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Abstract. We introduce a new lattice-based cryptographic structure called a
bonsai tree, and use it to resolve some important open problems in the area. Ap-
plications of bonsai trees include:

– An efficient, stateless ‘hash-and-sign’ signature scheme in the standard model
(i.e., no random oracles), and

– The first hierarchical identity-based encryption (HIBE) scheme (also in the
standard model) that does not rely on bilinear pairings.

Interestingly, the abstract properties of bonsai trees seem to have no known real-
ization in conventional number-theoretic cryptography.

1 Introduction

Lattice-based cryptographic schemes have undergone rapid development in recent years,
and are attractive due to their low asymptotic complexity and potential resistance to
quantum-computing attacks. One notable recent work in this area is due to Gentry,
Peikert, and Vaikuntanathan [25], who constructed an efficient ‘hash-and-sign’ signa-
ture scheme and an identity-based encryption (IBE) scheme. (IBE is a powerful crypto-
graphic primitive in which any string can serve as a public key [53].)

Abstractly, the GPV schemes are structurally quite similar to Rabin/Rabin-Williams
signatures [50] (based on integer factorization) and the Cocks/Boneh-Gentry-Hamburg
IBEs [18, 13] (based on the quadratic residuosity problem), in that they all employ a
so-called “preimage sampleable” trapdoor function as a basic primitive. As a result,
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they have so far required the random oracle model (or similar heuristics) for their se-
curity analysis. This is both a theoretical drawback and also a practical concern (see,
e.g., [35]), so avoiding such heuristics is an important goal.

Another intriguing open question is whether any of these IBE schemes can be ex-
tended to deliver richer levels of functionality, as has been done in pairing-based cryp-
tography since the work of Boneh and Franklin [12]. For example, the more general
notion of hierarchical IBE [33, 26] permits multiple levels of secret-key authorities.
This notion is more appropriate than standard IBE for large organizations, can isolate
damage in the case of secret-key exposure, and has further applications such as forward-
secure encryption [16] and broadcast encryption [21, 58].

1.1 Our Results

We put forward a new cryptographic notion called a bonsai tree, and give a realiza-
tion based on hard lattice problems. (Section 1.2 gives an intuitive overview of bonsai
trees, and Section 1.4 discusses their relation to other primitives and techniques.) We
then show that bonsai trees resolve some central open questions in lattice-based cryp-
tography: to summarize, they remove the need for random oracles in many important
applications, and facilitate delegation for purposes such as hierarchical IBE.

Our first application of bonsai trees is an efficient, stateless signature scheme that
is secure in the standard model (no random oracles) under conventional lattice as-
sumptions. Our scheme has a ‘hash-and-sign’ flavor that does not use the key-refresh/
authentication-tree paradigm of many prior constructions (both generic [28, 43] and
specialized to lattice assumptions [37]), and in particular it does not require the signer
to keep any state. (Statelessness is a crucial property in many real-world scenarios,
where distinct systems may sign relative to the same public key.) In our scheme, the
verification key, signature length, and verification time are all an O(k) factor larger
than in the random-oracle scheme of [25], where k is the output length of a chameleon
hash function, and the O(·) notation hides only a 1 or 2 factor. The signing algorithm
is essentially as efficient as the one from [25].1 The underlying hard problem is the
standard short integer solution (SIS) problem dating back to the seminal work of Aj-
tai [5], which is known to be as hard as several worst-case approximation problems on
lattices (see also [41, 25]). Via SIS, the security of our signature scheme rests upon the
hardness of approximating worst-case problems on n-dimensional lattices to within an
Õ(
√

k · n3/2) factor; this is only a
√

k factor looser than that of [25].
Our second application is a collection of various hierarchical identity-based encryp-

tion (HIBE) schemes, which are the first HIBEs that do not rely on bilinear pairings.
Our main scheme works in the standard model, also making it the first non-pairing-
based IBE (hierarchical or not) that does not use random oracles or qualitatively similar
heuristics. The underlying hard problem is the standard learning with errors (LWE)
problem as defined by Regev, which may be seen as the ‘dual’ of SIS and is also as hard
as certain worst-case lattice problems [51, 45]; LWE is also the foundation for the plain
IBE of [25], among many other recent cryptographic schemes.

1 Our signing algorithm performs about k forward computations of a trapdoor function, plus one
inversion (which dominates the running time).
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Additionally, our HIBE is anonymous across all levels of the hierarchy, i.e., a ci-
phertext conceals (computationally) the identity to which is was encrypted. Anonymity
is a useful property in many applications, such as fully private communication [7] and
searching on encrypted data [11, 1]. While there are a few anonymous (non-hierarchical)
IBEs [12, 20, 13, 25], only one other HIBE is known to be anonymous [15].

1.2 Overview of Bonsai Trees and Applications

The ancient art of bonsai is centered around a tree and the selective control thereof by
an arborist, the tree’s cultivator and caretaker. By combining natural, undirected growth
with controlled propagation techniques such as wiring and pruning, arborists cultivate
trees according to a variety of aesthetic forms.

Similarly, cryptographic bonsai is not so much a precise definition as a collection of
principles and techniques, which can be employed in a variety of ways. (The informal
description here is developed technically in Section 3.) The first principle is the tree
itself, which in our setting is a hierarchy of trapdoor functions having certain properties.
The arborist can be any of several entities in the system — e.g., the signer in a signature
scheme or a simulator in a security proof — and it can exploit both kinds of growth,
undirected and controlled. Briefly stated, undirected growth of a branch means that
the arborist has no privileged information about the associated function, whereas the
arborist controls a branch if it knows a trapdoor for the function. Moreover, control
automatically extends down the hierarchy, i.e., knowing a trapdoor for a parent function
implies knowing a trapdoor for any of its children.

In our concrete lattice-based instantiation, the functions in the tree are indexed by
a hierarchy of public lattices chosen at random from a certain ‘hard’ family (i.e., one
having a connection to worst-case problems). The lattices may be specified by a variety
of means, e.g., a public key, interaction via a protocol, a random oracle, etc. Their key
property is that they naturally form a hierarchy as follows: every lattice in the tree
(excepting the root) is a higher-dimensional superlattice of its parent. Specifically, a
parent lattice in R

m is simply the restriction of its child(ren) in R
m′

(where m′ >
m) to the first m dimensions. As we shall see shortly, this hierarchical relationship
means that a parent lattice naturally ‘subsumes’ its children (and more generally, all its
descendants).

Undirected growth in our realization is technically straightforward, emerging nat-
urally from the underlying hard average-case lattice problems (SIS and LWE). This
growth is useful primarily for letting a simulator embed a challenge problem into one
or more branches of the tree (but it may have other uses as well).

To explain controlled growth, we first need a small amount of technical background.
As explored in prior works on lattice-based cryptography (e.g., [27, 30, 29, 25, 49, 45]),
a lattice has a ‘master trapdoor’ in the form of a short basis, i.e., a basis made up of
relatively short lattice vectors. Knowledge of such a trapdoor makes it easy to solve
a host of seemingly hard problems relative to the lattice, such as decoding within a
bounded distance, or randomly sampling short lattice vectors. The reader may view a
short basis for a lattice as roughly analogous to the factorization of an integer, though
we emphasize that there are in general many distinct short bases that convey roughly
‘equal power’ with respect to the lattice.
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In light of the above, we say that an arborist controls a branch of a bonsai tree if
it knows a short basis for the associated lattice. The hierarchy of lattices is specially
designed so that any short basis of a parent lattice can be easily extended to a short basis
of any higher-dimensional child lattice, with no loss in quality. This means that control
of a branch implicitly comes with control over all its offshoots. In a typical application,
the privileged entity in the system (e.g., the signer in a signature scheme) will know a
short basis for the root lattice, thus giving it control over the entire tree. Other entities,
such as an attacker, will generally have less power, though in some applications they
might even be given control over entire subtrees.

So far, we have deliberately avoided the question of how an arborist comes to control
a (sub)tree by acquiring a short basis for the associated lattice. A similar issue arises
in other recent cryptographic schemes [25, 49, 45], but in a simpler setting involving
only a single lattice and short basis (not a hierarchy). In these schemes, one directly
applies a special algorithm, originally conceived by Ajtai [4] and recently improved by
Alwen and Peikert [6], which generates a hard random lattice together with a short basis
‘from scratch.’ At first glance, the algorithms of [4, 6] seem useful only for controlling
a new tree entirely by its root, which is not helpful if we need finer-grained control. For-
tunately, we observe that the same technique used for extending an already-controlled
lattice also allows us to ‘graft’ a solitary controlled lattice onto an uncontrolled branch.2

This whole collection of techniques, therefore, allows an arborist to achieve a pri-
mary bonsai aesthetic: a carefully controlled tree that nonetheless gives the appearance
of having grown without any outside intervention. As we shall see next, bonsai tech-
niques can reduce the construction of complex cryptographic schemes to the design of
simple combinatorial games between an arborist and an adversary.

Application 1: Hash-and-Sign without Random Oracles. Our end goal is a signa-
ture scheme that meets the de facto notion of security, namely, existential unforgeability
under adaptive chosen-message attack [28]. By a standard, efficient transformation us-
ing chameleon hashes [34] (which have efficient realizations under conventional lattice
assumptions, as we show), it suffices to construct a weakly secure scheme, namely,
one that is existentially unforgeable under a static attack in which the adversary non-
adaptively makes all its queries before seeing the public key.

Our weakly secure scheme signs messages of length k, the output length of the
chameleon hash. The public key represents a binary bonsai tree T of depth k in a com-
pact way, which we describe in a moment. The secret key is a short basis for the lattice
Λε at the root of the tree, which gives the signer control over all of T . To sign a string
μ ∈ {0, 1}k (which is the chameleon hash of the ‘true’ message m), the signer first de-
rives the lattice Λμ from T by walking the root-to-leaf path specified by μ. The signature
is simply a short nonzero vector v ∈ Λμ, chosen at random from the ‘canonical’ Gaus-
sian distribution (which can be sampled efficiently using the signer’s control over Λμ).

2 It is worth noting that in [4, 6], even the simple goal of generating a solitary lattice together
with a short basis actually proceeds in two steps: first start with a sufficient amount of ran-
dom undirected growth, then produce a single controlled offshoot by way of a certain linear
algebraic technique. Fittingly, this is analogous to the traditional bonsai practice of growing a
new specimen from a cutting of an existing tree, which is generally preferred to growing a new
plant ‘from scratch’ with seeds.
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A verifier can check the signature v simply by deriving Λμ itself from the public key,
and checking that v is a sufficiently short nonzero vector in Λμ.

The bonsai tree T is represented compactly by the public key in the following way.
First, the root lattice Λε is specified completely. Then, for each level i = 0, . . . , k − 1,
the public key includes two blocks of randomness that specify how a parent lattice at
level i branches into its two child lattices. We emphasize that all nodes at a given depth
use the same two blocks of randomness to derive their children.

The proof of security is at heart a combinatorial game on the tree between the sim-
ulator S and forger F , which goes roughly as follows. The forger gives the simulator a
set M = {μ1, . . . , μQ} of messages, and S needs to cultivate a bonsai tree (represented
by pk) so that it controls some set of subtrees that cover all of M , yet is unlikely to
control the leaf of whatever arbitrary message μ∗ �∈ M that F eventually produces as
a forgery. If the latter condition happens to hold true, then the forger has found a short
nonzero vector in an uncontrolled lattice, in violation of the underlying assumption.

To satisfy these conflicting constraints, S colors red all the edges on the root-to-leaf
paths of the messages in M , and lets all the other edges implicitly be colored blue.
The result is a forest of at most Q · k distinct blue subtrees {B�}, each growing off
of some red path by a single blue edge. The simulator chooses one of these subtrees
B� uniformly at random (without regard to its size), guessing that the eventual forgery
will lie in B�. It then cultivates a bonsai tree so that all the growth on the path up to
and throughout B� is undirected (by embedding its given challenge instance as usual),
while all the remaining growth in T \B� is controlled. This goal can be achieved within
the confines of the public key by controlling one branch at each level leading up to B�

(namely, the branch growing off of the path to B�), and none thereafter.

Application 2: Hierarchical Identity-Based Encryption. Bonsai trees also provide a
very natural and flexible approach for realizing HIBE. For simplicity, consider an au-
thority hierarchy that is a binary tree, which suffices for forward-secure encryption and
general HIBE itself [16]. The master public key of the scheme describes a binary bonsai
tree, which mirrors the authority hierarchy. The root authority starts out by controlling
the entire tree, i.e., it knows a trapdoor short basis for the lattice at the root. Each author-
ity is entitled to control its corresponding branch of the tree. Any entity in the hierarchy
can delegate control over an offshoot branch to the corresponding sub-authority, simply
by computing and revealing a short basis of the associated child lattice. In this frame-
work, encryption and decryption algorithms based on the LWE problem are standard.

For the security proof, the simulator again prepares a bonsai tree so that it controls
certain branches (which should cover the adversary’s queries), while allowing the undi-
rected growth of others (corresponding to the adversary’s target identity). This can be
accomplished in a few ways, with different advantages and drawbacks in terms of the se-
curity notion achieved and the tightness of the reduction. One notion is security against
a selective-identity attack, where the adversary must declare its target identity before
seeing the public key, but may adaptively query secret keys afterward. In this model,
the simulator can cultivate a bonsai tree whose growth toward the (known) target iden-
tity is undirected, while controlling each branch off of that path; this setup makes it easy
for the simulator to answer any legal secret-key query.
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A stronger notion is a fully adaptive attack, where the adversary may choose its tar-
get identity after making its secret-key queries. There are generic combinatorial tech-
niques for converting selective-identity-secure (H)IBE schemes into fully secure ones;
we show how to apply and optimize these techniques to our HIBE. First, we use the
techniques of Boneh and Boyen [8] construct a fully secure HIBE scheme in the ran-
dom oracle model. The basic idea is to hash all identities; this way, the target identity
can be dynamically embedded as the answer to a random oracle query. Secondly, we
demonstrate that other tools of Boneh and Boyen [9] can be adapted to our setting to
yield a fully secure HIBE scheme without random oracles. This works by hashing iden-
tities to branches of a bonsai tree, where a probabilistic argument guarantees that any
given identity hashes to a controlled branch with a certain probability. We can adjust this
probability in the right way, so that with non-negligible probability, all queried identi-
ties hash to controlled branches, while the target identity hashes to an uncontrolled
branch. In our probabilistic argument, we employ admissible hash functions (AHFs),
as introduced by [9]. However, as we will explain in Section 5.4, their original AHF
definition and proof strategy do not take into consideration the statistical dependence of
certain crucial events. We circumvent this with a different AHF definition and a different
proof.

Based on the above description, the reader may still wonder whether secret-key del-
egation is actually secure, i.e., whether the real and simulated bases are drawn from the
same probability distribution. In fact, they may not be! For example, under the most
straightforward method of extending a basis, the child basis actually contains the par-
ent basis as a submatrix, so it is clearly insecure to reveal the child. We address this
issue with an additional bonsai principle of randomizing control, using the ‘oblivious’
Gaussian sampling algorithm of [25]. This produces a new basis under a ‘canonical’
distribution, regardless of the original input basis, which ensures that the real system
and simulation coincide. The randomization increases the length of the basis by a small
factor — which accumulates geometrically with each delegation from parent to child
— but for reasonable depths, the resulting bases are still short enough to be useful when
all the parameters are set appropriately. (See Section 1.3 for more details.)

For achieving security under chosen-ciphertext attacks (CCA security), a transforma-
tion due to Boneh, Canetti, Halevi, and Katz [10] gives a CCA-secure HIBE for depth d
from any chosen plaintext-secure HIBE for depth d + 1. Alternatively, we observe that
the public and secret keys in our HIBE scheme are of exactly the same ‘type’ as those
in the recent CCA-secure cryptosystem of [45], so we can simply plug that scheme into
our bonsai tree/HIBE framework. Interestingly, the two approaches result in essentially
identical schemes.

Variations. This paper focuses almost entirely on bonsai trees that are related, via
worst- to average-case reductions, to general lattices. Probably the main drawback is
that the resulting public and secret keys are rather large. For example, the public key
in our signature scheme is larger by a factor of k (the output length of a chameleon
hash function) than that of its random-oracle analogue [25], which is already at least
quadratic in the security parameter. Fortunately, the principles of bonsai trees may be
applied equally well using analogous hard problems and tools for cyclic/ideal lattices
(developed in, e.g., [39, 47, 36, 48, 55, 38]). This approach can ‘miniaturize’ the bonsai
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trees and most of their associated operations by about a linear factor in the security
parameter. The resulting schemes are still not suitable for practice, but their asymptotic
behavior is attractive.

1.3 Complexity and Open Problems

Here we discuss some additional quantitative details of our schemes, and describe some
areas for further research.

Several important quantities in our bonsai tree constructions and applications de-
pend upon the depth of the tree. The dimension of a lattice in the tree grows linearly
with its depth, and the size of the trapdoor basis grows roughly quadratically with the
dimension.

Accordingly, in our HIBE schemes, the dimension of a ciphertext vector grows (at
least) linearly with the depth of the identity to which it is encrypted. Moreover, the (Eu-
clidean) length of an user’s trapdoor basis increases geometrically with its depth in the
tree (more precisely, with the length of the delegation chain), due to the basis random-
ization that is performed with each delegation. To ensure correct decryption, the inverse
noise parameter 1/α in the associated LWE problem, and hence the approximation fac-
tor of the underlying worst-case lattice problems, must grow with the basis length. In
particular, a hierarchy of depth d corresponds (roughly) to an nd/2 approximation fac-
tor for worst-case lattice problems, where n is the dimension. Because lattice problems
are conjectured to be hard to approximate to within even subexponential factors, the
scheme may remain secure for depths as large as d = nc, where c < 1.

Our HIBE scheme that enjoys security under a full adaptive-identity attack requires
large keys and has a somewhat loose security reduction. In particular, the attack simu-
lation partitions an (implicit) bonsai tree into controlled and undirected branches. This
is done in the hope that all user secret key queries refer to controlled branches (so the
simulation can derive the corresponding secret key), and that the target identity refers
to an undirected branch (so the attack can be converted into one on the LWE problem).
This simulation approach (dubbed ‘partitioning strategy’ in [57]) involves, to a certain
extent, guessing the adversary’s user secret key and challenge queries. The result is a
rather loose security reduction.

In contrast, recent works have achieved tight reductions (and even small keys, in
some cases) for pairing-based (H)IBEs under various assumptions [23, 24, 57], and
a variant of the GPV IBE (in the random oracle model) also has a tight reduction,
but their approaches do not seem to translate to our setting. The issue, essentially, is
that our simulator is required to produce a ‘master trapdoor’ for each queried identity,
which makes it difficult to embed the challenge problem into the adversary’s view. In
prior systems with tight reductions, secret keys are less ‘powerful,’ so the simulator can
embed a challenge while still producing secret keys for any identity (even the targeted
one).

A final very interesting (and challenging) question is whether bonsai trees can be
instantiated based on other mathematical foundations, e.g., integer factorization. At a
very fundamental level, our lattice-based construction seems to rely upon a kind of
random self-reducibility that the factorization problem is not known to enjoy.



530 D. Cash et al.

1.4 Related Techniques and Works

This paper represents a combination of two concurrent and independent works by the
first three authors [17] and the fourth author [44], which contained some overlapping
results and were accepted to Eurocrypt 2010 under the condition that they be merged.

The abstract properties of bonsai trees appear to have no known realization in con-
ventional number-theoretic cryptography. However, our applications use combinatorial
techniques that are similar to those from prior works.

The analysis of our signature scheme is reminiscent of (and influenced by) the re-
cent RSA-based signatures of Hohenberger and Waters [32], but there are some no-
table structural differences. Most significantly, our scheme does not implicitly ‘sign’
every prefix of the message as in [32]. Additionally, in contrast with prior hash-and-
sign schemes based on RSA [22, 19, 31, 32], our simulator cannot use an ‘accumulator’
to produce signatures for exactly the queried messages, but instead sets up the public
key so that it knows enough trapdoors to cover all the messages (and potentially many
others). This requires the simulator to cultivate a tree whose structure crucially depends
on the global properties of the entire query set, thus inducing the forest of subtrees as
described in Section 1.2.

The structure of our HIBE is also similar, at a combinatorial level at least, to that of
prior pairing-based HIBEs, in that the simulator can ‘control’ certain edges of an (im-
plicit) tree by choosing certain random exponents itself. However, there are no trapdoor
functions per se in pairing-based constructions; instead, the pairing is used to facilitate
secret agreement between the encrypter and decrypter. Our approach, therefore, may
be seen as a blending of pairing-based techniques and the trapdoor techniques found
in [18, 13, 25].

Following the initial dissemination of our results in [17, 44], several extensions and
additional applications have been found. Rückert [52] modified our signature scheme
to make it strongly unforgeable, and constructed hierarchical identity-based signatures.
Agrawal and Boyen [3] constructed a standard-model IBE based on LWE, which is se-
cure under a selective-identity attack; their construction has structure similar to ours, but
it does not address delegation, nor does it give an efficient signature scheme. Agrawal,
Boneh, and Boyen [2] improved the efficiency of our (H)IBE schemes (under a some-
what stronger LWE assumption), and Boyen [14] used similar techniques to obtain
shorter signatures (under a stronger SIS assumption).

2 Preliminaries

2.1 Notation

For a positive integer k, [k] denotes the set {1, . . . , k}; [0] is the empty set. We denote
the set of integers modulo an integer q ≥ 1 by Zq . For a string x over some alphabet,
|x| denotes the length of x. We say that a function in n is negligible, written negl(n), if
it vanishes faster than the inverse of any polynomial in n.

The statistical distance between two distributionsX and Y (or two random variables
having those distributions), viewed as functions over a countable domain D, is defined
as maxA⊆D|X (A) − Y(A)|.
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Column vectors are named by lower-case bold letters (e.g., x) and matrices by upper-
case bold letters (e.g., X). We identify a matrix X with the ordered set {xj} of its
column vectors, and let X‖X′ denote the (ordered) concatenation of the sets X,X′. For
a set X of real vectors, we define ‖X‖ = maxj‖xj‖, where ‖·‖ denotes the Euclidean
norm.

For any (ordered) set S = {s1, . . . , sk} ⊂ R
m of linearly independent vectors, let

˜S = {s̃1, . . . , s̃k} denote its Gram-Schmidt orthogonalization, defined iteratively as
follows: s̃1 = s1, and for each i = 2, . . . , k, the vector s̃i is the component of si or-
thogonal to span(s1, . . . , si−1). In matrix notation, there is a unique QR decomposition
S = QR where the columns of Q ∈ R

m×k are orthonormal (i.e., QtQ = I ∈ R
k×k)

and R ∈ R
k×k is right-triangular with positive diagonal entries; the Gram-Schmidt

orthogonalization is ˜S = Q · diag(r1,1, . . . , rk,k). Clearly, ‖s̃i‖ ≤ ‖si‖ for all i.

2.2 Cryptographic Definitions

The main cryptographic security parameter through the paper is n, and all algorithms
(including the adversary) are implicitly given the security parameter n in unary.

For a (possibly interactive) algorithm A, we define its distinguishing advantage be-
tween two distributions X and Y to be |Pr[A(X ) = 1]− Pr[A(Y) = 1]|. We use the
general notation Advatk

SCH(A) to describe the advantage of an adversary A mounting
an atk attack on a cryptographic scheme SCH, where the definition of advantage is
specified as part of the attack. Similarly, we write AdvPROB(A) for the advantage of
an adversary A against a computational problem PROB (where again the meaning of
advantage is part of the problem definition).

Chameleon hash functions. Chameleon hashing was introduced by Krawczyk and Ra-
bin [34]. For our purposes, we need a slight generalization in the spirit of “preimage
sampleable” (trapdoor) functions [25].

A family of chameleon hash functions is a collection H = {hi :M×R→ Y}
of functions hi mapping a message m ∈ M and randomness r ∈ R to a range
Y . The randomness space R is endowed with some efficiently sampleable distribu-
tion (which may not be uniform). A function hi is efficiently computable given its
description, and the family has the property that for any m ∈ M, for hi ← H and
r ← R, the pair (hi, hi(m, r)) is uniform over (H,Y) (up to negligible statistical dis-
tance). The chameleon property is that a random hi ← H may be generated together
with a trapdoor t, such that for any output y ∈ Y and message m ∈ M, it is pos-
sible (using t) to efficiently sample r ∈ R (under the R’s distribution) conditioned
on the requirement that hi(m, r) = y. Finally, the family has the standard collision-
resistance property, i.e., given hi ← H it should be hard for an adversary to find distinct
(m, r), (m′, r′) ∈M×R such that hi(m, r) = hi(m′, r′).

A realization under conventional lattice assumptions of chameleon hash functions
(in the above sense) forM = {0, 1}� is straightforward, using the particular preimage
sampleable functions (PSFs) from [25]. Briefly, the chameleon hash function is simply
a PSF applied to m‖r, which may also be viewed as the sum of two independent PSFs
applied to m and r, respectively. We omit the details.



532 D. Cash et al.

Signatures. A signature scheme SIG for a message space M is a tuple of PPT algo-
rithms as follows:

– Gen outputs a verification key vk and a signing key sk.
– Sign(sk, μ), given a signing key sk and a message μ ∈ M, outputs a signature

σ ∈ {0, 1}∗.
– Ver(vk, μ, σ), given a verification key vk, a message μ, and a signature σ, either

accepts or rejects.

The correctness requirement is: for all μ ∈ M, all possible (vk, sk) ← Gen and σ ←
Sign(sk, μ), we have that Ver(vk, μ, σ) accepts with overwhelming probability (over
all the randomness in the experiment).

We recall two standard notions of security for signatures. The first, existential un-
forgeability under static chosen-message attack, or eu-scma security, is defined as fol-
lows: first, the forger F outputs a list of query messages μ1, . . . , μQ for some Q. Next,
(vk, sk)← Gen and σi ← Sign(sk, μi) are generated for each i ∈ [Q], then vk and σi

(for each i ∈ [Q]) are given to F . Finally,F outputs an attempted forgery (μ∗, σ∗). The
advantageAeu-scma

SIG (F) of F is the probability that Ver(vk, μ∗, σ∗) accepts and μ∗ �= μi

for all i ∈ [Q], taken over all the randomness of the experiment.
Another notion, called existential unforgeability under adaptive chosen-message at-

tack, or eu-acma security, is defined similarly, except that F is first given vk and may
adaptively choose the messages μi.

Using a family of chameleon hash functions (as defined above), there is a generic
construction of eu-acma-secure signatures from eu-scma-secure signatures; e.g., [34].
Furthermore, the construction results in an online/offline signature scheme; see [54].
The basic idea behind the construction is that the signer chameleon hashes the message
to be signed, then signs the hashed message using the eu-scma-secure scheme (and
includes the randomness used in the chameleon hash with the final signature).

Key-Encapsulation Mechanism (KEM). We present all of our encryption schemes in
the framework of key encapsulation, which simplifies the definitions and leads to more
modular constructions. A KEM for keys of length � = �(n) is a triple of PPT algorithms
as follows:

– KEM.Gen outputs a public key pk and a secret key sk.
– KEM.Encaps(pk) outputs a key κ ∈ {0, 1}� and its encapsulation as σ ∈ {0, 1}∗.
– KEM.Decaps(sk, σ) outputs a key κ.

The correctness requirement is: for all possible (pk, sk) ← KEM.Gen and (κ, σ) ←
KEM.Encaps(pk), we have that KEM.Decaps(sk, σ) outputs κ with all but negl(n)
probability.

In this work we are mainly concerned with indistinguishability under chosen-plain-
text attack, or ind-cpa security. The attack is defined as: generate (pk, sk)← KEM.Gen,
(κ∗, σ∗)← KEM.Encaps(pk), and κ′ ← {0, 1}� (chosen uniformly and independently
of the other values). The advantage Advind-cpa

KEM (A) of an adversaryA is its distinguish-
ing advantage between (pk, σ∗, κ∗) and (pk, σ∗, κ′).
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Hierarchical Identity-Based Encryption (HIBE) and Binary Tree Encryption (BTE). In
HIBE, identities are strings over some alphabet ID; BTE is the special case of HIBE
with identity space ID = {0, 1}. A HIBE is a tuple of PPT algorithms as follows:

– Setup(1d) outputs a master public key mpk and root-level user secret key uskε. (In
the following, 1d and mpk are implicit parameters to every algorithm, and every
usk id is assumed to include id itself.)

– Extract(usk id, id
′), given an user secret key for identity id ∈ ID<d that is a prefix

of id′ ∈ ID≤d, outputs a user secret key usk id′ for identity id′.
– Encaps(id) outputs a key κ ∈ {0, 1}� and its encapsulation as σ ∈ {0, 1}∗, to

identity id.
– Decaps(usk id, σ) outputs a key κ.

The correctness requirement is: for any identity id ∈ ID≤d, generate (mpk, uskε) ←
Setup(1d), usk id via any legal sequence of calls to Extract starting from uskε, and
(κ, σ) ← Encaps(id). Then Decaps(usk id, σ) should output κ with all but negl(n)
probability (over all the randomness in the experiment).

There are several attack notions for HIBE. We are mainly concerned with the sim-
ple notion of indistinguishability under a chosen-plaintext, selective-identity attack, or
sid-ind-cpa security. The attack is defined as follows: first, the adversary A is given 1d

and names a target identity id∗ ∈ ID≤d. Next, (mpk, msk)← Setup(1d), (κ, σ∗) ←
Encaps(id∗), and κ′ ← {0, 1}� are generated. Then A is given (mpk, κ∗, σ∗), where
κ∗ is either κ or κ′. Finally,Amay make extraction queries, i.e., it is given oracle access
to Extract(skε, ·), subject to the constraint that it may not query any identity that is a
prefix of (or equal to) the target identity id∗. The advantage Advsid-ind-cpa

HIBE (A) of A is
its distinguishing advantage between the two cases κ∗ = κ and κ∗ = κ′.

Another notion is an adaptive-identity attack, in which the adversary is first given mpk
and oracle access to Extract(skε, ·) before choosing its target identity id∗ (as before,
under the constraint that no query identity be a prefix of id∗). Finally, both notions may
be extended to chosen-ciphertext attacks in the natural way; we omit precise definitions.

2.3 Lattices

In this work, we use m-dimensional full-rank integer lattices, which are discrete ad-
ditive subgroups of Z

m having finite index, i.e., the quotient group Z
m/Λ is finite. A

lattice Λ ⊆ Z
m can equivalently be defined as the set of all integer linear combinations

of m linearly independent basis vectors B = {b1, . . . ,bm} ⊂ Z
m:

Λ = L(B) =
{

Bc =
∑

i∈[m]
cibi : c ∈ Z

m

}

.

When m ≥ 2, there are infinitely many bases that generate the same lattice.
Every lattice Λ ⊆ Z

m has a unique canonical basis H = HNF(Λ) ∈ Z
m×m called

its Hermite normal form (HNF). The only facts about the HNF that we require are
that it is unique, and that it may be computed efficiently given an arbitrary basis B of
the lattice (see [42] and references therein). We write HNF(B) to denote the Hermite
normal form of the lattice generated by basis B.
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The following lemma will be useful in our constructions.

Lemma 1 ([40, Lemma 7.1, page 129]). There is a deterministic poly-time algorithm
ToBasis(S,B) that, given a full-rank set (not necessarily a basis) of lattice vectors
S ⊂ Λ = L(B), outputs a basis T of Λ such that ‖˜ti‖ ≤ ‖s̃i‖ for all i.

Hard Lattices and Problems. We will work with an certain family of integer lattices
whose importance in cryptography was first demonstrated by Ajtai [5]. Let n ≥ 1
and modulus q ≥ 2 be integers; the dimension n is the main cryptographic security
parameter throughout this work, and all other parameters are implicitly functions of n.
An m-dimensional lattice from the family is specified relative to the additive group Z

n
q

by a parity check (more accurately, “arity check”) matrix A ∈ Z
n×m
q . The associated

lattice is defined as

Λ⊥(A) =
{

x ∈ Z
m : Ax =

∑

j∈[m]
xj · aj = 0 ∈ Z

n
q

}

⊆ Z
m.

One may check that Λ⊥(A) contains qZ
m (and in particular, the identity 0 ∈ Z

m) and
is closed under addition, hence it is a full-rank subgroup of (and lattice in) Z

m. For any
y in the subgroup of Z

n
q generated by the columns of A, we also define the coset

Λ⊥y (A) = {x ∈ Z
m : Ax = y} = Λ⊥(A) + x̄,

where x̄ ∈ Z
m is an arbitrary element of Λ⊥̄x .

It is known (see, e.g., [51, Claim 5.3]) that for any fixed constant C > 1 and any
m ≥ Cn lg q, the columns of a uniformly random A ∈ Z

n×m
q generate all of Z

n
q ,

except with 2−Ω(n) = negl(n) probability. (Moreover, the subgroup generated by A
can be computed efficiently.) Therefore, throughout the paper we sometimes implicitly
assume that such a uniform A generates Z

n
q .

We recall the short integer solution (SIS) and learning with errors (LWE) problems,
which may be seen as average-case problems related to the family of lattices described
above.

Definition 1 (Short Integer Solution). An instance of the SISq,β problem (in the �2

norm) is a uniformly random matrix A ∈ Z
n×m
q for any desired m = poly(n). The

goal is to find a nonzero integer vector v ∈ Z
m such that ‖v‖2 ≤ β and Av = 0 ∈ Z

n
q ,

i.e., v ∈ Λ⊥(A).

Let χ be some distribution over Zq . For a vector v ∈ Z
�
q of any dimension � ≥ 1,

Noisyχ(v) ∈ Z
�
q denotes the vector obtained by adding (modulo q) independent sam-

ples drawn from χ to each entry of v (one sample per entry). For a vector s ∈ Z
n
q , As,χ

is the distribution over Z
n
q ×Zq obtained by choosing a vector a ∈ Z

n
q uniformly at ran-

dom and outputting (a, Noisyχ(〈a, s〉)). In this work (and most others relating to LWE),
χ is always a discretized normal error distribution parameterized by some α ∈ (0, 1),
which is obtained by drawing x ∈ R from the Gaussian distribution of width α (i.e., x is
chosen with probability proportional to exp(−πx2/α2)) and outputting �q · x� mod q.

Definition 2 (Learning with Errors). The LWEq,χ problem is to distinguish, given
oracle access to any desired m = poly(n) samples, between the distribution As,χ (for
uniformly random and secret s ∈ Z

n
q ) and the uniform distribution over Z

n
q × Zq .
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We write AdvSISq,β
(A) and AdvLWEq,χ

(A) to denote the success probability and dis-
tinguishing advantage of an algorithmA for the SIS and LWE problems, respectively.

For appropriate parameters, solving SIS and LWE (on the average, with non-neglig-
ible advantage) is known to be as hard as approximating certain lattice problems, such
as the (decision) shortest vector problem, in the worst case. Specifically, for q ≥ β ·
ω(
√

n log n), solving SISq,β yields approximation factors of Õ(β · √n) [41, 25]. For
q ≥ (1/α) · ω(

√
n logn), solving LWEq,χ yields approximation factors of Õ(n/α) (in

some cases, via a quantum reduction); see [51, 45] for precise statements.

Gaussians over Lattices. We briefly recall Gaussian distributions over lattices, spe-
cialized to the family described above; for more details see [41, 25]. For any s > 0
and dimension m ≥ 1, the Gaussian function ρs : R

m → (0, 1] is defined as ρs(x) =
exp(−π‖x‖2/s2). For any coset Λ⊥y (A), the discrete Gaussian distribution DΛ⊥

y (A),s

(centered at zero) over the coset assigns probability proportional to ρs(x) to each
x ∈ Λ⊥y (A), and probability zero elsewhere.

We summarize several standard facts from the literature about discrete Gaussians
over lattices, again specialized to our family of interest.

Lemma 2. Let S be any basis of Λ⊥(A) for some A ∈ Z
n×m
q whose columns generate

Z
n
q , let y ∈ Z

n
q be arbitrary, and let s ≥ ‖˜S‖ · ω(

√
log n).

1. [41, Lemma 4.4]: Prx←D
Λ⊥
y (A),s

[‖x‖ > s · √m] ≤ negl(n).

2. [47, Lemma 2.11]: Prx←D
Λ⊥(A),s

[x = 0] ≤ negl(n).
3. [51, Corollary 3.16]: a set of O(m2) independent samples from DΛ⊥(A),s contains

a set of m linearly independent vectors, except with negl(n) probability.
4. [25, Theorem 3.1]: For x ← DZm,s, the marginal distribution of y = Ax ∈ Z

n
q

is uniform (up to negl(n) statistical distance), and the conditional distribution of x
given y is DΛ⊥

y (A),s.
5. [25, Theorem 4.1]: there is a PPT algorithm SampleD(S,y, s) that generates a

sample from DΛ⊥
y (A),s (up to negl(n) statistical distance).

For Item 5 above, a recent work [46] gives an alternative SampleD algorithm that is
more efficient and fully parallelizable; it works for any s ≥ σ1(S) · ω(

√
log n), where

σ1(S) is the largest singular value of S (which is never less than ‖˜S‖, but is also not
much larger in most important cases; see [46] for details).

3 Principles of Bonsai Trees

In this section we lay out the framework and main techniques for the cultivation of
bonsai trees. There are four basic principles: undirected growth, controlled growth, ex-
tending control over arbitrary new growth, and randomizing control.

3.1 Undirected Growth

Undirected growth is useful primarily for allowing a simulator to embed an underlying
challenge problem (i.e., SIS or LWE) into a tree. This is done simply by drawing fresh
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uniformly random and independent samples ai ∈ Z
n
q from the problem distribution,

and grouping them into (or appending them onto) a parity-check matrix A.
More formally, let A ∈ Z

n×m
q be arbitrary for some m ≥ 0, and let A′ = A‖Ā ∈

Z
n×m′
q for some m′ > m be an arbitrary extension of A. Then it is easy to see that

Λ⊥(A′) ⊆ Z
m′

is a higher-dimensional superlattice of Λ⊥(A) ⊆ Z
m, when the latter

is lifted to Z
m′

. Specifically, for any v ∈ Λ⊥(A), the vector v′ = v‖0 ∈ Z
m′

is in
Λ⊥(A′) because A′v′ = Av = 0 ∈ Z

n
q .

In fact, the columns of A′ may be ordered arbitrarily (e.g., the columns of Ā may be
both appended and prepended to A), which simply results in the entries of the vectors in
Λ⊥(A′) being permuted in the corresponding manner. That is, Λ⊥(A′P) = P·Λ⊥(A′)
for any permutation matrix P ∈ {0, 1}m′×m′

, because (A′P)x = A′(Px) ∈ Z
n
q for

all x = Z
m′

.

3.2 Controlled Growth

We say that an arborist controls a lattice if it knows a relatively good (i.e., short) ba-
sis for the lattice. The following lemma says that a random lattice from our family of
interest can be generated under control.3

Proposition 1 ([6]). There is a fixed constant C > 1 and a probabilistic polynomial-
time algorithm GenBasis(1n, 1m, q) that, for poly(n)-bounded m ≥ Cn lg q, outputs
A ∈ Z

n×m
q and S ∈ Z

m×m such that:

– the distribution of A is within negl(n) statistical distance of uniform,
– S is a basis of Λ⊥(A), and
– ‖˜S‖ ≤ ˜L = O(

√
n log q).

3.3 Extending Control

Here we describe how an arborist may extend its control of a lattice to an arbitrary
higher-dimensional extension, without any loss of quality in the resulting basis.

Lemma 3. Let S ∈ Z
m×m be an arbitrary basis of Λ⊥(A) for some A ∈ Z

n×m
q

whose columns generate the entire group Z
n
q , and let Ā ∈ Z

n×m̄
q be arbitrary. There

is a deterministic polynomial-time algorithm ExtBasis(S,A′ = A‖Ā) that outputs a
basis S′ of Λ⊥(A′) ⊆ Z

m+m̄ such that ‖ ˜S′‖ = ‖˜S‖. Moreover, the statement holds
even if the columns of A′ are permuted arbitrarily (e.g., if columns of Ā are both
appended and prepended to A).

Proof. The ExtBasis(S,A′) algorithm computes and outputs an S′ of the form

S′ =
(

S W
0 I

)

,

3 An earlier version of this paper [44] used an underlying lemma from [6] to directly extend a ran-
dom parity-check matrix A (without known good basis) into a random A′ = A‖Ā with known
good basis. While that method saves a small constant factor in key sizes, the applications become
somewhat more cumbersome to describe; moreover, our present approach is more general.
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where I ∈ Z
m̄×m̄ is the identity matrix, and W ∈ Z

m×m̄ is an arbitrary (not neces-
sarily short) solution to AW = −Ā ∈ Z

n×m̄
q . Note that W exists by hypothesis on A,

and may be computed efficiently using Gaussian elimination (for example).
We analyze S′. First, A′S′ = 0 by assumption on S and by construction, so S′ ⊂

Λ⊥(A′). Moreover, S′ is a basis of Λ⊥(A′): let v′ = v‖v̄ ∈ Λ⊥(A′) be arbitrary,
where v ∈ Z

m, v̄ ∈ Z
m̄. Then we have

0 = A′v′ = Av + Āv̄ = Av − (AW)v̄ = A(v −Wv̄) ∈ Z
n
q .

Thus v −Wv̄ ∈ Λ⊥(A), so by assumption on S there exists some z ∈ Z
m such that

Sz = v −Wv̄. Now let z′ = z‖v̄ ∈ Z
m+m̄. By construction, we have

S′z′ = (Sz + Wv̄)‖v̄ = v‖v̄ = v′.

Because v′ ∈ Λ⊥(A′) was arbitrary, S′ is therefore a basis of Λ⊥(A′).
We next confirm that ‖ ˜S′‖ = ‖˜S‖. For every i ∈ [m], we clearly have ‖˜s′i‖ =

‖s̃i‖. Now because S is full-rank, we have span(S) = span(e1, . . . , em) ⊆ R
m+m̄.

Therefore, for i = m + 1, . . . , m + m̄ we have ˜s′i = ei ∈ R
m+m̄, so ‖˜s′i‖ = 1 ≤ ‖ ˜s′1‖,

as desired.
For the final part of the lemma, we simply compute S′ for A′ = A‖Ā as described

above, and output S′′ = PS′ as a basis for Λ⊥(A′P), where P is the desired permuta-
tion matrix. The Gram-Schmidt lengths remain unchanged, i.e., ‖ ˜s′′i ‖ = ‖˜s′i‖, because
P is orthogonal and hence the right-triangular matrices are exactly the same in the QR
decompositions of S′ and PS′.

An Optimization. In many of our cryptographic applications, a common design pattern
is to extend a basis S of an m-dimensional lattice Λ⊥(A) to a basis S′ of a dimension-
m′ superlattice Λ⊥(A′), and then immediately sample (one or more times) from a dis-
crete Gaussian over the superlattice. For the construction and analysis of our schemes,
it is more convenient and modular to treat these operations separately; however, a naive
implementation would be rather inefficient, requiring at least (m′)2 space and time
(where m′ can be substantially larger than m). Fortunately, the special structure of the
extended basis S′, together with the recursive “nearest-plane” operation of the SampleD
algorithm from [25], can be exploited to avoid any explicit computation of S′, thus sav-
ing a significant amount of time and space over the naive approach.

Let S ∈ Z
m×m be a basis of Λ⊥(A), and let A′ = A‖Ā for some Ā ∈ Z

n×m̄
q ,

where m′ = m + m̄. Consider a hypothetical execution of SampleD(S′,y′, s), where
S′ =

(

S W
0 I

)

is the extended basis as described in the proof of Lemma 3. Recall that for
all i = m + 1, . . . , m′, the vectors s′i are integral and have unit Gram-Schmidt vectors
˜s′i = ei. By inspection, it can be verified that a recursive execution of SampleD(S′,y′, s)
simply ends up choosing all the entries of v̄ ∈ Z

m̄ independently from DZ,s, then
choosing v ← SampleD(S,y′ − Āv̄, s), and outputting v′ = v‖v̄. Therefore, the
optimized algorithm can perform exactly the same steps, thus avoiding any need to
compute and store W itself. A similar optimization also works for any permutation of
the columns of A′.
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In the language of the “preimage sampleable” function fA(v) = Av ∈ Z
n
q defined

in [25], the process described above corresponds to sampling a preimage from f−1
A′ (y′)

by first computing ȳ = fĀ(v̄) = Āv̄ ∈ Z
n
q in the “forward” direction (for random

v̄← DZm̄,s), then choosing a random preimage v← f−1
A (y′−ȳ) under the appropriate

distribution, and outputting v′ = v‖v̄.4

3.4 Randomizing Control

Finally, we show how an arborist can randomize its lattice basis, with a slight loss
in quality. This operation is useful for securely delegating control to another entity,
because the resulting basis is still short, but is statistically independent (essentially) of
the original basis.

The probabilistic polynomial-time algorithm RandBasis(S, s) takes a basis S of an
m-dimensional integer lattice Λ and a parameter s ≥ ‖˜S‖ · ω(

√
log n), and outputs a

basis S′ of Λ, generated as follows.

1. Let i← 0. While i < m,
(a) Choose v← SampleD(S, s). If v is linearly independent of {v1, . . . ,vi}, then

let i← i + 1 and let vi = v.
2. Output S′ = ToBasis(V, HNF(S)).

In the final step, the (unique) Hermite normal form basis HNF(S) of Λ is used to ensure
that no information particular to S is leaked by the output; any other publicly available
(or publicly computable) basis of the lattice could also be used in its place.

Lemma 4. With overwhelming probability, S′ ← RandBasis(S, s) repeats Step 1a at
most O(m2) times, and ‖S′‖ ≤ s ·√m. Moreover, for any two bases S0,S1 of the same
lattice and any s ≥ max{‖˜S0‖, ‖˜S1‖} · ω(

√
log n), the outputs of RandBasis(S0, s)

and RandBasis(S1, s) are within negl(n) statistical distance.

Proof. The bound on ‖S′‖ and on the number of iterations follow immediately from
Lemma 2, items 1 and 3, respectively. The claim on the statistical distance follows from
the fact that each sample v drawn in Step 1a has the same distribution (up to negl(n)
statistical distance) whether S0 or S1 is used, and the fact that HNF(S0) = HNF(S1)
because the Hermite normal form of a lattice is unique.

4 Signatures

Here we use bonsai tree principles to construct a signature scheme that is existentially
unforgeable under a static chosen-message attack (i.e., eu-scma-secure). As discussed
in Section 2.2, this suffices (using chameleon hashing) for the construction of an (offline
/ online) signature scheme that is unforgeable under adaptive chosen-message attack
(eu-acma-secure).

4 An earlier version of this paper [17] explicitly defined a sampling procedure using this perspec-
tive, and gave a (somewhat involved) proof that it correctly samples from a discrete Gaussian
over Λ⊥(A′). Here, correctness follows directly by examining the operation of SampleD on
the structured basis S′.
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Our scheme involves a few parameters:

– a dimension m = O(n lg q) and a bound ˜L = O(
√

n lg q), as per Proposition 1;
– a (hashed) message length k, which induces a ‘total dimension’ m′ = m · (k + 1);
– a Gaussian parameter s = ˜L · ω(

√
log n).

The scheme SIG is defined as follows.

– Gen: using Proposition 1, generate A0 ∈ Z
n×m
q that is (negligibly close to) uni-

form, together with a basis S0 of Λ⊥(A0) such that ‖˜S0‖ ≤ ˜L. (Recall that the
columns of A0 generate all of Z

n
q , with overwhelming probability.)

Then for each (b, j) ∈ {0, 1} × [k], choose uniformly random and independent
A(b)

j ∈ Z
n×m
q . Output vk = (A0, {A(b)

j }) and sk = (S0, vk).

– Sign(sk, μ ∈ {0, 1}k): let Aμ = A0‖A(μ1)
1 ‖ · · · ‖A(μk)

k ∈ Z
n×m′
q . Output v ←

DΛ⊥(Aμ),s, via
v← SampleD(ExtBasis(S0,Aμ),0, s).

(In the rare event that v = 0 or ‖v‖ > s ·√m′ (Lemma 2, items 2 and 2), resample
v. Note also that the optimization of Section 3.3 applies here.)

– Ver(vk, μ,v): let Aμ be as above. Accept if v �= 0, ‖v‖ ≤ s · √m′, and v ∈
Λ⊥(Aμ); else, reject.

Completeness is by inspection. Note that the matrix A0 can be omitted from the above
scheme (thus making the total dimension m · k), at the expense of a secret key that
contains two short bases S(b)

1 of Λ⊥(A(b)
1 ), for b = 0, 1. The scheme’s algorithms and

security proof are easy to modify accordingly.

4.1 Security

Theorem 1. There exists a PPT oracle algorithm (a reduction) S attacking the SISq,β

problem for β = s · √m′ such that, for any adversary F mounting an eu-scma attack
on SIG and making at most Q queries,

AdvSISq,β
(SF ) ≥ Adveu-scma

SIG (F)/(k ·Q)− negl(n).

Proof. Let F be an adversary mounting an eu-scma attack on SIG. We construct a
reduction S attacking SISq,β . The reduction S takes as input m′′ = m · (2k + 1)
uniformly random and independent samples from Z

n
q in the form of a matrix A ∈

Z
n×m′′
q , parsing A as

A = A0‖U(0)
1 ‖U(1)

1 ‖ · · · ‖U(0)
k ‖U(1)

k

for matrices A0,U
(b)
i ∈ Z

n×m
q .

S simulates the static chosen-message attack to F as follows. First, S invokes F
to receive Q messages μ(1), . . . , μ(Q) ∈ {0, 1}k. (We may assume without loss of
generality that F makes exactly Q queries.) Then S computes the set P of all strings
p ∈ {0, 1}≤k having the property that p is a shortest string for which no μ(j) has p as a
prefix. In brief, each p corresponds to a maximal subtree of {0, 1}≤k (viewed as a tree)



540 D. Cash et al.

that does not contain any of the queried messages. The set P may be computed effi-
ciently via a breadth-first pruned search of {0, 1}≤k. Namely, starting from a queue
initialized to {ε}, repeat the following until the queue is empty: remove the next string
p from the queue and test whether it is the prefix of any μ(j); if not, add p to P , else if
|p| < k, add p‖0, p‖1 ∈ {0, 1}≤k to the queue. Note that this algorithm runs in poly-
nomial time because the only strings ever placed in the queue are prefixes of μ(j), and
hence there are at most k ·Q strings in the set.

Next, S chooses some p from P uniformly at random, letting t = |p|. It then provides

an SIG verification key vk = (A0, {A(b)
j }) to F , generated as follows:

– Uncontrolled growth: for each i ∈ [t], let A(pi)
i = U(0)

i . For i = t + 1, . . . , k, and

b ∈ {0, 1}, let A(b)
i = U(b)

i .

– Controlled growth: for each i ∈ [t], invoke Proposition 1 to generate A(1−pi)
i and

basis Si of Λ⊥(A1−pi

i ) such that ‖ ˜Si‖ ≤ ˜L.

Next, S generates signatures for each queried message μ = μ(j) as follows: let i ∈ [t]
be the first position at which μi �= pi (such i exists by construction of p). Then S
generates the signature v← DΛ⊥(Aμ),s as

v← SampleD(ExtBasis(Si,Aμ),0, s),

where Aμ = AL‖A(1−pi)
i ‖AR (for some matrices AL,AR) is as in the signature

scheme, and has the form required by ExtBasis. (In the event that v = 0 or ‖v‖ > β =
s · √m′, resample v.)

Finally, if F produces a valid forgery (μ∗,v∗ �= 0), then we have v∗ ∈ Λ⊥(Aμ∗),
for Aμ∗ as defined in the scheme. First, S checks whether p is a prefix of μ∗. If not,

S aborts; otherwise, note that Aμ∗ is the concatenation of A0 and k blocks U(b)
i .

Therefore, by inserting zeros into v∗, S can generate a nonzero v ∈ Z
m′′

so that
Av = 0 ∈ Z

n
q . Finally, S outputs v as a solution to SIS.

We now analyze the reduction. First observe that conditioned on any choice of p ∈ P ,
the verification key vk given to F is negligibly close to uniform, and the signatures
given to F are distributed exactly as in the real attack (up to negligible statistical dis-
tance), by Lemma 2 and the fact that s ≥ ‖ ˜Si‖ · ω(

√
log n). Therefore, F outputs a

valid forgery (μ∗,v∗ �= 0) with probability at least Adveu-scma
SIG (F)− negl(n). Finally,

conditioned on the forgery, the choice of p ∈ P is still negligibly close to uniform, so p
is a prefix of μ∗ with probability at least 1/(k · Q)− negl(n). In such a case, Av = 0
and ‖v‖ = ‖v∗‖ ≤ β by construction, hence v is a valid solution to the given SIS
instance, as desired.

5 Hierarchical ID-Based Encryption

5.1 Key Encapsulation Mechanism

For our HIBE schemes, it is convenient and more modular to abstract away the en-
cryption and decryption processes into a key-encapsulation mechanism (KEM). The
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following LWE-based KEM from [25] (which is dual to the scheme of Regev [51]) is
now standard. The reader need not be concerned with the details in order to progress
to the HIBE schemes; it is enough simply to understand the KEM interface (i.e., the
public/secret keys and ciphertext).

KEM is parametrized by a modulus q, dimension m, key length �, and Gaussian
parameter s that determines the error distribution χ used for encapsulation. As usual,
all these parameters are functions of the LWE dimension n, and are instantiated based
on the particular context in which the KEM is used.

– KEM.Gen: Choose A ← Z
n×m
q uniformly at random, e ← DZm,s and set y =

Ae ∈ Z
n
q . Output public key pk = (A,y) ∈ Z

n×(m+1)
q and secret key sk = e.

– KEM.Encaps(pk = (A,y)): Choose s← Z
n
q and let

b← Noisyχ(Ats) and p← Noisyχ(yts + k · �q/2�),
where k ∈ {0, 1} is a random bit. Output the key bit k and ciphertext (b, p) ∈
Z

m+1
q .

– KEM.Decaps(sk = e, (b, p)): Compute p − etb mod q and output 0 if the result
is closer to 0 than �q/2� modulo q, and 1 otherwise.

As explained in [25], the basic scheme can be amortized to allow for KEM keys of
length � = poly(n) bits, with ciphertexts in Z

m+�
q and public keys in Z

n×(m+�)
q . This

is done by including � syndromes y1, . . . ,y� (where yi = Aei for independent ei ←
DZm,s) in the public key, and concealing one KEM bit with each of them using the same
s and b← Noisyχ(Ats). Furthermore, it is also possible to conceal Ω(log n) KEM bits
per syndrome, which yields an amortized expansion factor of O(1). For simplicity, in
this work we deal only with the case of single-bit encapsulation, but all of our schemes
can be amortized in a manner similar to the above.

We point out one nice property of KEM, which is convenient for the security proof of
our BTE/HIBE schemes: for any dimensions m ≤ m′ (and leaving all other parameters
the same), the adversary’s view for dimension m may be produced by taking a view for
dimension m′, and truncating the values A ∈ Z

n×m′
q and b ∈ Z

m′
q to their first m (out

of m′) components.
The following lemma is standard from prior work.

Lemma 5 (Correctness and Security). Let m ≥ Cn lg q for any fixed constant C > 1,
let q ≥ 4s(m + 1), and let χ be the discretized Gaussian of parameter α for 1/α ≥
s
√

m + 1 · ω(
√

log n). Then KEM.Decaps is correct with overwhelming probability
over all the randomness of KEM.Gen and KEM.Encaps. Moreover, there exists a PPT
oracle algorithm (a reduction) S attacking the LWEq,χ problem such that, for any ad-
versary A mounting an ind-cpa attack on KEM,

AdvLWEq,χ
(SA) ≥ Advind-cpa

KEM (A)− negl(n).

5.2 BTE and HIBE Scheme

Our main construction in this section is a binary tree encryption (BTE) scheme, which
suffices for full HIBE by hashing the components of the identities with a universal
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one-way or collision-resistant hash function [16]. We mainly focus on the case of
selective-identity, chosen-plaintext attacks, i.e., sid-ind-cpa security.

The BTE scheme is parametrized by a dimension m = O(n lg q) as per Proposi-
tion 1, as well as a few quantities that are indexed by depth within the hierarchy. For an
identity at depth i ≥ 0 (where i = 0 corresponds to the root),

– (i + 1)m is the dimension of a lattice associated with the identity;
– ˜Li is an upper bound on the Gram-Schmidt lengths of its secret short basis;
– for i ≥ 1, si is the Gaussian parameter used to generate that secret basis, which

must exceed ˜Lj · ω(
√

log n) for all j < i.

These parameters, along with the total depth d of the hierarchy (or more accurately, the
maximum number of delegations down any chain of authority), determine the modulus
q and error distribution χ used in the cryptosystem. We instantiate all the parameters
after describing the scheme.

– BTE.Setup(d): Generate (via Proposition 1) A0 ∈ Z
n×m
q that is (negligibly close

to) uniform with a basis S0 of Λ⊥(A0) such that ‖˜S‖ ≤ ˜L0. For each (b, j) ∈
{0, 1} × [d], generate uniform and independent A(b)

j ∈ Z
n×m
q . Choose y ∈ Z

n
q

uniformly at random. Output mpk = (A0, {A(b)
j },y, d) and msk = S0.

All remaining algorithms implicitly take the master public key mpk as input. For
an identity id = (id1, . . . , idt) of length t = |id| ≤ d, let

Aid = A0‖A(id1)
1 ‖ · · · ‖A(idt)

t ∈ Z
n×(t+1)m
q ,

and let pkid = (Aid,y) denote the KEM public key associated with identity id.
– BTE.Extract(skid = (Sid, eid), id′ = id‖īd): if t′ = |id′| > d, output⊥. Else, let

t = |id| and t̄ = |īd|, and choose

Sid′ ← RandBasis(ExtBasis(Sid,Aid′), st′).

(Note that st′ ≥ ˜Lt · ω(
√

log n) ≥ ‖˜Sid‖ · ω(
√

log n), as required by RandBasis.)
Sample eid′ ← DΛ⊥

y (Aid′ ),st′ using SampleD(ExtBasis(Sid,Aid′),yid′ , st′) and
output skid′ = (Sid′ , eid′).

– BTE.Encaps(id): Output (k, C)← KEM.Encaps(pkid).
– BTE.Decaps(skid = (Sid, eid), C): Output k← KEM.Decaps(eid, C).

A multi-bit BTE follows in the same way from the multi-bit KEM scheme by using
multiple uniform syndromes yi ∈ Z

n
q , one for each bit of the KEM key.

Instantiating the parameters. Suppose that BTE is employed in a setting in which
BTE.Extract(skid, id′) is invoked only on identities id′ whose lengths are a multi-
ple of some k ≥ 1. For example, consider the two main applications of [16]: in the
forward-secure encryption scheme we have k = 1, while in the generic BTE-to-HIBE
transformation, k is the output length of some UOWHF.

It is enough to define si and ˜Li for i that are multiples of k. Let

˜Li = si ·
√

(i + 1)m = si ·O(
√

d · n lg q)



Bonsai Trees, or How to Delegate a Lattice Basis 543

be the bound on the Gram-Schmidt lengths of the secret bases (and note that this bound
is satisfied with overwhelming probability by Lemma 2). Define si = L̃i−k ·ω(

√
log n),

and unwind the recurrence to obtain

˜Lt = ˜L0 ·O(
√

d · n lg q)t/k · ω(
√

log n)t/k,

with ˜L0 = O(
√

n lg q) by Proposition 1.
Finally, to ensure that the underlying KEM is complete (Lemma 5), we let q ≥

4sd · (d + 2)m and 1/α = sd ·
√

(d + 2)m ·ω(
√

log n). (It is also possible to use a dif-
ferent noise parameter for each level of the hierarchy.) For any d = poly(n), invoking
known worst-case to average-case reductions for LWE yields an underlying approxima-
tion factor of Õ(n/α) = n · Õ((d/k) · √nk))d/k for worst-case lattice problems.

Extensions: Anonymity and chosen-ciphertext security. With a small modification, BTE
may be made anonymous across all depths of the hierarchy. That is, a ciphertext hides
(computationally) the particular identity to which it was encrypted. The modification
is simply to extend the b component of the KEM ciphertext to have length exactly
(d + 1)m, by padding it with enough uniformly random and independent elements of
Zq . (The decryption algorithm simply ignores the padding.) Anonymity then follows
immediately by the pseudorandomness of the LWE distribution.

Security under chosen-ciphertext attack (sid-ind-cca or aid-ind-cca) follows directly
by a transformation of [10], from ind-cpa-secure HIBE for depth d+1 to ind-cca-secure
HIBE for depth d.

Theorem 2 (Security of BTE). There exists a PPT oracle algorithm (a reduction) S
attacking KEM (instantiated with dimension (d + 1)m and q, χ as in BTE) such that,
for any adversary A mounting an atk attack on BTE,

AdvKEM(SA) ≥ Advsid-ind-cpa
BTE (A)− negl(n).

Proof. Let A be an adversary mounting a sid-ind-cpa-attack on BTE. We construct a
reduction S attacking KEM. It is given a uniformly random public key pk = (A,y) ∈
Z

n×(d+1)m
q × Z

n
q , an encapsulation (b, p) ∈ Z

(d+1)m
q × Zq , and a bit k which either

is encapsulated by (b, p) or is uniform and independent; the goal of S is to determine
which is the case.
S simulates the (selective-identity) attack on BTE to A as follows. First, S invokes

A on 1d to receive its challenge identity id∗ of length t∗ = |id∗| ∈ [d]. Then S produces
a master public key mpk, encapsulated key, and some secret internal state as follows:

– Parsing the KEM inputs. Parse A as A = A0‖A1‖ · · · ‖Ad ∈ Z
n×(d+1)m
q for

Ai ∈ Z
n×m
q for all i ∈ {0, . . . , d}. Similarly, truncate b to b∗ ∈ Z

(t∗+1)m
q .

– Undirected growth. For each i ∈ [t∗], let A(id∗
i )

i = Ai.

– Controlled growth. For each i ∈ [t∗], generate A(1−id∗
i )

i ∈ Z
n×m
q and basis Si

by invoking GenBasis(1n, 1m, q). If t∗ < d, for each b ∈ {0, 1} generate A(b)
t∗+1

and basis S(b)
t∗+1 by two independent invocations of GenBasis(1n, 1m, q). For each

i > t∗ + 1 (if any) and b ∈ {0, 1}, generate A(b)
i ∈ Z

n×m
q uniformly at random.
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S gives to A the master public key mpk = (A0, {A(b)
j },y, d), the encapsulation

(b∗, p), and the key bit k.
Then S answers each secret-key query on an identity id that is not a prefix of (or

equal to) id∗ as follows:

– If t = |id| ≤ t∗, then let i ≥ 1 be the first position at which idi �= id∗i . Answer the
query with (Sid, eid), which are computed by

Sid ← RandBasis(ExtBasis(Si,Aid), st)
eid ← SampleD(ExtBasis(Si,Aid),yid, st).

– If t = |id| > t∗, answer the query (Sid, eid), which are computed by

Sid ← RandBasis(ExtBasis(S(idt∗+1)
t∗+1 ,Aid), st)

eid ← SampleD(ExtBasis(S(idt∗+1)
t∗+1 ,Aid),yid, st).

Finally, S outputs whatever bit A outputs.
We now analyze the reduction. First, observe that the master public key given to A

is negligibly close to uniform (hence properly distributed), by hypothesis on KEM and
by Proposition 1. Next, one can check that secret-key queries are distributed as in the
real attack (to within negl(n) statistical distance), by Lemma 4 (note that the Gram-
Schmidt vectors of each basis Si,S

(b)
t∗+1 are sufficiently short to invoke RandBasis and

SampleD). Finally, the encapsulation (b∗, p) (for identity id∗) and key bit k are dis-
tributed as in the real attack, by the truncation property of KEM. Therefore, S’s overall
advantage is within negl(n) of A’s advantage, as desired.

5.3 Full Security in the Random Oracle Model

To obtain a fully secure HIBE in the random oracle model we can use a generic transfor-
mation by Boneh and Boyen [8]. It starts from a selective-id secure HIBE and applies
hash functions to the identities. The resulting HIBE is fully secure, in the random oracle
model, losing roughly a factor of Qd

H in security, where QH is the number of random

oracle queries. Furthermore, the {A(b)
j } component of the master public key may be

omitted, because each Aid can instead be constructed by querying the random oracle
on, say, each prefix of the identity id.

We now give a more efficient fully-secure HIBE scheme, ROHIBE, in the random
oracle model. It can be seen as a generalization of the GPV IBE scheme [25]. Com-
pared to the fully-secure scheme obtained by the generic transformation, the efficiency
improvement stems from the fact that y from pkid now also depends on the identity id
(via a hash function G). This way the dimension of the lattice associated to id can be
decreased. The scheme is again parametrized by a dimension m = O(n lg q) and the
following parameters. For an identity at depth i ≥ 1,

– i ·m is the dimension of a lattice associated with the identity;
– ˜Li is an upper bound on the Gram-Schmidt lengths of its secret short basis;
– for i ≥ 1, si is the Gaussian parameter used to generate that secret basis, which

must exceed ˜Lj · ω(
√

log n) for all j < i.
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These parameters, along with the total depth d of the hierarchy, determine the modulus
q and error distribution χ used in the cryptosystem. As before, we instantiate all the
parameters after describing the scheme. Let H : {0, 1}∗ → Z

n×m
q and G : {0, 1}∗ →

Z
n
q be hash functions.

– ROHIBE.Setup(d): This is the same as BTE.Setup(d), except that we only gen-
erate A0 and S0. More precisely, using Proposition 1, select A0 ∈ Z

n×m
q that

is (negligibly close to) uniform and a basis S0 of Λ⊥(A0) such that ‖˜S‖ ≤ ˜L0.
Output mpk = (A0, d) and msk = S0.

All the remaining algorithms implicitly take the master public key mpk as an
input. For an identity vector id of length t ≤ d, we let

Aid = A0‖A1‖ · · · ‖At−1 ∈ Z
n×tm
q , yid = G(id) ∈ Z

n
q ,

where Ai = H(id1, . . . , idi) ∈ Z
n×m
q . We let pkid = (Aid,yid) denote the KEM

public key associated with identity vector id.
– ROHIBE.Extract(Sid, id

′ = id‖īd): if t′ = |id′| > d, output ⊥. Else, let t = |id|
and t̄ = |īd|, and choose

Sid′ ← RandBasis(ExtBasis(Sid,Aid′), st′).

Sample eid′ ← DΛ⊥
y

id′ (Aid′),st′ using SampleD(ExtBasis(Sid,Aid′),yid′ , st′) and

output skid′ = (Sid′ , eid′).
For technical reasons, we assume that the same eid′ is drawn every time this

identity is used. This means that the actual algorithm should be stateless or use
standard techniques like PRFs to get repeated randomness.

– ROHIBE.Encaps(id): Output (k, C)← KEM.Encaps(pkid).
– ROHIBE.Decaps(skid = (Sid, eid), C): Output k ← KEM.Decaps(eid, C).

Instantiating the parameters. A similar computation as in the last subsection shows
that we can set

˜Lt = ˜L0 ·O(
√

d · n lg q)t−1 · ω(
√

log n)t−1,

with ˜L0 = O(
√

n lg q). To ensure that the underlying KEM is complete (Lemma 5), we
let q ≥ 4sd · (d + 1)m and 1/α = sd ·

√

(d + 1)m · ω(
√

log n). For any d = poly(n),
invoking the worst-case to average-case reduction for LWE yields an underlying ap-
proximation factor of n · Õ(d · √n)d.

Theorem 3 (Security of ROHIBE). There exists a PPT oracle algorithm (a reduction)
S attacking KEM (instantiated with dimension dm and q, χ as in ROHIBE) such that,
for any adversary A mounting an aid-ind-cpa attack on ROHIBE making QH queries
to the random oracle H and QG queries to the random oracle G,

AdvKEM(SA) ≥ Advaid-ind-cpa
ROHIBE (A)/(dQd−1

H QG)− negl(n).

Proof. LetA be an adversary mounting a aid-ind-cpa-attack on ROHIBE. We construct
a reduction S attacking KEM. It is given a uniformly random public key pk = (A,y) ∈
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Z
n×dm
q × Z

n
q , an encapsulation (b, p) ∈ Z

dm
q × Zq , and a bit k which either is encap-

sulated by (b, p) or is uniform and independent; the goal of S is to determine which is
the case.

Let QG and QH be the number or queries that A issues to H and G, respectively.
In our analysis, we will actually be more generous and let the adversary issue at most
d · QH total queries, where it is allowed QH queries to H at each input length. To
simplify the analysis, we also assume without loss of generality that (1) whenever A
queries H(id1, . . . , idi), it has already issued the queries H(id1, . . . , idj) for j < i,
and (2) that when A asks for skid, it has already queried H(id) and G(id).
S simulates the attack on ROHIBE toA as follows. First, S produces a master public

key mpk, encapsulated key, and some secret internal state as follows:

– Guess length of challenge identity and random oracle queries. Choose t∗ ← [d], a
guess for the length of the challenge identity. Pick a vector j∗ = (j∗1 , . . . , j∗t∗−1)←
{1, . . . , QH}t∗−1 and index j ← {1, . . . , QG}.

– Parsing the KEM inputs. Parse A as A = A0‖A1‖ · · · ‖Ad−1 ∈ Z
n×dm
q for A0 ∈

Z
n×m
q and Ai ∈ Z

n×m
q for all i ∈ [d− 1]. Similarly, truncate b to b∗ ∈ Z

t∗m
q .

S gives to A the master public key mpk = (A0, d). To simulate the attack game for
A, S must simulate oracle queries to H and G, queries for user secret keys, and it must
also generate the challenge encapsulation. To do this, it will maintain two lists, denoted
H and G, which are initialized to be empty and will store tuples of values. S processes
queries as follows.

Queries to H(·). On A’s ji-th distinct query (idji,1, . . . , idji,i) to H(·) of length i, do
the following: if i ≤ t∗− 1 and ji = j∗i , then return Ai (i.e., this branch undergoes
undirected growth). Otherwise, if i ≥ t∗ or ji �= j∗i , run GenBasis(1n, 1m, q)
to generate Ai,ji ∈ Z

n×m
q with corresponding short basis Si,ji (i.e., this branch

undergoes controlled growth). Store the tuple ((idji,1, . . . , idji,i),Ai,ji ,Si,ji) in
listH, and return Ai,ji .

Queries to G(·). On A’s j-th distinct query idj to G(·), do the following: if j = j∗

then return y. (Recall that y was obtained from the KEM input.) Otherwise for
j �= j∗, sample ej ← DΛ⊥(Zm),st

(where t is the depth of idj) and set yj :=
A(idj,1,...,idj,t−1)ej ∈ Z

n
q . (Recall that we assumedA has already made all relevant

queries to H that in particular define A(idj,1,...,idj,t−1) = H(idj,1, . . . , idj,t−1).)
Return yj and store (idj ,yj , ej) in list G.

Queries to ROHIBE.Extract. WhenA asks for a user secret key for id=(id1, . . . , idt),
we again assume that A has already made all relevant queries to G and H that de-
fine yid and Aid. If, for one i ∈ [t − 1], Aidi

= H(id1, . . . , idi) is contained in
list H, then B can compute a properly distributed short basis Sid for Aid by run-
ning RandBasis(ExtBasis(Si,idi ,Aid), st), where Si,idi is obtained fromH. If yid

is contained in list G, then B can retrieve a properly distributed vector eid from G
satisfying A(id1,...,idt−1)eid = yid. If the generation of skid = (Bid, eid) was suc-
cessful, then B returns skid. In all other cases, B aborts (and returns a random bit).

Challenge query for id∗. Let t be the depth of id∗. If t �= t∗, or G(id∗) �= y, or
H(id∗1, . . . , id

∗
i ) �= Ai (for one 1 ≤ i ≤ t∗ − 1), then abort. Otherwise, return

the encapsulation (b∗, p), and the key-bit k.
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S runs until A halts, and it outputs whatever bitA outputs.
It remains to analyze the reduction. The master public key given to A is negligibly

close to uniform by the construction of KEM and Proposition 1. By the same proposi-
tion, we have that oracle queries to H are properly simulated, up to negligible statistical
distance. Oracle responses for G are negligibly far from uniform by Lemma 2 (4). It can
also be verified using the truncation property of KEM that the challenge encapsulation
is properly distributed, conditioned on the event that S does not abort. Thus all that
remains to check is the probability that S aborts; this is at most 1/(dQGQd−1

H ). This
completes the proof.

5.4 Full Security in the Standard Model

To achieve aid-ind-cca security in the standard model, we will essentially try to imple-
ment the random oracle from our scheme ROHIBE with a suitable hash function. We
will employ a probabilistic argument, along the lines of [9]. Concretely, we will set up
the public key such that in the simulation, we will know a short basis for Aid with a
certain probability. A sophisticated construction of the hash function will ensure that,
to a certain degree, these probabilities (resp. the corresponding events) are independent.
That is, even an adversary that adaptively asks for user secret keys will not manage to
produce an identity id for which the simulation is guaranteed to know a trapdoor. In
this case, a successful simulation will be possible.

Of course, we will have to take care that the event of a successful simulation is (at
least approximately) independent of the adversary’s view. To achieve independence, we
will employ an “artificial abort” strategy similar to the one from [56].

Admissible hash functions. We give a variant of the definition from [9]. Let H =
{Hn} be a collection of distributions of functions H : Cn → Dn = {0, 1}λ. For
H ∈ Hn, K ∈ {0, 1,⊥}λ, and x ∈ Cn, define

FK,H(x) =

{

B if ∃u ∈ {1, . . . , λ} : tu = Ki

R if ∀u ∈ {1, . . . , λ} : tu �= Ki

for (t1, . . . , tλ) = H(x).

For μ ∈ {0, . . . , λ}, denote by Kμ the uniform distribution on all keys K ∈ {0, 1,⊥}λ
with exactly μ non-⊥ components.

We say thatH is Δ-admissible (for Δ : N
2 → R) if for every polynomial Q = Q(n),

there exists an efficiently computable function μ = μ(n), and efficiently recognizable
sets badH ⊆ (Cn)∗ (H ∈ Hn), so that the following holds:

– For every PPT algorithm C that, on input a function H ∈ Hn, outputs a vector
x ∈ CQ+1

n , the function

Advadm
H (C) := Pr[x ∈ badH | H ← Hn ; x← C(H)]

is negligible in n.
– For every H ∈ Hn and every x = (x0, . . . , xQ) ∈ CQ+1

n \ badH , we have that

Pr[FK,H(x0) = R ∧ FK,H(x1) = · · · = FK,H(xQ) = B] ≥ Δ(n, Q),

where the probability is over uniform K ∈ Kμ(n,Q).

We say thatH is admissible ifH is admissible for some Δ, such that Δ(n, Q) is signif-
icant for every polynomial Q = Q(n).
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Difference to the definition of [9]. Note that our definition of admissibility is conceptu-
ally different from that of [9]. The reason for our change is that our definition is better
suited for our purposes. Concretely, their definition is based upon indistinguishability
from a (biased) random function. However, their construction only achieves asymptotic
indistinguishability (i.e., negligible distinguishing success) when the “target” random
function is constant. (In their notation, this corresponds to the case when γ is negli-
gible, so that Pr[FK,H(x) = 1] = 1 − negl(n).) Such a function is not very useful
for aymptotic purposes. In an asymptotic sense, their construction becomes only use-
ful with parameters that cause the distinguishing advantage to become significant (but
smaller than the inverse of a given polynomial). With that parameter choice, our defini-
tion allows for a conceptually simpler analysis. Namely, it separates certain negligible
error probabilities (of x ∈ badH ) from significant, but purely combinatorial bounds on
the probability of the “simulation-enabling” event

good := [FK,H(x0) = R ∧ FK,H(x1) = · · · = FK,H(xQ) = B].

Specifically, we can bound Pr[good] for every x �∈ badH , which simplifies the artificial
abort step below. Note that while the original analysis from [9] does not incorporate
an artificial abort step, this actually would have been necessary to guarantee sufficient
independence of (their version of) event good. This becomes an issue in [9, Claim 2],
when the success probability of an adversary conditioned on good is related to its orig-
inal (unconditioned) success probability.
Constructions. [9] show how to construct admissible hash functions from a given
collision-resistant hash function family. Since collision-resistant hash functions can be
built from the LWE problem (e.g., [5]), this does not entail extra assumptions in the
encryption context. Specifically, for parameter choices as in [9, Section 5.3], we get
a single hash function with output length λ = O(k2+ε) (for arbitrary ε > 0) that is
Δ-admissible with Δ = Θ(1/Q2).5

The scheme SMHIBE. Let d ∈ N denote the maximal depth of the HIBE, and fix
a dimension m, as well as ˜Li, si. Let H = (Hn)n be an admissible family of hash
functions H : {0, 1}n → {0, 1}λ.
SMHIBE.Setup(d). Using Proposition 1, generate A ∈ Z

n×m
q and a corresponding

short basis S ∈ Z
m×m with ‖˜S‖ ≤ ˜L0. Furthermore, sample uniformly and inde-

pendently matrices Bi,u,b ∈ Z
n×m
q (for 1 ≤ i ≤ d, 1 ≤ u ≤ λ and 0 ≤ b ≤ 1) and

a vector y ∈ Z
n
q . Finally, choose H1, . . . , Hd ← Hn. Return

mpk = (A,y, (Bi,u,b)(i,u,b)∈[d]×[λ]×{0,1}, (Hi)d
i=1), msk = (mpk,S).

For an identity id = (id1, . . . , id�) we define

Aid := A||A1,id1 || . . . ||A�,id�
∈ Z

n×(λ�+1)m
q

for Ai,idi := Bi,1,t1 || . . . ||Bi,λ,tλ
∈ Z

n×λm
q ,

(5.1)

5 In the notation of [9], we replace the output length βH of the original hash function with k,

and bound the number Q of hash function queries by 2kε/2
. Note that Q will later correspond

to the number of (online) user secret key queries, so we bound Q by a comparatively small
exponential function.
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where (t1, . . . , tλ) := Hi(idi) ∈ {0, 1}λ. The user secret keys for an identity id will
consist of a basis part Sid for Λ⊥(Aid) and a syndrome part eid satisfying Aideid = y.
For brevity, we will write id|� := (id1, . . . , id�) for � ≤ |id|.
SMHIBE.Extract(msk, id): This algorithm computes a user secret key (Sid, eid) for

id = (id1, . . . , id�), where Sid ← RandBasis(ExtBasis(Aid,Sε), s�) is a basis for
Λ⊥(Aid) and eid ← SampleD(ExtBasis(Aid,Sε),yid, s�) is distributed according
to DZ(λ�+1)m,s�

conditioned on Aideid = yid.
SMHIBE.HIBEDel(usk id|�−1, id): The delegation algorithm derives a user secret key

for an identity id = (id1, . . . , id�) (1 ≤ � ≤ d) given a user secret key for id|�− 1
which contains a basis Sid|�−1 for Λ⊥(Aid|�−1) with ‖˜Sid|�−1‖ ≤ L(� − 1).
(We note that the short vector eid|�−1 is not needed for delegation.) Note that

Aid = A||A1,id1 || · · · ||A�,id�
= A1,id|�−1||A�,id�

∈ Z
n×(λ�+1)m
q . To compute

the basis part, run Sid ← RandBasis(ExtBasis(Aid,Sid|�−1), s�). Note that since
� is constant,

L(�) = L(�− 1) ·
√

λm · ω(
√

log λm)

≥ ‖˜Sid|�−1‖ ·
√

(λ� + 1)m · ω(
√

log (λ� + 1)m).

The syndrome part of the user secret key is computed as

eid ← SampleD(ExtBasis(Aid,Sid|�−1),y, s�).

By Lemma 4, the user secret key usk id = (Sid, eid) has a distribution that is sta-
tistically close to the one computed by Extract.

SMHIBE.Encaps(id, b): Output C = (k,p)← KEM.Encaps(pk = (Aid,y)).
SMHIBE.Decaps(skid, (Sid, eid), C): Output k← KEM.Decaps(eid, C).
The scheme’s correctness is inherited by that of KEM.

Security of SMHIBE. We now formally state security of our construction. If the hash
function H is admissible, then we can prove the scheme aid-ind-cpa secure. Unfortu-
nately, we only know constructions of admissible hash functions that require λ = n2+ε

so the resulting scheme is not very practical.

Theorem 4. Assume an adversary A on SM-HIBE’s aid-ind-cpa security that makes
at most Q(n) user secret key queries. Then, for every polynomial S = S(n), there exists
an LWEq,χ-distinguisherD and an adversary C onH’s admissibility such that

Advaid-ind-cpa
SM-HIBE(A) ≤ d ·Advadm

H (C) +
AdvLWEq,χ

(D)
Δ(n, Q)d

+
1

S(n)
+ negl(n). (5.2)

Here, the running time of C is roughly that of the aid-ind-cpa experiment with A,
and the running time of D is roughly that of the aid-ind-cpa experiment with A plus
O(n2QS/Δd) steps.

Note that for the admissible hash function from [9], Δ(n, Q)d = Θ(1/Q2d) is signifi-
cant. Since S in Theorem 4 is arbitrary, we obtain:

Corollary 1 (SM-HIBE is aid-ind-cpa secure). IfH is admissible, and if the LWEq,χ

problem is hard, then SM-HIBE is CPA secure.

We defer a proof of Theorem 4 to the full version.
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