
BOnSAI: a Smart Building Ontology

for Ambient Intelligence

Thanos G.
Stavropoulos

Aristotle University &

International Hellenic
University

Thessaloniki, Greece
 (+30)2310998433

athstavr@csd.auth.gr

Dimitris Vrakas

Aristotle University &

International Hellenic
University

Thessaloniki, Greece
 (+30)2310998885

dvrakas@csd.auth.gr

Danai Vlachava

International Hellenic
University

Thessaloniki,
Greece

v.vlachava@ihu.edu.gr

Nick Bassiliades

Aristotle University &

International Hellenic
University

Thessaloniki, Greece
(+30)2310997913

nbassili@csd.auth.gr

ABSTRACT

This work introduces an ontology for incorporating Ambient

Intelligence in Smart Buildings. The ontology extends and

benefits from existing ontologies in the field, but also adds classes

needed to sufficiently model every aspect of a service-oriented

smart building system. Namely, it includes concepts modeling all

functionality (i.e. services, operations, inputs, outputs, logic,

parameters and environmental conditions), QoS (resources, QoS

parameters), hardware (smart devices, sensors and actuators,

appliances, servers) users and context (user profiles, moods,

location, rooms etc.). The ontology is instantiated and put to use

at the Smart Building setting of the International Hellenic

University, enabling knowledge representation in machine-

interpretable form and hence is expected to enhance service-based

intelligent applications.

Categories and Subject Descriptors

I.2.4. [Artificial Intelligence]: Knowledge Representation

Formalisms and Methods – Ontologies, Representations.

General Terms

Documentation, Design, Reliability, Experimentation, Languages

Keywords

Ambient Intelligence, Semantic Web, Ontologies.

1. INTRODUCTION

Both evolution in the Web technologies and hardware have

resulted in two paradigm shifts that form a new era in computing.

First, Web users are increasingly finding ways to get things done,

instead of just looking up content. In other words, Web

Applications and Web Services have emerged, along with

standardized protocols that guarantee their interoperability.

Alongside, Semantic Web technologies, that have been around for

a while now, provide the means for annotating resources and

services resulting in new standards that enable true semantic

interoperability for services. Service computing is also interlinked

with Ambient Intelligence, another vision of computing where

smart environments of embedded computers surrounding the user

fulfill his/her needs.

This work presents an ontology for enabling Ambient Intelligence

in a Smart Building, named BOnSAI (Smart Building Ontology

for Ambient Intelligence). There exist already domain-

independent upper ontologies (not officially proclaimed standards

yet) that enable the vision of Semantic Web services. Our

ontology is domain-dependent and specializes such ontologies in

order to model the domain-specific concepts of the AmI

application. BOnSAI takes into account much related work, and

actually imports and benefits from existing ontologies.

However, BOnSAI sets off to model many more concepts required

in a Smart environment. The ontology is designed for the Smart

IHU ambient setting whose goal is to provide automation and

energy savings at the International Hellenic University (IHU)

premises. This environment is equipped with sensors and

actuators (so-called smart devices) in large scale, which interact

with the rest of the system using the web service interface.

The next section includes a background study that clarifies both

the field of application of this ontology and existing standards.

The third section presents extensive related work i.e. existing

ontologies for similar ambient systems. The fourth and fifth

sections present the proposed ontology in detail and its

instantiation in the Smart IHU environment, respectively. Finally,

future work and conclusions from this work are presented in the

final sections.

2. BACKGROUND STUDY
This section presents the background work that inspired the

proposed ontology. For one, Ambient Intelligence is the domain

of application of the ontology. Secondly, the two dominant

protocols towards Semantic Web Services are presented, as

service orientation is the most essential element of the target

system.

2.1 Ambient Intelligence Overview
Ambient Intelligence is a vision related to ubiquitous computing,

a computing paradigm of the modern era. The advancement of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

WIMS’12, June 13–15, 2012, Craiova, Romania.

Copyright 2012 ACM 978-1-4503-0915-8/12/06... $10.00.

technology during the last decade has brought numerous changes

in the everyday life of the ever-growing number of computer

users. Computers are now affordable and potent to run demanding

applications. More importantly, computing capabilities in

smartphones and other handheld devices are making great leaps,

enabling portability of processing power. In between laptops and

smartphones, netbooks and more recently tablet PCs are raising in

popularity and demand.

As a result, a paradigm shift from personal to ubiquitous

computing is evidently occurring. Users are gradually removing

themselves from in front of the personal, desktop computer and

search for computing resources in their surroundings (e.g.

touchscreens, tablets, and smartphones). Apparently, ubiquitous

computing (UbiComp) or pervasive computing (PerComp) is

amongst the leading technological paradigms of the future. Mark

Weiser coined the term ubiquitous computing and envisioned

many of its attributes [1].

Another vision, related to those developments, is the one of

Ambient Intelligence (AmI). Ambient Intelligence extends the

ideas presented in ubiquitous computing, by adding intelligent

automations and intuitive interaction. Naturally, ubiquitous

computing users, as they gradually move away from the desktop,

require less and less interaction with the computer systems

themselves. That is accomplished in two ways. First of all, human

computer interactions become intuitive and use physical means.

Sensor and actuator devices can contribute to this end. There is

also the tendency to incorporate chips (e.g. RFID tags) into

physical everyday life objects to identify them and use them as

physical means of human-computer interaction. Secondly,

Artificial Intelligence (AI) is incorporated into ubiquitous

systems, to predict and carry out users’ tasks, assist them and

provide a higher level of comfort.

Ubiquitous computing and AmI are tightly linked to Web

technologies. Ubiquitous computing envisions the embodiment of

microprocessors in objects surrounding the users and their

interconnection is made over Web. The notion of smart

interconnected devices, objects or even people is known as the

Internet of Things. Another relevant term is the one of the Sensor

Web, which comprises of sensor networks and their data and

actuator capabilities made available over web, sometimes through

a web service interface to hide device and network heterogeneity.

AmI and Sensor Web are tightly linked to Service Oriented

Computing (SOC) or the Service Oriented Architecture (SOA).

Service orientation is a trend in computing where data and

functions are considered as services. The benefits from this shift

are interoperability, platform independence, and remote access for

Web Services especially. AmI systems use a wide range of

interconnected devices or software services that are heterogeneous

in nature, primarily because of non-standardization and

heterogeneity in the market. Thus, services benefit AmI systems

with abstractions and decoupling from low level functions by

providing uniform access to sensor data, device functions and

software services. Finally, a goal of AmI is provision of complex

user tasks which can be decomposed to atomic tasks that can be

satisfied by atomic services. In other words this problem can be

transformed to the one of Service Composition.

The use of ontologies in AmI can aid in both service computing

and knowledge representation for semantic interoperability, in

general. The semantic web technologies already provide the tools

for complex taxonomy modeling, mainly using the Web Ontology

Language (OWL)1. These taxonomies, widely known as

ontologies, define a formal dictionary of entities and their

relationships, either hierarchical or through properties. Ontologies

for different domains are constantly being designed in the hopes

of enabling the Semantic Web vision. Specifically, their purpose

is to describe resources as entities on the Web (e.g. web page

content) in a computer readable format so that software agents,

a.k.a. semantic web agents, can discover and filter that content.

Reasoning can also be carried out using that knowledge. AmI

systems can also benefit from such representations that enable

reasoning and the use of logic.

On the other hand, adding semantic annotations on service

descriptions can bring even more benefits for those systems that

indeed employ web services. Primarily, service descriptions are

rendered machine-interpretable, thus, semantically defined queries

can be matched upon semantic service descriptions for more

refined results. Additionally, semantic discovery can return results

when syntactic discovery cannot. Due to the dynamic nature of

ambient systems, service providers enter or leave the environment

(e.g. smartphone service providers) or simply crash. When the

desired services are not present, a semantic discovery agent can

find alternative solutions according to reasoning conclusions (e.g.

return a service that returns a relevant parameter). Clearly there is

a lot of ongoing work to enable and standardize semantic web

services to benefit from what it has to offer overall.

2.2 OWL-S
Some languages have flourished through work in the field of

semantic annotations for services. OWL-S2 is such a language. It

is actually an upper ontology for services that strives to

semantically enhance service descriptions to achieve

interoperability. OWL-S derived from a previous attempt, namely

DAML-S, by the same initiative. The OWL-S ontology contains

three main classes that relate and describe a service: the Service

Profile, the Service Process Model and the Service Grounding.

The Service Profile describes, sometimes vaguely, what the

service does. Apart from that, it contains information about its

inputs and its outputs. It is worth mentioning at that point that the

OWL-S ontology acknowledges the fact that services may or may

not have input or output data but they often have preconditions

and results or effects i.e. perform some operation that changes the

state of things. These notions are well known in the field of

Artificial Intelligence as planning, which considers actions as

operations that have preconditions and may change the world’s

state. Finally, services can be considered as actions and likewise

be assigned a quadruple symbolized as IOPR or IOPE which

stand for Inputs, Outputs, Preconditions and Results or Effects.

The Process Model unfolds the exact process of a service in

workflow form. Using it, clients are able to analyze it, monitor its

execution or when performing composition, orchestrate the

execution of different services. In other words, the workflows of

services can be intertwined into a complex composite service. An

example of such work can be found in [2]. The Process Model

itself, as a workflow, can be used to describe composite services.

1 The Web Ontology Language, OWL:

 http://www.w3.org/TR/owl-features/

2 OWL for Services (OWL-S):

http://www.w3.org/Submission/OWL-S/

http://www.w3.org/TR/owl-features/
http://www.w3.org/Submission/OWL-S/

The Service Grounding, as the name implies, is the actual

instantiation of a service, quite similarly to service binding in

WSDL. It provides concrete implementation information for the

services so that it can be invoked by clients. OWL-S is not

restrictive and can support any type of Grounding but naturally it

inherently already supports WSDL mapping.

Finally, OWL-S is complementary to WSDL. WSDL syntactically

defines inputs and outputs of services while OWL-S adds

semantic descriptions. OWL-S does not include implementation

details to actually invoke a service, but its Service Grounding can

map to such an implementation e.g. WSDL. OWL-S is also fully

compliant with SOA, being compatible with known service

registries (e.g. UDDI). The services can thus be advertised,

discovered and invoked by clients. Although it was used widely in

research or extensively influenced very similar custom approaches

(in essence alternative service ontologies that extend it), OWL-S

did not make it as a W3C recommendation.

2.3 SAWSDL
Another approach to adding semantic annotations in web service

descriptions is SAWSDL3 (Semantic Annotations for WSDL and

XML Schema). SAWSDL is a W3C recommendation since 2007.

Unlike OWL-S, this standard directly extends WSDL documents

by adding ontology references in the document itself. These

references to ontology models take the form of XML attributes,

named ModelReferences and directly annotate interfaces,

operations and faults within a WSDL file. ModelRederences can

also be applied on XML Schema types, elements and attributes.

SAWSDL also offers two attributes to map data from semantic

models to XML and vice versa. The liftingSchemaMapping

specifies a transformation for an XML element to semantic data.

The loweringSchemaMapping does the opposite, as it specifies a

transformation for an element of a semantic model to XML data.

These transformations are usually specified in well-known

languages like XSLT, SPARQL and XQuery.

In comparison to OWL-S, SAWSDL follows a completely

different approach. OWL-S is a top-down solution to the problem

of semantic descriptions. OWL-S files are upper ontologies meant

to include WSDL files, for instance, as groundings. Systems that

need more domain specific concepts extend the ontology, raising

the complexity of this approach. SAWSDL follows a bottom-up

approach. WSDL files are enhanced, not replaced entirely as

descriptions. The annotations within SAWSDL files can contain

references to any number of ontologies to satisfy domain-specific

demands. This approach is simpler and more straightforward to

use.

3. RELATED WORK
Many existing approaches on Ambient Intelligence have

introduced their own ontologies for enhancing knowledge

interoperability in such systems. Most of these systems are indeed

service-oriented. One use for ontologies in such systems is plain

knowledge representation, querying and reasoning for data.

Another use which is a more modern tendency is service

annotation to enhance the discovery, (hence also matching and

selection) and composition of web services. Towards that goal,

the ontologies specify and disambiguate concepts for inputs,

outputs, preconditions and effects of service operations. Several

3 Semantic Annotations for WSDL (SAWSDL) Specification:

http://www.w3.org/TR/sawsdl/

of them extend OWL-S. Then the ontology can be used just like

OWL-S as a service description itself (it is just an OWL-S version

with domain-specific classes). An example of such an ontology

can be seen on Figure 1, where OWL-S (Service, Profile,

Grounding) is extended with context classes [3]. The SAWSDL

approach is yet not so popular in AmI. However, we believe that

as the Sensor Web evolves, more and more web services will be

available and the management of a large set of WSDL

descriptions will call for semantic annotations in the form of

SAWSDL, which is the most straightforward approach.

Figure 1. OWL-S extension by Maamar

All in all, whether just for knowledge representation or for service

annotation and interoperability, ontologies are needed to specify

domain-specific concepts. One can argue that true interoperability

can only be reached if all systems use the same ontology.

Currently each system has its own taxonomy and dictionary, so

interoperability is achieved for all clients within that system. The

standardization of an ontology in each domain, in that case the

AmI domain, would offer cross-system interoperability. Some

relevant systems indeed make steps towards that goal by

importing other existing ontologies [4], [6].

An extensive review of relevant approaches can be found at [2].

The relevant ontologies found, use various specification

languages ranging from plain XML, to DAML and OWL.

Regardless of language, it is apparent that they share many

concepts and hence standardization is possible. Furthermore, the

numerous common concepts on these ontologies can be

categorized into four main clusters depending on what they

regard: functionality, context, QoS and hardware. Service related

concepts can also be regarded as functionality-related. The

following subsection presents some of these common concepts

and the next subsection presents details of such ontologies.

3.1 Common Concepts

3.1.1 Functionality
The main purpose of functionality classes is to model all system’s

operations. For service-oriented systems this process is significant

as services description will later be annotated in reference to these

classes. Examples of such concepts can be found in [7] and [8]

that define types of input and output, binary, physical data etc.

Services themselves can also be included in the functionality

category e.g. in [9], [11], [12]. Beauches et al. [13] define

capability and data structures. Chakraborty et al. [14] define a

hierarchy for groups of services. Ibrahim give some examples of

service-concepts or actions, like “Take-A-Picture” and the related

output “Image”. Messer et al. [15] define classes for Media Types

and Capabilities, as media is one of the most popular domains in

AmI. The Hydra-middleware project extensively model

functionality of each device. Then these descriptions are used by

http://www.w3.org/TR/sawsdl/

their ontology service compiler, Limbo [16], to dynamically

generate services for embedded devices.

Ontologies for the Internet of Things (IoT Ontologies) are

proposed in [17]. Three ontologies are proposed. A device

ontology describes the hardware which is mostly sensors for the

Internet of Things. A domain ontology defines Physics and

Mathematics that can be used to describe and clarify service (and

device) functionality. Finally an estimation ontology contains

mathematical models that can be assigned to services. All in all,

the ontologies extensively model most of the functionality that

can be met in a service-oriented and sensor-enabled environment

such as Internet of Things implementations.

3.1.2 Context-awareness
Context can be defined as a set of statements about a person, a

place or an object [17]. Context-awareness refers to the ability of

a system or method in general to perceive and take into account

the current environment or world state. Naturally, this property

adds up to AmI systems dynamicity as results become case-

sensitive like service compositions according to user environment.

Ontologies are the main tool for modeling context in research in

order to achieve context-awareness.

Concepts related to context are mainly location, user-related,

environment and time as seen clearly in [19]. Then a context can

be a set of these parameters associated with an entity. E.g. a user

can have a context of current time, location and room temperature.

Context can also be the product of reasoning (e.g. absolute

coordinates can point out a certain location or room) which is the

case in [20]. Others include classes to distinguish context

belonging to different entities. Iacob et al. [21] demonstrate a

fragment of a domain ontology that includes context concepts.

The Context class is associated with a GeoLocation a GSMCell

and Schedule, which confirms the fact that usually context has to

do with location and time. Further on, Users can separately be

connected to a GSMCell, a GeoLocation, Home, Office and

Schedule.

In [11] services, environment and user can all have context. Quite

similarly in [12], context can be environmental, service-related or

resource-related. Another context-related notion is the notion of

Event (found in [9]). Santofirmia et al. [9] also regard context as a

whole world state consisting of static and dynamic facts. A

knowledge base and a semantic model are used for the world

representation. Finally, Vallee et al. [8] puts context models into

use by regarding context while performing service composition.

3.1.3 Quality of Service – QoS
Quality of Service considers added value parameters like service

latency, response time or costs in general. Systems that take these

parameters into account, offer optimum solutions. A typical

approach to consider QoS is using an ontology that defines QoS

concepts. Then, service QoS parameters can be registered and

reviewed at discovery-time as service meta-data. Davidyuk et al.

[22] indeed includes QoS metadata – non-functional properties of

services in an upper ontology. Thus each service has known non-

functional or QoS properties, that serve as selection criteria.

3.1.4 User Preferences
User preferences is another parameter similar to context but of

distinct meaning. While context is case-sensitive, user parameters

change less often and always accompany a certain user,

characterizing him/her. The system also needs to consider these

preferences alongside context during e.g. service composition.

Preference related concepts can be Mood, PreferenceProfile and

Role [20]. In practice, the system can be aware that a certain user

always prefers mobile services, or black and white printing to

color. In [20], users can set a streaming audio and video quality

preference in a scale of Low, Medium or High. The system

usually checks whether preferences can be met according to what

is available at the time, and make settlements.

3.1.5 Hardware
AmI systems make use of unique and cutting-edge hardware to

offer innovative and intuitive user interfaces, interconnect with

physical objects and surround users. Hardware is also domain

dependent. It can range from media streaming devices, to home

automation and wellness devices. DEHEMS is a home energy

efficiency application that introduces a wide ontology of home

appliances and their energy profiles [23]. Messer et al. [15] define

their multimedia devices. Also, hardware provides computing

resources that are modeled in [12] and [24]. Other ontologies

containing hardware concepts can be found in [25], [9] and [21].

3.2 Ontologies for Ambient Intelligence

3.2.1 The GAIA Ontology
The ontology infrastructure of the GAIA system is described

in detail in [19]. Ontologies of the GAIA system mainly define

either context information or entities in the environment. Context

is represented in a predicate form that inherently suits the

planning component (world states in Planning are sets of facts –

predicates). E.g. the predicate Location (Chris, in, Room 2401)

defines knowledge about a person’s location. Other context-

related predicates can be classified in physical context (location

and time), environmental context (weather, light and sound

levels), informational context (stock quotes, sports scores),

personal context (health, mood, schedule, activity), social context

(group activity, social relationships, whom one is in a room with),

application context (email, websites visited) and system context

(network traffic, status of printers). Ontologies are used to type-

check arguments of these predicates (e.g. Chris and Room 2401).

On the other hand entity-related ontologies define taxonomies and

relations between devices, services, applications and users. GAIA

also incorporates an ontology server that enables incremental

addition of new ontologies. Classes and properties are then

merged with the existing ones. However, the GAIA ontologies

were not reused, because they contain many more concepts and

relationships than needed for our purposes. In this work we strive

to include a minimal set of concepts, in order to ease the use of

the ontology. Furthermore, compared to GAIA, our ontology

focuses mainly on the discrimination between the sensor and

actuator role of devices (and services) in Smart Buildings and

their corresponding functionality. Finally, another subtle reason

for not re-suing the GAIA ontologies was the they could not be

found online.

3.2.2 The DEHEMS Ontology
The DEHEMS project (Digital Environment Home energy

Management System) proposes an ontology to address the

knowledge representation and reasoning issues of the DEHEMS

infrastructure. The project’s overall goal is energy consumption

awareness across multiple households and energy advice

provisioning. This group of households can be considered as a

Smart City. The DEHEMS infrastructure enables collecting data

from households, inserting them into the ontology model and

reasoning about them to warn about abnormal consumption of

energy and provide advice (tips). The proposed ontology, namely

“the Home Appliances Ontology”, is a SUMO4-compliant

ontology that focuses on modeling extensive energy specifications

about electric devices. The most generic concept of the ontology

is the ElectricHomeAppliance concept. Other main concepts, like

HomeOfficeAppliance, EntertainmentAppliance, Device and

BodyCareAppliance are its subclasses. Each one of these leads to

a different subtree in the hierarchy that can be seen as a cluster of

relevant concepts. A basic property that gets a lot of focus in this

ontology is the StarInfo slot, found in various appliance-concepts.

It provides a star energy rating for each device as an index of

energy efficiency. The ontology is evaluated for two reasoning

problem instances: checking whether an energy consumption

value is within normal range and providing tips. The DEHEMS

ontology, however, is unsuitable for AmI systems, as it models

extensive information about appliances only, and leaves out key-

concepts like Service, Sensors, Actuators (i.e. other kinds of

Devices), Input and Output parameters, which are vital for most of

the functionality modeling. On the other hand, it could, be used to

extend the branch of home Appliances in specific cases. In our

case this was not required. Additionally, the ontology was not

found online.

3.2.3 The CoDAMoS Ontology
Preuveneers et al. [20] define an ontology5 in OWL that along

with a context management system, is able to adapt services based

on context. Concepts defined in this ontology revolve around the

four main concepts of User, Platform, Service and Environment.

These upper classes are interconnected as shown on Figure 2.

Figure 2. CoDAMoS upper ontology classes

At a glance, Environment has location, time and environmental

condition data. A user has mood, profile, role and tasks (to

complete) that include activities and use services in turn, as seen

on Figure 3 shows the service-related classes, inspired from

OWL-S and linked to CoDAMoS classes task and software. The

OWL-S inspired concepts and linkage to the rest of CoDAMoS

can be seen on Figure 4.

A platform provides hardware that relates to resources (power,

memory, cpu, storage and network) and i/o devices, and software

that provides services. Software can be an operating system, a

virtual machine, a middleware or a rendering engine. Finally, the

environment has location time and environmental conditions, as

seen on Figure 5.The four main concepts are interconnected in

many ways: a service requires a platform, a platform has an

environment. The ontology for services is in fact OWL-S (that

4The Suggested Upper Merged Ontology (SUMO)

 http://www.ontologyportal.org/

5 The CoDAMoS context ontology:

http://distrinet.cs.kuleuven.be//projects/CoDAMoS/ontology/cont

ext.owl

provides service profile, model and grounding) and is interlinked

with the rest of the ontologies as tasks use services and software

provides services.

Figure 3. CoDAMoS user-related classes

Figure 4. CoDAMoS service-related classes, OWL-S

Figure 5. CoDAMoS environment-related classes

The proposed ontology directly imports the CoDAMoS ontology,

and makes use of a lot of its classes. In detail, environmental

condition and its subclasses are used and enriched, service is

imported from OWL-S, and users can have moods and profiles.

We consider the notion of context which here is named

environment. However, we needed sensor and actuator oriented

classes to represent hardware, while the CoDAMoS platform

hierarchy is left unused. The users also do not need the property

http://www.ontologyportal.org/
http://distrinet.cs.kuleuven.be/projects/CoDAMoS/ontology/context.owl
http://distrinet.cs.kuleuven.be/projects/CoDAMoS/ontology/context.owl

usesService and hasTask. Another main focus of our ontology is

specifying the functionality of services (IOPEs).

Indeed the CoDAMoS ontology provides many useful concepts,

but for our case we need to further specify service and device

functionality. We need a hierarchy for smart devices and

appliances. Furthermore, OWL-S here is not imported (but rather

its concepts are redefined) so CoDAMoS-based systems are not

really compatible to other OWL-S based systems. We also make a

subclass of the OWL-S:Service, rather than linking properties to

the OWL-S:Service directly, to ensure that other OWL-S based

systems are not forced to include our concepts as well.

3.2.4 The OntoAMI Ontology
Santofimia et al. [9] propose a general simplistic semantic model

for universal use across AmI applications. This only includes

basic concepts that cannot be left out in AmI which namely are

“Service”, “Device”, “Event”, “Action”, “Object” and “Context”.

Figure 6 shows the relationship between these upper classes.

Furthermore, as a showcase, they map this model to an OWL

ontology, adding more domain-dependent concepts and

relationships suited for their intrusion-detection implementation,

like “Announce” and “Hazard”.

The proposed ontology indeed conforms to many aspects of

OntoAMI after only slight alterations. Devices do not actually

provide services (sensor and actuators do not have embedded web

servers) but are associated with them (Services expose certain

device functions). Instead, Servers do provide Services. Actions

are indeed performed by Services (Operations to be exact), while

Actions are indeed linked to the Objects they affect (which in our

case are facts – a more general notion). The notion of Event is left

out of BOnSAI and Context is not associated with it.

Figure 6. OntoAMI upper classes and their relationships

4. BOnSAI
The BOnSAI ontology (a Smart Building Ontology for Ambient

Intelligence) is designed to enable the vision of Ambient

Intelligence in large-scale service-oriented pervasive systems. The

engineering method used was the Ontology Development 101

Guide [10], with emphasis on the intended use and application of

the ontology (which is service interoperability). BOnSAI was

implemented in OWL at Protégé.

BOnSAI classes can be categorized in context-related, service-

related, hardware-related and functionality-related. Indeed,

background study validates this categorization. Due to extensive

work on this field, BOnSAI, takes advantage of, and imports

existing ontologies available online. However, numerous concepts

are either left out completely by existing ontologies or need

modification.

While addressing the modeling of most AmI systems, BOnSAI’s

implementation purpose is the modeling of the Smart IHU system.

BOnSAI sustains the generality of most AmI-related ontologies,

as it includes all common general-purpose classes. Still, it is less

generic as it contains many more domain-specific classes. A small

number of extra classes is added then for the specific purpose of

modeling the Smart IHU infrastructure. Finally, the classes are

instantiated to represent Smart IHU existing entities. The ontology

is thus put to use and verified during that process. It can be

extended and instantiated in the same manner for similar AmI

systems.

BOnSAI can be located online at the LPIS lab ontology

repository6. Figure 10 presents an extensive class diagram of

BOnsSAI. Subclasses are shown below their supercalsses.

ObjectProperty relationships are also marked with an arrow. The

two other ontologies that BOnSAI imports are shown within

rectangles, and their relationship with BOnSAI concept is

eveident through subclass and object property relationships.

Please note that a version of CoDAMoS with working URIs had

to be re-hosted at our website so that it can be imported.

In the next subsections, each cluster of BOnSAI classes is

thoroughly presented and explained. The Smart IHU-specific

classes are presented separately in a separate subsection. In the

final subsection, the instantiation of BOnSAI with Smart IHU

entities is shown.

4.1 Hardware-related Concepts
Hardware-related concepts should support both energy-awareness,

functionality and service-orientation in the system. All Hardware

is mainly divided into Appliances and Devices, which differ in

their ability to offer services. The only thing common to Devices

and Appliances is that they both have a Location so they can be

located according to the place they function and affect (Location

is detailed in the Context-related section).

Appliances are the non-service-enabled electric appliances in the

building such as Radiator, Lighting, AirCondition, Printer, etc.

The Appliance branch of the ontology can be extended to model

extensive knowledge on appliance energy properties e.g. by using

the DEHEMS ontology as long as the latter is standardized by

SUMO and be made online available. Finally, interlinking with

functionality properties, these appliances have the ability to alter

the state of EnvironmentalParameters. This is modeled by the

“afftects” property. E.g. Radiators and airconditioning affect

Temperature and Lighting affects Luminance. The most

interesting case of Appliances is the Computer, which provide

computing resources (QoS-related). Servers are a subclass of

Computers that are linked with Services via the “hostsService”

property (inverse property of “hostedByServer”). All Appliances

have a PowerState (which can be on or off), that can be affected

by services. Additionally, their average power consumption is

registered via the “consumes” property (with a

PowerConsumption range), to facilitate making energy-saving

decisions.

6 BOnSAI online at ISKP repository:

http://lpis.csd.auth.gr/ontologies/ontolist.html

http://lpis.csd.auth.gr/ontologies/ontolist.html

The Device branch is actually meant for the service-enabled, often

so-called smart devices. These are mostly Sensors and Actuators,

in general. BOnSAI also includes the classes of MultiSensor (i.e.

a Sensor array) and SensorActuator, which is meant for devices of

dual purposes. Devices are exposed by Services (and vice versa

Services expose Devices), forming a Sensor Web. The variety of

communication protocols is also modeled by the corresponding

classes and categorized into Wireless, Wired, PLC protocols etc.

The devices have also certain functionality. Sensors return certain

parameters and Actuators support various Actions. This is further

modeled in the functionality section.

For the case study of Smart IHU, all classes are instantiated and

the extra class of SmartPlugs is added. SmartPlugs are a

SensorActuator subcase that affect state of Appliances (turn them

on or off) and also read Power and Energy consumption values.

Additionally, a subclass of a specific brand and models of

SmartPlugs purchased for the system is added along with their

data properties. Additionally, another kind of Sensor is the

SmartClamper, which monitors the whole building’s

consumption. For the purposes of our system, specific brand

classes are added below SmartClamper and MultiSensor.

What is also interesting is that Smart IHU follows the service-

oriented architecture. Thus, although devices directly function on

the environment, and that knowledge is modeled, they are not

invoked to do so. Rather, the services associated with them are

sought, discovered, invoked and composed. Finally I/O devices

do not play an important role on the system’s function and are not

currently modeled.

4.2 Context-related Concepts
Context is a very popular notion among ambient systems.

Context-awareness adds much to the dynamicity of these systems

as their behavior varies depending on circumstance. BOnSAI

models context as a set of a single Location, a set of

environmental parameters and a timestamp. An instance of the

Context class can be associated with a User at a time. That enables

taking decisions for users depending on context. E.g. different

service composition can be delivered to the same user depending

on his location and/or environmental settings. Location as a

context element, also associated with every piece of hardware, can

range from a specific point to a room, floor or to the whole

building. Rooms also belong to floors, and floors in buildings.

Another form of context of more explicit nature is the user’s

mood or his preference profile. This kind of explicit knowledge is

often modeled in related work e.g. in the CoDAMoS ontology.

This data is left out of BOnSAI for the sake of simplicity but can

easily be added, in case it is needed for e.g. planning algorithms.

4.3 Functionality-related Concepts
Functionality elements are key to describing the operation of an

ambient system. BOnSAI models functionality using two base

classes: Parameters and Actions. Parameters are further classified

into EnvironmentalParameters, Energy, PowerConsumption and

Time. EnvironmentalParameters vary among Temperature,

Humidity, CO2 Level, Luminance and Pressure, similarly to

CoDAMoS:EnvironmentalConditions. Parameters are useful to

express the functionality of both Devices and Services.

Specifically, Sensors directly link to Parameters(Sometimes

EnvironmentalParameters) via the “returnsParameter” property.

Actuators are indirectly linked with parameters that they affect.

Specifically, Actuators have Actions and Actions have Facts as

results via the causesFact object property. Facts are useful for

modeling logical conditions. Then, classes such as PowerState

(linked to Applliances via the hasPowerState property) and

EnvironmentalParameter (and its subclasses e.g. Temperature,

Pressure etc), can be seen as Facts. To demonstrate the use of

causesFact, a Thermostat device could have a causesFact

property, with a value of a Temperature instance. That means that

the Thermostat sets the temperature to that instance’s value.

Likewise, a light dimmer actuator that sets a luminance value for a

room, can be modeled with a causesFact property and a

Luminance instance as value.

For the purposes of modeling Smart IHU, an extra subclass of

Action, the SwitchAction is specified. SwitchAction restricts the

“causes” property to have a range from the class PowerState

instead of its superclass, Fact. Moreover, SmartPlugs, as

SensorActuators also return Energy and PowerConsumption of

appliances. The Appliance that they affect is linked with the

“attachedAtAppliance” property. The other devices are also linked

with the parameters they return. SmartClampers return Energy and

Power. The Sensors of the MultiSensor array returns one of

Temperature, Humidity or Luminance.

As mentioned, parameters are linked both with devices and with

the services that expose the same functionality, in a different way,

and that is presented in the following subsection.

4.4 Service-related Concepts
The service class of BOnSAI is the most significant for service-

oriented ambient applications. To comply with and benefit from

existing standards in the field, the service class is imported from

the upper ontology for services, OWL-S. Thus, inherently from

OWL-S, a Service is describedBy a ServiceModel, presents a

ServiceProfile and supports a ServiceGrounding.

However, BOnSAI adds annotations to Service operations as well.

In literature, the notion of service is often confused with the

notion of Service Operation. BOnSAI conforms to WSDL (and

SAWSDL) consideration that a Service has many Operations (also

many bindings etc.). Each Operation has different Inputs, Outputs,

Preconditions and Effects. In an environment with Actuators, the

concept of Effects is essential to model and categorize different

service operations. Specifically, each Operation can have Inputs,

and Outputs that belong to the class of Parameter. Preconditions

and Effects on the other hand are Facts, such as a certain level of

Environmental settings or states of appliances. Besides, effects are

a synonymous notion to Actions as they result in Facts, e.g. the

act of turning off the lighting. In the SmartIHU domain, the most

useful Action is the SwitchAction (subclassOf Action), which

specifically turns Appliances on or off. Thus, the SmartPlug

Actuator has a restriction on the causesFact property to only cause

PowerState Facts. That models the change of power state of

Appliances using the smart plug actuators. Operations are

classified further into SensorOperations (which return data and

have no Effects) and ActuatorOperations (which cause at least one

Effect). This classification aids the use of services instead of

devices, and hence promotes service-orientation in applications.

Thus, for the purposes of extending OWL-S functionality and

further linked with other classes (e.g. the Device class via the

exposed/isExposedBy property), our Service class is implemented

as a subclassOf the owl-s:Service. The Service class then can have

many Operations (hasOperation property) and register the devices

that it is associated with (i.e. the devices that a services exposes).

4.5 QoS-related Concepts
The BOnSAI ontology finally supports the modeling of QoS

properties in various ways, to support optimized solutions in e.g.

service composition or service selection. Primarily, the class

Resource, directly imported from CoDAMoS along with its

subtree, models all kinds of common computing resources e.g.

memory, CPU etc. Further on, CoDAMoS:Resource is provided

by Computers and Servers. QoS properties of devices are

registered in instances of the CommunicationProtocol class and its

subclasses (e.g. WirelessCommunicationProtocol, Zigbee, Z-

Wave e.t.c.). These instances of CommunicationProtocol contain

latency, nodesPerNetwork, range nad Data Rate properties.

4.6 INSTANTIATION OF BOnSAI
The instances of BOnSAI that model the current Smart IHU

implementation are made in a separate taxonomy (separate OWL

file). That ensures that the BOnSAI ontology is left unchanged

and remains general-purpose so that other partners can use it. The

Smart IHU instantiation can be found online at the ISKP group

website7.

Here we present some interesting samples of Smart IHU instances

that also go to show how BOnSAI can be handled to model

mainly smart devices and services.

Figure 8 shows many operation instances of the Smart IHU

WSDL web services. SwitchOn which is in focus is shown to be

linked with the PlugwiseServices via the belongsToService

property and hasEffect of the PowerStateON (instance of

PowerState with “ON” value).

Figure 7. MultiSensor instance example

7 Smart IHU instances:

 http://lpis.csd.auth.gr/ontologies/bonsai/BOnSAISmartIHU.owl

Figure 7 shows a MultiSensor instance example of a sensor board

that integrates three types of sensors. It is shown viw the

hasSensor property that it embeds a Humidity sensor a Luminance

sensor and a Temperature sensor. Although here it is evident by

their name, these three sensors instances indeed explicitly model

their returnParameter types. The MultiSensor also registers its

location and the service through which users can manipulate the

device. The CommunicationProtocol is a certain instance of the

ZigBee protocol for smart devices.

Figure 8. SwitchOn and other Operation Instances

Finally, Figure 9 shows a SmartPlug (SubclassOf ActuatorSensor)

instance sample and lots of its object properties. As an Actuator

subclass, it has a performAction property which a value of

SwitchAction instance (according to the restriction on that

property, for SmartPlugs). This device is also actually exposed by

two different service implementations. The manufacturer of this

device has also incorporated his own implementation of an

encrypted ZigBee communication protocol. Naturally the location

is also registered. Via the AttachedToAppliance property, one can

http://lpis.csd.auth.gr/ontologies/bonsai/BOnSAISmartIHU.owl

know which appliance the smart plug affects. As a Sensor, this

device also returnsParameter of type PowerConsumption.

Afterall, the instantiation of BOnSAI can be used to verify its

effectiveness as it was in fact built to facilitate applications. From

a modeling point of view, reasoning was used to classify various

instances. Operation instances that haveOutput but cause no effect

are correctly classified as SensorOperations. Likewise Operation

instances that cause an Effect are correctly classified under

ActuatorOperation. An application was built to parse that

information and invoke the desired services, but is outside the

scope of this paper Future work includes such applications for

selecting (matching etc) and invoking the services.

Figure 9. SmartPlug instance example

5. FUTURE WORK
Future work is the use of BOnSAI in various heterogeneous

simple and intelligent applications. Primarily, the ontology will be

put to use and benefit service discovery clients such as in [26].

Dynamicity and alternative options in the results can be provided

by employing reasoning on the ontology. The users can then be

provided with automatic composition of services that satisfy their

needs. Additionally, these composite services can be context-

dependent.

Semantic discovery can be incorporated in various applications.

First of all, simple applications can benefit from semantic

discovery to dynamically parse, add and remove functionality.

iDEALISM is a desktop application presented in [27], where

users monitor and manage all the services in the building. The

application can be enhanced with semantic discovery to

dynamically add and remove content without user intervention.

An expert system can be built, where users can specify rules or

policies to manage the Smart IHU building. A multi-agent

approach can be followed for better co-ordination, through

negotiations. Rules can be used to achieve both energy savings in

the building and increase user comfort.

The ontology model also enables exposing the data on the web

under a universal schema. Publishing sensor data under e.g. the

LinkedData8 schema would enable universal manipulation of the

data by different partners.

Finally, semantic description of services can also be used for more

sophisticated service composition, via planning, such as in [28].

Existing planning algorithms can be applied on semantic services,

which are already much similar to actions in planning (they have

well-defined preconditions, inputs, outputs and effects).

6. CONCLUSIONS
Semantic Web technologies have sufficiently advanced and now

provide the tools to enhance the Web user’s experience. Content

can be annotated and parsed by machines thus enabling semantic

search. However, as a paradigm shift occurs, web users are more

concerned to get things done on the Internet rather than get

information. In other words, Web Services are emerging and

several technologies and protocols are already standardizing their

usage. There have already been attempts to apply Semantic Web

technologies on services such as the upper ontology for services

OWL-S and the SAWSDL W3C recommendation. Ambient

Intelligence, another emerging computing paradigm, directly

associated with service-orientation also benefits from Semantic

Web Services.

This work introduces BOnSAI, a Smart Building Ontology for

Ambient Intelligence, to be used in the Smart IHU Smart Building

environment and any other similar AmI platform. The BOnSAI

taxonomy includes concepts for describing services, functionality

in the system, existing hardware and enabling context awareness.

It imports and extends existing work, from the CoDAMoS project

and the OWL-S upper ontology for services. Service

interoperability provided by BOnSAI is due to be employed by

service selection, description and matching algorithms. Further

on, this infrastructure will enhance the development of an expert

system and a planning infrastructure in the Smart IHU system.

7. ACKNOWLEDGMENTS
This project is funded by Operational Program Education and

Lifelong Learning, OPS200056 (International Hellenic

University, Thessaloniki, Greece). The authors would also like to

thank the undergraduate student, Theo Mylonides, for his

contribution.

8. REFERENCES
[1] Weiser M (1999) The computer for the 21st century. ACM

SIGMOBILE Mob Comput Commun Rev 3(3): 3–11.

doi:10.1145/329124.329126

[2] Thomson G, Bianco S, Mokhtar SB, Georgantas N, Issarny

V (2008) Amigo aware services, communications in

computer and information science, 1, vol 11. Constructing

ambient intelligence part 7, pp 385–390

[3] Maamar Z., Narendra N. C., Subramanian S.: Towards an

ontology-based approach for specifying and securing Web

services. Information & Software Technology 48(7): 441-

455 (2006)

8LinkedData: http://linkeddata.org/

http://linkeddata.org/

[4] Sheshagiri M, Sadeh N. M., Gandon F. (2004) Using

semantic web services for context-aware mobile applications.

In: 2nd International conference on mobile systems

(MobiSys 2004), applications, and services workshop on

context awareness

[5] Stavropoulos, T.G., Vrakas, D., and Vlahavas, I. 2011. A

survey of service composition in ambient intelligence

environments. Artificial Intelligence Review (25 September

2011), pp. 1-24. doi:10.1007/s10462-011-9283-1

[6] Bottaro A, Bourcier J, Escoffier C, Lalanda P (2007)

Autonomic context-aware service composition. In: 2nd IEEE

international conference on pervasive services

[7] Masuoka R, Parsia B, Labrou Y (2003) Task computing—

the semantic web meets pervasive computing. In:

International semantic web conference, pp 866–881

[8] Vallée M, Ramparany F, Vercouter L (2005) Dynamic

service composition in ambient intelligence environments: a

multi-agent approach. In: First workshop on YR-SOC

[9] Santofimia MJ, Moya F, Villanueva FJ, Villa D, Lopez JC

(2008) An agent-based approach towards automatic service

composition in ambient intelligence. Artif Intell Rev 29(3–

4):265–276

[10] Noy N. F. and McGuinness D. L. Ontology development

101: A guide to creating your first ontology. Online, 2001.

[11] Qiu L, Shi Z, Lin F (2006) Context optimization of ai

planning for services composition. In: ICEBE � 06:

proceedings of the IEEE international conference on e-

business engineering, pp 610–617

[12] Bellur U, Narendra NC (2005) Towards service orientation

in pervasive computing systems. Int Conf InfTechnol Coding

Comput 2:289–295

[13] Beauche S, Poizat P (2008) Automated service composition

with adaptive planning. In: Bouguettaya A, Krueger, I,

Margaria T (eds) ICSOC 2008. LNCS, vol 5364. Springer,

Heidelberg, pp 530–537

[14] Chakraborty D, Joshi A, Finin T, Yesha Y (2005) Service

composition for mobile environments. J Mob Netw Appl

Spec Issue Mob Serv 10(4):435–451

[15] Messer A, Kunjithapatham A, Sheshagiri M, Song H, Kumar

P, Nguyen P, Yi KH (2006) InterPlay: a middleware for

seamless device integration and task orchestration in a

networked home. In: Proceedings of the annual IEEE

international conference on pervasive computing

PerCom’06. IEEE Computer Society, Washington, pp 296–

307

[16] Hansen K. M., Zhang W., Soares G.: Ontology-Enabled

Generation of Embedded Web Services. SEKE 2008: 345-

350

[17] Sachem S., Teixeira T., Issarny V., Ontologies for the

Internet of Things (accepted for publication), available at:

http://hal.inria.fr/hal-00642193/

[18] Abowd GD, Dey AK, Brown PJ, Davies N, Smith M,

Steggles P (1999) Towards a better understanding of context

and context-awareness. HUC, pp 304–307

[19] Ranganathan A, McGrath RE, Campbell RH, Mickunas MD

(2003) Ontologies in a pervasive computing environment. In:

Workshop on ontologies and distributed systems (part of the

18’th international joint conference on artificial intelligence

(IJCAI 2003)), Acapulco, Mexico

[20] Preuveneers D, Berbers Y (2005) Automated context-driven

composition of pervasive services to alleviate non-functional

concerns. Int J Comput Inf Sci 3(2):19–28

[21] Iacob SM, Almeida JPA, Iacob ME (2008) Optimized

dynamic semantic composition of services. SAC, pp 2286–

2292

[22] Davidyuk O, Georgantas N, Issarny V, Riekki J (2010) Dans:

MEDUSA: middleware for end-user composition of

ubiquitous applications. In: IGI Global (ed) Handbook of

research on ambient intelligence and smart environments:

trends and perspectives

[23] Shah N., Chao K., Zlamaniec T., Matei A.: Ontology for

Home Energy Management Domain. DICTAP (2) 2011: 337-

347

[24] Mokhtar SB (2007) Semantic middleware for service-

oriented pervasive computing. Doctoral dissertation,

University of Paris 6, Paris, France

[25] Maffioletti S (2006) UBIDEV a homogeneous service

framework for pervasive computing environments. Thesis

[26] Meditskos G., Bassiliades N., "Structural and Role-Oriented

Web Service Discovery with Taxonomies in OWL-S", IEEE

Transactions on Knowledge and Data Engineering

(TKDE), vol. 22, no. 2, pp. 278-290, Feb. 2010

[27] Stavropoulos T. G., Vrakas D., Arvanitidis A., Vlahavas I., A

System for Energy Savings in an Ambient Intelligence

Environment. ICT-GLOW 2011: 102-109

[28] Hatzi O., Vrakas D., Bassiliades N., Anagnostopoulos D.,

Vlahavas I., "The PORSCE II Framework: Using AI

Planning for Automated Semantic Web Service

Composition", The Knowledge Engineering Review,

Cambridge University Press, 2010.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Hansen:Klaus_Marius.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/s/Soares:Goncalo.html
http://www.informatik.uni-trier.de/~ley/db/conf/seke/seke2008.html#HansenZS08
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Chao:Kuo=Ming.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zlamaniec:Tomasz.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Matei:Adriana.html
http://www.informatik.uni-trier.de/~ley/db/conf/dictap/dictap2011-2.html#ShahCZM11
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/v/Vrakas:Dimitris.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/a/Arvanitidis:Alexandros.html
http://www.informatik.uni-trier.de/~ley/db/conf/ictglow/ictglow2011.html#StavropoulosVAV11

Figure 10. Extensive BOnSAI class diagram, subClass relationships and ObjectProperties

