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Introduction

Let F be a surface in Euclidean 3-space without umbilic points. This paper studies the
following

Problem : To classify non-trivial one-parameter families F,, 7 € (—¢, €) of isometries of
F = Fo preserving both principal curvatures.

Since the Gaussian curvature is preserved by isometries one can reformulate the prob-
lem replacing ”both principle curvatures” by "the mean curvature function”. Let us specify
what do we mean by a non-trivial family. We consider families of surfaces which do not
differ by rigid motions. We suppose also that the surfaces and isometries are sufficient
smooth. The case of surfaces with constant mean curvature (CMC-surfaces), which all
possess non-trivial isometries, is also excluded from our consideration. We suppose that
the mean curvature is a non-trivial function on F.

It turns out that the condition of possessing a one-parameter family F, of isometries,
preserving H, implies restrictive conditions on F. Moreover, all the family 7, can be
described (see section 2) as a reparametrization of F itself. The problem is reduced to the
problem of classification of surfaces F. Since the problem formulated at the beginning of
this introduction was first studied by Bonnet, we call these surfaces Bonnet surfaces.

The problem is classical and many mathematicians contributed to its solution. O.
Bonnet himself showed in [1] that besides the ('MC surfaces there is a class of surfaces,
depending on finitely many parameters, which allows non-trivial isometries preserving H.
These results were developed further by L. Raffy, who proved that the Bonnet surfaces are
isathermic (i.e. allow conformal curvature line parametrization) and isometric to surfaces
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of revolution. J.N. Hazzidakis (2] showed that the mean curvature function H satifies
an ordinary differential equation of the third order and was able to integrate it once.
Graustein [4] proved that all Bonnet surfaces are Weingarten surfaces, i.e. the mean and
the Gaussian curvature are related d H A d A" = 0. He also found a convenient alterna-
tive description for the Bonnet surfaces. Namely, Le showed that these surfaces can be
characterized as isothermic surfaces, where the function 1/Q with
1 1 Bl T
Q:E < P:cat_l'y;,,ajV >
is harmonic, that means

In modern notations @ is the Hopf differential, written in isothermic coordinates x, Y.

Later the problem was treated by E. Cartan in [5], where the most detailed results
concerning the Bonnet surfaces are presented. Cartan gave a modern definition of these
surfaces and classified them into 3 classes A, B and C. The mean curvature function H(t)
satisfies the Hazzidakis equation

where |Q|? is a fixed function different for the 3 cases A, B and C (see section 2):
2 _ 4
Qal® = sin?(21)"
2 - 4
es’ = I (2¢) )
1Qcl®> = %z

Equation (1) is the Gauss equation of the Bonnet surfaces. After the result of Hazzidakis,
who reduced this equation to equations of the second order for all 3 cases A, B and C
there was no progress in investigation of (1). Cartan finished his paper by the phrase: ”An
investigation of the singularities of the differential equation (1) seems to be difficult.” We
mention also a more recent paper by S. Chern [9], where it was shown in particular that
the argument of the Hopf differential written in any conformal coordinates is harmonic.

It turns ouc that Cartan was right in his estimation of equation (1),(2). In this paper
we show that the Hazzidakis equation (1) with |Q|? given by (2) is isomorphic to the
Painlevé equations: namely to the Painlevé VI equation in the cases A and B and to the
special case of the Painlevé V equation, which can be reduced to the Painlevé IIT equation,
in the C case. The isomorphism is given by explicit formulas (68), (66) in A and B cases
and by (37). (41) in the C case.

Although the formulas establishing the isomorphism can be checked directly, they
waould hardly be found without using the theory of integrable systems. The starting point
of the present paper is an observation made in [20] that the frame equation for the Bonnet
surfaces written via 2 x 2 matrices have the same structure as the Lax representation of



the Painlevé equations given in [7], [10]. Here we develop this observation and describe
the corresponding isomorphism explicitly.

Modern achievements in the global asymptotic analysis of the Painlevé equations make
it possible to evaluate in closed from (in terms of elementary functions and their quadra-
tures) asymptotic connection formulae for the corresponding solution manifolds. This is
a characteristic analytical property of the special functions. In other words, the current
status of the Painlevé transcendents should be considered to be the same as that of the
hypergeometric functions and their degenerations. If a problem can be solved in terms
of the Painlevé transcendents, the solution should be treated as an explicit one. In more
details, this point of view is presented in the review papers [16], [17]. Therefore we solve
the Bonnet problem mentioned at the beginning of this introduction explicitly.

In the appendices two special cases are discussed, when the Bonnet surfaces are de-
scribed in rational, hyperelliptic and elliptic functions.

Acknowledgements: We wish to thank A. Its, A. Kitaev, V. Novokshenow and K. Voss
for valuable discussions.

1 Quaternionic description of surfaces in Euclidean 3-
space

To study surfaces in IR® by analytical methods it is convenient to describe them in terms
of 2 x 2 matrices ( for more details see [20]). In section 2 and 3 this description allows

us to identify the equations for the moving frame of the Bonnet surfaces with the Lax
representation of the Painlevé equations.

Let F: R — IR? be a conformal parametrization of an orientable surface:
gl o 3l ~ - 1 u
< EF F, >=< F;,F; >=0 < F,, Fs>= 56 .
Here R is a Riemann surface with the induced complex structure,

< v, w >= viwy + vawse + v3W3,

z is a complex coordinate and F, and F; are the partial derivatives

ﬁ_l(i_ii) 9 _1/(9 -9_)
gz 2\0x Oy 8z_§<03'+15y '

The vectors F,, F; and N define a moving frame on the surface. The fundamental forms

are
<dF,dF > etdzdz,

—<dF,dN> = Qdz*+ He*dzdz + Qdz2, (3)

fi



where Q =< F,,, N > is the Hopf differential and H the mean curvature function on F.
The compatibility conditions (the Gauss-Codazzi equations) of the moving frame equa-

tions are
H? i
Uzz + 7(3“ - ZQQC_u = Oa
H, .
Qi = 2_6 3
Qz = _;eu~

Let us denote the algebra of quaterions by IH and the standard basis by {I,1,J,k}
ij=—jn. jk=-~kj, k= -ik.
We will use the standard matrix representation of H:
L I T T R}
We identify 3-dimensional Euclidean space with the space of imaginary quaternions
Im H = su(2) = span(i, j, k)

by
X = (.’L‘],I‘g,l‘;;)t =210 + 23] + 23k € su(2)

The scalar product of vectors in terms of matrices is then
. | R
< XY >= ~5tr()( Y).
Let us take ® € SU(2) which transforms the basis 1, j, k into the frame Fg, Fy,, N:
Fp=e?®" 1@, F, =207 13®, N =& 'k®

One can prove [20] that ® satisfies the following linear system:

Uz _Qe““u/z Uz H uf2
-1 _ 4 -1 _ - - €
8,2 "(g@u/z ‘ ) .9 1-( £ 7 )

2 Differential equations of Bonnet surfaces

Definition 1 [f a surface F possess a I-parameter family of isometries F,
Fo=F.17 €(—€€), >0,

preserving the mean curvature function, F is called a Bonnet surface.

~~
)
~—

(8)



Let F, : R — IR? be a conformal parametrization of ¥, and
z:VCR-UCC
be a local parameter. Locally in terms of z € U we get a map

F: (-,e)xUCC — 3

(1,2,%) —  F(r,2,%) €>0.

We suppose also that F' is umbilic-free and smooth.

Remark 1 : Since isometries preserve the Gauss curvature, both principal curvatures are
preserved.

Constant mean curvature surfaces as well as surfaces of revolution are examples of Bonnet
surfaces. We restrict our discussion to non-constant mean curvature surfaces without outer
isometrie!).

Let us denote the Hopf differential of F(r,z,2) by Qr(z,2). The Gauss equation (4)
implies that |Q,(z, Z)| is invariant under the deformation.

Qr(z.2) = €423 g2, ),

where qo(z, 2) is real-valued. The Codazzi equations in (4) yields that the derivative

5;@7(27 2)

is holomorphic. Combining these two observations one gets

QT(ZV E) = g(T, Z) qO(Z7 '::)

is a product of the real-valued function ¢o and a holomorphic function g(r, z), which proves
that the surface is isothermic (see for example [20]). Indeed, since the quadratic differential
Q-(z,2)dz? is invariant under conformal reparametrisation, this means that there exists
conformal curvature line coordinates for any Bonnet surface without umbilics.

The next theorem shows that 1/@Q, is harmonic.

Theorem 1 (Graustein [4]) Any umbilic-free Bonnet surface is isothermic. With re-
spect to isothermic coordinates, 1/Q is harmonic:

where h(z) is holomorphic.

‘that would form an isometric family with the same curvature properties



Proof : Let us consider a conformal curvature line parametrization of F = Fo. Then
Qo(z, %) is real. On the other hand our previous observations imply

QrQ-=0Q5  Qr=Qo+f(r,2), (10)
with f(r,z) holomorphic. Solving (10) one gets
__If _
QO - f T jTa QT - fQO
Finally, identifying
\ 1
hiz) = — + 1T
( ) f( To, Z)
we prove the theorem and get the formula
1—-iTh 1
z,2) = - — 1
Qr(z.2) Tvithign YTER (11)

for the deformation family in terms of a new deformation parameter 7' € K. In our
argument we do not prefer any special Bonnet surface of a Bonnet family. So all this holds
for any Bonnet surface of a Bonnet family but with different functions A and different
curvature line coordinates z and 2. For any such surface the compatibility conditions (4)
are as follows:

1

) T —— 12
Q(2) h(z)+ h(Z) (12)
Hz Hs ha|? ’h,
(75), -2 = ol e (13)
}Iz z hz (h"l"h) Hz(h+h)
hH, = hzH;, (14)
U2 = ————3515——. (15)
(h+ h)?H;

Theorem 2 Let F = Fy be a Bonnet surface with isothermic coordinates z,2. Then

- ‘ 1
w = w(z) :/h (Z)dz,

is also a conformal coordinate, and the mean curvature function H, the metric u and the
modulus of the Hopf differential |Q| are functions of

t=w+w (16)

only.



Proof : By the chain ~rule we get Hy = h,H, and Hyg = h;H; which implies by (14) the
first property. Since Q(z,2)dz? = Q(w,w)dw? where @ is the Hopf curvature function
with respect to the coordinates z,z we get

B2 (0™ (w)

A R ) + Ao ()

A simple calculation shows
|le = _QUTI = ~'Qulv
which implies for the metric function
. 2
oY = 2 Q‘LTI . 2 |Q|

= 17
s . T (17)

where H' is the derivation of H with respect to ¢ defined in (16). If we reformulate the
Gauss equation in terms of the mean curvature function H ( see (13)) we get the following
equation

H2

() = H'=1QP 2~ ) (18)
Here |Q| should be independent of w — @ because otherwise (H"/H') — H' and 2— H?/H'
must vanish identically. But this implies H’ > 0 in contradiction to (17). Finally the
metric depends on ¢ only, too.

Remark 2 An interesting interpretation of the corollary above is that all Bonnet surface
are Weingarten surfaces [{]. This should be clear since the dependence of H and u only
on one real variable implicies the same property for the Gaussian curvature K and so the
(K, H)-diagram must be 1-dimensional,

dHANdK =0.

Theorem 3 The holomorphic function h = h(z) satisfies the differential equation

haa(h+h) — h2 = hzz(h + h) — A2 (19)
Proof : This is a direct result of the property that |Q|? depends on ¢ only.

Theorem 4 Up to normalization by linear transformations any solution of (19) is of one
of the following five forms:

hi(z) = z

ha(z) = —2?

ha(z) = c* (20)
ha(z) = 2cosh(z)

hs(z) = 2sinh(z).



Proof : First we reformulate equation (19):
}ZE - B‘Z;' - (h =+ il)(hzz —_ Bz‘i)-

Since the left hand side is harmonic the same must hold for the right hand side which
leads to the condition

ZZZ hzzz _

hz h.
Here h{z) cannot be a constant because this would mean that H is a constant too. So
there are two different cases to consider p = 0 and p # 0. If p = 0 then all solutions
are polynomial. After resetting this in the equation (19) we get some conditions for the

coefficient. Reparametrization gives hy and hy. The same procedure for the case p # 0
gives the other 3 solutions. This completes the proof.

p € IR fixed. (21)

By a simple calculation we find for these five cases and T = 0:

Q}(w,w) = wtw Qw0 =

Gy = At QGwal = e
Q3(w, ) = Lt |Q(w, D) = t% (22)
Qf(w,w) = ~2§2£gg%sinh(2(b+m) Q5(w, o) = E}T%Téﬂ
Qo(w,m) = —2?3%333111(2(5%)) Qs(w-w)f* = sin24(2t)’

The following theorem classifies umbilic free Bonnet surfaces.

Theorem 5 (Cartan [5]) There are three different types of Bonnet families classified by
whether they contain one, two or four surfaces:

Type A : |Q4(w, w)|? = — ;4(%) containing four surfaces in each family namely Fr_ 1
sin =3

with Q% and Q3. Fr—o with QY and Fr_o, with Q3(w + 7/4,@ + 7/4) from (22). The
surfaces Fp_, 1 are helicoids.

2
Type B : |QB(w,w)? =
family.

Type C : |Q%(w, w)|? = flz containing two surfaces in each family,namely Fr—o with Q}
and Fr_o with QY from (22). The surface Fr—o is a cone or a surface of revolution.
These surfaces represent all the corresponding one-parameter families of isometries, which
are described by the translations

4 .. : .. .
——5——— containing only one quasi-periodic surface in each
snlh2(21) g y 1 P urf

w— w+1iT, w—w—1T

on the surfaces.



Proof : We start with the type C. Here we have with (11) and (20)

Qh(w,®) = Q3w F.w+4) L(w, @) = Q3(w,w)
Qi(w,0) = Lww)  QL(w+il,w-iT) = Qi(w,)

which shows that the first and the third cases of (22) are the same. We see that there are
only two different surfaces (up to translation w — w + T, @ — @ — T of the conformal
coordinates) belonging to Q3(w, @) and Q3(w, w). Because there is an isometry along one
family of curvature lines the surface which we get by integration of the frame equation
with Q}(w, @) is a cylinder or a surface of revolution. Any cylinder or surface of revolution
is a Bonnet surface. We do not consider them.

Surfaces of type B: Here with h(z) = 2cosh(z) and z = ——'i'— we get

“T Qw -
Qh(w,0) = - 2 1 — 24T cosh(Z) sinh(2w)
EAN sinh(2(w + w)) 1 + 2T cosh( z) sinh(2w)
2w - uT o2
- P 1 4 2" (23)
sinh(2(w + w)) 1 - 22T 2w
1+ QzT .

= Qg(w+zT,w— iT)

where T = —% log ( % I_ %Z%:) 5 arg ( % T %z . Clearly T(T) is unique only up to

an addition of k7/2 ,ke€ Z. In partlcular
4 (w,w) = Q3w + (2k + 1)%,@ — (2K + 1)1'%), ke z,

which shows together with the 7-periodicity of Q8 that any family of this type contains -
up to same reparametrization - only one surface which is totally described by one period
of T and a fixed motion in IR3.

Surfaces of type A. First we recognize

_ 1 —iTh o 1 o ;
Q%(w,w) = h77 T z?zz ha i = Q3(w + T, w—1iT) withT = —% log(+/2T)
5 v _ el —iThs 1 _ 2 - cp o 11 =2T
Qr(w,w) = hg T+l hafet s QT(w,u/) with 7' = 3TT9T
(24)

This shows that both cases coincide. So we can focus only on Q% to describe the hole
family. By doing so we get :

Q3w + T(T)), 0 — T(T)) if T € (§,-3)
oy 1 _1
05w, = | AL w+ /4 + T(T)) @+ n/a - T(T)) fTe?\bf@]
QO(wﬁw) lfT = ?
Qf(w, w) i = -4,



[ Type ” Q I H solves ! e

4 8(w, ) = ~ iiﬁgig sin(2(ulj + ) (H_'/)’ g sin’FZt) _o_ H| _ 8
A 5 (w —) — 2c°5(2'w) 1 ! - H sin Zt)Hl
2 oAV T P cos(2w) sin(2(w + W)
4. —~_ . sinh(20) 1 H'\' _p/\sinh’(2t) , H2| 8
B o(w, ) = 2sinh(2w) sinh(2(w + w)) (_I?T) - 4 i sinh®(2t)H’
_ AN 2
C Qg(w:m):”%w-}-w ((%") —H’)t"’:Z—-I}IT —{ﬁ%
Table 1: Table of fundamental functions
with

. i 1—2T
() = -+
(T) 21Og( 1+2T)

Two surfaces with T = :i:% are helicoids because the fundamental forms depend only on
one real variable: this implies that there exists a motion of IR3 which also forms an inner
isometry of the surface. The motion is a combination of translation and rotation. Let
w =z + ty. Then on this helicoids we get for the arc-length parametrized y-curves

u'(2)

2
I I = (T) + emul=) (H(;n)eu(z) -1 cot(tl:r))z = —16e7%=) 4 p2 (25)

This formula we may later find useful. Since we excluded helicoids in the beginning, we
ignore T' = j:%, too.

Table 1 presents the fundamental functions and the ordinary differential equation to be
solved.

3 Bonnet Surfaces of Type C and Painlevé V(III) Equa-
tions

Let us return to the description of the moving frame as in (9). In the variables

w

t=w+w A= —
w+ w

this system reads as

, 1
DN, )B N 1) = t(fl(,” ‘9’(’)) 4 e—u(t)/z( 01 X)
(1) —alt) L

(t)
a(t)  p(t) 5 (1)
a0 Zan) ( . alt

10

(26)
Qt(/\’ t‘,)(p_l(/\a f)

i




with the function a(t), o(t) and e~(t)/2 given by

(o - MOy H

t 2H(1)
1)
o) = U +2tH 1) o—ult)/2 (27)

eut)/2 = : _2’2@_

Remark 3 The equation A'(s)+[A(s), B(s)] with some B(s) implies that the eigenvalues
of A are constant.

Using this remark one can easily see, that the compatibility conditions imply also, that

the determinant of the matrix
(a(t) (1) )
p(t) —al?)
is independent of t. Here we come to a result, first obtained by Hazzidakis in [2].

Lemma 1 Fquation (18) in the case C has the first integral yu, given by
1\2
a()? + o(t)? = (5) (28)
with a(t) and @(t) as in (27).

We have a system of matrix dimension 2 x 2 with the following dependence on A

$3071 = tA(t) + +Ao(t) + ypAL(D)
R ML) + C(2).

Here specialists in the theory of the Painlevé equations immediately recognize the Lax
representation for the Painlevé V equation (see for example {10]). In the rest of this
section we carry out in detail this identification, showing as a result how the Bonnet
surfaces of C-type can be described in terms of the Painlevé transcendents.

(29)

Theorem 6 (Jimbo-Miwa [7]) Let us consider the system (29) such that A(t) has two
different eigenvalues. Then the compatibility conditions for this system are equivalent to
the Painlevé V equation

" ) ‘(¢ t)— 1)
L) | oy(y(t) + 1)
t y(t) -1
which implies that the coefficients of the matrices A(t), Ao(t), A1(t) as well as of the

matriz C(t) can be expressed in terms of this function and the constants o, 3, v and ¢
depend on the eigenvalues of the matrices A(t), Ao(t) and A1(t) only.

(30)

11



Proof : First let us normalize the matrices in the first equation of (29) to be traceless by
d — U= TEM2ZNT/2()\ _ 1) /29 (31)
with 7 = tr(A(t)), o = tr(Ap(t)) and 73 = tr(A;(¢)). The transformed A-matrix has

two not vanishing eigenvalues and we can bring it by another gauge transformation to a
diagonal form. So let as assume that the system (29) is of the form

Ut o= Bpe s Lagy e L4
A 5 +§,0()+A_1 1(t) (32)
\I}t‘pﬁl - —%HB(‘i-C(t)

with u # 0. We set A,(t) = ('a}’]-(t)) and det(A,(t)) = —62/4 for v = 0,1 and O, =
—2(ad;(t) 4 a};(t)). It is easy to check that these #'s are constants. Now define

_ 0.yt o ap(t) 0o + 61 + 0o .
2(t) = agy (1) - 5 y(t) = ") ( 2200) ) (33)
Finally one can prove that the compatibility condition of (32) are given by
/(1) = ~ s (20 + o) (a(0) + P00y 1y 0)2(0) (o() + Bty b
/(1) = pty(t) = 2:()(y(1) = 12 = (y(t) - 1) (o=t b yy) - 30t B+ 6
(34)

This system can be rewritten as an equation in y(t) only, which gives (30) with

1 (85— 01 + 0\ 1 (05— 61— +05,\? N 1,
A T G = LIRS )

(35)
Now we apply the proof of theorem 6 to our system (26).

Theorem 7 Let H(t) be a solution of (18) in the C-case. Then

o 2a(t) - p
yit) = 2a(t) + 1

with a(t) defined in (27) and p is a root of (28) defines a solution of the Painlevé V
equation (30) with

a =0, 3 =0, v = and 6= —gH (36)

On the other hand let y(t) be an arbitrary solution of (30) with constants as in (36), u # 0.
Then o , )
H(t) = Ht(y (1)° — p y(t)z) (37)
2y(t)(y(1) = 1)
is a solution of (18). If finally 0 > y(t) and y(1) # C e**, the solution is geometrical and
the metric is given by

oty _ Ay - 1)2
2y (1) — py(t)? (38)

12



Proof : First let us normalize (26) to the special form (32) with the gauge transformation

@awzp¢:<a+% ‘P><I>. (39)
a— % ©

Since det(D) = @u this is a regular transformation if ¢ # 0. If there would be a domain
in € where ¢ vanishes identically then H(t) = ¢/t and consequently a(t) vanishes iden-
tically. But then necessarily 4 = 0 in contradiction to our assumption. By that gauge
transformation equation (26) becomes

u " 2 2
Bt = Lk E /2( L)t e f( (”%l)

1
%) a? - %f (40)
D R 1A ]k+< -1 a+%) D'(t)D(t
EEC T R A
We see that 8, = 0, for v = 0, 1,00 and by (33) we get
_ 2a(t)—p s __(,96—"/2
0= so s 0= (41)
These function solve
(1) = 20 (v - 7).
ty'(t) = puty(t) — 22(t) (y(t) = 1)%, (42)
" 3y(t) -1 ' (t t H(y(t) + 1
v = (Qy(t?)j(y(t)— 1)) (o - L - 2%'

This proves the first part of the theorem. We shall remark that we get the following
formulas by the theorem 6

_p(y(t) +1)
2(y(t) - 1)
2uy(t

o/ __ 2uy(t)
Plt) e t(y'(t) — ny()’ (43)

a2 (Y1) = py(t))
A = e

On the other hand a(t), ¢(t) e /2 and ¢(t) e*H/2 can be expressed (27) in terms of
the functions H, H' and H"”. It can be interpreted as a linear system for these functions,
which is uniquely solvable since ¢ # 0. Comparing (27) with (43) we get (37), (38). If
Yu(t) solves (42) then

a(t)

Il

. 1
J-u(l) = ua(l)

is a solution of (42) with —pu.

13



Remark 4 For another real reduction of the Painlevé V equation the equation in the form
(28) appeared already in papers devoted to the calculation of the correlation functions for
the Bose gas [11].

Remark 5 For any solution H(t) of (18) in the C case
S | .
H(t) = EH('I,), with t=at (44)

is a solution of (18), too. That implies that we can fizx p to some special value in (28).
Geometrically this is only a scaling of IR3.

From now on we fix u = 4. The case g = 0 is considered in Appendix A.

It turns out that in the case @ = § = 0 the Painlevé V equation can be reduced to the
Painlevé III equation. The following three statements can be proved by direct calculations.

Corollary 1 [14] Let y(t) be a solution of (30) with « = 3 = 0 and p = 4. The function
p(t) defined by

_ () +1\?
0= (1) )
solves the Painlevé I11
wn PR P PR 1, 1
p(t) = o +;+p(t)—p—(5- (46)
The mean curvature and the metric are
H(t) = _tﬁplz(t) - (Pz(t) — 1)2)
2p%(t) (47)
eu(t) = 4p2(t)

T+ - 1)

The reduction (45) holds for arbitrary v and ¢ but gives another Painlevé III where some
constants are involved depending on v and é.

Remark 6 The geometrical solutions p(t) are of modulus 1 and we have to exclude the
solutions

p(t) = tanh(2t + ¢) and p(t) = +1.

Corollary 2 Let p(t) be a solution of ({6) of modulus 1. Then its argument ¢(t)

p(t) = 40

14



solves

t(¢"(t) — 2sin(24(2))) + ¢'(1) + 2sin(¢(1))) = 0. (48)
The solutions of (48), which are not solutions of ¢' + 2sin(¢) = 0 are geometrical. The
mean curvature and the metric are given by

¢'(1)? in? (ult) _ 4
H(t)‘%( “”“”) P ey

Corollary 3 Let y(t) be a solution of the third equation in (42) and z(t) be defined by the
second equation in ({2). Then equation (40) is of the form

=Y —2(t) (1)

z{1

U0l = 2it]k+% ®) y(t) +/\£ ( )
2()y(t) —z(t) —z(1)  2(t)

N oy g3y =1 . 1
\Ilt\p—l “(t)(y(t) 1) ty(t)—l (t)(l (t))

%Ak+%

. t)
AW -1 00 - )+ =T .
)

The U-function, which satisfies (50) is related to the geometrical frame @ by the following
transformation:

1 -1
1
2.0 =7 | _ iy ](U U(t, \). (51)
-y

4 Bonnet Surfaces of Types A and B and Painlevé VI
Equation

In this part we will study Bonnet families of type A and B in more details. First we repeat
the ordinary differential equations to be solved by the mean curvature function H(t) in
the cases of A and B. These are for t = w + w (see Table 1)

o\ 4 H?

(H'((;))> - HQ@) = sin2(2t) (2 - H'((tt))) (52)
2w\ .. 4 H2(1)

(qu>'_H(“ N gmﬁmo(”“ﬂxn) (53)

The solutions of these two equations are simply related. Let Hp(t) a solution of (53).
Then

H4(t) = —iHpg(it) (54)
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solves (52). Now we start again with (9). In all three cases we get:
WA
X ’
p2(s)  —sf(s)
( 0 1 0 0
992§3%—991 $) 2(8) — @1(s
0 0

‘f,f(zs) P1(8) — s pa(s)
B,(\, 5)®7 1N, s) = s(s=1)

2l8) — P1ls f’S
ﬂ_s%ril ‘%‘Z
0 0
992(82—991{8)
— 8
1 0

where the coeflicients are presented in Table 2.

Dy(N, 8)27(A,8)

Il

Ll A& [ A B
s 41 (w+w) 4(w+w)
A cdiw _etiw v
B(s) H 4~ (log(s))) Hp(3(log(s)))
1(s) %UA(~£(log( D) %ua(laog<s>>>
pils) || mi B ertor - s %_2 £8) - 5 (~£(s)
pa(s) || —i Bld ertor 1 1o~ ) - L 1)
Table 2: Coefficients in (55)
Let us write down the system (55) in a more general form as
X X_—A +/\i1A1+§Ao:U, @,Q_lz—x—i—sA,-i-B:V.
The compatibility condition for this system for A — 0,1, s are
A+ [An B+ a0+ ] = o
AL+ [Ar, B+ s hga,] = 0
A+ [0, B+ 14,] =0

(56)

(57)

The last equation implies that the determinant of Ao is independent of s (see remark 3),
and as for the Bonnet surfaces of type C we get the following first integral, first found by

Hazzidakis [2].

16



Lemma 2 FEquation (18) in the case A and B has the first integral p, given by
1\ 2
2162+ lseats) = (5) (5%)

with f(s), ¢1(s) and @2(s) as in Table 2. If we formulate this equation in terms of the
function B(s) we get in the B-case

. { B"(s) 1 \? sB'(s) B2(s) B(s)s+1 pu?
s (23'(3) s 1) T8 T 8B(s)(s—12 8 s—1 4 (59)
and in the A-cases
B"(s) 1 \? _sB'(s) .  B%s) B(s)s+1  u? ;
s (23'(3) s——l) T8 T'RBa 1P '8 s-1 4 (60)

In a contrast to the C case the parameter u seems to be an essential parameter of the
surface. In the B case y can be real as well as pure imaginary and zero. In the A-case
equation (60) is only a new form of equation (25). So we know that u? must be strictly
positive. We shall also remark that although s is in this case an unitary parameter s f'(s)
is real.

Now let us return to the more general system (56). Again as in the C-case here one
can recognize a Lax representation for a Painlevé equation, but now for the Painlevé VI
equation.

Theorem 8 (Jimbo-Miva [7]) : Let us consider the system (56) such that

Aoo = “Ao—Al—At

has two different eigenvalues. Then the compatibility conditions of this system are equiv-
alent to the Painlevé VI equation. That implies, that all the coefficients of the matrices
in (56) can be expressed in terms of the function y(s) , which satisfies the Painlevé VI
equation

11 1 1 1 1 1
y' = §(§+@—:—1+y—s)y’2_(§+5—1+y—s)y,+
(61)
yﬁy—llﬁy—S)(a s s—1 8(§—1))
+ 85+ +6
s* (s — 1)? g Tw=17 Ty =9

with some constants «, 3, v and § depending on the traces and determinants of the matrices
Ay, forv =10,1,s.

Prove : Due to remark 3 we know that the determinants of the matrices A, are constant.
First we normalize that these matrices to be traceless?. Then we can reach det(4,) =0
for v = 0,1, s by the gauge-transformation

- (M A-DTA=-t)*)d =

2for the proof see the previous section
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with d, = y/det(A,), v = 0,1, s. Therefore we can assume that the A,-matrices are of the
form
2(8)+ 0, —uu(s)2(s)

A, = (62)
ZV('S)+0V —2,(s)
uy(s)
with 6, = 2d,. Now let us consider A, defined as in the theorem. Both gauge-

transformations we used to create the special form (62) preserve the inequality of the
eigenvalues of this matrix. Let us finally assume that A is diagonal with the diagonal
elements k; and 3 as diagonal elements and 0o, = kK1 — k3. The matrix B must be diag-
onal.

Define
- B s ug(8) zo(8)
y(s) = S Ua(8) 2o(t) + uy(8) 21(8)’
o) = zo(s)+9 z1(s) + 6 za(s) + 0,
Aqs) = oyt y(s)—11+ y(s) =8~ o
He) = als)- ISR

y(s Cy(s) -1 y(s) - s
Now the diagonality of Ay implies
0= Ayl - Dy - D2+ (0u(y — 1) + 10y — 1) = 2r2(y — 1)(y — 1))2
+r3(y —t ~ 1) — Ka(61 + 16,)}

no= e W= D= D2+ (B + 6y — 8) + 1By — 1)
(1~ oo 3 (64)
—2K§(y = Dy = 1))Z + 63(y = 1) — k2(61 + 16) — K1k}
o= e W - DI - 0+ (85— 1) + 16 + o)y — 1)
~2k2(y — D)y = 1))z + K3y — 1) — k2(61 + t8;) — thy1Kz}.
The compatibility conditions in terms of z(s) and y(s) read as follows:
Z’ fg t(—t:-l—j((—:}y +2(1+t)y—t)22+
(6o(2y =t = 1) + 01(2y — 1) + (2y — 1)(8e — 1))z — Ka(Ka + 1)) (65)
- yy—)y =1, _Q g 6 — 1
v = t(t—1) (2 = Y- ) ’
which can be formulated as (61) with
(-1 6 1-6
4T P==% 175 =5

Now we apply this to our case.

Theorem 9 Let H(t) = B(s) be a solution of (53) or (52), the functions f(s), p1(s) and
wa(s) be defined as in Table 2 and p # 0 be a root of (60) respectively (59). Then
oy = LR (5P + x(9)eals) = sl (5)
(253 ()% + ¢1(5)* + s1(s)pa(s) — us® f(s))

(66)
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solves the Painlevé VI (61) with the coefficients
. u + 1 2 _ 2
o = BRI s - g (67)
- 0, 5= s
On the other hand let y(s) be any solution of (61) with the above constants. Then
(s + 57(s) = y(s)(1 +9))° = (y(s)(1 — y(s)) + sy'(s)(s — 1))*
(s = Dy(s)(y(s) — 1)(y(s) = s) .
(68)
solves the differential equation of the B-case (53). The transformation (54) yields the

solution to the differential equation of the A-case (52). In the B-case for p € IR and for
1 < y(s) < s we get a geometrical solution.The metric is then given by

H(w+w) = B(s) = 2

eu(w—}-uﬁ) - er(a) — _ 43(3/(8) - 1)(y(3) - ‘S) ) (69)
(sy'(s — 1) — pu(y(s) — D(y(s) — 8) — y(s)(y(s) — 1))?

Prove : By the gauge transformation

2p1(8) 1
2o fe) - (05 =¥(hs)  (10)
B(A, 1) — A2 ,8) = P(A,s ‘
1 __2ea(s)
25 f'(s) — p
the system (55) reads as follows
201(p2 — 21)°
(p1 — 02)? + 12 ulpz — 1) + =55 ffzf _il
et o= +
H 2¢2(p1 — ¢2)° 2
w(pr — wa2) + s s —(1 — ¥2)
2
, 2
(2/\— 11) ) 25/~ | 4
H —
-%(ZSf’ B~
— 2 %(QSf’ — K1)
Y2 — @1
pA=s) | 203
23f’ _ /l 802
®2 —%(281" - 1)
-1 _ Y2~ @1
\I}t\I’ = ,u()\—s) 9 2 ~ +B0(S)

(71)
Here we do not specify the diagonal matrix By because the definition of y(s) is independent
of this.
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With k1 = —p, kg = 0 we get (63), (66) with the coefficients given by (67), which proves
the first part for the theorem.

As in the Bonmet C-case we can interpretate the definitions of f/(s), p1(s)e=#(*) and
p2(s) €f(®) in Table 2 as a linear system for the functions B(s), B'(s) and B”(s), which
can be solved explicitly for these functions. On the other hand we find

wofs) = el —l‘Lw(Slf et =+ /i%
z(s) = 991(3)("92(3) - #1(s)) and so oref = uz (72)
s(s) = pals) L) - va(s)) e = et

Because of (64) this gives (68) and (69). For the case 4 = 0 in the B-case Theorem 8 does
not hold. But by a simple calculation one can show that for this case (66) as well as (68)
and (69) are correct.

Remark 7 Formulas (68) in the A and B cases deal in general with the complex-valued
functions y(s) and B(s). The Bonnet surfaces are characterized by the condition, that for
s defined in Table 2, B(s) and f(s) in (68), (69) should be real-valued. It seems to be
rather difficult to describe the variety of the geometrical solutions in terms of y(s).

For integrating the Bonnet surfaces of type A and B we have first to solve our special
Painlevé VI under the extra conditions that the functions B and f as defined in (68) and
(69) are both real and e?f strictly positive. Then solve the frame equation (71) for ¥. By
the inverse left-multiplication of (70) with the functions given in (72) and (64) we find the
geometrical frame, which finally have to be integrated for the surface.

Concluding Remarks

The isomorphism between the Gauss-equation of the Bonnet surfaces and the Painlevé
V(III) and VI equations we established in this paper allows one to apply the modern
theory of the Painlevé equations to describe global properties of the Bonnet surfaces. The
main tool of the theory of the Painlevé equations is ¥-function, which is a solution of the
corresponding linear system (see [7]). This function is also well investigated. It is worth
mentioning, that the frame of the Bonnet surfaces is described by a quaternion, which
differs from ¥ just by a gauge transformation (51), (70).

Let us mention two geometrical problems, which are possible to solve now and which
we plan to discuss in the future. It is well known that the Painlevé equations possess
Schlesinger transformations. For example, if y(s) is a solution of the Painlevé VI equation
with some constants «, 3, v, é, then there is a transformation

(ys ylv , -d: Vs b) - (va 3/5V7 anN, ’ﬂNv TN, 6N)7 (73)
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which yields a solution yn(s) to the Painlevé VI equation with some constants ay, BN,
YN, On. In (73)
(yN’ 3/3\1) - 8?(3:“ y')’

where ® is a rational function. The corresponding solutions ¥ and ¥y of the linear
systems are also simply related. Starting with some Bonnet surface (see (67))
(b4 1) u 1
o . = ——, = O, (5 = -,
“ 2 P==% 1 2
with a proper choice of parameters one can get by iteration of the transformation (73)
(uv +1)° BN 1
= ———— = —— = oy = =,
N 2 ) ﬂN 9 IN 0, N 2
i.e. a new Bonnet surface. The geometrical interpretation of this transformation gives us
a transformation of Baecklund type.

The Bonnet surface of type B presented in Fig. 2 looks very similar to the Mr. Bubble
surfaces with 3 legs [18], [19] which is a CMC plane with intrinsic rotational symmetry and
an umbilic point at the origin. The reason for this is that in Fig. 2 we see the immersion
of a neighborhood of the point ¢ = co. The analysis of the corresponding differential
equation shows that H(t) converges very fast to a fixed value

lim H(t) = Ho.

In a natural local variable z at this point the Hopf differential Q(z,2) has a zero of the
order w. If w € Z then the surface does not ramify at the point ¢ = 0o, which is an umbilic
point of order w. In a big neighborhood of this point the surface looks like the Mr. Bubble
surface with w + 2 legs. The global behavior of this surface can be calculated explicitly as
it was done for the Mr. Bubble in [15].

Appendix A Bonnet surface of type C with ;=20

Here we integrate explicitly the equation for the moving frame for the Bonnet surface of
type C in the case u = 0 (see section 3). In this case equation (28) with (27) implies
ag 2 w

H(w,w) = W) = = Q(w,w) =

w+ W 0 Cw(w+ @)

(74)

We can choose without any restriction ap = 2. Now let us pass to isothermic coordinates
as in (12)-(15)

z = log(w) z =1+ 1y.
In the isothermic coordinates the fundamental functions are :

1 u(z,z z z em
oule2) _ 2 Q(sz):“Qcos(y)’

H(Z,E’): ;’—co—s(g—ﬁ
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and the frame equations are of the following form:

_ _ _ 2e”
R e e =) )
7
- -2 _p
Ne=0 Ny= -z 2ok,

One can integrate (75)

F(z,2) = Fg(2,2) = Fo(2,2) + Fz(z, %),

which yields the following immersion formula for this special surface

Flw,©) = —id~! (0 “’) 3,

w 0 (76)

where ® satisfies (see (9))

W
) -1 i 0 W+ w .
@wé - @w@ = —
w
w

w
w 0

g

0 w
w+
( Y 0 ) |
wF w
In terms of the variable t = w + w and A = w/(w + w) this system can be written as a

linear ordinary differential equation

oA(N)E (N =

o St

(77)

1—-A

For the immersion we get then

FOLL) = —itd=1(\) (g " A) B(N).

Let us recall that ® is a quaternion

(78)

L aN) b
q’“)‘(w(x) a(A))

with |a|? + |b]? = const # 0.
In terms of the functions

a(M) = a(A) +b00) BN = a(A) - b(A)
the linear equation (77) reads as follows:

1 )
/A= 3500) F) = -

M)
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which yields for a:
A1 =N)"(A) + (1 = N’ () — a(A) = 0.

This is a hypergeometric equation which can be integrated in terms of special functions.
The function 3 Fi(a, b, c,A) is the solution of the hypergeometric equation

A =DM + ((a+ b+ )X — c)a'(A) + aba(A) = 0
regular at A = 0, which has for |A] < 1 the expansion

D(e)0(a+ BB+ K) &

Fi(a,b,c,\)= 79
2fifa, by, Z kT (a)I(0)(c + k) (79)
In our case a = +7 b= Fi c = 1, a special solution of (77) is

a(A) = oF1(s, —1,1; A) B(A)= A Fi(i+1,—-14+1,2;)) (80)

which is regular®) for all geometrical A represented by

1 tan(y)
A== c.
2T

A general solution (77) differs from that one given by (80) by a multiplication on the right
by a quaternion independent of w, w. But this multiplication is a rotation of the surface
(78) as a whole, which is irrelevant.

Theorem 10 In the isothermic coordinates (x, y) the Bonnet cone, which is a surface of
type C with u = 0, is given by the formulas

-2Re((ﬁ£ﬂﬂ)a(y)5(y)
:1: _ 2e” cos(y) 1+ itan(y 3
Fla) = ey | - e + sy [ 6D
Re((1H-18000)) 4 (y)2 - f(y)2)

1 t
o(y) JFi(i, —i,1, 11t
ﬂ(y) _ 1+ztan!y 2F1(i+1,1—i,2,1+2tany)

For the proof one should use formula (76) and the isomorphism (7) between IR? and su(2).
A plot of this surface is presented at the title page of this preprint.
The other surface is a cylinder generated by the logarithmic spiral as shown in [13].

where

(82)

3gee [6]
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Appendix B Bonnet surface of type B with ;=0

In this appendix we will give the general solution of the differential equation (53) for
i = 0. To do this we need a simple result on the connection between solutions of different
Painlevé VI equations.

Theorem 11 Let yx(s) be an arbitrary solution of the Painlevé VI equation with arbitrary
constants ak, Bk, Yk, 0k. Then the function

. L—s ye(1/s)

Yps1(s) = —————= 83)
w(s) = —— o(1/5) (83

solves the Painlevé VI with

) 1 1
Okt1 = Ths  Bkt1 = 0k — '2', Ye+1 = —Pky  Oky1 = 5 — Q. (84)
In particular

Yk+a(8) = yk(S), Qkta =k, Bkta = Brs  Yhta = Tk Okta = Ok. (85)

Proof : Here one only has to check the correctness of the formulas for yg4+1, which is a
simple calculation. To check the second property one has to iterate (83 four times.
A direct consequence of this is that if y1(7), 7 = 1/s solves the Painlevé VI with

a=08=7=6=0, (86)

then yo(s) solves the Painlevé V1 (61), (67) with p = 0.
The general solution of the Painlevé VI equation with (86) was discovered by Painlevé
himself*. By introducing the function

= () = 28 dy
@ =wln) /oo Vyly—1D(y—7)

the Painlevé VI for y; with (86) reduces to the hypergeometric differential equation

T(l—T)w”(T)+(1—2T)wI(T)—#:0 ' (87)

for w. Since y; is the inverse function of w, we get

Y1(1) = p(w; ) = p(Krwi(T) + Kawa(T);T)

*see for example [12]
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where wy(7), wa(7) are two linear independent solutions of (87).
As a result of this we get the whole 2-parameter- family of solutions for the mean curvature
function H and the metric. Therefore abbreviating p(w(7),7) to ¢(7):

ulwtd) _Ag(r)(se(r) = 1)°
s (s - 1) (E;¢(T))2 with 7 = 1 = ¢~4w+P)  (88)
Hw+w) = -2 (s = 1)s” 4 4(r))? S
o(r)(e(r) — 1)(s (1) — 1) ds

Because of (88), geometrical solutions ¢ must have the property

#(t) < 0.
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Figure 2: Bonnet B Surface with parameter curves

The isometry preserving the mean curvature corresponds to going along the closed
parameter curves t = w + w = const.






Figure 3: Bonnet A Family
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