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Abstract: Bone marrow aging is associated with multiple cellular dysfunctions, including perturbed
haematopoiesis, the propensity to haematological transformation, and the maintenance of leukaemia.
It has been shown that instructive signals from different leukemic cells are delivered to stromal cells
to remodel the bone marrow into a supportive leukemic niche. In particular, cellular senescence, a
physiological program with both beneficial and deleterious effects on the health of the organisms,
may be responsible for the increased incidence of haematological malignancies in the elderly and for
the survival of diverse leukemic cells. Here, we will review the connection between BM aging and
cellular senescence and the role that these processes play in leukaemia progression. Specifically, we
discuss the role of mesenchymal stem cells as a central component of the supportive niche. Due to the
specificity of the genetic defects present in leukaemia, one would think that bone marrow alterations
would also have particular changes, making it difficult to envisage a shared therapeutic use. We have
tried to summarize the coincident features present in BM stromal cells during aging and senescence
and in two different leukaemias, acute myeloid leukaemia, with high frequency in the elderly, and
B-acute lymphoblastic leukaemia, mainly a childhood disease. We propose that mesenchymal stem
cells are similarly affected in these different leukaemias, and that the changes that we observed
in terms of cellular function, redox balance, genetics and epigenetics, soluble factor repertoire and
stemness are equivalent to those occurring during BM aging and cellular senescence. These coincident
features may be used to explore strategies useful to treat various haematological malignancies.
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1. Introduction

Cellular damage is considered the origin of the opposed processes in which the gain
(cancer) or loss (aging) of cellular fitness define the phenotypic and functional characteristics
of the affected cells [1]. In fact, there are some intriguing similarities in the hallmarks of
these two cellular processes, i.e., cancer and aging, in relation to the causes, responses,
and the local and systemic consequences of cellular damage [1,2]. Genome instability and
mutations, epigenetic alterations and transcriptional deregulation, telomere/telomerase
dysfunction, and cell death or immortality induce adjustments in cellular physiology by
which cells try to respond in order to re-establish proper functioning. Since this is, in general,
only partially achieved, these genetically, phenotypically and functionally altered cells
modify their microenvironment, causing additional important changes in the surroundings
cells and in the way they interact with each other.

Cellular senescence is a physiological program with both beneficial and deleterious
effects on the health of organisms in different homeostatic processes, and is considered
to be an example of evolutionary antagonistic pleiotropy [3,4]. It is one of the various
optional outputs that result from cells when they are subjected to intense intrinsic or
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extrinsic stress signals, inducing cellular and, in particular, macromolecular damage, that
cannot be repaired by the classical repairing systems. There are no uniform phenotypes or
unique cell characteristics of senescent cells after receiving the stress signals that generate
them, and now, it is believed that this process is multi-step, evolving, diversifying, and
self-adapting [5].

In the last decade, the knowledge and interest in both aging and cellular senescence
and their connection has increased considerably. Taking into account that both processes
are at the base of the development of different diseases, the aim of ongoing research is
to develop novel strategies that could reduce or modulate cellular senescence in tissues,
eventually decreasing the physiopathological effects of aging [6]. In fact, senescent cells
have been found to accumulate with increasing chronological age, and are supposed to
drive aging and several age-related diseases, including haematological cancers [1,7].

Aging of the BM is believed to be the cause of the increased incidence of haematological
malignancies in the elderly, and this can be envisaged as a result of both age-associated
haematopoietic stem cell (HSC) dysfunction [8] and the particular altered characteristics
and functions of aging stromal cells building a permissive milieu where leukaemia can be
established and developed [9]. There is already abundant evidence showing that leukemic
cell growth induces important alterations in the bone marrow (BM) microenvironment and,
in turn, this remodelled BM has important roles in leukaemia maintenance, protection,
progression, drug resistance, and relapse [9–12]. Since haematological malignancies have
different cells of origin, diverse genetic abnormalities and also present distinctive clinical
manifestations, one would imagine that the interaction with the BM microenvironment
(and their modifications) might be specific to a particular leukaemia subtype. This is true
to a large extent, but it is also possible to find common elements altered in mesenchymal
stem/stromal cells (MSCs) that can be exploited to develop therapies targeting these
particular coincident features, thus widening their applicability.

Here, we will review the connection between BM aging and cellular senescence and
the role these processes play in the maintenance and progression of leukaemia. Specifically,
we discuss the role of MSCs as a central component of the BM supportive niche for leukemic
cells and leukemic stem cells (LSCs). We place an emphasis on acute myeloid leukaemia
(AML) and B-cell precursor acute lymphoid leukaemia (B-ALL) since, in elderly AML,
there is enough evidence to suggest a role of aged BM in the initiation, progression, and
complication of the disease. On the other hand, in B-ALL, a disease mainly of childhood, the
aging of the BM seems not to be an issue, but recent evidence showing a leukemic-induced
senescent process in MSCs that could modulate the disease suggests that common elements
must be present in these two different leukaemias. We propose that MSC alterations create
a modified microenvironment that reinforce, expand (in AML), and induce (in B-ALL)
MSC senescence, suggesting that shared strategies and cellular mechanisms may exist in
leukemic protection and progression. As the BM microenvironment also contributes to
treatment failure, the modified characteristics and altered cellular programs in MSCs will
also be discussed in the context of chemoresistance; this knowledge should also be useful
to develop new therapeutic strategies.

2. Bone Marrow Aging and Cellular Dysfunctions

BM aging is associated with perturbed haematopoiesis, imbalanced differentiation,
vascular remodelling, altered immune response, inflammaging (a low-grade and persistent
chronic inflammation and a ubiquitous characteristic of aging tissue), and propensity to
haematological transformation [13–16]. Aging is associated with changes in the number and
function of HSCs [17] due to cell intrinsic alterations such as DNA damage and epigenetic
dysregulation [18]. In advanced/extreme stages, haematopoiesis could evolve into clonal
haematopoiesis and/or HSC exhaustion. The former could have pathological consequences
if a high number of driver mutations are present [19,20]. Moreover, aged BM secretome
activates a pro-inflammatory program contributing to HSC clonogenic impairment [21].
HSC functions and integrity rely also on the support given by a dynamic BM niche made
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up of various cell types including MSCs, pericytes of mesenchymal origin, endothelial cells,
osteoblasts, and diverse mature haematopoietic cells, among others [11,22,23]. In aged BM,
HSC are relocated away from endosteal vascular niches with a reduction in self-renewal
capacity, quiescence, and entry into the cell cycle [17].

Early and abundant work has shown decreased differentiation capabilities with in-
creased BM age, in particular, with regard to osteoblastic lineage [24–26]. Aging induces the
loss of mineralized bone (increasing the risk of osteoporosis) and a reduction in angiogenic
factors [27]. There is also an important increase in adipocytes, which have a negative
effect on bone formation (due to increased numbers of osteoclasts and augmented bone
resorption), and consequently on HSCs [28,29]. This balance between osteogenesis and
adipogenesis, affecting HSC function, depends mainly on the environmental cues sensed
by MSCs [30,31].

During aging, the BM vasculature shows both morphological and metabolic changes
with a significant reduction in arteriolar vessels [16]. In experimental mouse models, it has
been shown that aging reduced the niche-forming vessels in the skeletal system, imposing
the drastic remodelling of the BM vascular architecture with a deterioration of arteriolar
structure [32,33]. In particular, the reduction in type-H endothelium (or transitional vessels)
causes a decline in HSC maintenance and quiescence factors, reducing HSC frequency
and impairing long-term repopulation activity [32,34,35]. The aged BM vasculature shows
increased leakiness with exposure to blood plasma components, inducing high levels of
reactive oxygen species (ROS) in proximity to HSCs and a decreased expression of the
main HSC maintenance factors, as well as C-X-C motif chemokine ligand 12 (CXCL12) and
stem cell factors (SCFs) in MSCs, with a concomitant increase in HSC differentiation and
migration [36–38].

In aging, decreased functionality of the immune system has also been reported, in-
creasing susceptibility to infections, the development of autoimmune disorders, and haema-
tological malignancies [16,39]. Immunosenescence of the adaptive immune system also con-
tributes to inflammaging and the deregulation of the cell-mediated immune response [40].
The inflammaging-induced activation of stromal and immune cells produces the secretion
of interleukin-1 (IL-1), IL-6, IL-8, TNF-α, and others [41]. These cytokines initially mod-
ulate the immune response but, if the stimuli persist, as occurs in chronic inflammation
during aging, then deleterious effects are observed with important consequences on HSCs
and their progenitors, including permanent modifications of the stromal compartment.
This hampers the ability of BM to support and maintain stem and progenitor cells with
significant changes in other BM resident cells [42]. An important source of inflammaging is
cellular senescence, a response to cellular damage and stress [43,44]. Age-related decreases
in lymphoid potential and function, probably due to HSC relocation to the central niches
and bone loss, have been described and could be responsible for myeloid lineage bias in
adulthood [45,46]. The pro-inflammatory cytokine milieu is likewise a characteristic of
haematological malignancies.

As if that were not enough, primary dysfunction of BM cell components could initiate
secondary haematological neoplasms [13]. In fact, several experiments performed in
mouse models have shown that some haematological malignancies can originate from
BM microenvironment alterations [47–52]. Preliminary evidence has shown that these
findings could be extended to human BM niches where specific inflammatory signals
could induce genotoxic stress in heterotypic stem/progenitor cells that might be relevant
in leukaemia predisposition disorders [53]. Additionally, there is evidence that an aged
BM microenvironment favours the growth of clonally expanded haematopoietic cells
having some somatic mutations (pre-leukemic cells) that could be responsible for AML
establishment [54]. This issue, although appealing, will not be treated here; however,
readers are invited to refer to recent excellent reviews on this topic [11,55,56].
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3. The Aging and Senescence of Mesenchymal Stem Cells

As mentioned above, haematopoietic niches are composed of diverse types of cells,
of which MSCs, in spite of their heterogeneity [9,11,57], have acquired much attention
due to their capacity to differentiate into mesenchymal lineages (osteoblasts, chondrob-
lasts, and adipocytes), to stimulate bone growth and remodelling, and their ability to
support haematopoiesis [58,59]. Confirming their capability to support and maintain HSC
properties, MSCs are capable of ectopically organizing HSC niches with fully functional
haematopoiesis [58].

Cellular senescence is generally defined by changes in cell morphology, senescence-
associated β-galactosidase (SA-βGAL) activity, and a characteristic growth arrest that is
fuelled by the Rb/p16 and/or p53/p21 pathways [43,60]. It is supposed to be a cellular
response to limit the proliferation of damaged and pre-tumour cells [43]; nevertheless,
its participation in the progression of cancer has also been duly demonstrated [61–64].
Senescent cells secrete various pro-inflammatory cytokines, chemokines and growth factors,
and proteases (the senescence-associated secretory phenotype or SASP) [63] that modify
neighbouring cells, maintaining and extending senescence and inflammation, conferring
plasticity to tumour cells, and thus severely altering the microenvironment [65]. Senescent
cells accumulate in tissues; however, different organs display particular levels of senescent
markers as a function of age across the human life span [6,66]. BM is no exception, with
old MSCs being four-fold more positive for SA-βGAL activity and showing reduced
proliferation with extended cell population doubling time, the upregulation of the p53
pathway, and cells with anomalous morphology [67].

As research progresses in this area, it has become more complicated to find distinctive
age-induced changes in MSCs. It is known that these alterations depend on multiple
variables, including the range of age groups chosen for the comparison, the species, the
gender, the tissues studied, and other variables [68]. Yet, it is clear that BM interactions
with senescent MSCs, as part of the whole aging of the organism, have a clear impact on
the development and progression of age-related diseases, including haematological ones.
This is due, in part, to the decline of or alterations in MSC proliferation, SASP, differentia-
tion and regenerative potential, and increased cell exhaustion, among others [69–72]. In
turn, different stressors, including genetic instability, telomere attrition, ROS production,
mitochondrial dysfunction, irradiation, oncogenic activation, some chemicals, among other
causes, can induce MSC senescence [1,73]. Although, aging per se and senescence induced
by extrinsic stressors impinge specific properties to MSCs, the existence of common MSC al-
terations in AML and B-ALL would suggest that they use the same molecular mechanisms
to remodel the BM microenvironment.

4. The Effect of Leukemic Cells on Mesenchymal Stem Cell Properties

Haematological cancers growing within the BM can induce modifications in the
microenvironment, altering cell behaviour and function in different ways. This is the case
of various myeloproliferative neoplasms [74], myelodisplasic syndrome [75,76], AML [77],
and ALL [78], among others. Various cells of origin and diverse genetic abnormalities are
at the base of these different diseases, and therefore progression and response to therapy
vary considerably depending on the manner by which these leukemic cells establish a
relationship with the supportive BM niche. On the other hand, similarities may also exist
that can be used to understand the mechanisms of disease progression and eventually
establish general strategies to control it. In the following sections, we will present and
discuss MSC alterations in two different (in origin, presentation, progression, and severity)
leukaemias: first, adult AML characterized by a hierarchical structure of cell population,
with an altered primitive haematopoietic stem cell, the LSC, at the origin of the bulk
leukemic cell population with the capacity of a leukemic initiating cell (LIC) [79]; second,
B-ALL, mainly a childhood disease that is thought to arise in committed-B-lineage cells [80]
and differs from AML in that all bulk cells have the capability of LICs, and therefore there
is no clear hierarchical organization of the leukemic cell population.
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AML has a higher incidence and worse prognosis than other subtypes of leukaemia
(ALL, chronic myeloid leukaemia and chronic lymphoid leukaemia) [81]. AML is typically
a disease of older adults (>65 years old), with 10 times more incidence than in younger peo-
ple [82]. Patients typically present peripheral pancytopenia with a concomitant reduction
in normal myeloid and lymphoid lineages in the BM where the leukemic blast population
dominates cell growth. This suggests a direct pathophysiological connection between
leukemic cell growth and the disruption of normal haematopoiesis [77]. This would appear
to be not simply an unequal competition between leukemic blasts having advantages in
cell growth compared to normal haematopoietic cells, but instead a situation in which
instructive signals from the leukemic cells are delivered to MSCs in the BM, fostering their
growth to the detriment of normal haematopoiesis. In recent years, a high number of
new mutations of AML have been discovered that alter haematopoietic progenitors and
induce malignant transformation and clonal expansion [83]. Since LSCs have self-renewal
properties and show cell-cycle quiescence with the capacity of disease maintenance in the
long-term, disease progression and relapse should be more related to the properties of
LSCs than to non-LSCs [84,85]. Nevertheless, LSCs are not only very infrequent, but also
heterogeneous [86]. Therefore, revealing how they instruct MSCs is a difficult task, and
final MSC modifications should undoubtedly represent the effect of the bulk AML cells.

B-ALL is predominantly a childhood disease, although it can occur in youth and
adulthood. Clinical outcomes have improved notably in recent decades, with >80% sur-
vival rate in children [87]. B-ALL symptoms include bleeding, fatigue, and infections.
The clinical presentation, response to treatment, and outcome depend principally on
the genetic and molecular defects of the leukemic blast [88]. B-ALL includes multiple
subtypes defined by structural chromosomal alterations with secondary somatic muta-
tions, DNA copy number alterations, and specific sequence mutations that contribute to
leukaemogenesis [88–90]. Genomic analysis in B-ALL has been fundamental for diagnosis,
risk stratification, treatment monitoring, and targeted-therapy development. Evidently, this
last issue has taken into account the cell-intrinsic features of the leukemic cell, but recent
research has shown that leukemic cell-extrinsic factors (stromal cells, soluble factors, etc.)
are key determinants of leukemic growth, maintenance, and response to therapy. In fact,
alterations of the BM microenvironment and BM MSCs are also seen in B-ALL with, for
example, a characteristic loss of CXCL12 [91]. As with other haematological malignancies,
B-ALL cells instruct MSCs to direct support in favour of the leukemic cells while affecting
diverse MSC functions and normal haematopoiesis. As mentioned, the hierarchical model
of leukemic growth does not seem to be applicable in B-ALL, with all leukemic blasts being
capable of inducing leukaemia in experimental models (LIC function). Compared to AML,
the information related to MSC alteration in B-ALL is minimal, as is knowledge of the
molecular mechanisms involved in these modifications.

So as to facilitate the recognition of common and relevant aspects of MSCs related to
aging/senescence vis à vis leukemic growth, we have separated, somewhat arbitrarily, the
different topics to be addressed, as follows: (1) cellular dysfunctions, (2) redox balance,
(3) genetic, epigenetic and gene expression, (4) SASP and inflammaging, and (5) stemness
properties. Finally, we discuss how the knowledge of MSC modification can be used to
increase drug sensitization. Although the available information on each topic is dissimilar,
interesting coincidences are revealed.

4.1. Cellular Dysfunctions of MSCs in Aging and Senescence

While the cell surface markers classically used for MSC identification (CD44, CD73,
CD90 and CD105) are relatively stable without minor or inconsistent variation with age [73],
MSC morphology is severely affected during aging, with the appearance of longer and
flattened cells that are positive for SA-βGAL activity [1]. Aging induces changes in MSC
adhesion molecules (VCAM-1, vascular cell adhesion molecule 1, and CXCR4, C-X-C motif
chemokine receptor 4) that alter migration, homing capacities and HSC support [92–97]. In
another study, a significant reduction in both the expression of CD146 (MCAM, melanoma
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cell adhesion molecule) and in cells positive for this marker was detected in aging [21].
Functional annotation clustering revealed that aged MSCs have an affected cytoskeleton
organization due to lower actin turnover, which leads to inferior responses to biological and
mechanical signals [98,99]. Though somehow controversial, most studies have reported
a progressive decline in colony-forming unit fibroblasts (CFU-F) in MSCs, and again a
reduced proliferation rate with age [21,98,100,101].

Additionally, during prolonged in vitro culture, similar modifications and changes in
gene expression are revealed. MSC morphological changes, with the increased expression
of genes that codify for focal adhesion and actin cytoskeleton organization, have been
shown [94]. A recent systematic review has revealed an increase in SA-βGAL activity in
senescent MSCs, particularly in the expression of p53, p21 and p16, Rb, ROS, and NF-
κB, together with decreased proliferation markers [102]. The prolonged expression and
activity of any of these regulatory components is sufficient to induce senescence [4], initially
reducing the proliferation rate until the characteristic cell growth arrest of senescent cells is
reached [70,103,104].

Protein degradation involves the interconnected autophagy process and ubiquitin-
proteasome system and their imbalance can induce the accumulation of protein damage
and cellular senescence [105–107]. Both aging and senescence have been associated with
decreased proteasome function [108–111]. MSC senescence involves a reduction in the
expression of some proteasome subunits, a detrimental effect on proteasome activity, and
an accumulation of oxidized proteins [112–114]. The reestablishment of the proteasome
function allows the MSC’s lifespan to increase, and preservation of stem cell function [114].

Acute stressors can induce MSC senescence through a reduction in autophagy; the
inhibition of autophagy induces MSC senescence, showing that both processes are con-
nected [112,115]. This detrimental effect alters MSC stemness properties [116–118], and
autophagy reestablishment can rescue MSC function [119–122]. There are also a few studies
suggesting that increased autophagy favours a senescent state in MSCs [123–125], suggest-
ing that autophagy can exert both pro- and anti-senescence effects [126,127], depending
on the autophagy type and cell damage or stress [73]. The fact that senescent MSCs and
aged MSCs share some properties lets us suppose that there are common signatures in
chronological and cellular aging. Indeed, it has been reported in MSCs that a relation
between gene expression profiles of age-induced changes and replicative senescence may
exist. This implies that the molecular effects of aging in vivo and senescence in vitro have
similar mechanisms [70].

4.1.1. Cellular Dysfunction of MSCs in AML

AML MSCs are almost unaffected in their expression of classical cell surface markers:
they have slight variations in CD44, CD73, CD90 and CD105 expression, and are negative
for CD34 and CD45 [77,128]. Early work has shown that MSCs isolated from AML patients
showed an impaired capacity to support normal haematopoiesis [129,130]. Moreover,
MSCs suppress the cell apoptosis of in vitro-cultured primary AML cells; thus, favouring
leukemic functions over those of HSCs [131,132]. It is believed that both direct contact
and soluble factors secreted by MSCs are responsible for the leukemic pro-survival effect
of MSCs. Adhesion molecules and cytokines playing a critical role in niche retention
were altered in AML MSCs: a reduction in SCF, thrombopoietin, angiopoietin-1, and
VCAM-1 [77,133], and an increase in CD146, integrin-α5 and CXCL12 [130,133] were
shown. In particular, CD44 and very late antigen-4 (VLA-4) receptors expressed in AML
cells were found to be essential for MSC adhesion [134]. In experimental mouse models,
it has been shown that VLA-4 blocking antibodies are able to reduce minimal residual
disease and favour AML survival [135]. CXCL12 is just one of several soluble factors (see
below) constitutively expressed by MSCs that can stimulate AML cell survival [136,137].
Targeting its CXCR4 receptor (by antagonist or neutralizing antibodies) reduced AML
burden and disease progression without affecting HSC engraftment [138]. Not all of the
survival mechanisms induced by MSCs have been totally elucidated, but it is suggested
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that common adhesion downstream effectors are responsible and may be effective targets
of treatment [139]. AML-derived MSCs showed diminished cell growth and CFU-F, and
altered morphology [77,140–142]. The gene ontology analysis of healthy MSCs co-cultured
with primary AML cells also showed the reduced proliferative capacity of MSCs [140].

The inhibition of autophagy seems to have an anti-tumour effect on AML [143,144].
Little is known regarding the modulation of this mechanism in MSCs by AML cells, but an
increase in MSC autophagy was observed, with autophagy-related 5-protein upregulation.
Accordingly, its inhibition induced alterations in MSC differentiation, cell cycle arrest, and
an increased chemosensitivity of AML cells, with a parallel reduction in the expression of
CXCL12 [145]. The simultaneous knockdown of ATG7 in MSCs and AML has increased
AML susceptibility to chemotherapy, compared to only AML cell inhibition [146]. The
above results suggest that autophagy modulation is reciprocal, and target strategies must
contemplate the role of the stromal support.

4.1.2. The Cellular Dysfunction of MSCs in B-ALL

The classical cell surface markers CD44, CD73, CD90, and CD105 were found to be
normally expressed or slightly increased in MSCs co-cultured with the leukemic B-ALL cell
line REH [147,148]. Here, also, MSCs induce leukemic cell survival with cell apoptosis and
the inhibition of in vitro-cultured primary B-ALL cells [149]. An important upregulation in
the adhesion molecules VCAM-1, ICAM-1, and VLA-5 was detected in this leukemic niche.
Additionally, MSCs looked bigger, flattened, and vacuolated, with a reduced proliferation
rate, and finally showed cell cycle arrest after few days. In addition, malignant B-ALL cells
may modify the BM microenvironment by generating signals targeting stromal cells. In a
xenotransplantation B-ALL model, it was shown that leukemic SCF production suppressed
the CXCL12 expression of MSCs, affecting their HSC supportive function [150]. The CFU-F
assay showed lower colony formation in MSCs, and as a validation of the results obtained in
the in vitro co-culture system, all these changes were also observed in MSCs isolated from
B-ALL patients [148,151], showing a clear impairment of MSCs in the ability to support
CD34 progenitors [56]. In a B-ALL experimental model, it was demonstrated that leukaemia
induced minor changes in MSC numbers, although MSC progenitors were increased while
mature MSCs were reduced [152]. Interestingly, it has been shown that, in the late leukemic
stages, mature MSCs adopt a transcription signature similar to progenitors.

Evidence of autophagy in the MSCs of B-ALL cells is scarce; however, it has been
described that B-ALL cells transfer autophagosomes to MSCs in a tunnelling nanotube
(TNT)-dependent manner. How this mechanism alters MSC function is unknown; never-
theless, taking into account the autophagy role in cytokine signalling and inflammation,
the authors suggest that this phenomenon could explain the release of factors exerting a
supportive effect on leukemic cells [153].

4.2. The Redox Balance of MSCs in Aging and Senescence

The redox balance in cells is well regulated by the antioxidant enzymes that are
highly expressed in MSCs [154]. The fact that deregulation in autophagy is linked to
the susceptibility of MSCs to oxidative stress and mitochondrial dysfunction [155] is
not surprising, because the greatest contribution to ROS production originates from the
electron transport chain in the mitochondria [156]. Differences in structural and functional
characteristics of the mitochondria have been observed in aging MSCs and in in vitro-
cultured MSCs. These changes were found to be accompanied by an increase in ROS
production [26,157], and were the main cause of mitochondrial dysfunction, inducing
defects in complex I and III, exacerbating ROS production and accelerating MSC senescence
by an increase in p53 and p21 expression [107,158]. After several in vitro passages of MSCs,
mitochondria mis-localization increases ATP content and decreases oxygen consumption
and NADH levels [159,160].

It has been suggested that ROS accumulation and mitochondria dysfunction in MSCs
could be responsible for a metabolic change in oxidative phosphorylation (OXPHOS)
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towards glycolysis [161,162], alleviating oxidative stress [163]. On the contrary, other
authors have shown that aged MSCs have a lower glucose metabolism, and that ATP
production in senescent MSCs is mainly by OXPHOS [112,160]. Although controversial,
this would demonstrate a metabolic shift towards OXPHOS concomitant with senescence,
linked to the loss of metabolic flexibility [112].

Increased oxidative stress, inducing extensive macromolecular damage, especially
in DNA and proteins (oxidized, misfolded, denatured), drives a full senescent program
in aged MSCs [99,164]. DNA damage accumulates with age, mainly due to telomere
attrition after replicative stress and loss of fitness in the DNA repairing mechanisms [165].
DNA lesions trigger DNA damage response (DDR) pathways and cell cycle arrest to allow
DNA repair. If the damage is severe, exceeding repair efficiency, MSCs may establish
either senescence or apoptosis programs [165]. Persistent oxidative stress induces a rapid
phosphorylation and co-localization of ATM, γH2AX, and 53BP1, leading to DDR through
the activation of the p53 and p38MAPK pathways, both responsible for the cell cycle arrest
of MSCs [166]. Importantly, ROS-stressed MSCs decrease their capacity for proliferation,
differentiation, immunomodulation, and cell support [167].

Other cellular physiology features revealed in in vitro cultures are much more difficult
to evaluate in aged BM MSCs, but it is quite possible that they might occur in vivo. For
example, in 3D cultures, senescent MSCs were capable of transferring cytoplasmic content
to non-senescent MSCs via TNTs, with a consequent reduction in p16 [168], probably driven
by oxidative stress, since mitochondrial damage can induce TNT formation [169].

4.2.1. Redox Balance of MSCs in AML

AML MSCs showed increased levels of ROS and oxidative stress, and the nuclear
translocation of transcription factors associated with the expression of antioxidant en-
zymes [170,171]. These alterations induce modifications in MSC behaviour, allowing the
transfer of mitochondria to the AML cells [170,172–174]. Interestingly, NADH-oxidase-2-
dependent superoxide production in AML cells can drive the mitochondrial transfer [170]
and induce a senescent phenotype in MSCs that is modulated by p16 and SASP [175].
Contra-intuitively, the mitochondria uptake by AML cells did not increase their ROS pro-
duction, due in part to the antioxidant effect exerted by MSCs and dependent on reduced
glutathione and glutathione peroxidase activity [176]. Nevertheless, MSCs improved the
bioenergetic capacity of AML cells by increasing OXPHOS potential and ATP produc-
tion [176]. In this sense, the expression of reduced glutathione-related antioxidant genes is
linked to poor prognosis in AML [176].

AML MSC senescence may also be driven by the higher expression of p21 and p53
and increased SA-βGAL activity [128,140]. Of note, a feedback loop between long-lasting
DDR and increased ROS production is needed for the development and maintenance of
senescence [177]. These findings show that AML MSCs tend toward senescence, as has
been shown in vivo in AML patients [175].

4.2.2. Redox Balance of MSCs in B-ALL

In addition to the metabolic adjustment of leukemic cells, MSCs are affected metaboli-
cally during co-cultures. A simultaneous change from OXPHOS towards aerobic glycolysis
was observed in both cell populations. The MSC metabolism modulated by B-ALL induced
an impaired response to oxidative stress and mitochondrial respiration [178]. This induced
the release of MSC lactate, which is an important intermediary to sustain leukemic cell
survival [178,179].

Leukemic cell lines induced in cultured MSCs a transient ROS production in cyto-
plasm and mitochondria [147]. The SA-βGAL enzyme was also increased with a concomi-
tant expression of either the p53 or p16 pathways (depending on the leukemic cell line),
whose activation has been linked with persistent cell stress and cell cycle arrest in aging
cells [147,180]. This, together with the above-observed changes in MSCs, confirms that
contact of B-ALL cells with MSCs induces in the latter an early senescence process. This
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is comparable to MSCs isolated from B-ALL patients at diagnosis [148]. An accelerated
senescence process in MSCs has also been described for T cell-ALL [181]. It was shown that
ROS production was sufficient to induce DNA damage and the DDR. Additionally, a small
proportion of MSCs co-cultured with REH cells for 3 days were positive for γH2AX [148].
Since MSCs, like other stem cells, have efficient mechanisms of DNA repair, this DNA
damage was corrected after the further co-cultivation of cells for a few days, suggesting that
the senescence process was transient, as was ROS production. In fact, it was demonstrated
that, after leukemic cell removal, MSCs restored their original morphology, re-entered the
cell cycle, reduced SA-βGAL activity, and acquired normal functioning [148].

To conclude Sections 4.1 and 4.2, both aging and leukaemia induce morphological
changes in MSCs with altered adhesion molecule expression that affects MSC intrinsic char-
acteristics such as homing or migratory capacities and hematopoietic cell support. These
MSCs have increased SA-βGAL activity, an increased expression of genes associated with
cell cycle arrest, ROS, SASP, and DDR, and reduced proliferation and CFU-F. These factors,
along with mitochondrial dysfunction and metabolic alteration, induce and reinforce the
senescent process (Figure 1).
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Figure 1. Cellular changes in MSCs induced by aging/senescence and hematological malignancies
(AML or B-ALL). MSCs subjected to a physiological aging process or exposed to a pathological envi-
ronment in the presence of leukemic blasts exhibit common characteristics. MSCs enter senescence,
overexpressing molecular markers related to DNA damage and cell-cycle arrest. At the same time,
they showed impairment in functions associated with HSC support, the maintenance of the redox
balance, and homeostasis. In B-ALL, some of these characteristics seem to be transient (T).

4.3. Genetic, Epigenetic and Gene Expression Alterations of MSCs in Aging and Senescence

Heterochromatin disorganization is considered a driver of MSC senescence in aging
and disease [182,183]. Cellular models of aging display enlarged nuclei, signs of nuclear
DNA decondensation, and heterochromatin loss [184]. Interestingly, lamin B1 downreg-
ulation has been shown to be a key trigger of global and local chromatin reorganization
during cell senescence, having an impact on gene expression and aging [185]. Within the
local heterochromatin reorganization, it is very likely that those driving the expression of
SASP genes (key effectors of the senescence program) must be present.
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Epigenetic modifications in aging or replicative senescence alter gene expression,
MSC number, and stemness properties, suggesting that both processes are similar and/or
linked [73]. The trimethylation of histone H3 (H3K9me3), which induces the strong bind-
ing of the histone complex to DNA and forms heterochromatin, is gradually lost during
the aging process. H3K9 demethylases plays an important role in the regulation of DDR
and senescence. Senescence-associated heterochromatin foci increase in senescent cells,
silencing genes involved in cell division [186]. Nevertheless, senescent cells still experience
global heterochromatin loss, with the subsequent expression of genes that were previously
inaccessible to the gene expression machinery [184]. Thus, despite the increase and redistri-
bution of localized facultative heterochromatin, the chromatin changes observed during
senescence also seem to support the heterochromatin loss model of aging. During MSC
senescence and aging, DNA methyltransferases expression was found to be significantly
downregulated [187]. Aging MSCs have three times more hypomethylated than hyperme-
thylated autosomal CpG sites [188], which is in agreement with the general data of DNA
methylation on aging [189].

The long-term culturing of MSCs is associated with DNA methylation changes at spe-
cific promoter regions, which then become either hypermethylated or hypomethylated [97].
DNA hypermethylation increases in genes related to the regulation of DNA replication, cell
cycle, DDR, multipotent differentiation, and metabolism [190]. Additionally, it has been
found that, in in vitro-cultured MSCs, there has been a gradual decrease in global DNA
methylation, with some coincidences in these changes aligning with aging MSCs [191–193].
In another study, it was found that cultured MSCs had decreased level of the histone
methyltransferase Ezh2, showing the involvement of histone modifications in cellular
senescence [194].

Comparison of the gene expression from human BM MSCs isolated from young and
older donors showed, in the latter, the upregulation of 67 genes and the downregulation
of 60 genes [70]. Among the upregulated genes, those involved in the extracellular matrix
regulation, mesoderm development, proliferation and chemotaxis were found [70]. In this
study, it was remarkable that several age-related gene expression changes in MSCs were
also differentially expressed upon in vitro replicative senescence.

4.3.1. Genetic, Epigenetic and Gene Expression Alterations of MSCs in AML

Some early work has shown the presence of cytogenetic abnormalities in MSCs from
AML patients [195] and, in another study, it was found that about 16% of MSC samples
from AML patients presented genetic abnormalities that were different from leukaemia
blasts [196]. This was also confirmed in another study [197].

Although the role of epigenetics has only begun to be explored in the leukemic niche
very recently, some important keys have been revealed. A decreased expression of the
chromatin remodelling complex CHD1 (modulating chromatin condensation) in AML
MSCs has been determined. This CHD1 reduction is associated with the loss of CFU-F
and HSC supportive capacity [198]. On the other hand, the methylation status of multiple
CpG sites and islands was examined in the MSCs of AML patients: 228 hypermethylated
CpG site probes covering 183 gene symbols, and 523 hypomethylated CpG site probes
covering 362 gene symbols were identified [199]. In other study, AML MSCs revealed
global hypomethylation compared to controls [130]. This is a consistent feature of human
cancers, in which the specific hypermethylation of CpG islands occurs concomitant with
global hypomethylation [200].

In a recent study, it was revealed that the protein expression in AML MSCs was differ-
ent from normal MSCs. The presence of AML cells induces changes in the transcriptional
profile of MSCs, downregulating cell-cycle-related genes and supporting a high expression
of cytokine-related genes [140]. Additionally, it was shown that the distinct expression
patterns of MSCs were characteristics of AML patients and associated with a heterogeneous
clinical outcome, suggesting that BM MSC remodelling may serve as a prognostic factor.
In another work, reverse-phase protein array analysis showed the differential expression
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of 28 proteins between AML MSCs and normal MSCs, that were then used to define four
different MSC populations in AML MSCs [128]. Interestingly, patients having one (with
relevant integrin/GSK3 axis) of these four groups of cells presented longer survival and
remission duration compared to other groups of patients having other MSCs classes. The
fact that MSCs with a particular phenotype and function have clinical relevance suggests
that MSC modulation could favour disease outcome.

4.3.2. Genetic, Epigenetic and Gene Expression Alterations of MSCs in B-ALL

MSCs isolated from B-ALL patients have shown a relative genetic stability. For
instance, the typical translocations present in the leukemic clone, or other chromosomal
abnormalities developed in in vitro cultures, were not found in MSCs, even after chemother-
apeutic treatment [201]. Other authors, studying MSCs in B-ALL patients with different
genetic rearrangements, found only a small percentage of MSCs that acquired the KMT2A-
AF4 fusion gene [202]. To our knowledge, no epigenetics changes in MSCs have been
reported in B-ALL.

Set enrichment analyses have shown that MSCs co-cultured with B-ALL cell lines
augmented the expression of different sets of genes related to epithelial–mesenchymal
transition, inflammatory response, and TNF-α signalling via NF-κB, changes that may
participate in niche remodelling [203]. The role of NF-κB seems relevant since there is
a reciprocal activation of NF-κB signalling in MSCs and the B-ALL cell line REH in co-
cultures [204], and genome-wide analyses of these MSCs have revealed the increased
transcription of genes related to this factor. We also have described that NF-κB activators
are overexpressed in MSCs after contact with ALL cells, at the same time that the expression
of the inhibitors IκBα and IκBεwere reduced [205]. In a similar setting, it was demonstrated
by microarray analysis that the main cytokines produced in this leukemic niche, and targets
of NF-κB signalling, were IL-6, IL-8, and C-C motif chemokine ligand 2 (CCL2) [147].

The upregulation of the serine-threonine kinase C isoform PKC-βII in MSCs was also
demonstrated after the binding of leukemic cells to MSCs, and it was proposed that this PKC
activation could be a standard mechanism to co-opt MSC survival signals [206] and that it
could be used to control leukaemia. In fact, blocking specific signalling molecules in MSCs
(Erk, p38, PI3K/Akt, PKC, and others) has been suitable for this purpose [149,203,207–212].

4.4. SASP and Pro-Inflammatory Stimulation in Aging and Senescence

In agreement with the establishment of a senescence program in aged MSCs, an
increase in the pro-inflammatory SASP was detected at the transcriptional and protein
levels [21]. This collection of soluble factors [63,213] is connected to beneficial as well as
deleterious effects of senescence. Nevertheless, SASP composition varies according to the
senescence inducer, the time of induction (acute or chronic senescence), the cell type, the
cell neighbourhood and, importantly, the context in which senescence occurs [4,68,214].
Therefore, it is extremely difficult to anticipate the precise composition and physiological
effects of SASP. In spite of this, among the key components of SASP, IL-6 and IL-8 are
the most conserved and robustly expressed cytokines [215–217]. The persistent secretion
of SASP allows the establishment of a low-grade long-lasting inflammation state called
inflammaging that reinforces senescence in a cell autonomous fashion and can be trans-
ferred to healthy surrounding cells (paracrine stimulation), amplifying both senescence and
inflammation [44]. This could also happen by ROS transfer through gap junctions during
cell interactions and the further ROS-mediated activation of NF-κB signalling [73,218,219],
the major intracellular pathway directing SASP production. Other signalling pathways
responsible for SASP production, involving p38MAPK and mitochondrial dysfunction,
have been described [220,221]. Through these signalling pathways, senescence can be
definitively established, contributing to the deterioration of physiological fitness with age.

It has been suggested that chronic inflammation drives HSC myeloid skewing and
leads to HSC exhaustion during aging [222]. An important role in this process has been as-
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signed to CCL5 and IL-6 [223,224]. Additionally, the BM accumulation of adipocytes during
aging contributes to myeloid-biased differentiation and reduced B lymphopoiesis [225,226].

Extracellular vesicles (EVs) exert an important role in MSC communication with their
surroundings, and have been proposed as a non-canonical part of SASP [227,228]. Aged or
senescent MSCs increase EV production [227,229,230], which can either relieve the stress or
spread the pro-senescent effect [227,231]. Indeed, EVs from young MSCs restored the cell
growth of aged MSCs, reducing senescence and increasing pluripotency [230].

4.4.1. SASP and Pro-Inflammatory Stimulation in AML

The pro-survival effect of MSCs on AML cells is dependent, in part, on the soluble
factors secreted by the MSCs. The pro-inflammatory genes IL-1β, IL-8, CXCL1, CXCL2,
CXCL3, and CCL2 were the most upregulated in MSCs co-cultured with AML leukaemia
cells [10]. Other authors have found downregulation of the SCF and the overexpression
of Jagged1 in human AML MSCs [77]. In a recent study, it was found that the secretion
of higher concentrations of IL-10 by BM MSCs correlated with a short survival of AML
patients [197], showing a link between in vitro MSC modifications and response to treat-
ment, thus having clinical relevance. Since MSCs are diverse and functional heterogeneity
has been demonstrated [128], it is believed that the secreted soluble factors will also be
different. However, if one considers that a senescent process is taking place in BM MSCs,
and that the autocrine and paracrine effect of SASP will predominate after definitive senes-
cence establishment, SASP could eventually be the dominant assortment of secreted factors
present in the microenvironment. AML cells induced an increase in IL-6 production by
MSCs, correlating with disease progression [232]. IL-8 seems to be especially relevant in
AML, where it can be secreted by AML cells upon interaction with CXCR1-expressing
MSCs that are capable to migrate in response to it [233]. The interaction of AML cells
and MSCs also promotes the production of IL-8 by MSCs, conferring an advantage to the
survival of AML cells [234,235]. In this manner, IL-8 production is reinforced in paracrine
and autocrine ways.

On the other hand, it seems that the differential secretion effect of MSCs depends
on the stemness attributes of the AML cells. For instance, BM MSCs co-cultured with
leukaemia cell lines had different degree of stemness (CD34+CD38− or CD34+CD38+ or
CD34− cells) upregulated differentially with the expression of sets of genes. AML cells that
showed less stemness properties were able to upregulate a number of pro-inflammatory
cytokines (IL-8, CCL2, CXCL1, IL1β, through IL17, CD40 and NF-κB signalling), while
AML cells that were more stem-like upregulated IRF8-related genes [10].

4.4.2. SASP and Pro-Inflammatory Stimulation in B-ALL

The main pro-inflammatory cytokines secreted in an in vitro leukemic niche of MSCs
with REH cells were IL-6, IL-8, CCL2, CXCL1, and CCL5 [204,236,237], which are well-
known NF-κB targets. These cytokines were not secreted by the individual cells (MSCs or
B-ALL cells), but were the consequence of the cell interactions. In other studies, patient-
derived pre-B-ALL cells or leukemic cell lines induced the secretion of CXCL10, IL-6, IL-8,
CCL2, and CCL5 [203,238]. Especially, CCL2 and IL-8 enhanced the adhesion capacity of
B-ALL cells to MSCs and stimulated the proliferation and survival of MSCs, reinforcing
the MSCs’ support capacity [237]. Consistent with the fact that SASP secretion increases
the expression of adhesion molecules [239], the strong binding of B-ALL cells to MSCs is
evident after co-culture, a phenomenon that must contribute to MSCs’ protective effect.
The activation of a pro-inflammatory program seems to exert a key role in leukaemia
progression [56,203]. Additionally, IL-6, IL-8 and CCL2 are increased in children at B-
ALL diagnosis [237,240], showing their relevance in vivo. A pro-inflammatory milieu was
evidenced during leukaemia growth, with IL-6 being one of the major secreted cytokines
and an important participation of IL-7 in disease progression [152]. Other genes were
downregulated in MSCs derived from ALL patients, such as CXCL12, IL-7 and the B
cell-activating factor BAFF, which are important molecules in B cell physiology [55].
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Although the evidence of EVs derived from ALL MSCs is limited, it has been shown
that galectin-3, present in MSC EVs, favours its own expression in AML cells with a reduced
therapy sensitivity in AML cells via Wnt/β-catenin signalling [241]. Interestingly, TNT
formation stimulated the production of CXCL10, CXCL8 and IL-2 by MSCs co-cultured
with B-ALL cells [238].

4.5. Stemness Property Modifications of MSCs in Aging and Senescence

It has been shown that, with age, human MSCs lose their multilineage differentiation
capacity and have reduced clonogenic frequency [242,243]. MSCs from older subjects
exhibit lower differentiation capacity and self-renewal properties, due in part to ROS
and metabolic stress [73,100]. At the same time, MSCs show an age-dependent lineage
switch between osteogenic and adipogenic fates, favouring adipocyte generation over
osteoblastic lineages, whose molecular mechanisms and physiological consequences are
fairly well understood [9,244]. In other studies, aging showed a reduction in MSC pro-
liferation and oteoblastogenesis with a downregulation of genes involved in osteogenic
differentiation [67,96].

Cellular senescence is an intrinsic cell barrier for cell reprogramming or plasticity;
however, both are less efficient in cells from old organisms due to the upregulation of the
Ink4/arf locus (encoding three strong tumour suppressors) during aging [245]. However, it
has been shown that senescence, through SASP production, can induce cellular plasticity
and tissue regeneration [246]. During ex vivo MSC expansion, the expression of stemness-
associated genes Oct4, Nanog, and Tert decrease [247]. In this sense, two transcription
factors associated with stemness, Twist and Oct4, are able to block or reverse senescence by
suppressing the expression of p21 (through the upregulation of DNA methyltransferases) or
p16/p14 (through Ezh1-dependent inhibition) [194,248]. MSCs cultured with EVs isolated
from latter-passage MSCs showed a reduction in their osteogenic potential compared to
EVs from the early passage, with changes in the expression of related genes [229]. EV
miRNAs, such as miR-183-5p, are increased in aging BM or oxidative-stressed BM cells and
endocytosed by MSCs fostering a reduction in osteogenic differentiation accompanied with
the induction of a senescence phenotype [249]. Therefore, senescence and stemness are also
linked processes.

4.5.1. Stemness Properties Modifications of MSCs in AML

In general, AML MSCs exhibited a reduced ability to differentiate osteoblastic lineage.
This was confirmed by specific methylation changes affecting several pathways involved
in cell differentiation and skeletal development [77]. Moreover, a decreased number of
osteoblasts was found in AML patients and in experimental models of AML, supporting
a disturbed multilineage differentiation potential of MSCs in AML [250]. In the study by
Kornblau et al., AML MSCs at diagnosis showed a higher expression of some proteins
related to osteogenic differentiation compared to those of AML MSCs at relapse, a clear
indication that disease progression affects their osteogenic capacity [128]. Nevertheless,
in another study, it was shown that osteogenic differentiation in AML was necessary to
support blast growth, and this was accompanied by adipocyte differentiation [142]. The
reduction in osteogenesis was also accompanied by an increase in adipocytes in the BM
that was suggested to influence the cellular energetics and was shown to be necessary for
the survival of AML cells [251,252]. By comparing MSCs isolated from normal donor or
AML patients, it was found that the latter had increased adipogenic potential with superior
ability to support the survival of leukaemia progenitor cells [253]. Furthermore, gene
ontology and pathway analysis revealed that the adipogenesis pathway was dysregulated
in AML MSCs.

4.5.2. Stemness Property Modifications of MSCs in B-ALL

MSCs are able to form clonal mesenspheres with the ability to self-renew, and this
assay has been used to evaluate this property. The basal capacity of sphere formation
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was reduced in MSCs from an in vitro leukemic niche established with REH cells [147].
Mesensphere induction with growth factors showed the increased sphere formation of
MSCs obtained from a co-culture with REH cells. Later, it was shown that this enhanced
sphere formation was not due to cell adhesion molecule upregulation or leukemic cell
growth within the mesenspheres [148], suggesting alterations of the stem cell properties in
the MSCs. This was confirmed by showing the reduced osteoblastic differentiation capacity
of MSCs. Additionally, MSCs isolated from B-ALL patients showed also altered differen-
tiation capabilities to mesenchymal lineages, with reduced osteogenic and propensity to
adipogenic differentiation [148]. In an immunocompetent B-ALL model, it was shown that
the number of osteoblasts decreased in the BM, accompanied by an increased activity of
RANKL and subsequent osteoclastogenesis and bone resorption [254]. These findings are
in line with what has been described in patients with B-ALL [78,255], and seem to be a
generalized abnormality in other malignancies [256,257].

Sections 4.3–4.5 allow us to conclude that aged or leukemic MSCs present an altered
gene expression program, with the induction of inflammatory and cytokine-related genes
and altered stemness properties (reduced self-renewal and osteogenic differentiation and,
in some instances, increased adipogenic differentiation) which affect the BM microenvi-
ronment concerning inflammation and senescence. Although a reduction in condensed
heterochromatin predominates, specific regions of the genome associated with replication,
repair, and the cell cycle are repressed (Figure 2).
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Figure 2. Expression profile, genetic, epigenetic and stemness-related changes in MSCs. Regarding the
repertoire of soluble factors and cytokines, aged MSCs and leukemic MSCs show a proinflammatory
signature mediated, in part, by NF-κB activation. Other genes related to replicative or proliferative
capacities are repressed by changes in the epigenetic landscape, even though global DNA methylation
is reduced. Stemness functions involving self-renewal, clonogenicity and differentiation potential
are also impaired in both disease models. DNA-MT: DNA methyl transferases; ECM: extracellular
matrix; EVs: extracellular vesicles.

5. MSC Roles in Drug Resistance

As shown above, MSCs are dysfunctional in patients with AML and B-ALL, exhibiting
characteristics that are quite similar to those observed in aged or senescent MSCs. Of greater
relevance is the expression of genes that produce an inflammatory milieu, increasing
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leukemic cell adhesion and protection. Additionally, the induction of oxidative stress,
senescence, and SASP, producing further inflammation and senescence expansion, are
characteristics of the reprogrammed MSCs. These complex MSC alterations should also
play an important role in the drug resistance of leukemic cells and, therefore, may become
interesting therapeutic target options. In fact, new research in this area is directed to
develop antibodies or other compounds with the ability to interfere specifically with all the
different supportive malignant cues (those originating from leukemic cells and/or from
the leukemic niche). The great challenge is to find those that are common among different
types of leukaemias (independent of the particular genetic lesion) and that may have a
broader application.

5.1. Drug Resistance Mechanisms in AML

MSCs confer drug resistance to AML cells through a wide variety of mechanisms where
the participation of the repertoire of soluble factors and cell interactions is well known [258].
These VLA-4/VCAM1-mediated interactions [204] promote AML cells’ chemoresistance
by diverse mechanisms, including Bcl-2 overexpression [132] and JAK/STAT [259] and
NF-κB signalling in MSCs. Thus, the inhibition of MSCs’ interaction with AML cells after
CXCL12/CXCR4, CD44, ITG4 or E-selectin inhibition reduces the resistance of leukemic
cells to chemotherapy [260–265]. The interaction between MSCs and AML cells induces a
side population phenotype in leukemic cells which becomes more resistant to anthracycline
treatment [266]. This resistance was acquired by stroma-dependent ABC drug transporter
activation. Connexins (CX) also participate in intercellular communication and their
expression is altered in aged MSCs [267]. CX are responsible for ROS transfers between
cells in the BM microenvironment [268]. In particular, CX43 is an important regulator of
autophagy and mitochondrial integrity [269]. Therefore, CX inhibition in MSCs induces an
increase in the sensitivity of AML cells to chemotherapy [270].

In de novo-diagnosed AML patients, MSCs upregulated the expression of VEGF, IL-6,
CXCL12, and indoleamine 2,3-dioxygenase, and reduced the expression of IL-10. AML
MSCs showed a decline in the proliferative capacity, in part due to the IL-32 production
that protects AML cells from cytarabine [271]. Of note, this profile was associated with bad
prognosis in AML patients [272], suggesting that the secretory phenotype of MSCs could
exert an important role in the course of the disease. A detailed network participating in
AML resistance has been described [258].

More recently, the role of EVs was also included in the list of mechanisms contribut-
ing to AML cells’ protection [273]. EVs from MSCs and AML cells can reshape the BM
microenvironment, and it has been demonstrated that EVs are increased in AML patients’
plasma, even after chemotherapy and remission [139,274]. RNAs, miRNAs and transcripts
of FLT3-ITD, nucleophosmin-1 (NPM1), IGF-IR, CXCR4 and MMP9 present within EVs,
alter stromal cells, and have important roles in AML treatment and prognosis [275]. TGF-
β1, miR-155 and miR-375 from AML MSCs EVs protect AML cells against cytarabine and
FLT3 inhibitors. MSCs respond to AML EVs by increasing IL-8 production, contributing
to AML chemoresistance to etoposides [276]. Additionally, FGF2, secreted by MSC EVs,
induces AML cell resistance to tyrosine kinase inhibitors, and reinforces the EV production
in MSCs [277].

On-going clinical research, involving CXCL12, CXCR4 and IL-6 inhibition in combi-
nation with standard chemotherapy, is taking place for AML patients [278–280]. A better
knowledge of how MSCs’ secretome, redox balance and stemness properties are affected
would certainly allow the development of novel targets.

5.2. Drug Resistance in B-ALL

The importance of the BM microenvironment in ALL cell protection during chemother-
apy is less well studied, but the fact that the disruption of this interaction can improve drug
susceptibility in B-ALL and T-ALL suggests that it has a fundamental role [149,281,282].
B-ALL cell lines present differential adhesion to the stroma, with the most adherent cells
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exhibiting a quiescent state, altered metabolism, and less sensitivity to chemotherapeutic
agents [283]. ALL cell interactions with stromal cells mainly involve CXCR4, VLA4 and
CD44 [135,260,261]. In particular, VLA-4 has been identified as a risk factor in B-ALL [284],
as its inhibition suppresses the activation of NF-κB in B-ALL cells [203]. Similarly, the
activation of NF-κB in MSCs and leukemic cells contributes to B-ALL chemoresistance
in VLA-4 and VCAM-1-dependent interactions [204]. Additionally, NF-κB inhibition im-
proved the responsiveness of B-ALL to chemotherapy [203]. Nevertheless, when NF-κB
inhibition was performed in MSCs before the co-culture with primary B-ALL cells, no
sensitization to dexamethasone or vincristine was observed [149]. This could be due to
the fact that NF-κB signalling is activated downstream of PKC-β, this enzyme being only
expressed after B-ALL cell binding to MSCs [206]. The integrin- and PI3K-dependent
signalling pathways ILK/Akt, ERK1/2, and STAT3 were activated in MSCs protecting
leukemic cells from apoptosis in ALL and AML [285]. ILK can also be activated in leukemic
cells, activating a feedback loop involving ILK/NF-κB, ending with CCL2 production
and promoting leukaemia progression [286]. Growth factors and cytokines such as IL-6
produced by MSCs are able to protect leukemic cells from glucocorticoid-induced apoptosis
by the upregulation of antiapoptotic molecules. In fact, when IL-6 production was inhibited
in co-cultures, drug sensitivity was increased [287].

Notch-3/4 signalling pathways was also found to induce chemoresistance in B-ALL
cells following corticosteroid treatment [288]. These molecules were overexpressed in
leukemic cells and MSCs in co-culture conditions, and their inhibition reduced the viability
of B-ALL cells. Chemoresistance effects were also found to be mediated by Jagged-1/2
through direct contact with MSCs. This alteration in Notch signalling by the co-culture
is detrimental to the expression of markers typical of the osteogenic lineage, resulting in
a remodelling of the microenvironment in vivo [289]. Under co-culture conditions, both
MSCs and B-ALL cells can express high levels of WNT, which maintains leukaemia cell
proliferation and cell cycle progression [290,291]. Treatment with a β-catenin inhibitor-
sensitized leukemic cells both in vivo and in vitro to cytarabine treatment.

Another aspect that is relevant is the way in which the BM microenvironment can
be modified by the treatment with different chemotherapeutic agents. For example, B-
ALL cell lines upregulate the surface expression of the CXCR4 receptor, and its inhibition
decreases the protection exerted by MSCs [292] with a reduction in tumour cell infiltration
in vivo [293]. The elevated expression of CXCR4 in B-ALL blasts has been associated with
poor prognosis [91,294]. In the presence of chemotherapeutic agents, leukemic cells can
restructure the microenvironment by recruiting MSCs via the overexpression of CCL3,
TGF-β1 and GDF15 [295].

It was recently shown that oxidative stress induces a senescent process in MSCs that
increases the susceptibility of B-ALL cells to dexamethasone [148]. This should be of
clinical relevance since chemotherapy itself induces senescence [296]. Other recent data
propose a clinically useful mechanism for improving ALL treatment, as ROS-inducing
chemotherapies are often ineffective at eradicating residual disease [173]. Oxidative stress
phenomena can be induced in the stroma during the development of leukaemia [172] or
by chemotherapeutic treatment [173]. MSCs contribute to the redox balance of leukemic
cells by mitochondria transfer through TNTs. Importantly, a reduction in mitochondrial
transfer by interrupting TNT formation with vincristine prevented the “rescue” function
of activated MSCs [173]. MSCs also provide leukemic cells with metabolites such as
asparagine by the glutamine exchange mechanism with ALL cells [297]. Additionally, the
influence of the BM microenvironment induced an increase in ROS levels in ALL cells, but
it also helped to alleviate this stress in an adaptative way, meaning that ALL cells were
capable of upregulating their antioxidant defences. This redox adaptation process favoured
ALL cells’ chemoresistance, which seems to be reversible [298].

Finally, an MSC-dependent effect on ABC transport upregulation was demonstrated
in B-ALL cells subjected to dexamethasone [205]. This was evidenced by PKC inhibition in
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MSCs and in B-ALL cells still bound to MSCs, and it was found possible to dissociate the
effect from the one produced by the inhibition of cell adhesion.

Although the knowledge acquired about the changes induced in MSCs by leukaemia
has already been used for treatment, more work is necessary to untangle the way in which
other alterations can be exploited to find extra tools to halt leukaemia growth. All other
aspects involved in disease maintenance and evolution should be considered. In particular,
alterations in osteoblastic and adipogenic differentiation or stemness functions should be
further explored.

6. Concluding Remarks

The evidence presented here shows that there are many similarities between the
changes that occur in MSCs in the BM as a result of aging and senescence, and those with
induced leukemic growth of both AML and B-ALL. This, of course, does not rule out that
there are many particularities in each of these processes (aging/senescence and leukaemia
progression), and in each of these diseases (AML and B-ALL). However, we can summarize
the following in relation to these coincident features.

Cell surface markers classically used for MSC identification are relatively stable with-
out minor or inconsistent variation in age or senescence. Conversely, MSC morphology
is severely affected during aging, with cells becoming positive for SA-βGAL activity and
important changes in MSC adhesion and adhesion molecule expression occurring that alter
their migration and homing capacities. Aged MSCs present a decline in CFU-F efficiency
and cell proliferation, increases in p21, p53, and p16 expression, and have dysfunctional
mitochondria, ROS production, and extensive macromolecular damage, collectively driving
a senescent program. Some of the above-described features of MSCs are consistent with
what we have stated here for AML and B-ALL.

Both aging and senescence are associated with decreased autophagy and proteasome
function, similar to AML MSCs. To our knowledge, there is only one report of autophago-
some transfer from B-ALL to MSCs, but its function is unknown. Nevertheless, in AML,
a feedback loop between long-lasting DDR and increased ROS production allows the es-
tablishment of definitive senescence, while in B-ALL it seems that senescence is transient,
although this was only demonstrated in vitro; in vivo, this could depend on other factors
(blasts infiltration, disease state, treatment).

Heterochromatin disorganization drives senescence. As in other cancers, the specific
hypermethylation of the CpG islands occurs concomitant with global hypomethylation in
leukaemia. These changes alter gene expression with the important participation of NF-κB,
are relevant to clinical outcomes, and are useful as prognostic factors. More research is
needed to reveal the specific changes occurring in chromatin organization and epigenetics
modifications during AML and B-ALL.

Aged MSCs show increased NF-κB activity and altered SASP, whose persistence may
reinforce and transfer senescence to the healthy surrounding cells. This can be completed
by ROS induction, DNA damage, and further NF-κB activation. This is also similar in
AML and B-ALL. Nevertheless, a differential SASP depending on LSC stemness attributes
has been demonstrated in AML. AML cells showing less stemness properties were able to
upregulate a number of pro-inflammatory genes. A similar secretion profile induced by
B-ALL cells in MSCs also involved NF-κB.

Several alterations occurring in MSCs are responsible for chemotherapeutic resistance
in both AML and B-ALL. Therefore, blocking cell adhesion, soluble factors, and the in-
tracellular signalling molecules responsible for these modifications are a complement to
classical treatment. MSC modifications such as senescence induction, NF-κB activation,
deregulated metabolism, propensity to SASP expression, and others, could be used as
additional strategies to halt leukemic growth.
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