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Abstract—This paper proposes a novel Stackelberg game
approach for activating demand response (DR) program in a
residential area aiming at addressing the mismatch between the
demand and renewable energy generation. In this study, two
major players, namely the aggregator as a leader and the
consumers as followers, are considered. The aggregator, which
owns a wind farm and also receives power from the independent
system operator (ISO), strives to obtain the maximum matching
between the consumers’ demand and forecasted wind power by
incentivizing consumers to adjust their load through offering a
bonus to them. On the other hand, consumers change their load
profiles for obtaining the highest amount of bonuses. Each
consumer has two kinds of loads including critical loads, which
must be maintained under any circumstances, and the flexible
loads, e.g., heating, ventilation, and air conditioning (HVAC)
system, which can be regulated for DR purposes. In order to
consider the uncertainty associated with the wind generation and
the demands, a scenario-based stochastic programming model has
been adopted in this work. Results show the effectiveness of the
Stackelberg game model used for interaction between the
aggregator and consumers, and the best response that can be
served to both of them.

Index Terms—Bilevel programming, demand response, HVAC
systems, Stackelberg game, strong duality theorem.

NOMENCLATURE
A. Indexes and Sets

Time period index
House index
Slope index for linearization of (∆ , )
Slope index for linearization of (∆ , )
Index set of the time period
Index set of houses
Index set of the piecewise linearization for ∆ ,
Index set of the piecewise linearization for ∆ ,

B. Parameters
, , HVAC power for the case without demand response.

Active power generated by wind turbine ( )
Rated power of wind turbine ( )
Wind speed ( / )
Wind speed at rated power ( / )
Cut-in wind speed ( / )
Slope of the wind power curve
constant

, Hourly expected non-HVAC load of house n ( )
Hourly expected wind power ( )
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Thermal conductance allowing the  to be
connected in the mass node point ( /° )
thermal conductance of ventilation air heat ( /° )
thermal conductance between  node point and

( /° )
Virtual thermal conductance between  and
node points ( /° )
Thermal conductance allowing the  to be
connected in the mass node point ( /° )

, Set point temperature for house  at time (° )
Outside ambient temperature at time (° )
Ground temperature at time (° )
Ventilation supply air temperature (° )

/2 Maximum value of upper and lower deviation from
the set point temperature ( )
Heat capacity of the indoor air ( /°C)
Heat capacity of the building fabric ( /°C)

∆ Duration of time slot (hours)
_ Power rating of HVAC for house ( /ℎ)
_ Rated thermal power of HVAC for house ( /ℎ)

Maximum amount of state of charge for thermal
storage for house (%)
Minimum amount of state of charge for thermal
storage for house (%)
Storage loss coefficient while charging
Storage loss coefficient while discharging
Probability of each scenario for non-HVAC load
Probability of each scenario for wind generation

C. Variables
, Indoor temperature for house  at time (°C)
, Fabric temperature for house  at time (°C)

, Bonus amount given to house  during time  (€)
,  HVAC Electrical power for house  at time ( )

∆ ,  power change of HVAC for house  at time ( )

,  HVAC thermal power for house  at time ( )

,
State of charge of thermal storage for house  at
time

ξ , Storage thermal losses for house  at time ( )
∆ , Auxiliary variable for linearization of ∆ ,
∆ , Auxiliary variable for linearization of ∆ ,

variable for linearization of absolute value
Coefficient for bonus (€/Watt^2)( 10-6)
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Uniting factor (€/Watt)
, Maximum value in each slop for changing ∆ ,

, Maximum value in each slop for changing ∆ ,

,
Slopes of the  block of the HVAC power
variation for house  at time

,
Slopes of the  block of the HVAC power
variation for house  at time

,
Auxiliary variable for McCormick linearization for
house  at time

D. Dual variables

, , , , , , , , , , μ , , μ , , , , ι , , ι , , ν , , ν , ,
, , , , δ , , δ , , υ , υ

I. INTRODUCTION

Developing advanced technologies for renewable energy
sources (RESs) has recently resulted in high penetration of
these resources into the power grid. The unpredictability of
RESs, besides their fluctuating nature, may impose harmful
effects on the existing power grid that has not been built to
withstand such unstable conditions. Wind power generation is
one of the RESs that has developed rapidly and will comprise a
significant share of the power generation in the near future. The
accessibility of wind power is very high almost everywhere,
especially near the offshore locations that not only saves the
land but also reduces the capital cost for establishing a wind
power plant. However, the generated power by wind fluctuates
substantially, and it needs to be taken into account properly [1].
On the other hand, the ever-increasing electricity power
demand and its volatile nature create other challenges on the
power grid that negatively affect its efficiency. To address this
issue and to enhance the power grid efficiency, smart grid
infrastructure and its applications play a key role [2].

In order to cope with the aforementioned issues, demand
response (DR) programs are one of the most studied approaches
that work by activating the participation of end-user consumers
for matching the power generation and consumption as much as
possible. Generally, DR can be categorized into two different
types, including direct load control (DLC) and indirect load
control. In the direct load control, which is an incentive-based
approach and not a price-based one, an aggregator or distributed
system operator (DSO) adjusts the consumers’ power demand
directly. This effective scheme has been widely used in
frequency regulation [3] and peak load shaving [4], but it
noticeably sacrifices the privacy of consumers and decreases
their satisfaction level. On the other hand, the indirect load
control is based on incentivizing consumers to contribute to the
DR program in exchange for a reward or decreasing their
electricity bill. This approach needs less infrastructure for
monitoring and communication compared to the direct load
control policy. Above that, by utilizing this plan, the comfort
level of consumers is well maintained. In [5], a hierarchical
market model has been presented to decrease the operational
cost of the grid by giving incentives to the aggregator and
providing compensation for the consumers. In that paper, the
consumers were responsible for compromising between their
receiving bonuses and comfort level. In [6], a smart pricing
mechanism was proposed to activate the DR management

program where an energy consumption controller for each
consumer was introduced at the presence of a communication
infrastructure for a two-way connection between the utility and
the consumers. In [7], a price-based DR program was
investigated by adopting scenario-based stochastic
optimization and robust optimization approaches via a mixed-
integer linear programming problem. In [8], a two-stage robust
programming method was presented to handle the coordination
between price-based DR and multiple distributed generation
(DG) units in the presence of uncertainty related to renewable
DG and load consumption.

 According to [9], the power consumption by residential
consumers has increased, hitting nearly 55% of the total
electricity usage in Europe in 2012. However, the DR programs
have been mostly applied to the industrial and commercial
sectors [10], due to the large demand requested by them and the
fact that their load profile is highly predictable. Nowadays,
thanks to the existing proper communication infrastructure,
besides the extensive use of smart metering systems, there is a
great interest in adopting DR programs at the residential level.
In [11], a reward-based approach with the aim of peak shaving
was suggested for residential end-users. It was supposed that
the consumption details of consumers were recorded by
questionnaires to provide necessary information for DR
purposes, but it might be tedious and imprecise.

On the other hand, among various assortments of residential
appliances, thermostatically controlled loads (TCLs) account as
great potential for DR purposes, not only because of their fast
response but also due to the thermal inertia which maintains
their comfort level in an acceptable range while operating in
interruptible mode (the period when the appliances curtail their
power) [12]. In [13], the physical and operational features of
various loads were analyzed for building the TCL model at the
residential level. Amongst the diverse TCL loads available in
regular households, heating, ventilation, and air conditioning
(HVAC) systems have the most significant impact on the
system stress due to the higher power consumption that
contributes to the peak demand. Therefore, HVAC is the most
effective and interesting option for implementing a DR program
in a residential area. In  [14], aiming at using the HVAC systems
in the DR program, the aggregated characteristic of a group of
HVAC units was investigated by studying their dynamic
features. In [15], a new centralized controller with modern
design and specifications was proposed for controlling TCL
loads while a system including a thousand HVAC units was
modeled for examining the effects of various parameters on the
operation. In [16], a distributed DR approach and an extended
Lyapunov optimization were proposed for residential houses to
evaluate the capacity of their HVAC systems for alleviating the
fluctuation of RES. In almost all of the aforementioned papers,
only one entity such as aggregator, electricity market, or DSO
wer the only decision-makers while neglecting the capability of
consumers in making any decision. It means that they are
mostly sacrificing the comfort level of consumers to reach their
goal in the DR program via peak shaving or matching the
consumers' load with their expected power generation.

In order to have a win-win condition for both the utility and
the consumer sides, a proper interaction between them should
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be established. To this end and for the sake of practicality in
activating the DR program, the interaction should follow the
game theory concept. One of the most practical techniques is
the Stackelberg game theory, which is a suitable option for
handling hierarchical management problems in a smart grid to
study the interaction between two players [17]. In [18], a two-
stage Stackelberg game approach was adopted between a grid
operator on a local scale and several load aggregators. A novel
locational marginal price was used to activate the DR program
by providing enough incentives for the loads aiming at
following the fluctuant renewable energy generation. In [19], a
game theory model was proposed to find the optimal time-of-
use electricity pricing and the consumers' response as well.
Nevertheless, it uses a backward induction method to find the
solution, which suffers some drawbacks. Firstly, it does not
reflect how players are actually playing. Secondly, as the
players may not have a comprehension of what is happening, it
may lead to a game of incomplete information, which is not
solvable by backward induction. In [20], a game between utility
service and consumers in a retail market scale was proposed to
support the utility in finding the optimal solution and then
incentivizing the consumers to adapt their electricity
consumption. However, the DLC was used in that work, which
sacrifices the privacy of consumers and prevents making a
practical game in which both sides participate actively. A DR-
based Stackelberg game between the electricity providers and
the consumers was proposed in [21] where the electricity
providers aimed at maximizing their benefits while the
consumers were trying to minimize their electricity bills.
Although this approach aids to have a more reliable power
supply, the main downside would be a noticeable
communication between consumers and utility companies
which makes the smart grid more vulnerable to privacy issues.
Instead, we considered the same concept of reformulation via
the strong duality theory presented in [23]. In this method, it
takes care of the privacy issues to some extent, although the
privacy still remains questionable.

To cope with the aforementioned restrictions, this work
proposes a bonus-based DR program via the Stackelberg game
theory. It is supposed that there is one electricity provider as an
aggregator and several houses as consumers. The aggregator
who possesses a wind power plant tries to maximize the
utilization of wind power by giving a bonus to the consumers.
In contrast, the consumers seek to maximize the bonus received
from the aggregator. Each house has a critical load which is not
curtailable or shiftable to other time. In addition, the houses are
equipped with HVAC systems that provide the possibility for
contribution in the DR program by adjusting their load. For this
reason, a two-capacity model of the HVAC system, which is
highly accurate and efficient for DR application, is used [22].
Furthermore, a stochastic optimization problem with different
scenarios has been considered for addressing the uncertainty
associated with wind and demand. The key contributions of this
paper are as follows.

1) The proposed approach maintains the comfort level of
consumers to a great extent because each consumer is
freely capable of changing their indoor temperature and
also determining the maximum contribution in each hour.

2) An indirect load control scheme (bonus-based) is used for
DR purposes where the participants will receive bonuses
proportional to their contribution.

3) A Stackelberg game approach with N consumers, acting
as followers, and one aggregator, as the leader, is
expressed for considering the interaction between these
players. The proposed game ends up in a bilevel
programming model that allows both sides to actively
participate in the game.

4) Finally, the strong duality theorem is adopted in this paper
to deal with the bilevel problem. The original bilevel
model is recast into an equivalent single-level problem by
eradicating the iterative process in finding the optimal
solution.

The rest of this paper is organized as follows. Section II
introduces the Stackelberg game approach, including the leader
and followers models. Problem formulation is provided in
Section III. The simulation results are discussed in Section IV.
Section V provides concluding remarks.

II. STACKELBERG GAME MODEL

In this paper, the Stackelberg game theory is adopted with
one leader (the aggregator) and N followers (the consumers) for
activating the DR program in a residential area. In order to ease
perception through this paper, the terms of “aggregator” and
“leader”, as well as “consumer”, “house” and “follower” are
interchangeably used. First, the interaction signals between the
players, i.e., their strategy set or actions, are defined. The
aggregator strategy set includes a bonus that should be allocated
to the consumers, and the consumers’ strategy is to change their
electricity demand pattern according to the bonus. With these
assumptions, the game will be started and proceeded in the
following order. First, the aggregator announces the bonus to
the consumers, and then the consumers choose an action, which
is supposed to be the best response regarding the aggregator’s
strategy. At the following stage, each consumer submits its own
actions to the aggregator and waits for a response from the
aggregator, i.e., the aggregator will update its actions and send
it back to the consumers. This interaction continues until the
desired equilibrium is revealed. In the following, the aggregator
and consumers models are explained in detail.
A. Leader Model

In this paper, it is assumed that the aggregator works to
minimize the mismatch between wind power generation and
consumers’ demand. In addition, it is supposed that the
aggregator owns a wind power plant and tries to maximize the
amount of energy, which it is capable of selling to the
consumers in each hour. In the simulated case studies, the day
6th of January is considered for this purpose, and the wind
speed data and non-HVAC load are predicted for the 24 hours
ahead by the ARIMA model based on historical data of three
months. Then, the scenario reduction technique has been used
to constitute an appropriate trade-off between the modeling
accuracy and computational tractability. The scenarios for the
non-HVAC load and wind power, are considered to be
equiprobable. Having wind speed data, and using a simple
method for modeling the wind turbine, the generated power is
estimated as in [23].
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Because the aggregator has no control over the wind speed
and thereby the wind power generation, it would be beneficial
for the aggregator to provide some bonus for consumers to
incentivize them for changing their load profile in a way that
increases the utilization of the wind power. In return, consumers
receive a monetary reward according to their contribution level.
Therefore, the objective function on the aggregator side is the
sum of bonuses giving to the consumers. These two terms, as
can be seen in (4), are different in nature and come with Watt
and € units, respectively. For this reason, we allocated the
uniting factor w (€/W) to uniform the units of these two terms.
The objective function will be defined to minimize the power

{ . ,w c w r w

r w r

w K and
P
a w w w w wP w w

+ < >= >
(1)

r r cPa w w= - (2)
. cK a w= - (3)

mismatch between wind generation and consumers’ load
demand as (4).

, 0 , , ,
1 1 1 1

,
min( )

T N T N
cr hvac hvac w hvac

n t n t t n t n t
t n t n

n t
w P P P P P bonus

= = = =

+ +D - + Dåå åå (4)

The first term in (4) shows the difference between the
generated wind power and consumers' demand including the
non-HVAC and HVAC loads. The second term stands for the
multiplication of change in the HVAC power and the amount
of bonus for that time. The aggregator strives to keep both these
terms as minimum as possible.
B. Follower Model

For the follower model, a residential area is considered in
which the houses are equipped with a home energy
management system (HEMS) for receiving the bonus
information from the aggregator side. Furthermore, every house
is supposed to have two different types of load, containing

critical and flexible. The critical loads stand for those demands
that should be satisfied under any circumstances, while the
flexible loads are those adjustable demands that effectively
contribute to the DR program. In this work, the HVAC system
is considered as a manageable load, due to its high electricity
demand and its adjustability. The consumers, after receiving the
actions from the aggregator, react and select their best strategy.
Suppose ∆ = ∆ , , ,  ∀ ∈ ,∀ ∈  in (4) and

, , , = ∆ , , , :∀ ∈ ,∀ ∈  in (5) are the
strategy of consumers and aggregator, respectively, where
∆ , , ,  indicates the power change of the HVAC system for
every scenario, every house and every hour, and , , ,
shows the amount of bonus paid by the aggregator to each
consumer in each hour for every scenario. The bonus is a
function of ∆ , , , , which means consumers will get a larger
profit by contributing more to the DR program. Hence, the
objective function for the consumers' side should be
maximizing the total amount of bonus for all consumers, which
is equal to the multiplication of the bonus for each hour by the
demand change of the HVAC in that hour, as (5).

, , , , , ,
1 1 1 1

max
SC SW N T

hvac

sc sw sc sw n t sc sw n t
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= = = =

Dåååå (5)
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xT

gT

aT

eH

mH
gH

aCmC

hvacQ

xH
eT

yHmT

Storage
Tank

Fig. 1. The tandem of heat and storage model of the house
TABLE I.

THERMAL PARAMETERS RELATED TO HOUSES AND HVAC SYSTEMS

Parameter Value
, , , , 0.33, 0.48, 0.05, 0.29, 5.16 (W/°C-m2)

, 13.02, 112.13, (kJ/Co-m2)
18 C0

, , , 0, 7.5 kWh
, , , 0, 7.5 kWh

, 0.95
, 30-3750 (Wh)
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The HVAC system in this paper is an electric storage space
heating system with a high thermal storage capacity, which is
suitable for shifting its demand. Thermal storage capacity is
provided by a tandem of a storage tank and building masses
where the demand flexibility, provided by the latter one, comes
at the cost of indoor temperature variation. In this study, the two
key reasons for choosing the HVAC system for contributing to
the DR program are: 1) in countries such as Finland, the HVAC
systems make up a significant portion of electricity power
demand and so considerably affect the daily load demand, and
2) the customers’ comfort level is maintained by defining a
temperature bound for them while for the other appliances, it is
hard to find a way for specifying their comfort level in a
satisfactory bound. In order to consider the dynamics of the
environmental temperature, this paper utilizes a two-capacity
model for the house system [23], [24], see Fig. 1. In this model,
two capacities for heat regarding the air, , and buildings
materials, , are considered. The constraints related to the
two-capacity HVAC model are presented in (6) to (17). The
indoor ambient and mass temperatures are shown by (6) and
(7), respectively. The storage tank illustrated in Fig. 1, can be
charged when there is an excess of energy (in our case, when
the wind generation is higher than the consumers' demand) to
reserve the heat energy for later usage during the shortage of
energy (when the wind generation is lower than the consumers’
load). In this way, the storage tank, together with thermal inertia
of the house, provides high flexibility in scheduling of the
demand. Generally, the comfort level of the consumers is
specified by their preferences for lower and upper bound
compared to indoor temperatures set in (8). The amount of
thermal energy stored in the tank at each time, based on the last
time thermal energy and other variables and parameters, is
presented in (9). The minimum and maximum allowable
amount of energy in thermal storage are presented by (10). The
thermal energy reduces by time, according to (11), due to the
energy losses in the tank. Constraint (12) limits the minimum
and maximum for HVAC power change. Constraint (13)
ensures that the HVAC power will remain in the allowable
bounds after power change. The boundary of the absolute value
of HVAC power is guaranteed by (14). Constraint (15) is to
assure that the new deviation between wind and power
consumption obtained by the proposed method is always less
than or equal to the previous deviation. Constraint (16)
guarantees that the summation of power changes in the HVAC
system for the operating horizon should be equal to zero. In this
way, a fair assessment of the suggested approach is obtained.
The thermal output power of the HVAC is presented in (17).
The thermal parameters related to the HVAC system and
buildings are provided in Table I and [25].

III. PROBLEM FORMULATION

Considering (4) for the upper level, and (5) to (17) for the
lower-level, a nonlinear bilevel programming model results.
The consumers at the lower-level act as the followers and the
aggregator in the upper-level act as the leader. The exchange
variables for the upper-level are ,  and for lower-level
∆ , . Since the lower-level problem is linear, it is possible to
recast the presented bilevel problem into a single-level

nonlinear equivalent by using the strong duality theorem [26].
It should be mentioned that while in such reformulations the
privacy remains questionable, it is a suitable method to avoid
the iterative/heuristic-based approaches for solving bilevel
programming problems [27].
A. Formulation

The first step for the formulation of the problem is
substituting the lower-level problem by the sets of primal
feasibility constraints (6)-(17), dual feasibility constraints (21)-
(38), and the strong duality condition (20). In this
reformulation, (21)-(22), (23)-(24), (25)-(26), and (27)-(28) are
the dual constraints associated to ∆ , , , , , , ,
variables, respectively. In addition, constraints (29)-(38)
indicate the sign for the aforementioned dual variables. The
strong duality condition guarantees that the primal and dual
objective values must be equal. The single-level problem,
including its bilinear terms, is presented as follows.
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1 1 1 1
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1 1

,
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As can be seen, there are some nonlinear terms in (18) and
(19). The nonlinearity itself is not a major issue in the
optimization problem, however, the non-convexities make a
severe obstacle in finding the global solution. In order to
address this issue, some proper linearization techniques are
applied to linearize the absolute value function and also the
quadratic term existed in the objective function. The resulted
linear single-level problem is presented in (41) to (56).

The first term in (18), which includes an absolute value, is
replaced with the linearized terms in (39), and it adds constraint
(42) to the problem. For linearization of the square terms in
(39), it is transformed into (40) where  (43) to (50) are included
for this reason. Interested readers may refer to [28] for more
information. A similar linearization is performed for the left-
hand side of (20). In addition, there is a multiplication of two

continuous variables in (40) that is substituted with linearized
form in (41) via the McCormick envelopes (51) to (54).
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Constraints (6)-(17) (55)
Constraints (21)-(38) (56)

TABLE II
COMPUTATIONAL COMPLEXITY

Size Order of Complexity
# of positive continuous variables 11 . . . + . . . . + . . . . +

. . 11 . . . + . . . + . . . + . .

# of negative continuous variables 6 . . . 6 . . .
# of free continuous variables 11 . . . + . . . . . 11 . . . + . . .

# of equality constraints 2 . . . . . + 2 . +. . .
+ 23 . . . 2 . . . + 2 . +. . . + 23 . . .

# of inequality constraints
4 . . + 24 . . . + . . . .

+ . . . .
+ . . . . .

4 . . + 24 . . . + . . . + . . .
+ . . .
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B. Computational issues
             Table II shows the computational complexity of the proposed

strong duality based linear programming. The second column
shows the corresponding size of the first column and the third
column also indicates the order of complexity for the large scale
systems. The order of complexity of the aforementioned
problem increases in proportion to SC, SW, N, T. Note that the

number of  and  does not affect the problem size for the
large scale systems, since the number of segments for
linearization is assumed to be fixed.

IV. SIMULATION RESULTS

In this section, we considered two different time resolutions
for simulation, namely one-hour and five-minute time
resolution. The proposed models have been implemented on an

Fig. 2. Scenarios for non-HVAC loads Fig. 3. Scenarios for wind farm

Fig. 4. SoC of HVAC system (scenario 1) Fig. 5. SoC of HVAC system (scenario 6)

Fig. 6. Thermal output power (scenario 1) Fig. 7. Thermal output power (scenario 6)

Fig. 8. Indoor temperature (scenario 1) Fig. 9. Indoor temperature (scenario 6)
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HP Z240 Tower Workstation with eight Intel Xeon E3-1230 v5
processors at 3.4 GHz and 16 GB of RAM using CPLEX 12.8
[29] under GAMS 25.1.2 [30].
A. One-hour time resolution

In order to implement the proposed approach, a case study

with 24 hours and a 1-hour resolution is considered in this
section. The time 1 (hour 1) in all figures indicates 1 a.m. and
time 24 shows 12 p.m. A simulation is conducted in a
residential area comprising 70 houses with different parameters
(see Table III). The temperature is shown in Table IV. Each
home is supposed to have a critical load that inevitably must be

Fig. 10. ∆  (scenario 1) Fig. 11. ∆  (scenario 6)

Fig. 12. Generated wind power and the total load of all houses
(scenario 1)

Fig. 13. Generated wind power and the total load of all houses
(scenario 6)

Fig. 14. Bonus for consumers (scenario 1) Fig. 15. Bonus for consumers (scenario 6)

Fig. 16. Total bonus received by all consumers (scenario 1) Fig. 17. Total bonus received by all consumers (scenario 6)
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satisfied. On the other hand, the HVAC system is considered as
a flexible load, capable of changing its power based on the
associated constraints in (6)-(17). In order to verify the
effectiveness of the proposed approach, two separate case
studies are taken into account. Case 1 aims at defining a
benchmark, and to do so, it is assumed that there is no control
over the HVAC systems for participating in the DR program.
The temperature of the house is kept at 21 °C. In this way, the

, , , which is the HVAC power for each house in each hour,
is calculated.

In the second case, the HVAC system is activated for the
proposed DR program by regulating its power (plus-minus
1000 Watt at maximum for each house and each hour). A plus-
minus two degrees deviation from the houses’ indoor
temperature set points in Case 1 has been considered for Case
2. Consequently, the ∆ , , ,  (power deviation from the
calculated benchmark in the first case), is obtained. It is worth
mentioning that each consumer can choose their preferences for
the indoor temperature and its deadband (higher and lower than
the average temperature). As depicted in Fig. 2 and Fig. 3, three
scenarios for non-HVAC load and three scenarios for wind
power are considered, which comprise nine scenarios overall.
In order to validate the results, two scenarios have been chosen
and the simulation results are illustrated for them: scenario1
(the combination of sc1 of non-HVAC load and sw1 of wind
power) and scenario 6 (the combination of sc3 of non-HVAC
load and sw2 of wind power).

In Figs. 4 and 5, the state of charge (SoC) for three selected
houses, including #7, #40, and #66, and for two scenarios are
depicted. These three houses are selected out of 70 as a

representative for different scales of houses. The areas of house
#7, #40, and #66 are 100, 160, and 210 square meters,
respectively. It is shown in Fig. 4 and Fig. 5 that the SoC level
has remained between the minimum and maximum allowable
amounts. SoC value is the energy which is stored and released
in and from the thermal storage (such as hot water tank) in order
to facilitate shifting the HVAC system’s demand to other
appropriate hours. Figs. 6 and 7 illustrate the thermal output
power of the HVAC systems for the houses mentioned above,
while Figs. 8 and 9 show their indoor temperature. Increasing
and decreasing the thermal output power means rising and
dropping in the indoor temperature. This thermal energy can
come from heat storage or directly from the electric power,
which transforms into heating energy. The deadband
temperature is considered plus-minus 2 degrees from the 21 °C,
which was set as our benchmark. It can be seen in Figs. 8 and 9
that the temperature is kept within the defined zone in both
scenarios. It indicates that the comfort level of all houses is
appropriately maintained.

It is noteworthy to mention that there exists a correlation
between the fluctuations of the curves depicted in Figs. 4, 6, and
10. Any increase in ∆ , in Fig. 10, causes a rise either in the
thermal output power in Fig. 6 or the SoC of the storage tank in
Fig. 4. It means that the increase in the electrical consumption
of the HVAC system either results in thermal output power or
stores in the storage tank. This can be seen between hours 6 and
8 where there is a peak in ∆ , in Fig. 10 that results in an
increase in the thermal output power of house # 40 and #66 in
Fig. 6, while for house #7 in Fig. 4, the SoC is increased. From
Figs. 6 to 9, it can be realized that the local maximums in the
thermal output power profile stand for the states in which the
indoor temperature reaches its local maximum. For example,
for house #66 in scenario 1, in hours 7, 13, 15, 18, and 21, the
indoor temperature reaches to 20.6, 21.8, 21.6, 21.8, and 22,
respectively. Furthermore, when the output thermal power is at
its minimum, for instance, for house #40, in hours 11, 12, 14,
17, 19 and 24, the indoor temperature is at its minimum point,
which is 19 °C. In Figs. 10 and 11, the power change of the
HVAC system for Scenarios 1 and 6 is illustrated. When the
proposed DR program is activated, the HVAC power is
changed to positively react to the aggregator request, which is
minimizing the mismatch between the wind power and the load
demand, while making the most benefit of the receiving bonus.
There are four peaks in Figs. 10 and 11, which shows the
compensation of HVAC demand for high wind-generated
power on those hours. The forecasted wind power production is
depicted in Figs. 12 and 13. It can be seen that at the early hours
when the wind power is at its minimum, the HVAC systems
reduce their load power as much as possible for maximum
matching. Moreover, by comparing Fig. 10 with Fig. 12 and
also Fig. 11 with Fig. 13, it can be deduced that when there are
excess amounts of power due to more wind power production
than consumers’ demand, the HVAC systems are using more
power than the first case (benchmark). This fact is also inferred

TABLE III
NUMBER OF HOUSES WITH DIFFERENT SQUARE METERS

Area (Square Meters) 90 100 110 120 130 140 150 160 170 180 190 200 210 220
Number 5 5 5 6 6 6 5 5 5 5 5 4 4 4

TABLE IV
OUTDOOR TEMPERATURE (CENTIGRADE)

Hour Temperature Hour Temperature
1 -3.1 13 -2.6
2 -2.5 14 -4.1
3 -1.7 15 -4.0
4 -2.2 16 -5.2
5 -2.2 17 -4.9
6 -2.9 18 -4.8
7 -4.7 19 -4.1
8 -3.2 20 -4.3
9 -2.2 21 -5.7

10 -2.0 22 -6.4
11 -2.5 23 -7.4
12 -2.6 24 -8.0

TABLE V
DEVIATION BETWEEN LOAD CONSUMPTION AND WIND POWER

Scenario Total deviation
without DR (kW)

Total deviation
with DR (kW)

1 2520.506 1552.600
2 2539.462 1463.758
3 1683.293 996.802
4 2552.736 1589.640
5 2560.769 1491.701
6 1680.453 1004.896
7 2519.849 1698.998
8 2542.322 1445.588
9 1682.960 979.624
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in Figs. 6 and 7 where the thermal outputs of houses have
increased in these hours according to the consumption of more
energy. From Figs. 12 and 13, it can be evidently observed that
the mismatch between residential load demand and wind power
production using the proposed method has significantly
decreased compared to the situation where the suggested
approach is not activated.

In addition, the hourly deviation between wind power
generation and residential load power consumption for all
scenarios and for both cases (with and without the proposed DR
program), is shown in Table V. The results of this table show
that the total deviation has been decreased for all scenarios,
which is a significant outcome of the proposed approach. This
means that the consumers’ load demand now tracks the
produced wind power efficiently.

 Figures 14 and 15 depict the amount of money that houses
#7, #40, and #66 receive for their contribution in the DR
program. This reward is quadratically proportional to the power
change of HVAC (illustrated in Figs. 10 and 11). Finally, the
total amount of bonus paid to all the consumers by the

aggregator is demonstrated in Figs. 16 and 17. It can be easily
recognized from these figures and Figs. 10 and 11 that when
there is a big contribution of consumers for minimizing the
mismatch between wind generation and load consumption, the
aggregator has to compensate by giving more money to
consumers. However, at some hours like 14 and 18 in scenarios
1 and 8 and hour 10 in scenario 2, the aggregator pays no bonus
since there is no gap between wind power and demand.
According to the abovementioned simulation results, it can be
noticed that using the presented Stackelberg game scheme for
incentivizing the consumers for participating in the DR
program has been noticeably successful. Because in this way,
both players in the game, i.e., the aggregator and consumers,
are satisfied with the results. Not only has the imbalance
between the generated power and consumption load reduced
significantly, which is a merit for the aggregator, but the
consumers receive a fair bonus for their contribution as well.

With the purpose of considering other cases, plus-minus 3
and plus-minus 1 degree from the 21 °C has been considered in
case 3 and case 4, respectively. Figs. 18 to 22 depict the

Fig. 18. SoC of HVAC system (scenario 1 & house#7) Fig. 19. Thermal output power (scenario 1 & house#7)

Fig. 20. Indoor temperature (scenario 1 & house#7) Fig. 21 . ∆  (scenario 1 & house#7))

Fig. 22. Generated wind power and the total load of all houses (scenario 1) Fig. 23. Total bonus received by all consumers (scenario 1 & house#7)
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simulation results for the house 7 and scenario 1, which are
selected randomly. In Figs. 18 and 19, the SoC of the heat tank
and thermal output power are shown, respectively. According
to Fig. 19, the thermal power for Case 2 is less than Case 3 but
greater than Case 4. This is due to the variation of indoor
temperature which is allowed for different cases and is
demonstrated in Fig. 20. In Fig. 21, the HVAC system power

variation is illustrated for the different three cases. Regarding
Figs. 21, 22 and 23, it is clear that Case 2 is not that much
different from Case 3, but it is better than Case 4. Because, as
it is shown in Fig. 22, the gap between wind power and
consumers’ demand in Case 2 is less than Case 4 except in hour
23 and 24, but there is a negligible difference between Case 2
and Case 3. This fact is also understandable from Fig. 23, which

Fig. 24. Scenarios for non-HVAC loads Fig. 25. Scenarios for wind power

Fig. 26. SoC of HVAC system (scenario 1 & house #10) Fig. 27. Thermal output power (scenario 1 & house #10)

Fig. 28. Indoor temperature (scenario 1 & house #10) Fig. 29 . ∆  (scenario 1 & house #10))

Fig. 30. Generated wind power and the total load of all houses (scenario 1) Fig. 31. Total bonus received by all consumers (scenario 1 & house #10 )
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shows the total bonus received by the consumers. The bonuses
giving by the aggregator to the consumers is approaximately the
same for Case 2 and Case 3 but different from Case 4. These
results show that the HVAC system is using its maximum
capacity for contributing to the demand response with plus-
minus 2-degree deviation from the setpoint of indoor
temperature while it is allowed to change its power up to 1000
watts.
B. Five-minutes time resolution

Nowadays, the smart meters in the residential houses are
interacting with aggregators or utility every one hour. However,
in the near future, this interaction will be conducted every 15
minutes, or even in a shorter time interval. Consequently, with
the aim of further discussion to examine the suggested method,
Case 5 examines the proposed model even under higher critical
time resolution, a 5-minutes time resolution has been
considered in this section. The HVAC data is from Table I,
except the maximum capacity of the HVAC system, which has
considered 7800 kWh in this case. The temperature is shown in
Table IV. We assumed that the temperatures change linearly
between hours.

Figure 26 illustrates the SoC of heat storage during the 5
minutes resolution. Compared to the one-hour time resolution,
the heat storage tank is not using its maximum capacity that
implies a smaller capacity of the storage tank is needed for
using the maximum potential of the HVAC system in DR. Fig.
27 shows the thermal output power of the HVAC. Variation in
the thermal output power shows itself as changes in the indoor
temperature. This thermal energy is supplied either by using
electrical energy by HVAC systems, which are converted to
heat power, or released from the heat storage tank. The variation
limit for temperature is assumed plus-minus 2 degrees from the
21 °C. Figures 28 and 29 indicate the indoor temperature and
changing of the HVAC system power, respectively. Looking at
these figures, it is noticeable that increasing and decreasing the
electrical usage of HVAC has resulted in the direct rise and fall
in the temperature. This is different from the results obtained
for the one-hour time resolution where the increased or
decreased electrical usage was stored or released to or from heat
storage. That is because of longer time step that existed for that
simulation and caused to use of the heat storage tank fully
compared to the 5 minutes time resolution, which is utilizing
heat tank capacity with 25 percent at maximum. For example,
regarding the peak in ∆ ,  in hours 5:15-6:45, 10.15-12:05,
13:50-16:00, and 17:15-19:30 in Fig. 29, it has caused a
temperature increase in Fig. 28. However, the temperature is
kept within the defined zone during the whole time, which
means the comfort level of all houses is properly preserved.

Finally, these variations in the HVAC power created a load
profile that is following the wind generation better than the
benchmark case. In Fig. 30, the wind power generation and also
residential load power consumption for two cases (Case 1 and
Case 5) are depicted. It can be realized that before hour 5 where
the wind generation is not high, the HVAC systems decrease
their load consumption to minimize the power difference
between production and consumption. Moreover, when there
are extra amounts of power due to the more wind power
production for supplying consumers’ demand, for instance,

between 5-7 or 18-20,  the HVAC systems are using more
power to either store it in the heat storage or increase the indoor
temperature. These actions by the HVAC system provide a
smaller distance between generated wind power and the load
demand of consumers.

On the other hand, the total amount of bonuses received by
all the consumers and paid by the aggregator is portrayed in Fig.
31. It can be seen from this figure that the total bonus is
dependent on the change of the HVAC power (see Fig. 29),
which can be realized as the contribution of consumers for
minimizing the imbalance between wind production and
consumers’ load.

V. CONCLUSION

In this paper, a bonus-based DR program in a residential area
consisting of 70 houses with different square meters has been
considered. In order to take into account the interaction between
the aggregator and consumers, a Stackelberg game model has
been proposed. A case study with one leader and 70 followers
is conducted. The aggregator side owns a wind power plant and
tries to match the power consumption by all the houses to the
wind-generated power. Hence, it provides bonuses to the
consumer side for incentivizing them to adjust their load
demand based on the forecasted wind power. This is possible
by changing the HVAC system power in each house. The
resulted problem, which is a bilevel programming model, is
recast into a single level program using the strong duality
theorem. This approach has been utilized to avoid the iterative
process of finding the solution to the original bilevel program.
From the simulation results and also Table V, it can be observed
that the mismatch between the wind power generation and the
residential load demand has remarkably decreased. According
to this Table, the minimum and maximum improvement were
in scenarios 7 and 8 with 32.58% and 43.14%, respectively.
Taking the advantage of the Stackelberg game theory in this
problem, not only does it lead to the optimal solution for the
consumers (receiving a bonus based on their contributions, see
Fig. 14-17), but it results in a reduced imbalance between wind
power production and consumers’ load profile as well.
Considering Figs. 16 and 17, there are some hours such as 8 in
scenarios 1 and 18 in scenario 6 where the consumers receive
zero bonus due to their null contribution in the DR program. On
the other hand, at hour 12 in scenario 1 and hour 1 in scenario
6 all consumers are participating in the DR program with their
highest possible contribution (1000 Watts in our case) and they
are receiving the maximum bonus which is equal to 1 €/hour for
each of them and totally 70 € for all of them. The obtained
results of the case with 5-minutes time resolution verifies the
potential of the proposed method in handling the probable
future scenarios. Future work will extend the proposed model
to include other potential types of appliances such as electric
vehicles, and considering the electric distribution network.
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