
BonFIRE: A Multi-cloud Test Facility for
Internet of Services Experimentation

Alastair C. Hume1, Yahya Al-Hazmi2, Bartosz Belter3, Konrad Campowsky4,
Luis M. Carril5 Gino Carrozzo6, Vegard Engen7, David Garćıa-Pérez8, Jordi

Jofre Ponsat́ı9, Roland Kűbert10, Yongzheng Liang11, Cyril Rohr12, and
Gregory Van Seghbroeck13

1 EPCC, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh, UK
A.Hume@epcc.ed.ac.uk,

2 Chair of Next Generation Networks, Technical University Berlin, Berlin, Germany
3 Poznan Supercomputing and Networking Center (PSNC), Poznan, Poland

4 Next Generation Network Infrastructures, Fraunhofer FOKUS, Berlin, Germany
5 Centro de Supercomputación de Galicia (CESGA), Santiago de Compostela, Spain

6 Nextworks s.r.l., Pisa, Italy
7 IT Innovation Centre, Southampton, UK

8 Atos Research and Innovation Group, Barcelona, Spain
9 Distributed Applications and Networks Area, i2CAT Foundation, Barcelona, Spain

10 High Performance Computing Center Stuttgart (HLRS), Stuttgart, Germany
11 Computing Center, University of Stuttgart, Stuttgart, Germany

12 INRIA Rennes - Bretagne Atlantique research center, Rennes, France
13 Department of Information Technology, Ghent University, IBBT, Ghent, Belgium

Abstract. BonFIRE offers a Future Internet, multi-site, cloud testbed,
targeted at the Internet of Services community, that supports large scale
testing of applications, services and systems over multiple, geographically
distributed, heterogeneous cloud testbeds. The aim of BonFIRE is to
provide an infrastructure that gives experimenters the ability to control
and monitor the execution of their experiments to a degree that is not
found in traditional cloud facilities.
The BonFIRE architecture has been designed to support key function-
alities such as: resource management; monitoring of virtual and physical
infrastructure metrics; elasticity; single document experiment descrip-
tions; and scheduling.
As for January 2012 BonFIRE release 2 is operational, supporting seven
pilot experiments. Future releases will enhance the offering, including the
interconnecting with networking facilities to provide access to routers,
switches and bandwidth-on-demand systems. BonFIRE will be open for
general use late 2012.

Key words: Multi-cloud, Future Internet, Internet of Services, Testbed,
Bandwidth on Demand



2 Alastair C. Hume et al.

1 Introduction

BonFIRE offers a multi-site cloud testbed that supports large scale testing of
applications, services and systems over multiple, geographically distributed, het-
erogeneous cloud testbeds. BonFIRE targets the Internet of Services community
and offers a test infrastructure that is ideal for performing experiments relating
to distributed applications and services. BonFIRE’s aim is not to provide a pro-
duction environment for cloud applications, but instead to provide an infrastruc-
ture that gives experimenters the ability to control and monitor the execution
of their experiments to a degree that is not found in traditional cloud facilities.

By targeting the Internet of Services community, BonFIRE aims to extend
the reach of Future Internet experiment testbeds into the area of distributed
applications and services. To further appeal to that community, BonFIRE adopts
a cloud-based model that is familiar to many Internet of Services experimenters.

One of the key features of BonFIRE is to give experimenters the ability to
control some of the many variables that affect the performance of distributed
applications. For example, BonFIRE allows users to control network quality-of-
service parameters such as latency, delay and packet loss using IBBT’s Virtual
Wall [1] network emulation facility. Further control of network performance be-
tween geographically distributed infrastructures is anticipated through future
interconnection with FEDERICA [2] and GÉANT AutoBAHN [3, 4].

Apart from network characteristics there are many other variables that can
affect performance of an application running on a cloud infrastructure; examples
include the load of the VMs running on the physical machine as well as disk and
memory contention. Where BonFIRE cannot control variables, it provides low-
level infrastructure metrics that can be used to monitor the infrastructure at a
level that is typically hidden from users of cloud systems. Examples of infras-
tructure metrics include the load on a physical CPU, network throughput and
disk I/O metrics. Experimenters will be able to use this low-level infrastructure
monitoring data to understand, and account for, the impact of these variables
on their experiment results.

By adopting a cloud-model to access the multi-cloud facility, BonFIRE pro-
vides a convenient resource-level interface for managing compute, network and
storage resources on any of the BonFIRE testbeds. Thus BonFIRE supports ge-
ographically distributed experiments over multiple heterogeneous cloud testbeds
including the ability to elastically adjust the resources used during an experi-
ment. BonFIRE also supports a higher experiment-level interface that provides
users with the ability to describe the whole experiment in a document. Ad-
ditionally, BonFIRE provides built-in support for commonly used experiment
functionality such as monitoring collectors and publishers.

2 The Testbeds

At the core of BonFIRE are five geographically distributed cloud testbeds that
together offer 350 cores, with 700GB of RAM and 30TB of storage. An ad-



BonFIRE 3

ditional 2,300 multi-core nodes can be added to BonFIRE on specific request.
Additionally, BonFIRE is working to interconnect with several external facilities
to enhance the offering.

2.1 Core Testbeds

The BonFIRE core testbeds can be divided into two groups: OpenNebula based
testbeds located at EPCC (UK), INRIA (France) and HLRS (Germany) and
non-OpenNebula based testbeds located at IBBT (Belgium) and HP (UK). All
testbeds are different from one another regarding structure, networking and re-
sources. This heterogeneity is a key feature of the BonFIRE system.

The common point of the testbeds of EPCC, INRIA and HLRS is that they
use OpenNebula as a cloud management solution and are currently running the
Xen hypervisor. Apart from that, the sites are quite different: EPCC provides
96 cores on two nodes, INRIA 36 cores on 9 nodes and HLRS a total of 44 cores:
20 cores on five nodes at 2GB RAM and 24 cores on six nodes at 8 GB RAM.

IBBT’s Virtual Wall is based on the Emulab network emulation software.
Tight integration of Emulab’s capabilities and the BonFIRE functionality makes
it very much suited for network related experiments. The IBBT Virtual Wall
consists of 100 nodes, of which 8 are available permanently to BonFIRE users
throughout the project’s lifetime. Each node has 4 cores at 4GB RAM and 4 to
6 Gigabit Ethernet interfaces, all of them connected to a non-blocking switch.

The HP infrastructure provides a virtual machine execution service. The
virtual machines will be running in a Xen environment, augmented with network
and storage virtualization.HP’s infrastructure is set up with the current stable
release of HP Cells [5] as a Virtual Infrastructure Manager. The HP facility
provides 32 4-core nodes permanently dedicated to BonFIRE with access to up
to 96.

2.2 On-Request Resources

On-request resources are resources that are not part of the BonFIRE facility on
a permanent basis, but that are provided to users for large- scale experiments.
Typically, a substantially larger collection of resources is available on-request
than is offered by the pemanent infrastructure. The operation and investments
of these facilities are too high to be exclusively provided for experiments but are
operated as production level facilities. In order to allow large scale testing these
resources can be made available for a specific experiment for a limited time.

As with the permanent resources, the kind and amount of on-request re-
sources differs from site to site. In total, there will be around 2,200 cores available
through on-request resources across all sites.

2.3 External Facilities

Integration of the internal multi-site cloud facilities and their interconnection
with external (FIRE) facilities is key in BonFIRE. Horizontal integration is



4 Alastair C. Hume et al.

achieved through the integration of the different testbeds facilities as described
in Section 2.1. Conversely, the vertical integration of the facilities (Cloud-and-
Network) enables cross-layer testing to propagate service-level requirements
down to the connectivity levels. BonFIRE will initially interconnect with two
external facilities to provide vertical integration to the network level. These are
GÉANT’s Bandwidth-on-Demand (BoD) system and FEDERICA’s slice-based
infrastructure that gives access to routes, switches and servers.

A major challenge in the vertical federation of cloud and network is the need
to provision on-demand network connectivity services among multiple cloud re-
sources and sites by interfacing to multi-domain heterogeneous production net-
works. In this framework, BonFIRE integrates with Bandwidth- on-Demand
(BoD) provisioning systems that have been developed by network operators to
provide their end-users with dynamic and efficient systems for their on-demand
network connectivity services. Due to the research-driven mission of the Bon-
FIRE project and the positioning of the overall FIRE initiative, national Re-
search and Education networks (NREN) and GÉANT are the preferential con-
nectivity providers for BonFIRE. It is planned to inter-connect some of the
available sites (PSNC, EPCC, HLRS) through their NRENs - PIONER, JANET
and DFN respectively - and through the GÉANT network. This will enable to
perform and demonstrate a cloud-to-network proof-of- concept prototype uti-
lizing GÉANT BoD service implemented with AutoBAHN for establishing and
monitoring dedicated high capacity connections between sites.

FEDERICA [2] was a European Project of the 7th Framework Program. Its
main goal was to deploy an e-Infrastructure for researchers on Future Internet.
Resources of this e-Infrastructure can be allocated to independent slices and
assigned to different experimenters allowing them to have the complete control
of the resources in their slice. This infrastructure is physically distributed around
the whole of Europe and it is composed by routers, switches and servers. By
interconnecting with a subset of FEDERICA’s infrastructure, BonFIRE users
will be able to perform new kinds of experiments over a controlled network.
This includes configuring network topologies and routing protocols and setting
quality of service (QoS) parameters.

3 Architectural Principles

The following architecture principles have been used to drive the design of the
BonFIRE architecture. By explicitly specifying these key principles we aim to en-
sure a consistent architectural vision throughout the BonFIRE system by apply-
ing these key principles when making any architectural decisions. The principles
are as follows:

1. It must always be possible for the BonFIRE multi-cloud facility to include
testbeds over which BonFIRE has no control.

2. Always provide APIs to BonFIRE functionality, in addition to any BonFIRE
graphical user interfaces (GUIs). These APIs will allow third parties to better
integrate BonFIRE into their systems.



BonFIRE 5

3. Allow experimenters full access to the specific functionality of particular
testbeds. The heterogeneous testbeds within the BonFIRE multi-cloud differ
for good reasons.

4. Allow higher-level functionality to exclude specific functionality of a testbed
if this makes common tasks easier to achieve. Thus BonFIRE will give exper-
iments the opportunity to choose the best approach for their specific task.

5. Support incremental adoption of the BonFIRE system by experimenters.
Some experimenters will come to BonFIRE fresh and will be happy to invest
effort learning the whole system in order to utilize its full power. Other users
may wish to incrementally integrate BonFIRE functionality into existing
experiments.

6. Support declarative specification of experiments as far as possible. Experi-
menters need only focus on what they want to deploy as an experiment and
on the relevant conditions.

4 Architectural Functionality

This section presents an overview of the BonFIRE architectural functionality.
These are the key functionalities of the BonFIRE architecture and are expressed
independently of the architectural components needed to implement them.

4.1 Resources

BonFIRE allows experimenters to execute experiments that create and use var-
ious resources on the BonFIRE testbeds. BonFIRE supports three types of re-
sources: compute, network and storage.

Compute resources are virtual machines (VMs) that are created and run
for some part of the duration of an experiment. All BonFIRE virtual machines
are created as part of an experiment and have a lifetime that does not ex-
ceed the lifetime of the experiment. Compute resources can be configured with
application-specific contextualization information that can provide important
configuration information to the virtual machine; this information is available
to software applications after the machine is started.

Network resources can be used to connect the VMs to networks to allow
the VMs to communicate with each other and possibly with the wider Internet.
BonFIRE provides one network that any VM on any BonFIRE site can connect
to. This network is also used by the BonFIRE services to manage and monitor
the VMs in the experiment. Experiment-specific networks can be configured on
the testbeds, according to the experiment’s needs.

Storage resources are disks that can store data associated with an experi-
ment. It is often important to decouple the lifetime of the storage resources from
the lifetime of the experiment. This provides a persistence of data that allows
experiment data to be written to a storage resource and be retrieved at a con-
venient time after the experiment has completed. BonFIRE supports two types



6 Alastair C. Hume et al.

of storage resource: operating system (OS) storage resources, and data block
storage resources.

All BonFIRE compute, network and storage resources reside on the testbeds
on which they are created and BonFIRE makes no attempt to hide this location
information from the end user. End users are expected to plan their experiments
with a detailed understanding of how they wish to distribute their resources
among the various testbeds.

BonFIRE supports dynamically creating, updating, reading and deleting re-
sources throughout the lifetime of an experiment. In order to aid the end user in
managing the resources within an experiment, BonFIRE provides the concept
of experiment resources that can be used as containers for the resources whose
lifetime is limited to the duration of the experiment.

4.2 Monitoring

BonFIRE includes an extensible monitoring framework that allows users to log
and monitor various metrics associated with an experiment’s progress. There
are three types of metrics that may be monitored according to the experiment’s
needs: VM metrics, application metrics and infrastructure metrics.

VM metrics provide system information regarding the status of the VM from
the perspective of CPU, memory, disk space.

Application metrics can be defined by the experimenter according to the
specific software applications being used by the experiment, for example the
number of open database connections, or the value of an application counter.

Infrastructure metrics provide detailed information about the underlying hy-
pervisor’s system performance. For example, some experiments may need to
monitor the hypervisor’s CPU, how many VMs run on the same CPU, or what
the load is on a specific CPU. This level of monitoring is typically not pro-
vided by production cloud systems but it is an essential feature of the BonFIRE
experimental facility.

Users, and user-agents such as software systems, can access an experiment’s
monitoring information from a single source. BonFIRE provides an API to access
monitoring information and also a graphical tool to display metric values and
metric value graphs in real time while an experiment is executing.

4.3 Elasticity

Elasticity is the ability to create and delete resources, typically virtual machines
with associated storage and networking, while an experiment is running. Usually
elasticity actions are performed when specific conditions occur. For example, a
new VM may be created when the overall system load is high. The BonFIRE
monitoring functionality can be used to detect when these experiment-specific
conditions occur. BonFIRE aims to provide three levels of elasticity support:

– Manual: where experimenters manually observe the monitoring system and
create or delete resources as desired.



BonFIRE 7

– Programmed: where the experimenter writes a program that uses the mon-
itoring API to detect when specific conditions occur and programmatically
creates or deletes the resources as desired. According to the experimenter’s
preferences this program may be executed either on a BonFIRE virtual ma-
chine or on a machine outside of the BonFIRE infrastructure.

– Managed: where the user specifies the elasticity policies in a high- level exper-
iment descriptor and BonFIRE creates or deletes the resources according to
the specified rules.

The BonFIRE resource API supports the control of resources on all testbeds
in the BonFIRE infrastructure. It is therefore possible for an control program
running on a VM on one testbed to create resources on another testbed. This
support for cross-site elasticity is a key feature of BonFIRE.

4.4 Experiment Descriptors

Experiments can interact with the BonFIRE system at two different granulari-
ties: resource level and experiment level granularity.

When using resource level granularity, experimenters explicitly send a request
to BonFIRE for each resource create, update, read or delete operation. With
the experiment level granularity the experimenter describes the experiment in a
single document and sends one request to BonFIRE to submit the experiment.
Once submitted, the experiment is managed by BonFIRE and the individual
resource level operations are performed by BonFIRE.

BonFIRE provides resource level operations through an implementation of
the Open Cloud Computing Interface (OCCI) [6]. OCCI provides create, read,
update and delete operations to compute, storage and network resources.

With experiment level granularity the experimenter describes their experi-
ment in a single document that we call the Experiment Descriptor (ED). There
are five parts to an experiment descriptor:

1. Specification of the initial deployment of compute, storage and network re-
sources.

2. Specification of the monitoring metrics.
3. Specification of elasticity rules containing both trigger conditions (specified

with respect to the monitoring metrics) and the actions to perform when the
conditions are met.

4. Specification of general rules that specify trigger conditions and actions to
perform that are not necessarily related to elasticity.

5. Specification of a shutdown sequence for stopping the experiment.

BonFIRE uses Open Virtualization Format (OVF) [7] as its primary exper-
iment descriptor. OVF is a standard for the specification of the deployment of
virtual resources and being developed within the Distributed Management Task
Force (DMTF).

OVF will support the first part of the experiment descriptor described above.
Parts 2, 3, 4 and 5 will require extensions to standard OVF in several directions.



8 Alastair C. Hume et al.

Other projects have already extended OVF to support specific cloud require-
ments such as elasticity [10] and BonFIRE will aim to adopt the same extensions
where possible.

Release 2 of BonFIRE supports experiment descriptors that specify the initial
deployment of compute, storage and network resources, but does not support the
specification of monitoring metrics or elasticity rules in one document. This does
not mean that experiments requiring monitoring and elasticity are nor supported
by BonFIRE. Such experiments simply have to configure the monitoring metrics
and elasticity rules separately within the virtual machine images used by the
experiment, rather than specifying them within an experiment descriptor.

As an alternative to the OVF format, BonFIRE will also support a very sim-
ple experiment descriptor format that provides the core functionality of specify-
ing compute, network and storage resources in a single document.

4.5 Scheduling

Many commercial cloud facilities present a model of almost-infinite resource
availability: the user gets as many resources as they apply for. Most BonFIRE
testbeds, however, offer a small number of compute nodes as part of the per-
manent infrastructure. BonFIRE therefore operates at a different end of the
resource spectrum from commercial cloud facilities and hence must operate in a
different way regarding the scheduling of resources.

The problem is made interesting by the fact that BonFIRE combines cross-
site deployment with the notion of the experiment. It is possible that the user
may have a preference to start specific compute resources on specific sites; if
one site cannot fulfill its requirements, while the others can, experiments may
fail to run as expected. Also, BonFIRE will allow the user to leave the location
unspecified, so the system needs a mechanism to resolve this in a way that the
resources can be deployed.

This leads to the idea of Atomic Experiment Scheduling, whereby BonFIRE
considers an experiment in its entirety before attempting deployment. The inten-
tion is that BonFIRE does not attempt deployment of any experiment resources
until all involved BonFIRE sites indicate that they can allocate the required
resources.

Future releases of BonFIRE will provide atomic scheduling over all the
OpenNebula-based facilities. This will require BonFIRE-specific extensions to
OpenNebula.

5 Architectural Components

The architectural components of BonFIRE can be seen in the architecture
overview diagram show in Fig 1. The BonFIRE architecture consists of five
layers each building on the functionality of the layer below it. Each layer ex-
poses its functionality via a set of APIs. The APIs of the lowest two layers, the



BonFIRE 9

Testbeds and the Enactor, can only be used by the layer above them. The APIs
of the next two layers, the Broker and the Experiment Manager, can be used by
end users, agents acting of behalf of end users, and the layer above them.

SSH
Gateway

X

Monitoring

VM
(Monitoring
Aggregator)

VM

Testbed
SSH

Gateway

OVF
ED

SSH

VM

OCCI Scheduling

Enactor

OCCI Scheduling

Broker

Experiment
Manager

Message

Queue

Simple
ED

Portal

GUI
Monitoring 
dashboard

Identity

Server

Interface or API accessible by 
end users, user-agents or the 
layer above

X
BonFIRE internal interface or API 
accessible only by the layer above 

API accessible only by user-
agents running on BonFIRE 
virtual machines

BonFIRE internal API accessible 
from multiple layers of the 
architecture

VM BonFIRE virtual machine

Key

Layer of the 
BonFIRE 
architecture

Component of BonFIRE
architecture used by multiple 
layers

(Used by Portal, 
Experiment 

Manager, Broker 
and Testbeds)

OCCI

LDAP

Read/
Write

Read

XX

Monitoring
GUI

Monitoring
API

Accounting

Accounting

AccountingScheduling

Fig. 1. BonFIRE architecture. The accounting and scheduling APIs shown here are
not supported by the current version of BonFIRE.



10 Alastair C. Hume et al.

5.1 Testbeds

The lowest layer of the BonFIRE architecture are the testbeds. The testbeds are
the cloud infrastructures that provide compute, network and storage resources
that can be used by BonFIRE experiments. Currently BonFIRE has three differ-
ent types of testbeds: the Cells cloud infrastructure provided by HP; the Virtual
Wall network emulation infrastructure provided by IBBT; and three cloud in-
frastructures implemented using the OpenNebula toolkit for cloud computing
and offered by EPCC, HLRS and INRIA.

Theoretically testbeds may expose their functionality via any API they
choose but to simplify the initial implementation all testbeds currently expose
their basic resource manipulation functionality using a version of the Open Cloud
Computing Interface (OCCI) [6].

5.2 Enactor

The role of the Enactor is to shield the technical details of how to communicate
with each specific testbed from the higher level Broker. The Enactor receives
OCCI requests from the Broker and transforms them onto suitable requests for
the appropriate testbeds. The transformed request is then sent to the testbeds
and the response received. The response is then transformed into a common
format and passed to the Broker.

5.3 Broker

The Broker is the lowest layer of the BonFIRE architecture that may be accessed
by end users and provides the entry point for experimenters to interact with
BonFIRE at the resource level granularity.

The Broker maintains the current set of experiment resources and all the
compute, storage and network resources currently used by the experiment. User
operations on the compute, storage and network resources are passed to the En-
actor and then onto the appropriate testbed. User operations, such as create and
read, on the experiment resource are typically executed at the Broker because
the testbeds know nothing about the concept of an experiment. Some operations
such as deleting an experiment require the Broker to interact with the testbeds
via the Enactor.

The Broker currently exposes two APIs: OCCI for managing resources; and
a Monitoring API. The OCCI interface is used to create, read, update and delete
compute, network and storage resources. The OCCI is extended from the pro-
posed standard to include BonFIRE specific requirements the experiment re-
source, explict indication of the location at which a result must be created, and
also additional network elements to specify the bandwidth, loss rate and latency
for emulated networks on the Virtual Wall.



BonFIRE 11

5.4 Experiment Manager

The role of the Experiment Manager is to take a description of an experiment as
described in an experiment descriptor and manage its execution through multiple
calls to the Broker. Experimenters can create new managed experiment resources
and specify the corresponding experiment descriptor.

BonFIRE supports two different formats of experiment descriptor, OVF and
the BonFIRE simple experiment descriptor. For each format the Experiment
Manager contains a parser that maps the experiment descriptor onto a common
data model that describes the experiment. This allows the rest of the Experiment
Manager architecture to be decoupled from the choice of experiment descriptor
format.

The data model is then validated to check that it is consistent and that the
labels used to identify locations, templates, etc. are valid. When an experiment
descriptor request is sent to BonFIRE, the validator is the last component to
execute before the response is returned. This response indicates whether or not a
valid experiment descriptor was provided, but cannot indicate whether it could
be successfully deployed as deployment is carried out later in a background
task. It is therefore important that the validator detects as many errors in the
experiment descriptor as it possibly can.

The managed experiments are then placed in a queue, and deployed in turn
in a background task. In a future version, the testbeds will be polled to check
resource availability, before either deploying each experiment or holding in the
queue until the necessary resources become available. At present, the Experiment
Manager attempts to deploy every experiment in the queue. If the location of
any resources is left unspecified in the experiment descriptor, the scheduler will
choose a suitable location.

Next, the planner plans the order in which the various resources should be
created. Network and storage resources will need to be created before the com-
pute resources that use them. Additionally, property constraints between virtual
machines may also influence the order in which compute resources must be cre-
ated. For example, if a client virtual machine must be configured at boot time
with the IP address of the server virtual machine, then the server virtual machine
must be created first in order to determine its IP address.

Once the initial deployment of resources has been planned, the resources
are created in the appropriate order via calls to the OCCI API of the Broker.
Property values are also passed to VMs on creation, for example to ensure the
server’s IP address is written to the appropriate contextualisation section when
the client virtual image is created.

5.5 Portal

The Portal offers the experimenter a graphical interface to the BonFIRE capa-
bilities. It has a view of the experimenter’s data, the running experiments, and
the available platform capabilities (for example, the list of sites). The Portal is
the aggregated view of the whole platform, and is the simplified entry point for



12 Alastair C. Hume et al.

the experimenter. It is also a way to present to the experimenter information
from the Broker or the cloud sites, for example, to monitor experiment progress.

5.6 Message Queue

The role of the Message Queue is to support the sending of messages from the
Broker and Experiment Manager to running virtual machines. The Broker and
Experiment Manager write notifications of changes to an experiment’s lifecycle
state onto the Message Queue. Applications running on the virtual machines
may subscribe to receive notification of the state changes associated with an
experiment. One application of such a notification system would be for virtual
machines to package up the experiment result data when the experiment state
changes to terminated.

5.7 SSH Gateways and the BonFIRE WAN

The availability of publicly addressable IP addresses varies across the various
BonFIRE testbeds. Some testbeds have very few, or even zero, such IP addresses
to allocate. This obviously creates a challenge when one VM in a experiment
must communicate with another that does not have a publicly addressable IP.
To overcome this problem BonFIRE implements a WAN to which all VMs can
be connected. This WAN can be used for both BonFIRE’s control data and ex-
perimenters’ application data. The WAN is implemented using VPN technology.
The BonFIRE WAN can be a major bottleneck and should not be used for large
scale inter-testbed communication that is crucial to an experiment. Instead in
such cases publicly addressable IPs should be used wherever possible.

The SSH Gateways provide a means for experimenters to SSH into virtual
machines that are not publicly addressable. Each BonFIRE site provides an SSH
gateway that experimenters can connect to using SSH. From these gateways
experimenters can then SSH to their VMs over the BonFIRE WAN.

5.8 Identity Server

The Identity Server provides BonFIRE’s identity management functionality.
User credentials are stored in a central LDAP database. To avoid a single point
of failure the database is cloned on a master-slave approach on each site. The
slaves on the sites are also used for user authentication on the sites. The web
interface of the Identity Management allows users to manage their credentials.
There is also an administrative web- interface which gives the BonFIRE admin-
istrators full control of all existing user accounts. The passwords are never seen
in clear text by the administrators, as they are stored in hash format. For each
user the Identity Server stores the username, password, groups and also option-
ally the user’s SSH public key. If available, the testbeds use this public key to
preconfigure all virtual machines such that only that user can SSH to them.



BonFIRE 13

6 Experiments

BonFIRE is currently being used by seven experiments. This section gives an
overview of two of these experiments and explains why BonFIRE is particularly
suited to the task.

6.1 QoS-Oriented Service Engineering for Federated Clouds

This experiment is one of the three driving experiments in the BonFIRE project,
which is carried out by the IT Innovation Centre at the University of Southamp-
ton. The experiment investigates techniques to better understand and predict
the Quality of Service (QoS) achieved by service based applications when run-
ning on cloud infrastructures. The complexities of determining QoS requirements
for service based applications in the cloud has given rise to a new class of service
engineering tools within the Platform-as-a-Service (PaaS) layer for modelling,
analysing and planning. While it is in the interest to a PaaS provider not to
over- provision, it is important that the application performance is stable and the
user experience is acceptable. This is not trivial since service based applications
are often highly interactive and the usage patterns may fluctuate significantly
depending on user demand.

QoS terms are typically set out in a Service Level Agreement (SLA) based
on low level infrastructure terms such as CPU speed, disk space, etc. How-
ever, the customers (typically the application users) are often more interested
in application-level parameters, e.g., the number of dropped frames for a multi-
media streaming application. The gap between the terms infrastructure providers
offer and what the users are interested in can be large. This results in a complex
relationship between application performance and resource parameters, which is
greater still for applications deployed across federated clouds.

Several service engineering tools have been developed in the EU IST IRMOS
project to address the challenges above [8]. This experiment focuses on predic-
tion of application performance based on a generic description of infrastructure
resources (based on application benchmarking scores), to enable transferability
across different providers, particularly with federation in mind. The hypothesis
put to test in the experiment is that such a description of resources not only
allows for prediction of application performance, but may enable more accurate
predictions compared with using typical infrastructure parameters. Moreover,
we hypothesize that using QoS terms in SLAs will improve overall efficiencies
for all cloud stakeholders due to increased accuracy of requirements achieved by
a simplification of service planning and adaptation models, and increased mar-
ket adoption and flexibility due to the simplification of the federation between
Platform and Infrastructure stakeholders.

The heterogeneous resources and federated testbeds in BonFIRE is essential
to this experiment to be able to address the above hypotheses. The resource
control offered in BonFIRE ensures repeatable experimentation, and the built-
in monitoring facilities allow a more in-depth analysis than what is possible
elsewhere; particularly infrastructure monitoring as that allows for correlation



14 Alastair C. Hume et al.

of results obtained on the virtual resources with what actually happened on the
physical infrastructures. This is important for addressing resource reliability in
the cloud, which is a factor one needs to consider when predicting application
performance to estimate QoS. For more details about the experiment and initial
results, please refer to [9].

6.2 Virtual Clusters on Federated Sites

The Virtual Clusters on Federated Sites experiment is funded through the first
BonFIRE open call and is being carried out by Centre of Supercomputing of
Galicia (CESGA). The aim of this experiment is to research the feasibility of
using multiple cloud environments for the provision of services which need the
allocation of a large pool of CPUs or virtual machines to a single user (as High
Throughput Computing (HTC) or High Performance Computing (HPC)). The
use case covers dose computation for radiotherapy treatments based on Monte
Carlo methods, developed in the eIMRT project [11].

The experiment studies questions related to the usage of virtual clusters in
a distributed cloud environment. A first set of questions are related to the time
that the deployment and enlargement of such cluster need to be operational and
the influence other simultaneous operations have in the process. Previously in
other experiments in grids, local clusters and even commercial cloud providers,
interferences with other users and processes have been observed which affect the
final quality of service. The objective is to understand better how to manage
these virtual clusters to guarantee a low time to solution or latency (this means,
the time since the cluster has been requested to the end of the service). Also,
the elasticity functionality will be analyzed, using the application performance
monitoring as a trigger for the change in the size of the cluster.

A second set of experiments will investigate the usage of the distributed
capability of cloud providers (federated or multi- site) in order to protect the
service against failures. A virtual cluster will be deployed divided in two sets,
and the characteristics of the network (latency, bandwidth and packet loss rate)
will be changed to study the effects in the performance of the cluster. The radical
situation of losing part of the cluster will be simulated changing the bandwidth to
zero, when the other part should recover from it to guarantee that the customer
receives the solution on time.

The main metric to measure in the experiments is the time to execute one
operation as function of the factors which can affect this time, as the number of
machines that compose the cluster, the size of each virtual machine, etc.

Because clouds are shared environments which are not completely under con-
trol of the experimenter, several measurements must be done. To automate the
process of executing the experiments, an Experiment Agent should be developed.
This agent will communicate with the BonFIRE infrastructure and will control
the execution as well as record the data locally to make analysis later.

The results and data acquired during the experiment should permit CESGA
to develop the policies and business rules to include in the applications under



BonFIRE 15

development at the institution which use the Software as a Service model. This
new model will be developed after the end of the experiment.

An experiment like this needs the BonFIRE infrastructure because the us-
age of commercial providers does not guarantee enough control of the factors
which can affect the results. Installing a local infrastructure for executing it is
too complex and time consuming. Additionally, BonFIRE includes a site where
the network can be controlled. This is a facility that CESGA can not deploy
currently. BonFIRE, therefore, offers a unique cloud infrastructure where new
cloud concepts and applications can be experimented with.

7 Current Status and Future Work

As of January 2012 release 2 of BonFIRE is operational and is being used by the
three embedded experiments and the four experiments funded by BonFIRE’s
first open call. These open call experiments are feeding back comments and
requirements that will be addressed in subsequent releases of BonFIRE. A new
set of experiments funded by a second open call are planned to begin using
the BonFIRE facility in September 2012. Subsequently, it is planned to open
BonFIRE up to a wider set of users later in 2012.

The resource-level API provided by the Broker is working very well and
will continue to provide the core functionality of BonFIRE. The higher-level
functionality offered by the Experiment Manager will be extended to support all
five levels of the experiment descriptor as described in Section 4.4.

Future BonFIRE releases will give experimenters greater control over the un-
derlying infrastructure. This will include the ability to specify the physical host
a virtual machine can be placed on. Research will also be carried out to inves-
tigate how well various points of resource contention with other cloud users can
be simulated and hence controlled by experimenters. Such resource contention
points are CPU, memory, disk and network usage. Where such contention cannot
be controlled BonFIRE allows it to be monitored via the infrastructure moni-
toring functionality. Further research will be carried out to discover how well
these infrastructure metrics can be used to predict and, therefore explain, the
performance of an application running on a cloud.

BonFIRE will expand vertically to support the dynamic interoperation
among some BonFIRE sites through the GÉANT network. This will automate
the network control for real multi-site experiments and offer network as pri-
mary resource for the experiments with its key configuration parameters (band-
width, delay, etc.). In release 3, the BonFIRE system will be interfaced to the
GÉANT AutoBAHN system (Automated Bandwidth Allocation across Hetero-
geneous Networks). The user/cloud (BonFIRE) to network (GÉANT) interface
will be based on the AutoBAHN User Access Point interface(UAP): the Auto-
BAHN client will be integrated into the BonFIRE Enactor to issue BoD request
and implement consequent actions on the respective LAN sides (end-point). Also
other BonFIRE system components will be adapted to cope with the new WAN



16 Alastair C. Hume et al.

network resources: in particular, the Portal will require new tabs/pages to de-
scribe the new resources; the OCCI will be extended to include specific fields
for BoD network resources; the Experiment Manager and Broker will require
data model adaptations. These near-future BonFIRE architecture and compo-
nents modifications will make available on-demand network connectivity services
between selected sites/resources bound to the experiments: user-controlled net-
work QoS parameters and possibility to reserve actual (i.e. not emulated) net-
work resources both in immediate-permanent and advance reservation mode will
definitely enhance the Future Internet (FI) experiment coverage area.

Additional vertical expansion and the ability to federate with other FI
testbeds will be demonstrated by connecting BonFIRE with a subset of the FED-
ERICA facility. This will require BonFIRE to connect to the Slice-based Facility
Architecture (SFA) used by many of the networking-focused FI testbeds.

Acknowledgements. BonFIRE is funded by the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement number 257386.
The authors wish to acknowledge the contributions of: Frédéric Gittler (HP
Labs), Kostas Kavoussanakis (EPCC), David Margery (INRIA), Josep Mar-
trat (Atos), Eilidh Troup (EPCC), Constantino Vázquez Blanco (Universidad
Politécnica de Madrid), Celia Velayos (i2CAT) and Tim Wauters (IBBT).

References

1. Virtual Wall, http://www.ibbt.be/en/develop-test/ilab-t/virtual-wall
2. FEDERICA Project, http://www.fp7-federica.eu/
3. GÉANT2 Bandwidth on Demand (BoD) User and Application Survey (DJ.3.2.1),

http://www.geant2.net/upload/pdf/GN2-05-086v11.pdf
4. Definition of Bandwidth on Demand Framework and General Architec-

ture (DJ3.3.1), http://www.geant2.net/upload/pdf/GN2-05-208v7 DJ3-3-1
GEANT2 Initial Bandwidth on Demand Framework and Architecture.pdf

5. HP Labs cloud-computing test bed projects - Cells as a Service,
http://www.hpl.hp.com/open innovation/cloud collaboration/projects.html

6. Open Cloud Computing Interface, http://occi-wg.org/
7. Open Virtualization Format (OVF), http://www.dmtf.org/standards/ovf
8. Metzger, A., Boniface, M., Engen, V., Phillips, S., and Zlatev, Z.: Towards Criti-

cal Event Monitoring, Detection and Prediction for Self-adaptive Future Internet
Applications. Proc. of the 1st Int. Workshop on Adaptive Services for the Future
Internet (2011)

9. Phillips, S., Engen, V. and Papay, J.: Snow White Clouds and the Seven Dwarfs. In
Proc. of the IEEE Int. Conf. and Workshops on Cloud Computing Technology and
Science (2011)

10. Rodero-Merino, L., Vaqueroa, L. M., Gil, V., Galán, F., Fontán, J.,Montero, R.
S., Llorente, Ignacio M.: From Infrastructure Delivery to Service Management in
Clouds. Future Generation Computer Systems 26, 1226–1240 (2010)

11. González-Castaño, D. M., Pena, J., Gómez, F., Gago-Arias, A., González-Castaño,
F. J., Rodŕıguez-Silva, D. A., Gómez, A., Mouriño, C., Pombar, M., Sánchez, M.:
eIMRT: A Web Platform for the Verification and Optimization of Radiation Treat-
ment Plans. J. Appl. Clin. Med. Phys. 10(3), 2998 (2009)


