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Abstract

When planning a series of actions, it is usually infeasible to consider all potential future sequences; instead, one must prune
the decision tree. Provably optimal pruning is, however, still computationally ruinous and the specific approximations
humans employ remain unknown. We designed a new sequential reinforcement-based task and showed that human
subjects adopted a simple pruning strategy: during mental evaluation of a sequence of choices, they curtailed any further
evaluation of a sequence as soon as they encountered a large loss. This pruning strategy was Pavlovian: it was reflexively
evoked by large losses and persisted even when overwhelmingly counterproductive. It was also evident above and beyond
loss aversion. We found that the tendency towards Pavlovian pruning was selectively predicted by the degree to which
subjects exhibited sub-clinical mood disturbance, in accordance with theories that ascribe Pavlovian behavioural inhibition,
via serotonin, a role in mood disorders. We conclude that Pavlovian behavioural inhibition shapes highly flexible, goal-
directed choices in a manner that may be important for theories of decision-making in mood disorders.
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Introduction

Most planning problems faced by humans cannot be solved by

evaluating all potential sequences of choices explicitly, because the

number of possible sequences from which to choose grows

exponentially with the sequence length. Consider chess: for each

of the thirty-odd moves available to you, your opponent chooses

among an equal number. Looking d moves ahead demands

consideration of 30d sequences. Ostensibly trivial everyday tasks,

ranging from planning a route to preparing a meal, present the

same fundamental computational dilemma. Their computational

cost defeats brute force approaches.

These problems have to be solved by pruning the underlying

decision tree, i.e.by excising poor decision sub-trees from consider-

ation and spending limited cognitive resources evaluating which of

the good options will prove the best, not which of the bad ones are the

worst. There exist algorithmic solutions that ignore branches of a

decision tree that are guaranteed to be worse than those already

evaluated [1–3]. However, these approaches are still computationally

costly and rely on information rarely available. Everyday problems

such as navigation or cooking may therefore force precision to be

traded for speed; and the algorithmic guarantees to be replaced with

powerful––but approximate and potentially suboptimal––heuristics.

Consider the decision tree in Figure 1A, involving a sequence of

three binary choices. Optimal choice involves evaluating 23~8

sequences. The simple heuristic of curtailing evaluation of all

sequences every time a large loss ({140) is encountered excises the

left-hand sub-tree, nearly halving the computational load

(Figure 1B). We term this heuristic pruning a ‘‘Pavlovian’’

response because it is invoked, as an immediate consequence of

encountering the large loss, when searching the tree in one’s mind.

It is a reflexive response evoked by a valence, here negative, in a

manner akin to that in which stimuli predicting aversive events can

suppress unrelated ongoing motor activity [4,5].

A further characteristic feature of responding under Pavlovian

control is that such responding persists despite being suboptimal

[6]: pigeons, for instance, continue pecking a light that predicts

food, even when the food is omitted on every trial on which they

peck the light [7,8]. While rewards tend to evoke approach,

punishments appear particularly efficient at evoking behavioral

inhibition [9,10], possibly via a serotonergic mechanism [11–15].

Here, we will ascertain whether pruning decision trees when

encountering losses may be one instance of Pavlovian behavioural

inhibition. We will do so by leveraging the insensitivity of

Pavlovian responses to their ultimate consequences.

We developed a sequential, goal-directed decision-making task

in which subjects were asked to plan ahead (c.f. [16]). On each

trial, subjects started from a random state and generated a

sequence of 2–8 choices to maximize their net income

(Figure 2A,B). In the first of three experimental groups the
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heuristic of pruning sub-trees when encountering large punish-

ments incurred no extra cost (Figure 2C). Subjects here pruned

extensively: they tended to ignore subtrees lying beyond large

losses. This alleviated the computational load they faced, but did

not incur any costs in terms of outcomes because there was always

an equally good sequence which avoided large losses (see

Figure 2C). In contrast, in the second and third experimental

groups subjects incurred increasingly large costs for this pruning

strategy (Figure 2D,E); yet, they continued to deploy it. That is, the

tendency to excise subtrees lying below punishments persisted even

when counterproductive in terms of outcomes. This persistence

suggests that pruning was reflexively evoked in response to

punishments and relatively insensitive to the ultimate outcomes.

Computational models which accounted for close to 90% of

choices verified that the nature of pruning corresponded to the

Pavlovian reflexive account in detail. These results reveal a novel type

of interaction between computationally separate decision making

systems, with the Pavlovian behavioural inhibition system working as

a crutch for the powerful, yet computationally challenged, goal-

directed system. Furthermore, the extent to which subjects pruned

correlated with sub-clinical depressive symptoms. We interpret this in

the light of a theoretical model [17] on the involvement of serotonin

in both behavioural inhibition [14,15] and depression.

Results

Figure 3 shows representative decision paths. Figure 3A shows

the decision tree subjects faced when starting from state 3 and

asked to make a 3-step decision. In the 2140 group, there are two

equally good choice sequences in this situation: either through

states 3-4-2-3 (with returns {20z20{20~{20 net) or through

states 3-6-1-2 (with returns {140{20z140~{20 net). When

given the choice, subjects reliably chose the path avoiding the large

loss (even though this meant also avoiding the equally large gain).

However, Figure 3B shows that subjects could overcome the

reflexive avoidance of the large loss. In this situation, because the

large loss is much smaller ({70), it is best to transition through it

to reap the even larger reward (z140) behind it. This same

behaviour was less frequently observed in larger trees when large

losses happened deeper in the tree. Figure 3C shows the tree of

depth 5 starting from state 1. The leftmost three-move subtree,

highlighted by the box, is identical to the tree starting from state 3

with depth 3. Although it is still optimal to transition through the

large loss, subjects tended to avoided this transition and thereby

missed potential gains. Note that in 3C, subjects also avoided an

alternative optimal path where the large loss again did not occur

immediately.

Figure 3D–F shows the number of times subjects chose the

optimal sequence through the decision tree, separating out

situations when this optimal choice involved a transition through

a large loss and when it did not. Subjects were worse at choosing

optimal sequences when the depth was greater. Subjects were also

less willing to choose optimal sequences involving transitions

through large losses (shown in blue) than those that did not

(shown in green). This appeared to be the case more in the group

2140 than the two other groups. However, this statistic is difficult

to interpret because in this group there was always an optimal

sequence which avoided the large loss. Nevertheless, we separated

the blue traces into those cases where large losses appeared early

or deep in the tree. For sequences of length 4 or 5, subjects were

more likely to choose the optimal sequence if the loss appeared in

the first rather than in the second half of the sequence (t-tests,

p~0:0005 and p~0:038 respectively). At depth of 6 or more there

was no difference, but the number of these events was small,

limiting the power.

Given these patterns in the data, we considered that subjects

made goal-directed decisions [18] by evaluating decision paths

sequentially. We directly tested the hypothesis whether they would

avoid paths involving losses by terminating this sequential

evaluation when encountering large losses. That is, in Figure 3C,

do subjects neglect the large reward behind the large loss because

they did not even consider looking past the large loss? Important

alternative accounts (which the analyses so far do not fully address)

Figure 1. Decision tree. A: A typical decision tree. A sequence of choices between ‘U’ (left, green) and ‘I’ (right, orange) is made to maximize the
total amount earned over the entire sequence of choices. Two sequences yield the maximal total outcome of 220 (three times U; or I then twice U).
Finding the optimal choice in a goal-directed manner requires evaluating all 8 sequences of three moves each. B: Pruning a decision tree at the large
negative outcome. In this simple case, pruning would still favour one of the two optimal sequences (yielding220), yet cut the computational cost by
nearly half.
doi:10.1371/journal.pcbi.1002410.g001

Author Summary

Planning is tricky because choices we make now affect
future choices, and future choices and outcomes should
guide current choices. Because there are exponentially
many combinations of future choices and actions, brute-
force approaches that consider all possible combinations
work only for trivially small problems. Here, we describe
how humans use a simple Pavlovian strategy to cut an
expanding decision tree down to a computationally
manageable size. We find that humans use this strategy
even when it is disadvantageous, and that the tendency to
use it is related to mild depressive symptoms. The findings,
we suggest, can be interpreted within a theoretical
framework which relates Pavlovian behavioural inhibition
to serotonin and mood disorders.

Pavlovian Pruning of Goal-Directed Decisions
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are a simple inability to look so far ahead in this task

(‘‘discounting’’), an overweighting of losses relative to rewards

(‘‘loss aversion’’), and interference by other, non goal-directed,

decision making strategies (‘‘conditioned attraction & repulsion’’).

We assessed whether subjects’ decision and inference strategies

showed evidence of pruning by fitting a series of increasingly

complex models assessing all these factors explicitly and jointly.

This allowed a quantitative comparison of the extent to which the

various hypotheses embodied by the models were able to account

for the data.

Decision making structure
The first model ‘Look-ahead’ embodied full tree evaluation,

without pruning. It assumed that, at each stage, subjects evaluated

the decision tree all the way to the end. That is, for an episode of

length d , subjects would consider all 2d possible sequences, and

choose among them with probabilities associated monotonically

with their values. This model ascribed the higher action value to

the subjects’ actual choices a total of 77% of the time (fraction of

choices predicted), which is significantly better than chance (fixed

effect binomial pv10{40). The gray lines in Figure 4A separate

this by group and sequence length. They show that subjects in all

three groups chose the action identified by the full look-ahead

model more often than chance, even for some very deep searches.

Figure 4B shows the predictive probability, i.e. the probability

afforded to choices by the model. This is influenced by both the

fraction of choices predicted correctly and the certainty with which

they were predicted and took on the value 0.71, again different

from chance (fixed effect binomial pv10{40). These results,

particularly when considered with the fact that on half the trials

subjects were forced to choose the entire sequence before making

any move in the tree, indicate that they both understood the task

structure and used it in a goal-directed manner by searching the

decision tree.

In order to directly test hypotheses pertaining to pruning of

decision trees, we fitted two additional models to the data. Model

‘Discount’ attempted to capture subjects’ likely reluctance to look

ahead fully and evaluate all sequences (up to 28~256). Rather,

tree search was assumed to terminate with probability c at each

depth, substituting the value 0 for the remaining subtree. In

essence, this parameter models subjects’ general tendency not to

plan ahead. Figure 4B shows that this model predicted choices

better. However, since an improved fit is expected from a more

complex model, we performed Bayesian model comparison,

integrating out all individual-level parameters, and penalizing

more complex models at the group level (see Methods). Figure 4C

shows that fitting this extra parameter resulted in a more

parsimonious model. Note that this goal-directed model also

Figure 2. Task description. A: Task as seen by subjects. Subjects used two buttons on the keyboard (‘U’ and ‘I’) to navigate between six
environmental states, depicted as boxes on a computer screen. From each state, subjects could move to exactly two other states. Each of these was
associated with a particular reinforcement. The current state was highlighted in white, and the required sequence length displayed centrally.
Reinforcements available from each state were displayed symbolically below the state, e.g. zz for the large reward. B: Deterministic task transition
matrix. Each button resulted in one of two deterministic transitions from each state. For example, if the participant began in state 6, pressing ‘U’
would lead to state 3, whereas pressing ‘I’ would lead to state 1. The transitions in red yielded large punishments. These (and only these) differed
between three groups of subjects (2140, 2100 or 270). Note that the decision trees in Figure 1A,B correspond to a depth 3 search starting from
state 3. C–E: Effect of pruning on values of optimal choices. Each square in each panel analyses choices from one state when a certain number of
choices remains to be taken. The color shows the difference in earnings between two choice sequences: the best choice sequence with pruning and
the best choice sequence without pruning. In terms of net earnings, pruning is never advantageous (pruned values are never better than the optimal
lookahead values); but pruning does not always result in losses (white areas). It is most disadvantageous in the 270 group, and it is never
disadvantageous in the 2140 group because there is always an equally good alternative choice sequence which avoids transitions through large
losses.
doi:10.1371/journal.pcbi.1002410.g002

Pavlovian Pruning of Goal-Directed Decisions
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vastly outperformed a habitual model of choice (SARSA; [19]) in

which subjects are assumed to update action propensities in a

model-free, iterative manner (BICint improvement of 314).

The third model, ‘Pruning’, is central to the hypothesis we seek

to test here. This model separated subjects’ global tendency to

curtail the tree search (captured by the c parameter of model

‘discount’) into two separate quantities captured by independent

parameters: a general pruning parameter cG , and a specific

pruning parameter cS . The latter applied to transitions immedi-

ately after large punishments (red ‘2X’ in Figure 2B), while the

former applied to all other transitions. If subjects were indeed

more likely to terminate their tree search after transitions resulting

in large punishments, then a model that separates discounting into

two separate pruning parameters should provide a better account

of the data. Again, we applied Bayesian model comparison and

found strong evidence for such a separation (Figure 4C).

The fourth model added an immediate Pavlovian influence on

choice. The need for this can be seen by comparing the observed

and predicted transition (action) probabilities at a key stage in the

task. Figure 4D shows the probability that subjects moved from

state 6 to state 1 when they had two or more choices left. Through

this move, subjects would have the opportunity to reap the large

reward of z140 (see Figure 2B), by first suffering the small loss of

220. Subjects duly chose to move to state 1 on w90% of these

occasions in all three groups. This was well matched by the model

‘Pruning’. However, when subjects only had a single choice left in

state 6, it would no longer be optimal to move to state 1, since

there would be no opportunity to gain the large reward afterwards.

Instead, the optimal choice would be to move to state 3, at a gain

of 20. Despite this, on about 40% of such trials, subjects were

attracted to state 1 (Figure 4E). This was not predicted by the

pruning model: paired t-tests showed significant differences

between empirical and predicted choice probabilities for each of

the three groups: p~0:026, t11~{2:57; p~0:040, t14~{2:27;
and p~0:0005, t14~{3:10, for groups 270, 2100 and 2140

respectively. Three subjects in group 270 and one subject in

group 2100 were never exposed to depth 1 sequences in state 6.

To accommodate this characteristic of the behavior, we added a

further, ‘Learned Pavlovian’ component to the model, accounting

for the conditioned attraction (or repulsion) to states that accrues

Figure 3. Choice sequences. Example decision trees of varying depth starting from states 1 or 3. The widths of the solid lines are proportional to
the frequencies with which particular paths were chosen (aggregated across all subjects). Yellow backgrounds denote optimal paths (note that there
can be multiple optimal paths). Colours red, black, green and blue denote transitions with reinforcements of {X ,{20,z20 and z140 respectively.
Dashed lines denote parts of the decision tree that were never visited. Visited states are shown in small gray numbers where space allows. A: Subjects
avoid transitions through large losses. In the{140 condition, this is not associated with an overall loss. B: In the{70 condition, where large rewards
lurk behind the {70 losses, subjects can overcome their reluctance to transition through large losses and can follow the optimal path through an
early large loss. C: However, they do this only if the tree is small and thus does not require pruning. Subjects fail to follow the optimal path through
the same subtree as in B (indicated by a black box) if it occurs deeper in the tree, i.e. in a situation where computational demands are high. D,E,F
Fraction of times subjects in each group chose the optimal sequence, deduced by looking all the way to the end of the tree. Green shows subjects’
choices when the optimal sequence did not contain a large loss; blue shows subjects’ choices when the optimal sequence did contain a large loss.
Coloured areas show 95% confidence intervals, and dashed lines predictions from the model ‘Pruning & Learned’ (see below).
doi:10.1371/journal.pcbi.1002410.g003

Pavlovian Pruning of Goal-Directed Decisions
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with experience. This captured an immediate attraction towards

future states that, on average (but ignoring the remaining sequence

length on a particular trial), were experienced as rewarding; and

repulsion from states that were, on average, associated with more

punishment (see Methods for details). Figure 4B,C show that this

model (Pruning and Learned) provided the most parsimonious

account of the data despite two additional parameters, and

Figures 4D–E show that the addition of the Learned parameters

allowed the model to capture more faithfully the transition

probabilities out of state 6. The blue bars in Figure 4A display the

probability that this model chose the same action as subjects

(correctly predicting 91% of choices). The model’s predicted

transition probabilities were highly correlated with the empirical

choice probabilities in every single state (all pv:0005). Further, we
considered the possibility that the Learned Pavlovian values might

play the additional role of substituting for the utilities of parts of a

search tree that had been truncated by general or specific pruning.

However, this did not improve parsimony.

We have so far neglected any possible differences between the

groups with different large losses. Figures 3D–F might suggest

more pruning in group 2140 than in the other two groups (as the

probability of choosing optimal full lookahead sequences contain-

ing a large loss is minimal in group 2140). We therefore fitted

separate models to the three groups. Figure 4B shows that the

Figure 4. Model performance and comparison. A: Fraction of choices predicted by the model as a function of the number of choices remaining.
For bars ‘3 choices to go’, for instance, it shows the fraction of times the model assigned higherQ value to the subject’s choice in all situations where
three choices remained (i.e. bar 3 in these plots encompasses all three panels in Figure 3A–C). These are predictions only in the sense that the model
predicts choice t based on history up to t{1. The gray line shows this statistic for the full look-ahead model, and the blue bars for the most
parsimonious model (‘Pruning and Learned’). B: Mean predictive probabilities, i.e. likelihood afforded to choices on trial t given learned values up to
trial t{1. C: Model comparison based on integrated Bayesian Information Criterion (BICint) scores. The lower the BICint score, the more
parsimonious the model fit. For guidance, some likelihood ratios are displayed explicitly, both at the group level (fixed effect) and at the individual
level (random effect). Our main guide is the group-level (fixed effect). The red star indicates the most parsimonious model. D,E: Transition probability
from state 6 to state 1 (which incurs a220 loss) when a subsequent move to state 2 is possible (D; at least two moves remain) or not (E; when it is the
only remaining move). Note that subjects’ disadvantageous approach behavior in E (dark gray bar) is only well accommodated by a model that
incorporates the extra Learned Pavlovian parameter. F: Decision tree of depth 4 from starting state 3. See Figure 3 for colour code. Subjects prefer
(width of line) the optimal (yellow) path with an early transition through a large loss (red) to an equally optimal path with a late transition through a
large loss. G: Phase plane analysis of specific and general pruning. Parameter values for which the left optimal yellow path in panel F is assigned a
greater expected value than the right optimal path are below the blue line. Combinations that are also consistent with the notion of pruning cSwcG
are shown in green. The red dot shows parameters inferred for present data (c.f. Figure 6). Throughout, errorbars indicate one standard error of the
mean (red) and the 95% confidence intervals (green).
doi:10.1371/journal.pcbi.1002410.g004
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increase in the model flexibility due to separate prior parameters

for each group (‘Pruning & Learned (separate)’) failed to improve

the predictive probability, increased the BICint score (Figure 4C),

and hence represents a loss of parsimony. Returning to Figure 3D–

F, we plotted the predictions of model ‘Pruning & Learned’ for

each of the three groups, and found that this model was able to

capture the very extensive avoidance of optimal full lookahead

sequences including large losses in group 2140, and yet show a

gradual decline in the other two groups.

The qualitative difference between group 2140 and the two

other groups in Figure 3D–F is also important because it speaks to

the ‘goal-directed’ nature of pruning. Pruning is only counterpro-

ductive in groups 270 and 2100. The apparent reduction in

pruning suggested by the reduced avoidance of optimal sequences

involving large losses in groups270 and2100 (Figure 3E,F) could

suggest that the extent of pruning depends on how adaptive it is,

which would argue against a reflexive, Pavlovian mechanism. It is

thus important that model ‘Pruning & Learned’ could capture

these qualitative differences without recurrence to such a goal-

directed, clever, pruning. It shows that these differences were

instead due to the different reward structures (270 is not as

aversive as 2140).

Finally, we return to the decision tree in Figure 3B. This would

prima facie seem inconsistent with the notion of pruning, as subjects

happily transition through a large loss at the very beginning of the

decision sequence. Figure 4F shows a different facet of this.

Starting from the state 3 again, subjects in group 270 choose the

optimal path that goes through the large loss straight away even

though there is an optimal alternative in which they do not have to

transition through the large loss so early.

In fact, in the model, the relative impact of general and specific

pruning factors interacts with the precise reinforcement sequence,

and hence with the depth at which each reinforcement is obtained.

More specifically, let us neglect the entire tree other than the two

optimal (yellow) sequences the subjects actually took, and let

CG~(1{cG);CS~(1{cS);. The value of the left sequence then

equals {70{20CSz140CSCG{20CSC
2
G . A similar, third-order

polynomial in combinations of cG and cS describes the value of the

right path, and indeed their difference. The blue line in Figure 4G

shows, for each value of cG , what value of cS would result in the

left and right sequences having the same value. The combinations

of cS and cG for which the chosen left path (with the early

transition through the large loss) has a higher total value turn out

to lie below this blue line. In addition, pruning will only be more

pronounced after large losses if cS is larger than cG . The overlap

between these two requirements is shown in green, and the group

means for cG and cS are shown by the red dot. Thus, because the

effects of general and specific pruning interact with depth, the

reflexive, but probabilistic, pruning in the model can lead to the

pattern seen in Figure 4G, whereby subjects transition through

large losses close to the root of the decision tree, but avoid doing

so deeper in the tree. Put simply, fixed, reflexive Pavlovian

pruning in these particular sequences of reinforcements has

differential effects deep in the tree. In these cases, it matches the

intuition that it is the exploding computational demands which

mandate approximations. However, this is not a necessary

consequence of the model formulation and would not hold for

all sequences.

Loss aversion
An alternative to the pruning account is the notion of loss

aversion, whereby a loss of a given amount is more aversive than

the gain of an equal amount is appetitive. Consider the following

sequence of returns: ½{20,{100,140� with an overall return of

z20. The pruning account above would assign it a low value

because the large terminal gain is neglected. An alternative

manner by which subjects may assign this sequence a low value is

to increase how aversive a view they take of large losses. In this

latter account, subjects would sum over the entire sequence, but

overweigh large losses, resulting in an equally low value for the

entire sequence.

To distinguish loss aversion from pruning, we fit several

additional models. Model ‘Loss’ is equal to model ‘Look-ahead’

in that it assumes that subjects evaluate the entire tree. It differs, in

that it infers, for every subject, what effective weight they assigned

each reinforcement. In the above example, for the overall

sequence to be as subjectively bad as if the reinforcement behind

it had been neglected, the 2100 reinforcement could be increased

to an effective value of 2240. By itself, this did not provide a

parsimonious account of the data, as model ‘Loss’ performed

poorly (Figure 5A). We augmented model ‘Loss’ in the same

manner as the original model by allowing for discounting and for

specific pruning. There was evidence for pruning even when

reinforcement sensitivities were allowed to vary separately, i.e.

even after accounting for any loss aversion (cf. models ‘Discount &

Loss’ and ‘Pruning & Loss’, Figure 5A). Furthermore, adding loss

aversion to the previous best model did not improve parsimony (cf.

models ‘Pruning & Learned’ vs ‘Loss & Pruning & Learned’).

Finally, the Pavlovian conditioned approach also provided a more

parsimonious account than loss aversion (cf ‘Pruning & Learned’

vs ‘Pruning & Loss’). Replacing the four separate parameters in the

‘Loss’ model with two slope parameters to reduce the disadvantage

incurred due to the higher number of parameters does not alter

these conclusions (data not shown). Finally, the screen subjects saw

(Figure 2A) only showed four symbols: ++, +, 2 and 2 2. It is

thus conceivable that subjects treated a ++ as twice as valuable as a

+, and similarly for losses. A model that forced reinforcements to

obey these relationships did not improve parsimony (data not

shown). The inferred reinforcement sensitivities from model

‘Pruning & Loss’ are shown in Figure 5B. Comparing the inferred

sensitivities to the largest rewards and punishments showed that

subjects did overvalue punishments (treating them approximately

1.4 times as aversive as an equal-sized reward was appetitive;

Figure 5C), consistent with previous studies [20]. In conclusion,

there is decisive evidence for specific Pavlovian pruning of decision

trees above and beyond any contribution of loss aversion.

Pruning estimates
We next examined the parameter estimates from the most

parsimonious model (‘Pruning & Learned’). If subjects were indeed

more likely to terminate the tree search after large punishments,

and thus forfeit any rewards lurking behind them, then the specific

pruning probability should exceed the general pruning probability.

Figure 6A shows the specific and general pruning parameters cG
and cS for every subject. To test for the difference we modified the

parametrization of the model. Rather than inferring specific and

general pruning separately, we inferred the general pruning

parameter and an additional ‘specific pruning boost’, which is

equivalent to inferring the difference between specific and general

pruning. This difference is plotted in Figure 6B for the groups

separately, though the reader is reminded that the model

comparisons above did not reveal group differences (Figure 4C).

The posterior probability of no difference between cS and cG was

4:46|10{7.

The parsimony of separate priors was tested earlier (see

Figure 4C), showing that specific pruning cS did not differ

between groups. This is in spite of the fact that pruning in the

groups 270 and 2100 is costly, but not in the 2140 group

Pavlovian Pruning of Goal-Directed Decisions
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(Figure 2C). The fact that pruning continues even when

disadvantageous is evidence for a simple and inflexible pruning

strategy which neglects events occurring after large losses when

computational demands are high. Figure 6C shows the cost of

pruning in terms of the loss of income during episodes when the

optimal choice sequence would have involved a transition through

a large punishment. These results suggest that pruning is a

Pavlovian response in the sense that it is not goal-directed and not

adaptive to the task demands, but is rather an inflexible strategy

reflexively applied upon encountering punishments.

Psychometric correlates
We next tested two a priori predictions that relate the model

parameters to psychometric measurements. Based on prior

modelling work [17], we hypothesized that the tendency to

employ the simple pruning strategy should correlate with

psychometric measures related to depression and anxiety, i.e.

with the BDI score and NEO neuroticism. We also expected to

replicate prior findings whereby the reward sensitivity parameter b

should be negatively correlated with BDI and NEO neuroticism

[21–24]. Because parameters for different subjects were estimated

Figure 5. Pruning exists above and beyond any loss aversion. A: Loss aversion model comparison BICint scores. Red star indicates most
parsimonious model. The numbers by the bars show model likelihood ratios of interest at the group level, and below them at the mean individual
level. Pruning adds parsimony to the model even after accounting for loss aversion (cf. ‘Discount & Loss’ vs ‘Pruning & Loss’), while loss aversion does
not increase parsimony when added to the best previous model (‘Pruning & Learned’ vs ‘Loss & Prune & Learned’). B: Separate inference of all
reinforcement sensitivities from best loss aversion model. C: Absolute ratio of inferred sensitivity to maximal punishment (270, 2100 or 2140) and
inferred sensitivity to maximal reward (always +140). Subjects are 1.4 times more sensitive to punishments than to rewards.
doi:10.1371/journal.pcbi.1002410.g005

Figure 6. Pruning parameters. A: Pruning parameter estimates – specific and general pruning parameters are shown separately for each group.
Specific pruning exceeded general pruning across subjects, but there was no main effect of group and no interaction. The difference between
parameter types was significant in all three groups, with specific exceeding general pruning for 14/15, 12/16 and 14/15 subjects in the 270, 2100
and 2140 groups respectively. Blue bars show specific pruning parameters (cS) and red bars general pruning parameters (cG). Black dots show the
estimates for each subject. Gray lines show the uncertainty (square root of second moment around the parameter) for each estimate. B: Equivalent
parametrization of the most parsimonious model to infer differences between pruning and discount factors directly. For all three groups, the
difference is significantly positive. C: Income lost due to pruning. On trials on which the optimal sequence led through large punishments, subjects
lost more income the more counterproductive pruning was (loss in group 270wloss in group 2100wloss in group 2140). Each bar shows the total
income subjects lost because they avoided transitions through large losses. Throughout, the bars show the group means, with one standard error of
the mean in red and the 95% confidence interval in green.
doi:10.1371/journal.pcbi.1002410.g006
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with varying degrees of accuracy (see individual gray error bars in

Figure 6), our primary analysis was a multiple regression model in

which the influence of each subject’s data was weighted according

to how accurately their parameters were estimated (see Methods).

We found that BDI was positively correlated with the specific

pruning parameter cS (t31~2:58, pcorrected~0:03, R2
weighted~0:27).

Furthermore, this effect was specific in that there was no such

correlation with general pruning cG . There was also a nega-

tive correlation between BDI score and reward sensitivity b,

although this did not survive correction for multiple comparisons

(t31~{2:28, pcorrected~0:059, R2
weighted~0:12). The regression

coefficients for the BDI score are shown in Figure 7A. Notably,

these correlations arose after correcting for age, gender, verbal

IQ, working memory performance and all other NEO measures of

personality. Thus, as predicted, subjects with more subclinical

features of depression were more likely to curtail their search

specifically after large punishment. However, against our hypoth-

esis, we did not identify any significant correlations with NEO

neuroticism.

Finally, we examined correlations between all parameters and

all questionnaire measures in the same framework. We found a

positive correlation between NEO agreeableness and the weight of

the ‘Learned Pavlovian’ influence v which survived full correction

for 60 comparisons t31~4:07, pcorrected~0:018.

Discussion

We employed a Bayesian model-fitting approach to investigate

how Pavlovian choices might shape goal-directed decision making.

Our full model was able to account for a high percentage of

subjects’ choices, allowing us to draw strong conclusions about the

likely forces governing their behavior. Influences were deemed

Pavlovian when they were evoked in a fixed and inflexible manner

in response to an outcome or a stimulus value, and goal-directed

when sensitive to the ultimate, possibly distant, result of the choice

[25].

Participants exhibited two highly significant Pavlovian influenc-

es. First, subjects pruned to a very substantial degree. While part of

this pruning was valence independent and hence not Pavlovian

(parameter cG in the model), and can be seen as a natural, if

suboptimal, response to the exponentially exploding complexity of

complete search in the model (ranging from 2 to 256 sequences),

subjects also showed a substantial increase in their propensity to

prune in the face of a large negative outcome (parameter cS in the

model). Importantly, they did so even at the expense of a

substantial net loss in reward. It was striking that subjects were no

less likely to prune (Figure 2C–D) even when we rendered it

increasingly disadvantageous (moving from group 2140 to group

270),.

The second, ‘Learned’, Pavlovian influence was associated with

the learned attractiveness of previously rewarded states. In our

task, states could have been associated with large rewards on past

trials, but lack the potential to lead to reward (or indeed

punishment) on a given trial, because insufficient choices remained

(Figure 4E). Subjects were significantly seduced by the effect of

these past rewards (or repulsed by punishments), again in a way

that was counterproductive to optimal control. Note that by

including this second Pavlovian influence, we could be sure that

the pruning described above was a pure influence on goal-based

evaluation, and was not corrupted by an intrinsic repulsion to the

punishment (which would have been ascribed to this second,

Pavlovian, influence).

The ‘Loss’ models do suggest that subjects were more sensitive

to punishments than rewards (Figure 5C). However, this did not

explain away pruning. Also, if the pruning we observed was just a

signature of loss aversion, one would have expected the extent of

pruning not to be the same across groups. Loss aversion is a

specific phenomenon in behavioural economics, whereby subjects

are more strongly opposed to a given probability of losing a certain

amount than to winning that same amount [26]. To the extent to

which loss aversion can be described as an inflexible, reactive,

response to an aversive stimulus, it may represent a third instance

of Pavlovian responses to losses interfering with goal-directed

decisions in this task [27].

Next, subjects could transition through losses early on in the

tree, but were more reluctant to do so when they appeared deeper

in the tree. Pavlovian pruning thus appeared to have a particularly

strong effect deeper in the tree. Although this makes intuitive

Figure 7. Psychometric correlates. A: Subclinical depression scores (Beck Depression Inventory, BDI, range 0–15) correlated positively with
specific pruning (cS), and negatively with sensitivity to the reinforcers (b). Each bar shows a weighted linear regression coefficient. Red error bars
show one standard error of the mean estimate, and green errorbars the Bonferroni corrected 95% confidence interval. �~puncorrectedv:05, red dot
~pBonferronicorrv:05. B,C: Weighted scatter plots of psychometric scores against parameters after orthogonalization.
doi:10.1371/journal.pcbi.1002410.g007
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sense, it is not a feature explicitly built into the models. Figure 4G

shows that this can arise from the interaction of the particular

sequence of reinforcements (and thus reinforcement depth) and the

pruning and discount factors. Although this is not necessarily

always the case, the fact that our best-performing model accounted

so well for subjects’ choices (Figure 4A) suggests that it was a

sufficient mechanism for the particular set of reinforcement

sequences encountered here.

Finally, although our sample of healthy volunteers, which was

thoroughly screened for past pathology, reported only very mild

depressive symptoms (with mean BDI scores of 3:7, range 0{15),

we found that subjects’ propensity to prune specifically in the face

of negative valence was positively correlated with self-reported

sub-clinical depressive symptoms.

Pruning, serotonin and depression
Our work was inspired by a previous modelling paper [17],

which used the concept of behavioural inhibition to unify two

divergent and contradictory findings on the relationship between

serotonin and depression. On the one hand, drugs that putatively

increase serotonin by inhibiting the serotonin reuptake mechanism

are effective for both acutely treating [28], and preventing relapse

of [29], depression. On the other hand, a genetic polymorphism

that downregulates the very same serotonin reuptake transporter,

thus acting in the same direction as the drugs, has the opposite

effect on mood, predisposing towards depression and other related

mood disorders ([30]; though see also [31] for a discussion of

replication failures).

Dayan and Huys [17] explained this paradox by suggesting that

people who experienced high levels of serotonin and thus

exaggerated Pavlovian behavioural inhibition during early devel-

opment [32] would be most sensitive to the effects of any

interference with this inhibition in adulthood secondary to a drop

in serotonin levels [33,34]. Thus, the inhibitory consequences of

serotonin could account for both its predisposing qualities on a

developmental time-scale, and more acute relief during depressive

episodes.

The hypothesis in [17] relates to two facets of the current study.

First, if serotonin indeed mediates behavioural inhibition in the

face of punishments [10,12–14] then it is a strong prediction that

the pruning parameter cS , which mediates the inhibition of

iterative thought processes, should be related to, and modulated

by, serotonergic activity. We plan to test this directly in future

studies. There is already some, though far from conclusive,

evidence pointing towards such an influence of serotonin on

higher-level cognition. First, serotonergic neurons project strongly

to areas involved in goal-directed, affective choices including the

medial prefrontal cortex [35]. Genetic variation in the serotonin

transporter allele modulates functional coupling between amyg-

dala and rostral cingulate cortex [36]. Next, orbitofrontal

serotonin depletion impacts cognitive flexibility, or the adaptive

ability to switch between contingencies, by impairing inhibitory

control [37] in monkeys. Third, learned helplessness, which can be

interpreted in goal-directed terms [17], depends critically on pre-

and infralimbic cortex in rats [38], and is known to be mediated by

serotonin [39]. Contrary to this, there is a recent report that mood

manipulation, but not acute tryptophan depletion, impairs

processing on the one-touch Tower of London (OTT) task [40],

which should certainly engage goal-directed processing. One

possible explanation for this apparent discrepancy is that although

the OTT requires sequences of moves to be evaluated, there is no

obvious aversive point at which Pavlovian pruning might be

invoked. Further, although OTT is explicitly framed as a ‘cold’

task, i.e. one which does not involve affective choices, there is also

supporting evidence (see below).

The second facet of our theoretical model [17] concerns

depression. The model suggested that subjects prone to depression

exhibit decision making that is more reliant on serotonergic

function, expressed as excess pruning, but that the depressed state

itself is characterised by a low serotonin state and thus a loss of

pruning. The stronger dependence on serotonin in at-risk subjects

would explain why only they are sensitive to the mood effects of

tryptophan depletion [34], and why individuals with a polymor-

phism in the serotonin transporter gene that reduces serotonin

uptake are more liable to develop mood disturbance, especially

following serotonin depletion [41,42]. That is, this theory predicts

excessive pruning to occur in subjects at risk for depression, and

reduced pruning to occur during a depressive episode. The data

presented here (a positive correlation between mildly raised BDI

scores and the tendency to prune when encountering a large loss;

Figure 7) would be consistent with this theoretical account if mildly

raised BDI scores in otherwise healthy subjects (we screened for

criteria for a major depressive episode; and 94% of our

participants had BDI scores v13, rendering depression unlikely

[43]) could be interpreted as a vulnerability or proneness to

depression. The mildly raised BDI scores do reveal a latent level of

dysphoric symptoms amongst healthy participants [55]. This

might be in line with findings that levels of dysphoric symptoms

correlate with levels of dysfunctional thinking, and that a cyclical

interaction between the two could, in the presence of certain

environmental events, crescendo into a depressive episode proper

[45,46]. However, we are not aware of any direct evidence that

mildly raised BDI scores measure vulnerability, and maybe more

critically, we did not observe correlations with NEO neuroticism,

which is an established risk factor for depression [47]. The strong

prediction that serotonergic function and behavioural inhibition in

the face of losses should be reduced during a major depressive

episode remains to be tested. However, there is already some

evidence in favour of this conclusion. People actively suffering

from depression are impaired on the OTT [48,49]. The

impairment relative to controls grows with the difficulty of the

problem; and depressed subjects also spend increasing amounts of

time thinking about the harder problems, without showing

improved choices [50]. This suggests that people who are suffering

from depression have more difficulty searching a deep tree

effectively (possibly also captured by more general, superficial

autobiographical recollections; [51]). However, given the finding

by [40], we note that it is at present not possible to interpret this

conclusively in terms of pruning. Finally, the same group has also

reported catastrophic breakdown in OTT performance in

depressed subjects after negative feedback [52].

Conclusion
We used a novel sequential decision-making task in conjunction

with a sophisticated computational analysis that fitted a high

proportion of healthy subjects’ choices. This allowed us to unpack

a central facet of effective computation, pruning. Importantly,

most subjects were unable to resist pruning even when it was

disadvantageous, supporting our hypothesis that this process

occurs by simple, Pavlovian, behavioural inhibition of ongoing

thoughts in the face of punishments [17]. Provocatively, consistent

with this model, we found a relationship between the propensity to

prune and sub-clinical mood disturbance, and this suggests it

would be opportune to examine in detail the model’s predictions

that pruning should be impaired in clinically depressed individuals

and following serotonin depletion.

Pavlovian Pruning of Goal-Directed Decisions

PLoS Computational Biology | www.ploscompbiol.org 9 March 2012 | Volume 8 | Issue 3 | e1002410



Methods

Participants
Fourty-six volunteers (23 female, mean age 23.8+4 years) were

recruited from the University College London (UCL) Psychology

subject pool. Each gave written informed consent and received

monetary, partially performance-dependent compensation for

participating in a 1.5-hour session. The study was conducted in

accord with the Helsinki declaration and approved by the UCL

Graduate School Ethics Committee. Exclusion criteria were:

known psychiatric or neurological disorder; medical disorder likely

to lead to cognitive impairment; intelligence quotient (IQ) v70;

recent illicit substance use and not having English as first language.

The absence of axis-I psychopathology and alcohol- or substance

abuse/dependence was confirmed with the Mini International

Neuropsychiatric Inventory [53]. Personality, mood, and cognitive

measures were assessed with the State-Trait Anxiety Inventory

[54], the Beck Depression Inventory (BDI; [55]), the NEO

Personality Inventory [56], the Wechsler Test of Adult Reading

(WTAR; [57]), and Digit Span [58].

Subjects who were assigned to the different groups, were

matched for age, IQ and sex (all pw:19, one-way ANOVA).

Fifteen subjects were assigned to group 270, 16 to group 2100

and 15 to group 2140. Mean age (+1 st. dev.) was 24:1+4:3,
24:6+4:3 and 22:7+3:6 years respectively; mean digit span

scores were 18:4+3:2, 17:4+3:6 and 19:4+3:2; mean IQ scores

(computed from WTAR) were 109:9+7:5, 110:3+3:9 and

111:9+2:1. There were 5 (33%), 8 (50%) and 10 (66%) men in

each of the three groups. One subjects’ age information, and one

subject’s STAI information were lost. These subjects were

excluded from the psychometric correlation analyses.

Task
Participants first underwent extensive training to learn the

transition matrix (Figure 2A,B; [16]). During the training, subjects

were repeatedly placed in a random starting state and told to reach

a random target state in a specified number of moves (up to 4).

After 40 practice trials, training continued until the participant

reached the target in 9 out of 10 trials. Most subjects passed the

training criterion in three attempts. Reaching training criterion

was mandatory to move on to the main task.

After training, each transition was associated with a determin-

istic reward (Figure 2B). Subjects completed two blocks of of 24

choice episodes; each episode included 2 to 8 trials. The first block

of 24 episodes was discarded as part of training the reward matrix,

and the second block of 24 episodes was analysed. At the

beginning of each episode, subjects were placed randomly in one

of the states (highlighted in white) and told how many moves they

would have to make (i.e., 2 to 8). Their goal was to devise a

sequence of that particular length of moves to maximize their total

reward over the entire sequence of moves. To help the subjects

remember the reward or punishment possible from each state, the

appropriate ‘‘+’’ or ‘‘-’’ were always displayed beneath each box.

Regardless of the state the subject finished in on a given episode,

they would be placed in a random new state at the beginning of

the next episode. Thus, each episode was an independent test of

the subject’s ability to sequentially think through the transition

matrix and infer the best action sequence. After each transition,

the new state was highlighted in white and the outcome displayed.

On half of the trials, subjects were asked to plan ahead their last 2–

4 moves together and enter them in one step without any

intermittent feedback.

The reward matrix was designed to assess subjects’ pruning

strategy; and whether this strategy changed in an adaptive, goal-

directed way. All subjects experienced the same transition matrix,

but the red transitions in Figure 2C led to different losses in the

three groups, of 270, 2100 or 2140 pence respectively. This had

the effect of making pruning counterproductive in groups270 and

2100, but not 2140 (Figures 2C–E). At the end of the task,

subjects were awarded a monetary amount based on their

performance, with a maximum of £20. They were also

compensated £10 for time and travel expenses.

Model-based analysis
In the look-ahead model, the Q-value of each action a in the

present state s is derived by i) searching through all possible future

choices; ii) always choosing the optimal option available in the

future after a particular choice; and iii) assigning the two actions at

the present state the values of the immediate reward plus the best

possible future earnings over the entire episode. More concisely,

the look-ahead (lo) model is a standard tree search model, in which

the value of a particular action is given by the sum of the

immediate reward R(a,s) and the value of the optimal action from

the next state s’~T (a,s)

Qlo(a,s)~R(a,s)zmax
a’

Qlo(a’,T (a,s)), ð1Þ

where T is the deterministic transition function. This equation is

iterated until the end of the tree has been reached [59]. For

notational clarity, we omit dependence ofQ values on the depth of

the tree. To make the gradients tractable, we implement the max
operator with a steep softmax.

An explicit search all the way to the end of the tree is unlikely

for any depths w3, given the large computational demands. The

model ‘Discount’ (d ) thus allowed, at each depth, a biased coin to

be flipped to determine whether the tree search should proceed

further, or whether it should terminate at that depth, and assume

zero further earnings. Let the probability of stopping be c. The

expected outcome from a choice in a particular state, theQ values,

is now an average over all possible prunings of the tree, weighted

by how likely that particular number of prunings is to occur:

Q(a,s)~
X

I

i~1

Qi
lo(a,s)p(iDc) ð2Þ

where Qi
lo(a,s) is the full lookahead value of action a in state s for

the cut tree i. Importantly, the number I is immense. If the

number of branches of a binary tree is n~
XD

d~1
2d , then there

are I~
Xn

k~1

n

k

� �

possible ways of choosing up to n branches

of the tree to cut. Although this overestimates the problem because

branches off branches that have already been cut off should no

longer be considered, the problem remains overly large. We

therefore use a mean-field approximation, resulting in Qd values:

Qd (a,s)~R(a,s)z(1{c)max
a’

Qd (a’,T (a,s)) ð3Þ

where, at each step, the future is weighted by the probability

(1{c) that it be encountered. This means that outcomes k steps

ahead are discounted by a factor (1{c)k{1. We note, however,

that Equation 3 solves a different Markov decision problem

exactly.

Next, the ‘Pruning’ (p) model encompassed the possibility that

subjects were more likely to stop after a large punishment had

been encountered. It did this by separating the stopping
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probability into two independent factors, resulting in:

Qp(a,s)~R(a,s)z(1{x)max
a’

Qp(a’,T (a,s)) ð4Þ

x~
cS if R(a,s) is the large negative reinforcement

cG else

�

ð5Þ

where cS is the specific pruning parameter that denotes the

probability with which the subject stops evaluation of the tree at

any state-action pair associated with the large negative reward.

Here, we used binary pruning rather than the graded form of [17],

since there is only one extreme negative outcome. The second

parameter cG was the probability of curtailing the tree search at

any other transition (220, +20, +140) and is exactly analogous to

the c of the Discount model.

To account for ‘Learned Pavlovian’ (lp) attraction or repulsion,

i.e. the approach to, or avoidance of, states that are typically

associated with future rewards on those trials on which these future

rewards are not available (e.g. a terminal transition from state 6 to

state 1), we modified the ‘Pruning’ model by adding a second state-

action value which depends on the long-term experienced average

value V(s) of the states:

Qlp(a,s)~Qp(a,s)zvV(T (a,s)) ð6Þ

The value V is learned by standard temporal difference learning:

V(s)/V(s)z (V(s’)zrt{V(s)) ð7Þ

where V(s’) is set to zero if it is the terminal transition. This model,

which we term ‘Learned + Pavlovian’, is based on [8] and the

parameter v is fit to the data.

So far, when search terminates, a zero value for the rest of the

decision tree was entered. An alternative to the Learned Pavlovian

model is to additionally include the value V as terminal value, i.e.:

Qp(a,s)~R(a,s)z(1{x)max
a’

Qp(a’,T (a,s))zxV(T (a,s)) ð8Þ

with x as in the Pruning model, and with V evolving as in equation

7. Note that we this model also incorporated the direct learned

Pavlovian effect (Equation 6).

To account for loss aversion, we fitted models in which we

inferred all reinforcement sensitivities R separately. Thus, these

models relaxed the assumption of the above models that subjects

treated a reward of 140 as exactly cancelling out a loss of2140. In

fact, these models in principle allowed subjects to be attracted to a

loss and repelled from a reward. We used such a free formulation

to attempt to soak up as much variance as possible. If pruning is

visible above and beyond this, then differential sensitivities to

rewards and punishments by themselves cannot account for the

pruning effects in the above models. This formulation does have

the drawback that the large number of free parameters may

potentially exert a prohibitive effect on the BICint scores. Although

we saw no indication of that, we fitted a further, restricted loss

aversion model with two slopes, i.e. where the rewards took on

values 140b
z

and 20b
z
, and the losses {20b

{
and {Xb

{
. The

restricted models led to the same conclusions as the full loss

aversion models and we thus do not report those results.

Finally, in the habitual SARSA model, choice propensities were

calculated in a model-free manner to capture habitual choices

[18,19]:

QSARSA(st,at)/QSARSA(st,at)z

(QSARSA(stz1,atz1)zrt{QSARSA(st,at))
ð9Þ

Given the Q values, the probability of subjects’ choices was

computed as

p(atjst)~
ebQ(at,st)

X

a0

ebQ(a0 ,st)
ð10Þ

where we emphasize that the Q value of each choice depends on

how many choices are left after at, but not on the choices preceding

it. The parameter b was set to unity for all loss models. We note

that this probability is predictive in that it depends only on past

rewards and choices, but not in the machine learning sense,

whereby it predicts data not used to fit the parameters.

Model fitting procedure
We have previously described our Bayesian model fitting and

comparison approach [60], but repeat the description here for

completeness. For each subject, each model specifies a vector of

parameters h. We find the maximum a posteriori estimate of each

parameter for each subject: hi~argmaxhp(Ai D,h)p(hDh) where Ai

are all actions by the ith subject. We assume that actions are

independent (given the stimuli, which we omit for notational

clarity), and thus factorize over trials. The prior distribution on the

parameters mainly serves to regularise the inference and prevent

parameters that are not well-constrained from taking on extreme

values. We set the parameters of the prior distribution h to the

maximum likelihood given all the data by all the N subjects:

ĥhML
~ argmax

h

p(ADh)~ argmax
h

P

N

i

ð

dN
hi p(Ai Dhi)p(hi Dh)

� �

where A~fAig
N
i~1. This maximisation is achieved by Expecta-

tion-Maximisation [61]. We use a Laplacian approximation for

the E-step at the kth iteration:

p(hDAi)&N (h
(k)
i ,S

(k)
i )

h
(k)
i ~ argmax

h

p(Ai D,h)p(hDh(k{1))

where N (:) denotes a normal distribution and S
(k)
i is the second

moment around h
(k)
i , which approximates the variance, and thus

the inverse of the certainty with which the parameter can be

estimated. Finally, the hyperparameters h are estimated by setting

the mean m and the (factorized) variance v
2 of the normal prior

distribution to:

m
(k)
~

1

N

X

i

h
(k)
i

(v(k))2~
1

N

X

i

(h
(k)
i )2zS

(k)
i

h i

{(m(k))2
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All parameters are transformed before inference to enforce

constraints (fb,vg§0, 0ƒf ,cS,cGgƒ1).

Model comparison
As we have no prior on the models themselves (testing only

models we believe are equally likely a priori), we instead examine

the model log likelihood log p(ADM) directly. This quantity can be

approximated in two steps. First, at the group level [62]:

log p(ADM)~

ð

dhp(ADh)p(hDM)

&{
1

2
BICint~log p(ADĥhML){

1

2
DMDlog(DAD)

where DAD is the total number of choices made by all subjects, and

DMD is the number of prior parameters fitted (mean and variance

for each parameter). Importantly, however, log p(ADĥhML) is not

the sum of individual likelihoods, but the sum of integrals over the

individual parameters (hence the subscript ‘‘int’’ to the Baysian

Information Criterion (BIC)):

log p(AjĥhML)~

X

i

log

ð

dhp(Aij,h)p(hjĥh
ML)&

X

i

log
1

K

X

K

k~1

p(Aijh
k)

The second approximation involves replacing the integral by a

sum over samples from the empirical prior p(hDhML). This ensures
that we compare not just how well a particular model fits the data

when its parameters are optimized, but how well the model fits the

data when we only use information about where the group

parameters lie on average.

Statistical analysis
Group comparisons. We used a Bayesian model compa-

rison approach to compare the three groups receiving different

maximal punishments. To do so, we fitted models that allowed for

separate prior parameters for each group, and penalized this

overall model according to its BICint score. Here, the number DMD

was increased to the total number group-level parameters for all

groups jointly.
Correlation analyses. We used a weighted hierarchical

multivariate regression, which is equivalent to a standard

hierarchical multivariate regression, except that parameters were

weighted by the precision with which they were estimated. As this

is, to our knowledge, non-standard, we describe it in some detail.

The first step consisted of a sequential orthogonalization

procedure of the questionnaire measures, whereby we entered

the measurements in the following sequence: 1. Age, 2. Sex, 3. IQ

(computed from WTAR), 4. Digit Span, 5. NEO E, 6. NEO O, 7.

NEO A, 8. NEO C, 9. STAI Trait, 10. STAI State, 11. NEO N,

12. BDI, with the consequence that regressors entered later only

retained variation along dimensions orthogonal to the previously

entered regressors. We then seeked regression coefficients such

that

hi~Criz(S
1=2
i zS)g Vi

where hi is the parameter vector for subject i, ri is the vector of

orthogonalized psychometric measures for that subject, and C is

the regression matrix we seek to infer. Crucially, two sources of

noise are assumed to contribue. First, Si is the uncertainty about

the inferred value hi. This is noise that originates from the model-

based estimation procedure (i.e. at the within-subject level).

Second, S is a diagonal matrix the components Sii of which are

the standard regression noise (capturing noise at the between-

subject level) for each of the five model parameters. Including both

terms, rather than just the latter, means that parameters that are

better constrained by the behavioural data contribute more to the

inference. This reduces to multiple multivariate linear regression if

the Si~0. To perform the inference, the above set of i vector

equations are written in terms of normal log likelihoods:

log p(CDfri,Si,S,hig)!
X

i

(hi{Cri)
T(SizS){1(hi{Cri) ð11Þ

This can be rewritten such as to yield one quadratic likelihood in

the concatenation c of all columns of C, and can then be solved for

both c and S by gradient ascent.

To ascertain significance, we computed a t-statistic for each

coefficient cki. To do so, we replaced the estimate of the sum

squared error in a standard t-statistic [63] with our estimate of the

between-subject variance SiiNsj for each of the i model

parameters, yielding:

tki~
cki

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SiiNsj=(Nsj{Nreg)
p : ð12Þ

Corresponding p-values were then calculated from the inverse

cumulative Student’s t-distribution as in a standard multiple

regression model assuming Nsj{Nreg degrees of freedom, where

Nsj~44 is the number of subjects for which all measurements

were present, Nreg~13 is the number of psychometric regressor

variables (12 plus one constant regressor). These p-values were

then thresholded at a Bonferroni-corrected level a corresponding

to two independent comparisons (for correlation with BDI score

and with NEO neuroticism) score.
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