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Abstract

We have developed a machine discovery system BON-
SAI which receives positive and negative examples
as inputs and produces as a hypothesis a pair of a
decision tree over regular patterns and an alphabet
indexing. This system has succeeded in discovering
reasonable knowledge on transmembrane domain se-
quences and signal peptide sequences by computer ex-
periments. However, when several kinds of sequences
are mixed in the data, it does not seem reasonable
for a single BONSAI system to find a hypothesis of
a reasonably small size with high accuracy. For this
purpose, we have designed a system BONSAI Gar-
den, in which several BONSAI’s and a program called
Gardener run over a network in parallel, to partition
the data into some number of classes together with
hypotheses explaining these classes accurately.
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Introduction

For knowledge discovery from amino acid sequences
of proteins, we have studied a learning model and re-
lated algorithmic techniques and have designed a ma-
chine discovery system BONSAI (Arikawa et al. 1993;
1992; Miyano, Shinohara, & Shinohara 1991; 1993;
Shimozono 1995; Shimozono & Miyano 1995; Shimo-
zono et al. 1994). When positive and negative ex-
amples of sequences are given as input data, BON-
SAI (Shimozono et al. 1994) produces a pair of a de-
cision tree over regular patterns and an alphabet in-
dexing (Shimozono & Miyano 1995; Shimozono et al.
1994) as a hypothesis which shall represents knowl-
edge about the data. The name of “BONSAI” comes
from the fact that the knowledge (the nature) is ex-
pressed as a small tree (a decision tree over regular
patterns) in harmony with an alphabet indexing (a
pot). This system has succeeded in discovering reason-
able knowledge on transmembrane domain sequences
and signal peptide sequences (Arikawa et al. 1993;
Shimozono et al. 1994). Through these experimental
results together with theoretical foundations, we have



GLLECCARCLVGAPFASL VATGL CFFGVAL FCGCEVEALTGTEKLI ETYFSKNYQDYEYL

I NVI HAFQYVI YGTASFFFLYGALLLAXGFYTTGAVRQI FGDYKTTI CGKGLSATVTGGQ

KGRGSRGQHQAHSL ERVCHCL GCWL GHPDKFVGI TYALTVVW.LVFACSAVPVYI YENTW
TTCQSI AAPCKTSASI GTLCADARMYGVL PWNAFPGKVCGSNLLSI CKTAEFQMTFHLFI
AAFVGAAATLVSLLTFM AATYNFAVLKLMGRGTKF

Figure 1: Myelin proteolipid protein - Human. The underlined sequences are transmembrane domains.

Positive Examples

Negative Examples

CLVGAPFASLVATGLCFFGVALFCGC

YLI NVI HAFQYVI YGTASFFFLYGALLLAXGFYTTGAV
FQMTFHLFI AAFVGAAATLVSLLTFM AATYNFAVL

| ALAFLATGGVLLFLAT
LDTYRI VLLLI Gl CSLL
EVLTAVGLMFAI VGGLA
PGYALVALAI GWMLGS

FGDYKTTI CGKGL SATVTGGQKGRGSRG
PDKFVGI TYALTVVW.LVFACSAVPVYI Y
TTCQSI AAPCKTSASI GTLCADARMYGVLPW

VFLENVI RDAVTYTEHAKRKTVTAMDVV
NAKQDSRGKI DAARI SVDTDKVSEA
| FTKPKAKSADVESDVDVLDTGI YS
GRMVL TAEGRSVHDSSSDCYQYFCVPEY

Figure 2: Transmembrane domain sequences and non-transmembrane domain sequences

recognized that the potential ability of BONSAI is very
high.

On the other hand, when several kinds of sequences
are mixed in the data, i.e., a hodgepodge of sequences,
it is desirable that the data should be classified into
several classes and each class should be explained with
a simple hypothesis with high accuracy. BONSAI Gar-
den is designed for this purpose. BONSAI Garden
consists of some number of BONSAI’s and a coordina-
tor called a Gardener. The Gardener and BONSAT’s
run over a network in parallel for classification of data
and knowledge discovery. This paper presents the de-
sign concept developed for BONSAI Garden together
with the background theory and ideas in BONSAI
Although no mathematical theorems are provided for
BONSAI Garden, experimental results show an inter-
esting nature of BONSAI Garden and we believe that
it would be one of the prototypes of intelligent systems
for molecular biology.

In the following section, we give our framework of
machine discovery by PAC-learning paradigm (Blumer
et al. 1989; Valiant 1984) and related concepts with
which BONSAI is developed. Then, we discuss the
system BONSAI from the viewpoint of practice and
sketches the system briefly. The idea of BONSAI Gar-
den is given in detail and we report some experimental
results on BONSAI Garden.

M achine Discovery by Learning
Paradigm

Framework

The sequence in Fig. 1 is an amino acid sequence of
a membrane protein where three transmembrane do-
mains are underlined on the sequence. When we are
given a collection of such sequences, the task of knowl-

edge discovery is to find “explanations” or “concepts”
about, in this case, transmembrane domains.

In order to acquire knowledge about such sequences,
it may be the first step to collect the sequences for
transmembrane domains (positive examples) and to
compare them with the sequences other than trans-
membrane domains (negative examples) as shown in
Fig. 2.

Based on the principle of Occam’s razor, our idea
of knowledge discovery is to find a “short” explana-
tion or concept which distinguishes positive examples
from negative examples. To cope with such a situation,
a general framework of machine discovery by learning
paradigm which consists of the following items is pro-
posed in (Miyano 1993): (a) View design for the data.
(b) Concept design with the views. (c) Learning algo-
rithm design for the concept class. (d) Experiments by
the learning algorithms for discovering knowledge.

A view is a collection of “words” with which we
make a sentence of “explanation” about the given data.
A hypothesis space consists of sentences for “explana-
tions” and the hypothesis space design is to give a for-
mal definition of expressions for the sentences. In the
following section, we shall discuss the items (a)—(d)
in detail by following our work (Arikawa et al. 1993;
1992; Shimozono 1995; Shimozono & Miyano 1995;
Shimozono et al. 1994).

View and Concept Designsin BONSAI

As data, we deal with amino acid sequences of pro-
teins. In BONSAI (Shimozono et al. 1994), two kinds
of views on sequences are employed. An amino acid
sequence of a protein is a string over the alphabet of
twenty symbols representing the amino acid residues.
The following views assume sequences of this kind as
data.



es es
[ xax,bx;ax, L» [x,bx,axbx, |y—>

no% no%
D @D

Figure 3: Decision tree over regular patterns with
L(T) = {a™b"d' | m,n,1 >1}.

A regular pattern over an alphabet I' (Angluin 1980;
Shinohara 1983) is an expression of the form 7 =
QT101 T2 -+ - TnQn, Where ag,...,an are strings over
the alphabet I and x4, ..., x, are mutually distinct vari-
ables to which arbitrary strings in I'* (or I'"") are sub-
stituted. It defines a regular language which is denoted
by L(m). A regular pattern containing at most k vari-
ables is called a k-variable regular pattern. A string w
is classified according to its membership w € L(7) or
w ¢ L(m). These regular patterns constitute the first
view on sequences.

The second view is one on the alphabet itself. Shi-
mozono and Miyano (Shimozono & Miyano 1995) de-
fined a notion of an alphabet indexing in the following
way: Let ¥ be a finite alphabet and P and N be two
disjoint subsets of ¥* whose strings are of the same
length. Let I' be a finite alphabet with |X| > |T'|, called
an indexing alphabet. An alphabet indexing ¥ of ¥ by I'
with respect to P and N is a mapping ¢ : ¥ — I such
that ¥(P) N¢¥(Q) = 0, where ¢ : ¥* — I'* is the ho-
momorphism defined by ¥(ay - --an) = ¢¥(a1) - ¥ (an)
for ay,...,an € X.

With these two views on sequences, we defined in
(Arikawa et al. 1993; Shimozono et al. 1994) a concept
class by introducing decision tree over regular patterns.
A decision tree over regular patterns (Arikawa et al.
1993; Shimozono et al. 1994) is a binary decision tree
T such that each leaf is labeled with class name N
(negative) or P (positive) and each internal node is
labeled with a regular pattern for classification (see
Fig. 3). For a pair (T,%) of a decision tree T' over
regular patterns over I' and an alphabet indexing 1 :
Y = T, we define L(T,¢) = {z € * | (x) is classified
as P by T'}. Obviously, L(T,v) is a regular language
over X. The pairs (T, 1) are used as the representation
of concepts. Thus the hypothesis space consists of such
pairs (T,v) . For finite sets POS,NEG C X*, the
accuracy of a hypothesis (T,4) for POS and NEG is
defined by

Score(l("q P) =

|L(T,%) N(POS)| | |L(T, %) "p(NEG)|
[$(POS)| [$(NEG)|

Background Theory and Complexity

This section presents a framework of knowledge dis-
covery by PAC-learning paradigm (Valiant 1984) de-
veloped in our work (Arikawa et al. 1993; 1992;

Shimozono et al. 1994) and discusses some related
complexity issues.

We review some notions from concept learning. A
subset of ¥* is called a concept and a concept class C
is a nonempty collection of concepts. For a concept
c € C, an element w € ¥* is called a positive example
(negative example) of ¢ if w is in ¢ (is not in ¢). We
assume a representation system R for concepts in C.
We use a finite alphabet A for representing concepts.
For a concept class C, a representation is a mapping
R :C — 2% such that R(c) is a nonempty subset of
A* for ¢ in C and R(c1) N R(ce) = O for any distinct
concepts ¢; and ¢ in C. For each ¢ € C, R(c) is the set
of names for c.

We do not give any formal definition of PAC-
learnability (see (Blumer et al. 1989; Natarajan 1989;
Valiant 1984) for definition). Instead, we mention a
very useful theorem for practical applications. A con-
cept class is known to be polynomial dimension if there
is a polynomial d(n) such that log|{cNX" |c € C} <
d(n) for all n > 0. This is a notion independent of
the representation of the concept class. A polynomial-
time fitting for C is a deterministic polynomial-time
algorithm that takes a finite set S of examples as in-
put and outputs a representation of a concept ¢ in C
which is consistent with S, if any. Thus this depends
on the representation of the concept class. The follow-
ing result is a key to the design of a polynomial-time
PAC-learning algorithm for a concept class, where the
size parameter s (Natarajan 1989) for the minimum
size representation of a concept is not considered. In
Theorem 1, the polynomial-time fitting is the required
learning algorithm for the concept class.

Theorem 1. (Blumer et al. 1989; Natarajan 1989) A
concept class C is polynomial-time learnable if C is of
polynomial dimension and there is a polynomial-time
fitting for C.

For knowledge discovery from amino acid sequences,
we introduced in (Arikawa et al. 1993) a class
DTRP(d, k) of sets defined by decision trees over k-
variable regular patterns with depth at most d (k,d >
0).

Theorem 2. (Arikawa et al. 1993) DTRP(d, k) is
polynomial-time learnable for all d, k > 0.

The above theorem is easily shown by proving the
conditions of Theorem 1. But the result is espe-
cially important in practice of machine discovery be-
cause it gives us a guarantee for discovery when the
target concept can be captured as a decision tree
over regular patterns. In (Arikawa et al. 1993;
Shimozono et al. 1994), we have shown the usefulness
of the class DTRP(d, k) by experiments.

We relate some complexity issues. We want to find
a small decision tree but it is known that the problem
of finding a minimum size decision tree is NP-complete
(Hyafil & Rivest 1976). Moreover, we should mention



that the polynomial-time fitting in Theorem 2 does not
have any sense in practice. We have also shown that
the problem of finding a regular pattern which is con-
sistent with given positive and negative examples is
NP-complete (Miyano, Shinohara, & Shinohara 1991;
1993). As to the alphabet indexing problem, we have
also shown in (Shimozono & Miyano 1995) that the
problem is NP-complete. These computational diffi-
culties are solved practically in the design of BONSAI

BONSAI System
Overview of BONSAI

BONSALI system (Fig. 4) is designed based on the no-
tions and results in machine learning paradigms. BON-
SATI assumes two sets POS and NEG of positive ex-
amples and negative examples. In order to discover
knowledge, BONSAI will take training examples from
POS and NEG randomly. The sets P and N consist of
positive and negative training examples, respectively.
The window size of positive (negative) training exam-
ples is the cardinality |P| (|N]). From these sets P
and N, BONSAI shall find a hypothesis (T,1) that
may explain the unknown concept provided as POS
and NEG with high accuracy. In the design of BON-
SAI, we had to solve the difficulties mentioned in the
previous section in a practical way. Three problems
arise for this purpose. The first is the problem of con-
structing efficiently small decision trees over regular
patterns. The second is the problem of finding good
alphabet indexings. The third is how to combine the
process for decision trees with the alphabet indexing
process. A sketch is given in Fig. 4 (see (Shimozono et
al. 1994) for more detail).

View Design and Decision Tree Algorithm

We employed the idea of ID3 (Quinlan 1986) for con-
structing a decision tree because, empirically, ID3 pro-
duces small enough decision trees very efficiently. ID3
assumes a set IT of attributes and a set D of data spec-
ified by the values of the attributes in advance.

However, we are just given only sequences called pos-
itive and negative examples and no attributes are pro-
vided explicitly. For utilizing the ID3 algorithm for
knowledge discovery, we employ the view of regular
patterns, each of which is regarded as an attribute that
takes values in {P,N}. Then by specifying a class IT of
regular patterns as attributes, we can apply the idea
of ID3 to constructing a decision tree as in Fig. 5.
Thus the choice of II and the method for finding 7 in
II minimizing E (7, P, N) in Fig. 5 are important for
knowledge discovery. From a practical point, the fol-
lowing strategies are considered and some of them are
implemented in BONSAIL

1. II consists of all regular patterns of the form zgaz,
where « is a substring of a string in P U N. The
process for finding 7 in II minimizing E (7, P, N) is
an exhaustive search in II. BONSAI System in the

Database
Positive Negative
Examples Examples
|

BONSAI

Combinatorial
Optimization
Algorithm

Decision
Tree

Generator I§\> .

l: Accuracy :|
Evaluation

. Decision Tree Accuracy
: - P
3 —
Indexing Decision Tree Accuracy

Output of BONSAI System

Figure 4: BONSAI

former version implemented this method. Very suc-
cessful results are reported in (Arikawa et al. 1993;
Shimozono €t al. 1994).

2. In order to deal with regular patterns having more

variables, we developed a heuristic algorithm by us-
ing a polynomial-time algorithm for finding a longest
common substring of two strings. Our experimental
results show that this heuristic method is very ef-
ficient and powerful. The new version of BONSAI
also involves this strategy for finding a regular pat-
tern for a node of a decision tree. The details of the
algorithm are omitted.

3. We also made some experiments by using a genetic

algorithm for finding regulars pattern with more
variables. Although good regular patterns were
found, the amount of time for computing was not
acceptable in the experiments and this strategy is
not accepted in BONSAI.

Heuristics for Alphabet Indexing

An alphabet indexing v with respect to P and N must
satisfy ¥(P) N ¢(N) = 0 and the problem of finding
such an alphabet indexing is NP-complete (Shimozono
& Miyano 1995). Therefore, in practice, we relax the
condition by allowing overlaps for ¥ (P) and ¢(N). For
finding a good alphabet indexing, three methods have
been developed and tested for BONSAIL

1. Local search method: Let ¥ = {¢ | ¢ : ¥ — T'}. For
¥ and ¢ in ¥, we define the distance by d(v, ¢) =
{a | ¥(a) # ¢(a)}|. Then the neighborhood of 9 is



function MakeTree( P, N : sets of strings ): node;
begin
if N=0then
return( Create(“1”, null, null) )
else if P=0then
return( Create(“0”, null, null) )
else begin
Find a regular pattern = in II
minimizing E(w, P, N);
P+ PNnL(rw); Py« P— Py
N1<—NﬂL(7r); No(—N—N1;
if (PBb=Pand Npo=N)or (Pp=Pand Ni =N)
then return( ( Create(“1”, null, null) )
else
return
Create(w, MakeTree(Py, No), MakeTree(Py, N1))
end
end

(a) Create(m, To,T1) returns a new tree with a root labeled
with 7 whose left and right subtrees are Tp and Ti, re-

spectively.
(b) E(m,P,N) = B 1(pr,n1) + B9 I(po, no), where

p1 = |PNL(w)], ny = |NNL(r)|, po = |P N L(7)|,

no = |[N N L(n)|, L(xr) = ¥* — L(n), and I(z,y) =

x z Y

Ty log o — s log o (if oy #0), I(z,y) = 0 (if
zy =0).

Figure 5: Algorithm for constructing a decision tree
over regular patterns

the set N(¢) = {¢ | d(v, $) = 1}. For a decision tree
T, Score(T, ¢) is used as the cost function. A simple
local search strategy is implemented in BONSAI and
the experiment in (Shimozono et al. 1994) shows
that this local search strategy found good alphabet
indexings.

2. Approximation algorithm: A polynomial-time ap-
proximation algorithm is also developed in Shimo-
zono (Shimozono 1995) for which an explicit error
ratio is proved. This algorithm has not yet been
fully tested for its usefulness.

3. Cluster analysis: In (Nakakuni, Okazaki, & Miyano
1994), a method for finding an alphabet indexing by
using a cluster analysis called Ward’s method has
been developed and tested. The experimental results
are acceptable but this method is not yet installed
in the current version of BONSAI.

BONSAI| Garden: Knowledge
Discovery from Hodgepodge

When we have a collection of sequences for BONSAI
which may contain noises or is a hodgepodge of vari-
ous kinds of sequences, it is not reasonable to explain
the data by a single hypothesis produced by BONSALI
Coping with such situation, we have designed a sys-
tem BONSAI Garden that runs several BONSAT’s in

Figure 6: BONSAI Garden

parallel. The target of BONSAI Garden shall be the
following:

e The system should be able to handle a hodgepodge
of data and/or noisy data so that it classifies the
data into some number of classes of sequences and
simultaneously finds for each of these classes a hy-
pothesis which explains the sequences in the class.

This section presents its idea and implementation of
BONSAI Garden.

BONSAI Garden consists of BONSAI's and a pro-
gram Gardener (Fig. 6), which is not introduced in
our former work (Shinohara et al. 1993). Let B; be
a BONSAI system with POS; and NEG; as the sets
of positive and negative examples for i = 0,...,m — 1.
BONSAI B; with (POS;, NEG;) produces a hypothe-
sis (77, i) and puts the sequences in POS; and N EG;
misclassified by (7i,vi) into the sets POS.TRASH,;
and NEG.TRASH;, respectively. POS; and NEG;
are updated with the positive and negative examples
correctly classified by (77, ;). This is a single job cycle
of BONSAI. Each BONSALI repeats this process under
the control of Gardener.

Gardener watches the behaviors of BONSAI’s
By,...,Bm-1 and executes the following task (the
parts marked with * below provides the case that neg-
ative examples will be classified):

1. Watch: Gardener will find two BONSATI’s, say B;
and B;, which have finished one job cycle with

[(T:,4:), POS;, NEG,;, POS.TRASH;, NEG.TRASHj),
(T}, ), POS;, NEG;, POS.TRASH;, NEG.TRASH,).

2. Compare: Gardener will compare the the sizes of hy-

potheses (7i,;) and (7} ,¢;) and determine which
is smaller. For this purpose, we must specify the
size of a hypothesis. In BONSAI Garden, the num-
ber of symbols in the expression of a decision tree is
used for the size of a hypothesis. Suppose that the
hypothesis (7i,1;) produced by B; is smaller than

(T; ,4y ) by Bj.



3. Classify: Gardener will classify the sequences in

POS; by the smaller hypothesis (7i,%;i). Let
POS.NEW; be the set of examples in POS; which
are classified as positive by (7},v;) and POS.NEW,
be the set of examples in POS; which are classified
as negative by (Ti, ¢i).
(x¢: Let NEG.NEW; be the set of examples in
NEG; which are classified as negative by (7%, )
and NEG.NEW; be the set of examples in NEG;
which are classified as positive by (Ti,i).)

4. Merge: Gardener will update POS; and POS| as
follows:

(a) POS; « POS; UPOS.NEW;
(x: NEG; + NEG; UNEG.NEW;)
(x: NEG; + NEG.NEW;)

Thus BONSAI with a smaller hypothesis will get
more sequences while BONSAI with larger hypoth-
esis will loose sequences.

After the above task by Gardener, BONSAI B; up-
dates his POS; (NEG:i) as follows:

1. Distribute Trash: BONSAI B; fetches all exam-
ples from the neighbor trashes POS.TRASH;_;
(NEG.TRASH;_;) and merge them into its POS;
(NEG;). For i = 0, we assume that its neighbor-
hood is BONSAI By _1.

Then, B; will start its next job cycle.

When all trashes POS.TRASH; (NEG.TRASH,)
become empty, BONSAI Garden halts. However, there
is no guarantee of such termination. Thus we need to
kill the process after some amount of execution. The
Gardener with the above task is just a prototype de-
signed for our current interest. By specifying the task
of Gardener, we can design various BONSAI Gardens.
The above idea is implemented on a network of work-
stations.

Experiments on BONSAI Garden

In (Shimozono et al. 1994), we collected signal peptide
sequences from GenBank. A signal peptide is located
at N-terminal region, that is at the initial segment of
an amino acid sequence. As positive examples, the
signal peptide sequences beginning with a Methion-
ine (M) and of length at most 32 are collected. For
the negative examples, we take N-terminal regions of
length 30 obtained from complete sequences that have
no signal peptide and begin with a Methionine. Table
1 shows the numbers of positive and negative exam-
ples in the families. By merging these files in Table
1, we made a hodgepodge of sequences. Let SIGPOS
and SIGN EG be the sets of all positive and negative
examples.

For experiment, we run BONSAI Garden with nine
BONSAT’s for these SIGPOS and SIGNEG by em-
ploying Gardener which does not exchange negative

Sequences Positive (%) Negative
Primate 1032 (27.2%) 3162
Rodent 1018 (26.8%) 3158
Bacterial 495 (13.0%) 7330
Plant 370 (9-8%) 3074
Invertebrate 263 (6.9%) 1927
Other Mammalian 235 (6.2%) 588
Other Vertebrate 207 (5.5%) 1056
Viral 120 (3.2%) 4882
Others 56 (1.4%) 2775
TOTAL 3796 (100.00%) 27952

Table 1: Numbers of positive and negative examples
in files

examples. The window size is set 4 and the alpha-
bet indexing size is set 3. The negative examples in
SIGNEG are distributed to nine BONSAI’s evenly.
The experimental result shows that the signal peptide
sequences are classified into one large class of 2205 se-
quences and two classes of 640 and 603 sequences as
given in Table 2 together with small classes. Although
we expected decision trees with two or three internal
nodes, every result was a tree of a single internal node
labeled with a regular pattern having four to six vari-
ables.

We also made an experiment by using transmem-
brane data (Arikawa et al. 1992; 1993; Shimozono et
al. 1994) MEMPOS (689 sequences) and MEMNEG
(19256 sequences) on a single BONSAI with the new
regular pattern searching algorithm. It found an alpha-
bet indexing and a regular pattern (Table 3 (a)) which
achieves the same accuracy as that found in (Arikawa
et al. 1993; Shimozono et al. 1994). Thus a single hy-
pothesis can explain (MEMPOSMEMNEG) with very
high accuracy (95%). However, by a similar exper-
iment by using SIGPOS and SIGNEG, it does not
seem reasonable to explain the signal peptide sequences
by a single hypothesis (Table 3 (b)).

Conclusion

We have presented the design concept of BONSAI
Garden for knowledge discovery from hodgepodge of
sequences. The system is designed for classifying a
hodgepodge of sequences into some number of classes
together with hypotheses explaining these classes.
Some experiments on BONSAI Garden with signal
peptide sequences proved the potential ability of BON-
SAI Garden. In the future, it may be possible to report
more experimental results on protein data with further
discussions on learning aspects.
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BONSAI Size Alphabet Indexing Decision tree
ACDEFGHI KLMNPQRSTVWKY  (regular pattern)
By 2205 012010221000200112112  *2*02*1*02* (P, N)
Bsg 640 112200101122021020112  *10*0*21*0* (P, N)
Bs 603 021022212212221102022 *222*12*12* (P, N)
By 119  112102101021110222202 2*21*12*1*2* (P, N)
By 76 120111112202222010220 *1*12*20*12* (P, N)
By 69 111020102222122221222  *0*02*2*1*22* (P, N)
By 58 022212121002011012021  *20*2*12*1*1* (P, N)
B3 22 220021220121122221200 *22*2*1*0*1*1* (P, N)
Bs 4 102102101120200212222  *122*0001*21* (N, P)

Table 2: For example, *2*02*1*02* (P,N) represents a decision tree whose root is labeled with *2*02*1*02* and
the left (no) and right (yes) leaves are P and N, respectively. 3,796 sequences are classified into three main classes.
The accuracy is 100% for positive examples in each class. Only three negative examples are misclassified from
27,952 sequences. The percentages of primate, rodent, and bacterial sequences in By are 28.4%, 25.4%, and 13.0%,
respectively, which are almost the same as those in Table 1. The same is observed for Bg and Bs.

Alphabet Indexing
ACDEFGHI KLMNPQRSTVWXY

Decision tree Score

(regular pattern)

100011010110100111101
120010000211120010000

*0*0*01*0*0* (P,N)
10%222°2710* 0" ~5p
J,no

*10*0*0*0*00*0*0*0* (P, N)

94.6% = 1/93.9 x 95.3
80.9% = +/85.4 x 76.6

Table 3: Results on transmembrane domain sequences and signal peptide sequences by a single BONSAI.

BONSAI Size Alphabet Indexing Decision tree
ACDEFGHI KLMNPQRSTVWXY  (regular pattern)
B3 2175 200021110212201212221 *10* (P, *20* (P, N))
By 429  110210202120000211120  *200*(*1000* (P, N), N)
By 190 120011220210122212200 *10* (P, *220* (*00* (P, N), N)
By 37 120210222102020212020 *202* (P, *02022* (N, *111*(N, P)))
B> 30 110210222122020212200 *111*(N, *022* (P, *20* (P, N)))
Bs 26 120112021200001111200  *2010*(*110* (P, *00* (*22*(N, P),N)), P)
Bs 17 020022021001121210020 *102*(*00202* (*00021* (P, *211*(N, P)), N), N)

Table 4: Results on a hodgepodge of various signal peptide sequences. The number of BONSAI’s which were
simultaneously running is 7. Each regular expressions on internal nodes of decision trees are of the type xay. The
numbers of classified positive examples in this result are given in Table 5.

Sequences BONSAI
Bo Bj B> Bs By Bs Bs Trash

Bacterial 56 7 4 330 16 4 4 422
Invertebrate 22 3 1 167 18 0 1 0 212
Other Mammalian 33 4 2 145 14 1 3 1 203
Organelle 0 0 0 5 0 0 0 1 6
Phage 0 0 0 11 0 0 0 0 11
Plant 52 4 5 237 17 3 3 3 324
Primate 101 6 6 523 42 2 10 0 690
Rodent 122 4 6 549 59 3 1 1 745
Synthetic 2 0 0 21 3 0 0 0 26
Viral 16 7 1 63 5 3 1 1 97
Other Vertebrate 25 2 5 124 16 1 3 1 177
Size 429 37 30 2175 190 17 26 9 2913

Table 5: Numbers of classified sequences by 7 BONSAT’s
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