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ABSTRACT 

This work introduces an ontology for incorporating Ambient 

Intelligence in Smart Buildings. The ontology extends and 

benefits from existing ontologies in the field, but also adds classes 

needed to sufficiently model every aspect of a service-oriented 

smart building system. Namely, it includes concepts modeling all 

functionality (i.e. services, operations, inputs, outputs, logic, 

parameters and environmental conditions), QoS (resources, QoS 

parameters), hardware (smart devices, sensors and actuators, 

appliances, servers) users and context (user profiles, moods, 

location, rooms etc.). The ontology is instantiated and put to use 

at the Smart Building setting of the International Hellenic 

University, enabling knowledge representation in machine-

interpretable form and hence is expected to enhance service-based 

intelligent applications. 

Categories and Subject Descriptors 

I.2.4. [Artificial Intelligence]: Knowledge Representation 

Formalisms and Methods – Ontologies, Representations. 

General Terms 

Documentation, Design, Reliability, Experimentation, Languages 

Keywords 

Ambient Intelligence, Semantic Web, Ontologies. 

1. INTRODUCTION 
 

Both evolution in the Web technologies and hardware have 

resulted in two paradigm shifts that form a new era in computing. 

First, Web users are increasingly finding ways to get things done, 

instead of just looking up content. In other words, Web 

Applications and Web Services have emerged, along with 

standardized protocols that guarantee their interoperability. 

Alongside, Semantic Web technologies, that have been around for 

a while now, provide the means for annotating resources and 

services resulting in new standards that enable true semantic 

interoperability for services. Service computing is also interlinked 

with Ambient Intelligence, another vision of computing where 

smart environments of embedded computers surrounding the user 

fulfill his/her needs. 

This work presents an ontology for enabling Ambient Intelligence 

in a Smart Building, named BOnSAI (Smart Building Ontology 

for Ambient Intelligence). There exist already domain-

independent upper ontologies (not officially proclaimed standards 

yet) that enable the vision of Semantic Web services. Our 

ontology is domain-dependent and specializes such ontologies in 

order to model the domain-specific concepts of the AmI 

application. BOnSAI takes into account much related work, and 

actually imports and benefits from existing ontologies. 

However, BOnSAI sets off to model many more concepts required 

in a Smart environment. The ontology is designed for the Smart 

IHU ambient setting whose goal is to provide automation and 

energy savings at the International Hellenic University (IHU) 

premises. This environment is equipped with sensors and 

actuators (so-called smart devices) in large scale, which interact 

with the rest of the system using the web service interface. 

The next section includes a background study that clarifies both 

the field of application of this ontology and existing standards. 

The third section presents extensive related work i.e. existing 

ontologies for similar ambient systems. The fourth and fifth 

sections present the proposed ontology in detail and its 

instantiation in the Smart IHU environment, respectively. Finally, 

future work and conclusions from this work are presented in the 

final sections. 

 

2. BACKGROUND STUDY 
This section presents the background work that inspired the 

proposed ontology. For one, Ambient Intelligence is the domain 

of application of the ontology. Secondly, the two dominant 

protocols towards Semantic Web Services are presented, as 

service orientation is the most essential element of the target 

system. 

2.1 Ambient Intelligence Overview 
Ambient Intelligence is a vision related to ubiquitous computing, 

a computing paradigm of the modern era. The advancement of 
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technology during the last decade has brought numerous changes 

in the everyday life of the ever-growing number of computer 

users. Computers are now affordable and potent to run demanding 

applications. More importantly, computing capabilities in 

smartphones and other handheld devices are making great leaps, 

enabling portability of processing power. In between laptops and 

smartphones, netbooks and more recently tablet PCs are raising in 

popularity and demand. 

As a result, a paradigm shift from personal to ubiquitous 

computing is evidently occurring. Users are gradually removing 

themselves from in front of the personal, desktop computer and 

search for computing resources in their surroundings (e.g. 

touchscreens, tablets, and smartphones). Apparently, ubiquitous 

computing (UbiComp) or pervasive computing (PerComp) is 

amongst the leading technological paradigms of the future. Mark 

Weiser coined the term ubiquitous computing and envisioned 

many of its attributes [1].  

Another vision, related to those developments, is the one of 

Ambient Intelligence (AmI). Ambient Intelligence extends the 

ideas presented in ubiquitous computing, by adding intelligent 

automations and intuitive interaction. Naturally, ubiquitous 

computing users, as they gradually move away from the desktop, 

require less and less interaction with the computer systems 

themselves. That is accomplished in two ways. First of all, human 

computer interactions become intuitive and use physical means. 

Sensor and actuator devices can contribute to this end. There is 

also the tendency to incorporate chips (e.g. RFID tags) into 

physical everyday life objects to identify them and use them as 

physical means of human-computer interaction. Secondly, 

Artificial Intelligence (AI) is incorporated into ubiquitous 

systems, to predict and carry out users’ tasks, assist them and 

provide a higher level of comfort. 

Ubiquitous computing and AmI are tightly linked to Web 

technologies. Ubiquitous computing envisions the embodiment of 

microprocessors in objects surrounding the users and their 

interconnection is made over Web. The notion of smart 

interconnected devices, objects or even people is known as the 

Internet of Things. Another relevant term is the one of the Sensor 

Web, which comprises of sensor networks and their data and 

actuator capabilities made available over web, sometimes through 

a web service interface to hide device and network heterogeneity. 

AmI and Sensor Web are tightly linked to Service Oriented 

Computing (SOC) or the Service Oriented Architecture (SOA). 

Service orientation is a trend in computing where data and 

functions are considered as services. The benefits from this shift 

are interoperability, platform independence, and remote access for 

Web Services especially. AmI systems use a wide range of 

interconnected devices or software services that are heterogeneous 

in nature, primarily because of non-standardization and 

heterogeneity in the market. Thus, services benefit AmI systems 

with abstractions and decoupling from low level functions by 

providing uniform access to sensor data, device functions and 

software services. Finally, a goal of AmI is provision of complex 

user tasks which can be decomposed to atomic tasks that can be 

satisfied by atomic services. In other words this problem can be 

transformed to the one of Service Composition. 

The use of ontologies in AmI can aid in both service computing 

and knowledge representation for semantic interoperability, in 

general. The semantic web technologies already provide the tools 

for complex taxonomy modeling, mainly using the Web Ontology 

Language (OWL)1. These taxonomies, widely known as 

ontologies, define a formal dictionary of entities and their 

relationships, either hierarchical or through properties. Ontologies 

for different domains are constantly being designed in the hopes 

of enabling the Semantic Web vision. Specifically, their purpose 

is to describe resources as entities on the Web (e.g. web page 

content) in a computer readable format so that software agents, 

a.k.a. semantic web agents, can discover and filter that content. 

Reasoning can also be carried out using that knowledge. AmI 

systems can also benefit from such representations that enable 

reasoning and the use of logic.  

On the other hand, adding semantic annotations on service 

descriptions can bring even more benefits for those systems that 

indeed employ web services. Primarily, service descriptions are 

rendered machine-interpretable, thus, semantically defined queries 

can be matched upon semantic service descriptions for more 

refined results. Additionally, semantic discovery can return results 

when syntactic discovery cannot. Due to the dynamic nature of 

ambient systems, service providers enter or leave the environment 

(e.g. smartphone service providers) or simply crash. When the 

desired services are not present, a semantic discovery agent can 

find alternative solutions according to reasoning conclusions (e.g. 

return a service that returns a relevant parameter). Clearly there is 

a lot of ongoing work to enable and standardize semantic web 

services to benefit from what it has to offer overall. 

2.2 OWL-S 
Some languages have flourished through work in the field of 

semantic annotations for services. OWL-S2 is such a language. It 

is actually an upper ontology for services that strives to 

semantically enhance service descriptions to achieve 

interoperability. OWL-S derived from a previous attempt, namely 

DAML-S, by the same initiative. The OWL-S ontology contains 

three main classes that relate and describe a service: the Service 

Profile, the Service Process Model and the Service Grounding.  

The Service Profile describes, sometimes vaguely, what the 

service does. Apart from that, it contains information about its 

inputs and its outputs. It is worth mentioning at that point that the 

OWL-S ontology acknowledges the fact that services may or may 

not have input or output data but they often have preconditions 

and results or effects i.e. perform some operation that changes the 

state of things. These notions are well known in the field of 

Artificial Intelligence as planning, which considers actions as 

operations that have preconditions and may change the world’s 

state. Finally, services can be considered as actions and likewise 

be assigned a quadruple symbolized as IOPR or IOPE which 

stand for Inputs, Outputs, Preconditions and Results or Effects. 

The Process Model unfolds the exact process of a service in 

workflow form. Using it, clients are able to analyze it, monitor its 

execution or when performing composition, orchestrate the 

execution of different services. In other words, the workflows of 

services can be intertwined into a complex composite service. An 

example of such work can be found in [2]. The Process Model 

itself, as a workflow, can be used to describe composite services. 

                                                                 

1 The Web Ontology Language, OWL: 

 http://www.w3.org/TR/owl-features/ 

2 OWL for Services (OWL-S): 

http://www.w3.org/Submission/OWL-S/ 

http://www.w3.org/TR/owl-features/
http://www.w3.org/Submission/OWL-S/


The Service Grounding, as the name implies, is the actual 

instantiation of a service, quite similarly to service binding in 

WSDL. It provides concrete implementation information for the 

services so that it can be invoked by clients. OWL-S is not 

restrictive and can support any type of Grounding but naturally it 

inherently already supports WSDL mapping. 

Finally, OWL-S is complementary to WSDL. WSDL syntactically 

defines inputs and outputs of services while OWL-S adds 

semantic descriptions. OWL-S does not include implementation 

details to actually invoke a service, but its Service Grounding can 

map to such an implementation e.g. WSDL. OWL-S is also fully 

compliant with SOA, being compatible with known service 

registries (e.g. UDDI). The services can thus be advertised, 

discovered and invoked by clients. Although it was used widely in 

research or extensively influenced very similar custom approaches 

(in essence alternative service ontologies that extend it), OWL-S 

did not make it as a W3C recommendation. 

2.3 SAWSDL 
Another approach to adding semantic annotations in web service 

descriptions is SAWSDL3 (Semantic Annotations for WSDL and 

XML Schema). SAWSDL is a W3C recommendation since 2007. 

Unlike OWL-S, this standard directly extends WSDL documents 

by adding ontology references in the document itself. These 

references to ontology models take the form of XML attributes, 

named ModelReferences and directly annotate interfaces, 

operations and faults within a WSDL file. ModelRederences can 

also be applied on XML Schema types, elements and attributes. 

SAWSDL also offers two attributes to map data from semantic 

models to XML and vice versa. The liftingSchemaMapping 

specifies a transformation for an XML element to semantic data. 

The loweringSchemaMapping does the opposite, as it specifies a 

transformation for an element of a semantic model to XML data. 

These transformations are usually specified in well-known 

languages like XSLT, SPARQL and XQuery. 

In comparison to OWL-S, SAWSDL follows a completely 

different approach. OWL-S is a top-down solution to the problem 

of semantic descriptions. OWL-S files are upper ontologies meant 

to include WSDL files, for instance, as groundings. Systems that 

need more domain specific concepts extend the ontology, raising 

the complexity of this approach. SAWSDL follows a bottom-up 

approach. WSDL files are enhanced, not replaced entirely as 

descriptions. The annotations within SAWSDL files can contain 

references to any number of ontologies to satisfy domain-specific 

demands. This approach is simpler and more straightforward to 

use. 

3. RELATED WORK 
Many existing approaches on Ambient Intelligence have 

introduced their own ontologies for enhancing knowledge 

interoperability in such systems. Most of these systems are indeed 

service-oriented. One use for ontologies in such systems is plain 

knowledge representation, querying and reasoning for data. 

Another use which is a more modern tendency is service 

annotation to enhance the discovery, (hence also matching and 

selection) and composition of web services. Towards that goal, 

the ontologies specify and disambiguate concepts for inputs, 

outputs, preconditions and effects of service operations. Several 

                                                                 

3 Semantic Annotations for WSDL (SAWSDL) Specification: 

http://www.w3.org/TR/sawsdl/ 

of them extend OWL-S. Then the ontology can be used just like 

OWL-S as a service description itself (it is just an OWL-S version 

with domain-specific classes). An example of such an ontology 

can be seen on Figure 1, where OWL-S (Service, Profile, 

Grounding) is extended with context classes [3]. The SAWSDL 

approach is yet not so popular in AmI. However, we believe that 

as the Sensor Web evolves, more and more web services will be 

available and the management of a large set of WSDL 

descriptions will call for semantic annotations in the form of 

SAWSDL, which is the most straightforward approach. 

 

Figure 1. OWL-S extension by Maamar 

All in all, whether just for knowledge representation or for service 

annotation and interoperability, ontologies are needed to specify 

domain-specific concepts. One can argue that true interoperability 

can only be reached if all systems use the same ontology. 

Currently each system has its own taxonomy and dictionary, so 

interoperability is achieved for all clients within that system. The 

standardization of an ontology in each domain, in that case the 

AmI domain, would offer cross-system interoperability. Some 

relevant systems indeed make steps towards that goal by 

importing other existing ontologies [4], [6].  

An extensive review of relevant approaches can be found at [2]. 

The relevant ontologies found, use various specification 

languages ranging from plain XML, to DAML and OWL. 

Regardless of language, it is apparent that they share many 

concepts and hence standardization is possible. Furthermore, the 

numerous common concepts on these ontologies can be 

categorized into four main clusters depending on what they 

regard: functionality, context, QoS and hardware. Service related 

concepts can also be regarded as functionality-related. The 

following subsection presents some of these common concepts 

and the next subsection presents details of such ontologies. 

 

3.1 Common Concepts 

3.1.1 Functionality 
The main purpose of functionality classes is to model all system’s 

operations. For service-oriented systems this process is significant 

as services description will later be annotated in reference to these 

classes. Examples of such concepts can be found in [7] and [8] 

that define types of input and output, binary, physical data etc. 

Services themselves can also be included in the functionality 

category e.g. in [9], [11], [12]. Beauches et al. [13] define 

capability and data structures. Chakraborty et al. [14] define a 

hierarchy for groups of services. Ibrahim give some examples of 

service-concepts or actions, like “Take-A-Picture” and the related 

output “Image”. Messer et al. [15] define classes for Media Types 

and Capabilities, as media is one of the most popular domains in 

AmI. The Hydra-middleware project extensively model 

functionality of each device. Then these descriptions are used by 

http://www.w3.org/TR/sawsdl/


their ontology service compiler, Limbo [16], to dynamically 

generate services for embedded devices. 

Ontologies for the Internet of Things (IoT Ontologies) are 

proposed in [17]. Three ontologies are proposed. A device 

ontology describes the hardware which is mostly sensors for the 

Internet of Things. A domain ontology defines Physics and 

Mathematics that can be used to describe and clarify service (and 

device) functionality. Finally an estimation ontology contains 

mathematical models that can be assigned to services. All in all, 

the ontologies extensively model most of the functionality that 

can be met in a service-oriented and sensor-enabled environment 

such as Internet of Things implementations. 

3.1.2  Context-awareness 
Context can be defined as a set of statements about a person, a 

place or an object [17]. Context-awareness refers to the ability of 

a system or method in general to perceive and take into account 

the current environment or world state. Naturally, this property 

adds up to AmI systems dynamicity as results become case-

sensitive like service compositions according to user environment. 

Ontologies are the main tool for modeling context in research in 

order to achieve context-awareness.  

Concepts related to context are mainly location, user-related, 

environment and time as seen clearly in [19]. Then a context can 

be a set of these parameters associated with an entity. E.g. a user 

can have a context of current time, location and room temperature. 

Context can also be the product of reasoning (e.g. absolute 

coordinates can point out a certain location or room) which is the 

case in [20]. Others include classes to distinguish context 

belonging to different entities. Iacob et al. [21] demonstrate a 

fragment of a domain ontology that includes context concepts. 

The Context class is associated with a GeoLocation a GSMCell 

and Schedule, which confirms the fact that usually context has to 

do with location and time. Further on, Users can separately be 

connected to a GSMCell, a GeoLocation, Home, Office and 

Schedule. 

In [11] services, environment and user can all have context. Quite 

similarly in [12], context can be environmental, service-related or 

resource-related. Another context-related notion is the notion of 

Event (found in [9]). Santofirmia et al. [9] also regard context as a 

whole world state consisting of static and dynamic facts. A 

knowledge base and a semantic model are used for the world 

representation. Finally, Vallee et al. [8] puts context models into 

use by regarding context while performing service composition. 

3.1.3 Quality of Service – QoS 
Quality of Service considers added value parameters like service 

latency, response time or costs in general. Systems that take these 

parameters into account, offer optimum solutions. A typical 

approach to consider QoS is using an ontology that defines QoS 

concepts. Then, service QoS parameters can be registered and 

reviewed at discovery-time as service meta-data. Davidyuk et al. 

[22] indeed includes QoS metadata – non-functional properties of 

services in an upper ontology. Thus each service has known non-

functional or QoS properties, that serve as selection criteria. 

3.1.4 User Preferences 
User preferences is another parameter similar to context but of 

distinct meaning. While context is case-sensitive, user parameters 

change less often and always accompany a certain user, 

characterizing him/her. The system also needs to consider these 

preferences alongside context during e.g. service composition. 

Preference related concepts can be Mood, PreferenceProfile and 

Role [20]. In practice, the system can be aware that a certain user 

always prefers mobile services, or black and white printing to 

color. In [20], users can set a streaming audio and video quality 

preference in a scale of Low, Medium or High. The system 

usually checks whether preferences can be met according to what 

is available at the time, and make settlements.  

3.1.5 Hardware 
AmI systems make use of unique and cutting-edge hardware to 

offer innovative and intuitive user interfaces, interconnect with 

physical objects and surround users. Hardware is also domain 

dependent. It can range from media streaming devices, to home 

automation and wellness devices. DEHEMS is a home energy 

efficiency application that introduces a wide ontology of home 

appliances and their energy profiles [23]. Messer et al. [15] define 

their multimedia devices. Also, hardware provides computing 

resources that are modeled in [12] and [24]. Other ontologies 

containing hardware concepts can be found in [25], [9] and [21]. 

3.2 Ontologies for Ambient Intelligence 

3.2.1 The GAIA Ontology 
The ontology infrastructure of the GAIA system is described 

in detail in [19]. Ontologies of the GAIA system mainly define 

either context information or entities in the environment. Context 

is represented in a predicate form that inherently suits the 

planning component (world states in Planning are sets of facts – 

predicates). E.g. the predicate Location (Chris, in, Room 2401) 

defines knowledge about a person’s location. Other context-

related predicates can be classified in physical context (location 

and time), environmental context (weather, light and sound 

levels), informational context (stock quotes, sports scores), 

personal context (health, mood, schedule, activity), social context 

(group activity, social relationships, whom one is in a room with), 

application context (email, websites visited) and system context 

(network traffic, status of printers). Ontologies are used to type-

check arguments of these predicates (e.g. Chris and Room 2401). 

On the other hand entity-related ontologies define taxonomies and 

relations between devices, services, applications and users. GAIA 

also incorporates an ontology server that enables incremental 

addition of new ontologies. Classes and properties are then 

merged with the existing ones. However, the GAIA ontologies 

were not reused, because they contain many more concepts and 

relationships than needed for our purposes. In this work we strive 

to include a minimal set of concepts, in order to ease the use of 

the ontology. Furthermore, compared to GAIA, our ontology 

focuses mainly on the discrimination between the sensor and 

actuator role of devices (and services) in Smart Buildings and 

their corresponding functionality. Finally, another subtle reason 

for not re-suing the GAIA ontologies was the they could not be 

found online. 

3.2.2 The DEHEMS Ontology 
The DEHEMS project (Digital Environment Home energy 

Management System) proposes an ontology to address the 

knowledge representation and reasoning issues of the DEHEMS 

infrastructure. The project’s overall goal is energy consumption 

awareness across multiple households and energy advice 

provisioning. This group of households can be considered as a 

Smart City. The DEHEMS infrastructure enables collecting data 

from households, inserting them into the ontology model and 

reasoning about them to warn about abnormal consumption of 



energy and provide advice (tips). The proposed ontology, namely 

“the Home Appliances Ontology”, is a SUMO4-compliant 

ontology that focuses on modeling extensive energy specifications 

about electric devices. The most generic concept of the ontology 

is the ElectricHomeAppliance concept. Other main concepts, like 

HomeOfficeAppliance, EntertainmentAppliance, Device and 

BodyCareAppliance are its subclasses. Each one of these leads to 

a different subtree in the hierarchy that can be seen as a cluster of 

relevant concepts. A basic property that gets a lot of focus in this 

ontology is the StarInfo slot, found in various appliance-concepts. 

It provides a star energy rating for each device as an index of 

energy efficiency. The ontology is evaluated for two reasoning 

problem instances: checking whether an energy consumption 

value is within normal range and providing tips. The DEHEMS 

ontology, however, is unsuitable for AmI systems, as it models 

extensive information about appliances only, and leaves out key-

concepts like Service, Sensors, Actuators (i.e. other kinds of 

Devices), Input and Output parameters, which are vital for most of 

the functionality modeling. On the other hand, it could, be used to 

extend the branch of home Appliances in specific cases. In our 

case this was not required. Additionally, the ontology was not 

found online. 

3.2.3 The CoDAMoS Ontology 
Preuveneers et al. [20] define an ontology5 in OWL that along 

with a context management system, is able to adapt services based 

on context. Concepts defined in this ontology revolve around the 

four main concepts of User, Platform, Service and Environment. 

These upper classes are interconnected as shown on Figure 2.  

 

Figure 2. CoDAMoS upper ontology classes 

At a glance, Environment has location, time and environmental 

condition data. A user has mood, profile, role and tasks (to 

complete) that include activities and use services in turn, as seen 

on Figure 3 shows the service-related classes, inspired from 

OWL-S and linked to CoDAMoS classes task and software. The 

OWL-S inspired concepts and linkage to the rest of CoDAMoS 

can be seen on Figure 4. 

A platform provides hardware that relates to resources (power, 

memory, cpu, storage and network) and i/o devices, and software 

that provides services. Software can be an operating system, a 

virtual machine, a middleware or a rendering engine. Finally, the 

environment has location time and environmental conditions, as 

seen on Figure 5.The four main concepts are interconnected in 

many ways: a service requires a platform, a platform has an 

environment. The ontology for services is in fact OWL-S (that 

                                                                 

4The Suggested Upper Merged Ontology (SUMO) 

 http://www.ontologyportal.org/ 

5 The CoDAMoS context ontology: 

http://distrinet.cs.kuleuven.be//projects/CoDAMoS/ontology/cont

ext.owl 

provides service profile, model and grounding) and is interlinked 

with the rest of the ontologies as tasks use services and software 

provides services. 

 

Figure 3. CoDAMoS user-related classes 

 

Figure 4. CoDAMoS service-related classes, OWL-S 

 

Figure 5. CoDAMoS environment-related classes 

The proposed ontology directly imports the CoDAMoS ontology, 

and makes use of a lot of its classes. In detail, environmental 

condition and its subclasses are used and enriched, service is 

imported from OWL-S, and users can have moods and profiles. 

We consider the notion of context which here is named 

environment. However, we needed sensor and actuator oriented 

classes to represent hardware, while the CoDAMoS platform 

hierarchy is left unused. The users also do not need the property 

http://www.ontologyportal.org/
http://distrinet.cs.kuleuven.be/projects/CoDAMoS/ontology/context.owl
http://distrinet.cs.kuleuven.be/projects/CoDAMoS/ontology/context.owl


usesService and hasTask. Another main focus of our ontology is 

specifying the functionality of services (IOPEs). 

Indeed the CoDAMoS ontology provides many useful concepts, 

but for our case we need to further specify service and device 

functionality. We need a hierarchy for smart devices and 

appliances. Furthermore, OWL-S here is not imported (but rather 

its concepts are redefined) so CoDAMoS-based systems are not 

really compatible to other OWL-S based systems. We also make a 

subclass of the OWL-S:Service, rather than linking properties to 

the OWL-S:Service directly, to ensure that other OWL-S based 

systems are not forced to include our concepts as well. 

3.2.4 The OntoAMI Ontology 
Santofimia et al. [9] propose a general simplistic semantic model 

for universal use across AmI applications. This only includes 

basic concepts that cannot be left out in AmI which namely are 

“Service”, “Device”, “Event”, “Action”, “Object” and “Context”. 

Figure 6 shows the relationship between these upper classes. 

Furthermore, as a showcase, they map this model to an OWL 

ontology, adding more domain-dependent concepts and 

relationships suited for their intrusion-detection implementation, 

like “Announce” and “Hazard”. 

The proposed ontology indeed conforms to many aspects of 

OntoAMI after only slight alterations. Devices do not actually 

provide services (sensor and actuators do not have embedded web 

servers) but are associated with them (Services expose certain 

device functions). Instead, Servers do provide Services. Actions 

are indeed performed by Services (Operations to be exact), while 

Actions are indeed linked to the Objects they affect (which in our 

case are facts – a more general notion). The notion of Event is left 

out of BOnSAI and Context is not associated with it.  

 
Figure 6. OntoAMI upper classes and their relationships 

4. BOnSAI 
The BOnSAI ontology (a Smart Building Ontology for Ambient 

Intelligence) is designed to enable the vision of Ambient 

Intelligence in large-scale service-oriented pervasive systems. The 

engineering method used was the Ontology Development 101 

Guide [10], with emphasis on the intended use and application of 

the ontology (which is service interoperability). BOnSAI was 

implemented in OWL at Protégé. 

BOnSAI classes can be categorized in context-related, service-

related, hardware-related and functionality-related. Indeed, 

background study validates this categorization. Due to extensive 

work on this field, BOnSAI, takes advantage of, and imports 

existing ontologies available online. However, numerous concepts 

are either left out completely by existing ontologies or need 

modification. 

While addressing the modeling of most AmI systems, BOnSAI’s 

implementation purpose is the modeling of the Smart IHU system. 

BOnSAI sustains the generality of most AmI-related ontologies, 

as it includes all common general-purpose classes. Still, it is less 

generic as it contains many more domain-specific classes. A small 

number of extra classes is added then for the specific purpose of 

modeling the Smart IHU infrastructure. Finally, the classes are 

instantiated to represent Smart IHU existing entities. The ontology 

is thus put to use and verified during that process. It can be 

extended and instantiated in the same manner for similar AmI 

systems.  

BOnSAI can be located online at the LPIS lab ontology 

repository6. Figure 10 presents an extensive class diagram of 

BOnsSAI. Subclasses are shown below their supercalsses. 

ObjectProperty relationships are also marked with an arrow. The 

two other ontologies that BOnSAI imports are shown within 

rectangles, and their relationship with BOnSAI concept is 

eveident through subclass and object property relationships. 

Please note that a version of CoDAMoS with working URIs had 

to be re-hosted at our website so that it can be imported. 

In the next subsections, each cluster of BOnSAI classes is 

thoroughly presented and explained. The Smart IHU-specific 

classes are presented separately in a separate subsection. In the 

final subsection, the instantiation of BOnSAI with Smart IHU 

entities is shown. 

4.1 Hardware-related Concepts 
Hardware-related concepts should support both energy-awareness, 

functionality and service-orientation in the system. All Hardware 

is mainly divided into Appliances and Devices, which differ in 

their ability to offer services. The only thing common to Devices 

and Appliances is that they both have a Location so they can be 

located according to the place they function and affect (Location 

is detailed in the Context-related section). 

Appliances are the non-service-enabled electric appliances in the 

building such as Radiator, Lighting, AirCondition, Printer, etc. 

The Appliance branch of the ontology can be extended to model 

extensive knowledge on appliance energy properties e.g. by using 

the DEHEMS ontology as long as the latter is standardized by 

SUMO and be made online available. Finally, interlinking with 

functionality properties, these appliances have the ability to alter 

the state of EnvironmentalParameters. This is modeled by the 

“afftects” property. E.g. Radiators and airconditioning affect 

Temperature and Lighting affects Luminance. The most 

interesting case of Appliances is the Computer, which provide 

computing resources (QoS-related). Servers are a subclass of 

Computers that are linked with Services via the “hostsService” 

property (inverse property of “hostedByServer”). All Appliances 

have a PowerState (which can be on or off), that can be affected 

by services. Additionally, their average power consumption is 

registered via the “consumes” property (with a 

PowerConsumption range), to facilitate making energy-saving 

decisions. 

                                                                 

6 BOnSAI online at ISKP repository: 

http://lpis.csd.auth.gr/ontologies/ontolist.html 

http://lpis.csd.auth.gr/ontologies/ontolist.html


The Device branch is actually meant for the service-enabled, often 

so-called smart devices. These are mostly Sensors and Actuators, 

in general. BOnSAI also includes the classes of MultiSensor (i.e. 

a Sensor array) and SensorActuator, which is meant for devices of 

dual purposes. Devices are exposed by Services (and vice versa 

Services expose Devices), forming a Sensor Web. The variety of 

communication protocols is also modeled by the corresponding 

classes and categorized into Wireless, Wired, PLC protocols etc. 

The devices have also certain functionality. Sensors return certain 

parameters and Actuators support various Actions. This is further 

modeled in the functionality section. 

For the case study of Smart IHU, all classes are instantiated and 

the extra class of SmartPlugs is added. SmartPlugs are a 

SensorActuator subcase that affect state of Appliances (turn them 

on or off) and also read Power and Energy consumption values. 

Additionally, a subclass of a specific brand and models of 

SmartPlugs purchased for the system is added along with their 

data properties. Additionally, another kind of Sensor is the 

SmartClamper, which monitors the whole building’s 

consumption. For the purposes of our system, specific brand 

classes are added below SmartClamper and MultiSensor. 

What is also interesting is that Smart IHU follows the service-

oriented architecture. Thus, although devices directly function on 

the environment, and that knowledge is modeled, they are not 

invoked to do so. Rather, the services associated with them are 

sought, discovered, invoked and composed. Finally I/O devices 

do not play an important role on the system’s function and are not 

currently modeled. 

4.2 Context-related Concepts 
Context is a very popular notion among ambient systems. 

Context-awareness adds much to the dynamicity of these systems 

as their behavior varies depending on circumstance. BOnSAI 

models context as a set of a single Location, a set of 

environmental parameters and a timestamp. An instance of the 

Context class can be associated with a User at a time. That enables 

taking decisions for users depending on context. E.g. different 

service composition can be delivered to the same user depending 

on his location and/or environmental settings. Location as a 

context element, also associated with every piece of hardware, can 

range from a specific point to a room, floor or to the whole 

building. Rooms also belong to floors, and floors in buildings. 

Another form of context of more explicit nature is the user’s 

mood or his preference profile. This kind of explicit knowledge is 

often modeled in related work e.g. in the CoDAMoS ontology. 

This data is left out of BOnSAI for the sake of simplicity but can 

easily be added, in case it is needed for e.g. planning algorithms. 

4.3 Functionality-related Concepts 
Functionality elements are key to describing the operation of an 

ambient system. BOnSAI models functionality using two base 

classes: Parameters and Actions. Parameters are further classified 

into EnvironmentalParameters, Energy, PowerConsumption and 

Time. EnvironmentalParameters vary among Temperature, 

Humidity, CO2 Level, Luminance and Pressure, similarly to 

CoDAMoS:EnvironmentalConditions. Parameters are useful to 

express the functionality of both Devices and Services. 

Specifically, Sensors directly link to Parameters(Sometimes 

EnvironmentalParameters) via the “returnsParameter” property.  

Actuators are indirectly linked with parameters that they affect. 

Specifically, Actuators have Actions and Actions have Facts as 

results via the causesFact object property. Facts are useful for 

modeling logical conditions. Then, classes such as PowerState 

(linked to Applliances via the hasPowerState property) and 

EnvironmentalParameter (and its subclasses e.g. Temperature, 

Pressure etc), can be seen as Facts. To demonstrate the use of 

causesFact, a Thermostat device could have a causesFact 

property, with a value of a Temperature instance. That means that 

the Thermostat sets the temperature to that instance’s value. 

Likewise, a light dimmer actuator that sets a luminance value for a 

room, can be modeled with a causesFact property and a 

Luminance instance as value.  

For the purposes of modeling Smart IHU, an extra subclass of 

Action, the SwitchAction is specified. SwitchAction restricts the 

“causes” property to have a range from the class PowerState 

instead of its superclass, Fact. Moreover, SmartPlugs, as 

SensorActuators also return Energy and PowerConsumption of 

appliances. The Appliance that they affect is linked with the 

“attachedAtAppliance” property. The other devices are also linked 

with the parameters they return. SmartClampers return Energy and 

Power. The Sensors of the MultiSensor array returns one of 

Temperature, Humidity or Luminance. 

As mentioned, parameters are linked both with devices and with 

the services that expose the same functionality, in a different way, 

and that is presented in the following subsection. 

4.4 Service-related Concepts 
The service class of BOnSAI is the most significant for service-

oriented ambient applications. To comply with and benefit from 

existing standards in the field, the service class is imported from 

the upper ontology for services, OWL-S. Thus, inherently from 

OWL-S, a Service is describedBy a ServiceModel, presents a 

ServiceProfile and supports a ServiceGrounding. 

However, BOnSAI adds annotations to Service operations as well. 

In literature, the notion of service is often confused with the 

notion of Service Operation. BOnSAI conforms to WSDL (and 

SAWSDL) consideration that a Service has many Operations (also 

many bindings etc.). Each Operation has different Inputs, Outputs, 

Preconditions and Effects. In an environment with Actuators, the 

concept of Effects is essential to model and categorize different 

service operations. Specifically, each Operation can have Inputs, 

and Outputs that belong to the class of Parameter. Preconditions 

and Effects on the other hand are Facts, such as a certain level of 

Environmental settings or states of appliances. Besides, effects are 

a synonymous notion to Actions as they result in Facts, e.g. the 

act of turning off the lighting. In the SmartIHU domain, the most 

useful Action is the SwitchAction (subclassOf Action), which 

specifically turns Appliances on or off. Thus, the SmartPlug 

Actuator has a restriction on the causesFact property to only cause 

PowerState Facts. That models the change of power state of 

Appliances using the smart plug actuators. Operations are 

classified further into SensorOperations (which return data and 

have no Effects) and ActuatorOperations (which cause at least one 

Effect). This classification aids the use of services instead of 

devices, and hence promotes service-orientation in applications. 

Thus, for the purposes of extending OWL-S functionality and 

further linked with other classes (e.g. the Device class via the 

exposed/isExposedBy property), our Service class is implemented 

as a subclassOf the owl-s:Service. The Service class then can have 

many Operations (hasOperation property) and register the devices 

that it is associated with (i.e. the devices that a services exposes). 



4.5 QoS-related Concepts 
The BOnSAI ontology finally supports the modeling of QoS 

properties in various ways, to support optimized solutions in e.g. 

service composition or service selection. Primarily, the class 

Resource, directly imported from CoDAMoS along with its 

subtree, models all kinds of common computing resources e.g. 

memory, CPU etc. Further on, CoDAMoS:Resource is provided 

by Computers and Servers. QoS properties of devices are 

registered in instances of the CommunicationProtocol class and its 

subclasses (e.g. WirelessCommunicationProtocol, Zigbee, Z-

Wave e.t.c.). These instances of CommunicationProtocol contain 

latency, nodesPerNetwork, range nad Data Rate properties. 

 

4.6 INSTANTIATION OF BOnSAI 
The instances of BOnSAI that model the current Smart IHU 

implementation are made in a separate taxonomy (separate OWL 

file). That ensures that the BOnSAI ontology is left unchanged 

and remains general-purpose so that other partners can use it. The 

Smart IHU instantiation can be found online at the ISKP group 

website7. 

Here we present some interesting samples of Smart IHU instances 

that also go to show how BOnSAI can be handled to model 

mainly smart devices and services. 

Figure 8 shows many operation instances of the Smart IHU 

WSDL web services. SwitchOn which is in focus is shown to be 

linked with the PlugwiseServices via the belongsToService 

property and hasEffect of the PowerStateON (instance of 

PowerState with “ON” value). 

 

 

Figure 7. MultiSensor instance example 

 

                                                                 

7 Smart IHU instances: 

 http://lpis.csd.auth.gr/ontologies/bonsai/BOnSAISmartIHU.owl 

Figure 7 shows a MultiSensor instance example of a sensor board 

that integrates three types of sensors. It is shown viw the 

hasSensor property that it embeds a Humidity sensor a Luminance 

sensor and a Temperature sensor. Although here it is evident by 

their name, these three sensors instances indeed explicitly model 

their returnParameter types. The MultiSensor also registers its 

location and the service through which users can manipulate the 

device. The CommunicationProtocol is a certain instance of the 

ZigBee protocol for smart devices. 

 

 

Figure 8. SwitchOn and other Operation Instances 

Finally, Figure 9 shows a SmartPlug (SubclassOf ActuatorSensor) 

instance sample and lots of its object properties. As an Actuator 

subclass, it has a performAction property which a value of 

SwitchAction instance (according to the restriction on that 

property, for SmartPlugs). This device is also actually exposed by 

two different service implementations. The manufacturer of this 

device has also incorporated his own implementation of an 

encrypted ZigBee communication protocol. Naturally the location 

is also registered. Via the AttachedToAppliance property, one can 

http://lpis.csd.auth.gr/ontologies/bonsai/BOnSAISmartIHU.owl


know which appliance the smart plug affects. As a Sensor, this 

device also returnsParameter of type PowerConsumption. 

Afterall, the instantiation of BOnSAI can be used to verify its  

effectiveness as it was in fact built to facilitate applications. From 

a modeling point of view, reasoning was used to classify various 

instances. Operation instances that haveOutput but cause no effect 

are correctly classified as SensorOperations. Likewise Operation 

instances that cause an Effect are correctly classified under 

ActuatorOperation. An application was built to parse that 

information and invoke the desired services, but is outside the 

scope of this paper Future work includes such applications for 

selecting (matching etc) and invoking the services. 

 

 

Figure 9. SmartPlug instance example 

 

5. FUTURE WORK 
Future work is the use of BOnSAI in various heterogeneous 

simple and intelligent applications. Primarily, the ontology will be 

put to use and benefit service discovery clients such as in [26]. 

Dynamicity and alternative options in the results can be provided 

by employing reasoning on the ontology. The users can then be 

provided with automatic composition of services that satisfy their 

needs. Additionally, these composite services can be context-

dependent. 

Semantic discovery can be incorporated in various applications. 

First of all, simple applications can benefit from semantic 

discovery to dynamically parse, add and remove functionality. 

iDEALISM is a desktop application presented in [27], where 

users monitor and manage all the services in the building. The 

application can be enhanced with semantic discovery to 

dynamically add and remove content without user intervention.  

An expert system can be built, where users can specify rules or 

policies to manage the Smart IHU building. A multi-agent 

approach can be followed for better co-ordination, through 

negotiations. Rules can be used to achieve both energy savings in 

the building and increase user comfort. 

The ontology model also enables exposing the data on the web 

under a universal schema. Publishing sensor data under e.g. the 

LinkedData8 schema would enable universal manipulation of the 

data by different partners. 

Finally, semantic description of services can also be used for more 

sophisticated service composition, via planning, such as in [28]. 

Existing planning algorithms can be applied on semantic services, 

which are already much similar to actions in planning (they have 

well-defined preconditions, inputs, outputs and effects). 

6. CONCLUSIONS 
Semantic Web technologies have sufficiently advanced and now 

provide the tools to enhance the Web user’s experience. Content 

can be annotated and parsed by machines thus enabling semantic 

search. However, as a paradigm shift occurs, web users are more 

concerned to get things done on the Internet rather than get 

information. In other words, Web Services are emerging and 

several technologies and protocols are already standardizing their 

usage. There have already been attempts to apply Semantic Web 

technologies on services such as the upper ontology for services 

OWL-S and the SAWSDL W3C recommendation. Ambient 

Intelligence, another emerging computing paradigm, directly 

associated with service-orientation also benefits from Semantic 

Web Services.  

This work introduces BOnSAI, a Smart Building Ontology for 

Ambient Intelligence, to be used in the Smart IHU Smart Building 

environment and any other similar AmI platform. The BOnSAI 

taxonomy includes concepts for describing services, functionality 

in the system, existing hardware and enabling context awareness. 

It imports and extends existing work, from the CoDAMoS project 

and the OWL-S upper ontology for services. Service 

interoperability provided by BOnSAI is due to be employed by 

service selection, description and matching algorithms. Further 

on, this infrastructure will enhance the development of an expert 

system and a planning infrastructure in the Smart IHU system. 
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Figure 10. Extensive BOnSAI class diagram, subClass relationships and ObjectProperties 


