ΣghΦh)
′
Z1 +

ϑ

2
(ιH ⊗ Z1)

′
Σ̃gΣ̃

′
g (IH ⊗ Z1) +

H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

Φ′hΣ−1,′
h ei (C.14)

where Σ̃gΣ̃
′
g is a GH ×GH block diagonal matrix with Σi,gΣ

′
i,g along the diagonal. This cannot be solved

in closed-form in the general case. However, if Σh and Φh are lower triangular, then it can be calculated in
closed-form recursively for i = 1, . . . ,H. We discuss the analytical solution of this equation in more detail
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in Appendix C.2.

Step 3: Solve for the fixed-point

During estimation, we determine the value of p̄c and the log-linearization constants κ0 and κ1 as a function
of the model parameters by solving the fixed-point problem (averaging of (C.10))

0 = p̄c−D0 (p̄c)−Dg (p̄c)
′
µ̄g −Dh (p̄c)

′
µ̄h

where the coefficients D0, Dg and Dh are functions of p̄c through κ0 and κ1. The parameters µ̄g and µ̄h are
the unconditional means of gt and ht.

Step 4: Substitute the solution into the SDF

If the fixed point problem has a solution, then the return on the consumption asset is

rc,t+1 ≈ κ0 + κ1(D0 +D′ggt+1 +D′hht+1)− (D0 +D′ggt +D′hht) + ∆ct+1

by substituting (C.10) into (C.8). We can now write the log-SDF as a function of the r.v.’s εg,t+1 and ht+1

by substituting this, (5) and (13) into (3)

mt+1 = ϑ ln (β) + (ϑ− 1) (κ0 − (1− κ1)D0)

− (ϑ− 1)D′ggt − (ϑ− 1)D′hht + ϑΛ1 (gt)

+Z ′2 (µg + Φggt + Φghht − Σgh (Σhνh + Φhht)) +
(
ϑΛ2 (gt) + Σ′g,tZ2

)′
εg,t+1 + Z ′4ht+1

Appendix C.2 Analytical solution of Dh

The H × 1 vector of loadings Dh are a system of H equations in H unknowns in (C.14). They can be solved
analytically when both Φh and Σh are lower triangular by recursively solving one equation after another.
We will consider the simpler case when they are both diagonal. Under this assumption, each equation is
independent of one another and they simplify to

Dh,i = D̄i +

(
Z̄3,i + κ1Dh,i

)
Φh,i

1− ϑΣh,i
(
Z̄3,i + κ1Dh,i

) i = 1, . . . ,H (C.15)

where Φh,i and Σh,i are the i-th diagonal elements and D̄i, Z̄3,i are the ith elements of the following quantities

D̄ = (Φgh − ΣghΦh)
′
Z1 +

ϑ

2
(ιH ⊗ Z1)

′
Σ̃gΣ̃

′
g (IH ⊗ Z1)

Z̄3 = Σ′ghZ1

Each loading (C.15) for i = 1, . . . ,H is a quadratic equation

0 = κ1ϑΣh,iD
2
h,i +Dh,i

(
κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)
+ D̄i

(
1− ϑΣh,iZ̄3,i

)
+ Z̄3,iΦh,i(C.16)

The solutions are

Dh,i =
−
(
κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)
2κ1ϑΣh,i

±

√(
κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)2 − 4κ1ϑΣh,i
[
D̄i

(
1− ϑΣh,iZ̄3,i

)
+ Z̄3,iΦh,i

]
2κ1ϑΣh,i

(C.17)

A real solution exists as long as the discriminant is greater than or equal to zero. If the discriminant is
greater than zero, there are two solutions. Only one solution leads to a sensible value. This is the value with
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a negative sign, see also Campbell, Giglio, Polk, and Turley(2014) for the ICAPM model.

Appendix D Bond prices

Define

Z5 = Z4 − Σ′ghZπ

in addition to Z1 - Z4 defined in Appendix C.1.

Appendix D.1 Real bonds

We will guess and verify that the solution for zero coupon bonds is P
(n)
t = exp

(
ān + b̄′n,ggt + b̄′n,hht

)
for

some unknown coefficients ān and b̄n,g and b̄n,h.

For a maturity n = 1, the payoff is guaranteed to be P
(0)
t+1 = 1 in the next period, in which case P

(1)
t =

Et [Mt+1]. Using standard techniques for affine bond pricing in discrete-time (see Creal and Wu(2015b)), we
find that at maturity n = 1 the bond loadings are

ā1 = ln (β)− ηZ ′c (µg − ΣghΣhνh − ηϑλ0)

−
H∑
i=1

νh,i log (1− e′iΣ
′
hZ4) +

(ϑ− 1)

ϑ

H∑
i=1

νh,i log (1− e′iΣ
′
hϑZ3)

− (ϑ− 1)ϑ

2
Z ′1Σ0,gΣ

′
0,gZ1 +

1

2
Z ′2Σ0,gΣ

′
0,gZ2

b̄1,g = − (Φg − ηϑλg)′ ηZc
b̄1,h = − (Φgh − ΣghΦh)

′
ηZc

+

(
H∑
i=1

e′iΣ
′
hZ4

1− e′iΣ
′
hZ4

e′iΣ
−1
h Φh

)′
− (ϑ− 1)

(
H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

e′iΣ
−1
h Φh

)′

+
1

2
(IH ⊗ Z2)

′
Σ̃gΣ̃

′
g (ιH ⊗ Z2)− (ϑ− 1)ϑ

2
(IH ⊗ Z1)

′
Σ̃gΣ̃

′
g (ιH ⊗ Z1)

where bond prices only exist if e′iΣ
′
hZ4 < 1 for i = 1, . . . ,H. At maturity n, we use the fact that P

(n)
t =

Et

[
exp (mt+1)P

(n−1)
t+1

]
. The bond loadings are

ān = ān−1 + ā1 +

H∑
i=1

νh,i log

 1− e′iΣ
′
hZ4

1− e′iΣ
′
h

(
Σ′ghb̄n−1,g + b̄n−1,h + Z4

)


+ (µg − ΣghΣhνh − ηϑλ0)
′
b̄n−1,g +

1

2
b̄′n−1,gΣ0,gΣ

′
0,g b̄n−1,g + b̄′n−1,gΣ0,gΣ

′
0,gZ2

b̄n,g = (Φg − ηϑλg)′ b̄n−1,g + b̄1,g

b̄n,h = (Φgh − ΣghΦh)
′
b̄n−1,g + b̄1,h

+

 H∑
i=1

 e′iΣ
′
h

(
Σ′ghb̄n−1,g + b̄n−1,h + Z4

)
1− e′iΣ

′
h

(
Σ′ghb̄n−1,g + b̄n−1,h + Z4

) − e′iΣ
′
hZ4

1− e′iΣ
′
hZ4

 e′iΣ
−1
h Φh

′

+
1

2

(
IH ⊗ b̄n−1,g

)′
Σ̃gΣ̃

′
g

(
ιH ⊗ b̄n−1,g

)
+ (IH ⊗ Z2)

′
Σ̃gΣ̃

′
g

(
ιH ⊗ b̄n−1,g

)
Real yields are y

(n)
t = an + b′n,ggt + b′n,hht with an = − 1

n ān, bn,g = − 1
n b̄n,g and bn,h = − 1

n b̄n,h.
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Appendix D.2 Nominal bonds

Similar to the solution for the real bond, we guess and then verify. The solution for zero coupon nominal bonds

is P
$,(n)
t = exp

(
ā$
n + b̄$,′n,ggt + b̄$,′n,hht

)
for some unknown coefficients ā$

n and b̄$n,g and b̄$n,h. For maturity

n = 1, the payoff is guaranteed to be P
$,(0)
t+1 = 1 in the next period, in which case P

$,(1)
t = Et

[
M$
t+1

]
. The

solutions are

ā$
1 = ln (β)− (ηZc + Zπ)

′
(µg − ΣghΣhνh − ηϑλ0)

+
(ϑ− 1)

ϑ

H∑
i=1

νh,i log (1− e′iΣ
′
hϑZ3)−

H∑
i=1

νh,i log (1− e′iΣ
′
hZ5)

− (ϑ− 1)ϑ

2
Z ′1Σ0,gΣ

′
0,gZ1 +

1

2
Z ′2Σ0,gΣ

′
0,gZ2 +

1

2
Z ′πΣ0,gΣ

′
0,gZπ − Z ′2Σ0,gΣ

′
0,gZπ

b̄$1,g = − (Φg − ηϑλg)′ (ηZc + Zπ)

b̄$1,h = − (Φgh − ΣghΦh)
′
(ηZc + Zπ)

− (ϑ− 1)

(
H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

e′iΣ
−1
h Φh

)′
+

(
H∑
i=1

e′iΣ
′
hZ5

1− e′iΣ
′
hZ5

e′iΣ
−1
h Φh

)′
+

1

2
(IH ⊗ Zπ)

′
Σ̃gΣ̃

′
g (ιH ⊗ Zπ)− (IH ⊗ Z2)

′
Σ̃gΣ̃

′
g (ιH ⊗ Zπ)

+
1

2
(IH ⊗ Z2)

′
Σ̃gΣ̃

′
g (ιH ⊗ Z2)− (ϑ− 1)ϑ

2
(IH ⊗ Z1)

′
Σ̃gΣ̃

′
g (ιH ⊗ Z1)

where bond prices only exist if e′iΣ
′
hZ5 < 1 for i = 1, . . . ,H. At longer maturities n, we use the fact that

P
$,(n)
t = Et

[
exp

(
m$
t+1

)
P

$,(n−1)
t+1

]
. The bond loadings are

ā$
n = ā$

n−1 + ā$
1 + (µg − ΣghΣhνh − ηϑλ0)

′
b̄$n−1,g

+

H∑
i=1

νh,i log

 1− e′iΣ
′
hZ5

1− e′iΣ
′
h

(
Σ′ghb̄

$
n−1,g + b̄$n−1,h + Z5

)


+
1

2
b̄$,′n−1,gΣ0,gΣ

′
0,g b̄

$
n−1,g + b̄$n−1,gΣ0,gΣ

′
0,g (Z2 − Zπ)

b̄$n,g = (Φg − ηϑλg)′ b̄$n−1,g + b̄$1,g

b̄$n,h = (Φgh − ΣghΦh)
′
b̄$n−1,g + b̄$1,h

+

 H∑
i=1

 e′iΣ
′
h

(
Σ′ghb̄

$
n−1,g + b̄$n−1,h + Z5

)
1− e′iΣ

′
h

(
Σ′ghb̄

$
n−1,g + b̄$n−1,h + Z5

) − e′iΣ
′
hZ5

1− e′iΣ
′
hZ5

 e′iΣ
−1
h Φh

′

+
1

2

(
IH ⊗ b̄$n−1,g

)′
Σ̃gΣ̃

′
g

(
ιH ⊗ b̄$n−1,g

)
+
(
IH ⊗ b̄$n−1,g

)′
Σ̃gΣ̃

′
g (ιH ⊗ (Z2 − Zπ))

Nominal yields are y
$,(n)
t = a$

n + b$,′n,ggt + b$,′n,hht with a$
n = − 1

n ā
$
n, b

$
n,g = − 1

n b̄
$
n,g and b$n,h = − 1

n b̄
$
n,h. The

nominal short term interest rate is

r$
t = y

$,(1)
t = a$

1 + b$,′1,ggt + b$,′1,hht (D.18)
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Appendix E Proof of Propositions

Appendix E.1 General case

Define the fixed point problem

κ1 =
exp (p̄c)

1 + exp (p̄c)

κ0 = ln (1 + exp (p̄c))− κ1p̄c

D′g = (1− η)Z ′c (Φg − ϑηλg) (I − κ1 (Φg − ϑηλg))−1

Z1 = (1− η)Zc + κ1Dg

Z3 = Σ′gh ((1− η)Zc + κ1Dg) + κ1Dh

Dh = (Φgh − ΣghΦh)
′
Z1 +

ϑ

2
(ιH ⊗ Z1)

′
Σ̃gΣ̃

′
g (IH ⊗ Z1) +

H∑
i=1

e′iΣ
′
hZ3

1− ϑe′iΣ
′
hZ3

Φ′hΣ−1,′
h ei

(1− κ1)D0 = ln (β) + κ0 + Z ′1 (µg − ΣghΣhνh − ηϑλ0)

− 1

ϑ

H∑
i=1

νh,i ln (1− e′iΣ
′
hϑZ3) +

ϑ

2
Z ′1Σ0,gΣ

′
0,gZ1

f(p̄c) = D0 +D′gµ̄g +D′hµ̄h

which is solved if p̄c = f(p̄c).

Assumptions 1

The vector of coefficients Dh is a solution to the system of non-linear equations in (C.14). The system of
equations does not necessarily have a real solution for a given parameter vector θ.

In the special case when Σh and Φh are diagonal, each loading (C.15) reduces to a quadratic equation
given by (C.16) that can be solved separately for each element i. The solutions are in (C.17). The fixed
point problem only has a solution when Dh,i is real. The coefficient Dh,i is real if and only if the parameters
satisfy (

κ1Φh,i − κ1ϑΣh,iD̄i − 1 + ϑΣh,iZ̄3,i

)2 − 4κ1ϑΣh,i
[
D̄i

(
1− ϑΣh,iZ̄3,i

)
+ Z̄3,iΦh,i

]
≥ 0

for i = 1, . . . ,H.
In order to solve for the price to consumption ratio pct, the conditional expectation in (C.13) must exist.

This condition is

ϑe′iΣ
′
h

[
Σ′gh ((1− η)Zc + κ1Dg) + κ1Dh

]
< 1 i = 1, . . . ,H (E.19)

This defines another set of restrictions across the parameters θ of the model.

Proof of Proposition 1

First, derive the limiting property for p̄c→ −∞: limp̄c→−∞ κ1 = 0 and limp̄c→−∞ κ0 = 0. In this case, both
D0 and Dh are finite due to ϑe′iΣ

′
hZ3 < 1 in Assumption 1. Therefore, p̃c is finite, so limp̄c→−∞(p̄c− p̃c)→

−∞.
Next, derive the limiting property for p̄c → ∞: limp̄c→∞ κ1 = 1 and limp̄c→∞ κ0 = 0. This im-

plies Dg is finite as long as the eigenvalue of (Φg − ϑηλg) for consumption is smaller than 1. Dh is
finite due to ϑe′iΣ

′
hZ3 < 1. And limp̄c→∞ (1− κ1)D0 = limp̄c→∞ ln (β) + Z ′1 (µg − ΣghΣhνh − ηϑλ0) −

1
ϑ

∑H
i=1 νh,i ln (1− e′iΣ

′
hϑZ3) + ϑ

2Z
′
1Σ0,gΣ

′
0,gZ1. The right hand side is finite due to ϑe′iΣ

′
hZ3 < 1. Therefore,

limp̄c→∞ κ1 = 1 leads to an infinite D0. The condition limp̄c→∞D0 → −∞ implies limp̄c→∞(p̄c− p̃c)→∞,
which together limp̄c→−∞(p̄c− p̃c)→ −∞ guarantees there exists a solution for the fixed point problem.
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With κ1 < 1, the condition limp̄c→∞D0 → −∞ is equivalent to

β < lim
p̄c→∞

exp

[
−

(
Z ′1 (µg − ΣghΣhνh − ηϑλ0)− 1

ϑ

H∑
i=1

νh,i ln (1− e′iΣ
′
hϑZ3) +

ϑ

2
Z ′1Σ0,gΣ

′
0,gZ1

)]
.

Therefore, the boundary condition is

β̄ = exp

[
−

(
Z∞′1 (µg − ΣghΣhνh − ηϑλ0)− 1

ϑ

H∑
i=1

νh,i ln (1− e′iΣ
′
hϑZ

∞
3 ) +

ϑ

2
Z∞′1 Σ0,gΣ

′
0,gZ

∞
1

)]
,

where
Z∞1 = (1− η)Zc +D∞g
D∞′g = (1− η)Z ′c (Φg − ϑηλg) (I − (Φg − ϑηλg))−1

,

Z∞3 = Z̄∞3 +D∞h
Z̄∞3 = Σ′ghZ

∞
1

D∞h,i = − 1
2

(
Φh,i−1
ϑΣh,i

− D̄∞i + Z̄∞3,i

)
−
√

1
4

(
Φh,i−1
ϑΣh,i

− D̄∞i + Z̄∞3,i

)2

− 1
ϑΣh,i

[
D̄∞i

(
1− ϑΣh,iZ̄∞3,i

)
+ Z̄∞3,iΦh,i

]
D̄∞ = (Φgh − ΣghΦh)

′
Z∞1 + ϑ

2 (ιH ⊗ Z∞1 )
′
Σ̃gΣ̃

′
g (IH ⊗ Z∞1 )

Appendix E.2 Special case with Gaussian dynamics

The fixed point problem simplifies to

κ1 =
exp (p̄c)

1 + exp (p̄c)

κ0 = ln (1 + exp (p̄c))− κ1p̄c

D′g = (1− η)Z ′cΦ
Q$

g

(
I − κ1ΦQ

$

g

)−1

Z1 = (1− η)Zc + κ1Dg

D0 (1− κ1) = ln (β) + κ0 + Z ′1µ
∗
g +

1

2
ϑZ ′1Σ0,gΣ

′
0,gZ1

p̃c = D0 +D′gµ̄g

which is solved if p̄c = p̃c.
First, the condition in Proposition 1 becomes

β < lim
p̄c→∞

exp

(
−Z ′1µ∗g −

1

2
ϑZ ′1Σ0,gΣ

′
0,gZ1

)
, (E.20)

and β̄ simplifies to

β̄ = exp

[
−
(
Z∞′1 µ∗g +

ϑ

2
Z∞′1 Σ0,gΣ

′
0,gZ

∞
1

)]
,

where Z∞1 ≡ limp̄c→∞ Z1 (p̄c) = (1− η)Zc+D
∞
g andD∞′g ≡ limp̄c→∞Dg (p̄c)

′
= (1− η)Z ′cΦ

Q$

g

(
I − ΦQ

$

g

)−1

.

Proof of Corollary 1

1. The condition (E.20) is guaranteed by Z∞′1 µ∗g ≤ 0 and ϑ < 0 for any β ≤ 1. And 1−γ
1−ψ > 0 is equivalent

to ϑ < 0,

2. A stronger condition is

β ≤ 1 < lim
p̄c→∞

exp

(
−Z ′1µ∗g −

1

2
ϑZ ′1Σ0,gΣ

′
0,gZ1

)
,
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which can be simplified to

γ > 1 +
2Z ′c

(
I − ΦQ

$

g

)−1

µ∗g

Z ′c

(
I − ΦQ

$

g

)−1

Σ0,gΣ′0,g

(
I − ΦQ

$,′
g

)−1

Zc

, if ψ > 1

γ < 1 +
2Z ′c

(
I − ΦQ

$

g

)−1

µ∗g

Z ′c

(
I − ΦQ

$

g

)−1

Σ0,gΣ′0,g

(
I − ΦQ

$,′
g

)−1

Zc

. if ψ < 1

hence γ̄(θP, θλ) = 1 +
2Z′c

(
I−ΦQ$

g

)−1

µ∗g

Z′c

(
I−ΦQ$

g

)−1
Σ0,gΣ′0,g

(
I−ΦQ$,′

g

)−1
Zc

, does not depend on ψ.

3. We have dϑ
dγ = − 1

1−η ,
dD∞′g
dγ = 0 and

dZ∞′1

dγ =
dD∞′g
dγ = 0. Hence, the derivative of ln β̄ w.r.t. γ is

d ln β̄

dγ
=

1

2(1− η)
Z∞′1 Σ0,gΣ

′
0,gZ

∞
1

d ln β̄
dγ = 1

β̄
dβ̄
dγ implies that the two derivatives have the same sign. Therefore, for ψ > 1, then dβ̄

dγ > 0;

for ψ < 1, then dβ̄
dγ < 0.

Appendix F MCMC and particle filters

Appendix F.1 MCMC

Our MCMC algorithm is the particle Gibbs (PG) sampler. It iterates between two broad steps: (i) drawing
the latent state variables (g1:T , h0:T ) conditional on the model’s parameters; and (ii) drawing the model’s
parameters θP given the latent state variables. We make heavy use of the fact that the model is a conditionally
linear Gaussian state space model.

Appendix F.1.1 Conditionally linear, Gaussian state space form

Conditional on h0:T , the model is a linear, Gaussian state space model. We write the model using the state
space form of Durbin and Koopman(2012) given by

Yt = Zgt + d+ η∗t η∗t ∼ N (0, H) , (F.21)

gt+1 = Tgt + ct +Rε∗t+1 ε∗t+1 ∼ N (0, Qt) , (F.22)

where Yt = (∆ct πt)
′
. The models in this paper can placed in this state space form as

Z =

(
Zc
Zπ

)
T = Φg d = 02×1 H = 02×2

ct = µg + Φghht + Σghεh,t+1 Qt = Σg,tΣ
′
g,t

For some models, there are free, estimable parameters in the matrices (µg,Φgh,Σgh). We can place these in
the state vector. This allows any free parameters in (µg,Φgh,Σgh) to be drawn jointly with the state variables
g1:T . It also allows us to marginalize over them when drawing other parameters, see ? for discussion.
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Appendix F.1.2 Drawing the state variables

We draw (g1:T , h0:T ) from their full conditional distribution in two steps.

g1:T ∼ p
(
g1:T |Y1:T , h0:T , θ

P
)

h0:T ∼ p
(
h1:T |Y1:T , g1:T , θ

P
)

We draw g1:T conditional on h0:T from the conditionally linear, Gaussian state space model (F.21) and
(F.22) using a forward filtering backward sampling algorithm or simulation smoother; see, e.g. Durbin and
Koopman(2002). Conditional on the draw for g1:T , we draw h0:T using a particle Gibbs sampler.

There are two PG samplers developed in the literature. The original PG sampler of Andrieu, Doucet, and
Holenstein(2010) with the backward-sampling pass developed by Whiteley(2010), see Creal and Tsay(2015).
And, the PG sampler with ancestor sampling (PGAS) of Lindsten, Jordan, and Schön(2145–2184). The
former algorithm is simple to implement for Model #1. We describe its implementation here.

Let J be the total number of particles. In our work, we select J = 100. The PG sampler starts with a

set of existing particles h
(1)
0:T that were drawn from the previous iteration.

For t = 1, . . . , T , run:

• For j = 2, . . . , J , draw from a proposal: (ht, ht−1)
(j) ∼ q

(
ht, ht−1|gt−1:t, θ

P
)
.

• For j = 1, . . . , J , calculate the importance weight:

w
(j)
t ∝

p
(
gt|gt−1, h

(j)
t , h

(j)
t−1, θ

P
)
p
(
h

(j)
t |h

(j)
t−1, θ

P
)

q
(
h

(j)
t , h

(j)
t−1|gt−1:t, θP

)
• For j = 1, . . . , J , normalize the weights: ŵ

(j)
t =

w
(j)
t∑J

j=1 w
(j)
t

.

• Conditionally resample the particles
{
h

(j)
t

}J
j=1

with probabilities
{
ŵ

(j)
t

}J
j=1

. In this step, the first

particle h
(1)
t always gets resampled and may be randomly duplicated.

Implementation of the PG sampler is different than a standard particle filter due to the “conditional”
resampling algorithm used in the last step. We use the conditional multinomial resampling algorithm from
Andrieu, Doucet, and Holenstein(2010).

In the original PG sampler, the particles
{
h

(j)
t

}J
j=1

are stored for t = 1, . . . , T and a single trajectory

is sampled using the probabilities from the last iteration
{
ŵ

(j)
T

}J
j=1

. An important improvement upon the

original PG sampler was introduced by Whiteley(2010), who suggested drawing the path of the state variables
from the discrete particle approximation using the backwards sampling algorithm of Godsill, Doucet, and

West(2004). On the forwards pass, we store the normalized weights and particles
{
ŵ

(m)
t , h

(m)
i,t

}M
m=1

for

t = 1, . . . , T . We draw a path of the state variables (h∗1, . . . , h
∗
T ) from this discrete distribution.

At t = T , draw a particle h∗T = h
(j)
T with probability ŵ

(j)
T .

For t = T − 1, . . . , 0, run:

• For j = 1, . . . , J , calculate the backwards weights: w
(j)
t|T ∝ ŵ

(j)
t p

(
h∗t+1|h

(j)
t , θ

)
• For j = 1, . . . , J , normalize the weights: ŵ

(j)
t|T =

w
(j)

t|T∑J
j=1 w

(j)

t|T
.

• Draw a particle h∗t = h
(j)
t with probability ŵ

(j)
t|T .

The draw h0:T = (h∗0, . . . , h
∗
T ) is a draw from the full-conditional distribution. In practice, when the dimen-

sion H of ht is high, the number of particles J required for satisfactory performance can be quite large. In
this case, we can separate each element of the state vector hi,t for i = 1, . . . ,H and draw them one at a time.
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Appendix F.1.3 Drawing the parameters

We block the parameters into groups that are highly correlated. These groups can be separated into param-
eters governing the dynamics of gt and the parameters that enter the dynamics of volatility ht.

1. Drawing parameters in µ̄g,Φgh,Σgh: We place these parameters in the state vector and draw them
jointly with the Gaussian state variables.

2. Drawing parameters in Φg,Σ0,g: We use the independence Metropolis Hastings algorithm. Con-
ditional on the volatility state variables h0:T , the model is a linear, Gaussian state space model (F.21)
and (F.22). We maximize the likelihood using the Kalman filter and calculate the Hessian at the pos-
terior mode. We then draw from a Student’s t proposal distribution with mean equal to the posterior
mode and covariance matrix equal to the inverse Hessian at the mode; see, e.g. ? for details.

3. Drawing parameters of the volatility process µ̄h,Φh,Σh: We use an independence Metropolis-
Hastings step. When drawing these parameters, we can marginalize out the Gaussian state variables
using the Kalman filter. Conditional on the remaining parameters of the model (which we omit), the
target distribution of νh,Φh,Σh can be written as

p (µ̄h,Φh,Σh|Y1:T , h0:T ) ∝ p (Y1:T |h0:T , µ̄h,Φh,Σh) p (h0:T |µ̄h,Φh,Σh) p (µ̄h,Φh,Σh)

where p (Y1:T |h0:T , µ̄h,Φh,Σh) is the likelihood from the Kalman filter, p (h0:T |µ̄h,Φh,Σh) is the tran-
sition density of the volatility process (B.7). We maximize this target density and calculate the
Hessian at the posterior mode. We then draw from a Student’s t proposal distribution with mean
equal to the posterior mode and covariance matrix equal to the inverse Hessian at the mode.

For Gaussian models, we draw the free parameters in Σ0,g instead of µ̄h,Φh,Σh.

Appendix F.2 Particle filter

To estimate the structural parameters (β, γ, ψ) and the preference parameters θλ, we run cross-sectional
regressions on filtered estimates of the factors. In order to calculate the filtered estimates of the state
variables, we use a particle filter. The particle filter we implement is the mixture Kalman filter of Chen
and Liu(2000). Let gt|t−1 denote the conditional mean and Pt|t−1 the conditional covariance matrix of the
one-step ahead predictive distribution p(gt|Y1:t−1, h0:t−1; θ) of a conditionally linear, Gaussian state space
model. Similarly, let gt|t denote the conditional mean and Pt|t the conditional covariance matrix of the
filtering distribution p(gt|Y1:t, h0:t; θ). Conditional on the volatilities h0:T , these quantities can be calculated
by the Kalman filter.

Let J denote the number of particles and let Yt = (πt,∆ct) be N × 1. The particle filter then proceeds
as follows:

At t = 0, for i = 1, . . . , J , set w
(i)
0 = 1

J and

• Draw h
(i)
0 ∼ p (h0; θ) and calculate Σ

(i)
g,0Σ

(i),′
g,0 .

• Set g
(i)
1|0 = µ̄g + Φghh̄

(i)
0 , P

(i)
1|0 = Σ

(i)
g,0Σ

(i),′
g,0 ,

• Set `0 = 0.

For t = 1, . . . , T do:

STEP 1: For i = 1, . . . , J :

• Draw from the transition density: h
(i)
t+1 ∼ p(ht+1|h(i)

t ; θ) given by:

z
(i)
j,t+1 ∼ Poisson

(
e′jΣ
−1
h Φhh

(i)
t

)
j = 1, . . . ,H

w
(i)
j,t+1 ∼ Gamma

(
νh,j + z

(i)
j,t+1, 1

)
j = 1, . . . ,H

h
(i)
t+1 = Σhw

(i)
t+1
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• Calculate c
(i)
t and Q

(i)
t using h

(i)
t .

c
(i)
t = Φghh

(i)
t + Σghε

(i)
h,t+1

Q
(i)
t = Σ

(i)
g,tΣ

(i),′
g,t

• Run the Kalman filter:

v
(i)
t = Yt − Zg(i)

t|t−1 − d

F
(i)
t = ZP

(i)
t|t−1Z

′ +H

K
(i)
t = P

(i)
t|t−1Z

′
(
F

(i)
t

)−1

g
(i)
t|t = g

(i)
t|t−1 +K

(i)
t v

(i)
t

P
(i)
t|t = P

(i)
t|t−1 −K

(i)
t ZP

(i)
t|t−1

g
(i)
t+1|t = Tg

(i)
t|t + c

(i)
t

P
(i)
t+1|t = TP

(i)
t|t T

′ +RQ
(i)
t R′

• Calculate the weight: log
(
w

(i)
t

)
= log

(
ŵ

(i)
t−1

)
− 0.5N log (2π)− 0.5 log |F (i)

t | − 1
2v

(i)′
t

(
F

(i)
t

)−1

v
(i)
t .

STEP 2: Calculate an estimate of the log-likelihood: `t = `t−1 + log
(∑J

i=1 w
(i)
t

)
.

STEP 3: For i = 1, . . . , J , calculate the normalized importance weights: ŵ
(i)
t =

w
(i)
t∑J

j=1 w
(j)
t

.

STEP 4: Calculate the effective sample size Et = 1∑J
j=1

(
ŵ

(j)
t

)2 .

STEP 5: If Et < 0.5J , resample
{
g

(i)
t+1|t, P

(i)
t+1|t, h

(i)
t+1

}J
i=1

with probabilities ŵ
(i)
t and set ŵ

(i)
t = 1

J .

STEP 6: Increment time and return to STEP 1.

Within the particle filter, we use the residual resampling algorithm of Liu and Chen(1998). We set J =
100000.
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