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Abstract

Motivated to solve the “border puzzle” of Canadian-U.S. trade, theoretical foundations for the
gravity equation of international trade were refined recently to emphasize the importance of the
endogeneity of multilateral price (resistance) terms, cf., Anderson and van Wincoop (2003). While region-
specific fixed effects can also generate consistent estimates of gravity-equation coefficients, cf., Feenstra
(2004), Anderson and van Wincoop argue that proper computation of general equilibrium comparative
statics requires custom estimation of the entire nonlinear system of trade flow and price equations. We
show in this paper that these multilateral price terms are critical, but nonlinear estimation is not. Virtually
identical results can be obtained using “good old” ordinary least squares — bonus vetus OLS. The key is
using a first-order log-linear Taylor-series expansion to approximate the multilateral price terms. Among
several findings, we note just three. First, the approximation allows us to solve for a simple log-linear
gravity equation revealing a fundamental theoretical relationship among bilateral trade flows, regional and
world incomes, and bilateral, multilateral, and world trade costs. Second, we provide econometric and
simulation results supporting that virtually identical coefficient estimates and comparative statics can be
obtained much more easily by estimating a reduced-form gravity equation including theoretically-
motivated exogenous bilateral, multilateral, and world resistance terms. Third, we show that our
methodology generalizes to other settings as well, working just as effectively to explain world trade flows.
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Bonus Vetus OLS:
A Simple OLS Approach for Addressing the “Border Puzzle”
and other Gravity-Equation Issues

1. Introduction

For nearly a half century, the gravity equation has been used to explain econometrically the ex post
effects of economic integration agreements, national borders, currency unions, stocks of immigrants,
language, and numerous other measures of “trade costs” on bilateral international trade flows. Until
recently, researchers typically focused on a simple specification akin to Newton’s Law of Gravity, whereby
the bilateral trade flow from region i to region j was a multiplicative (or log-linear) function of the two
countries’ gross domestic products (GDPs), their bilateral distance, and typically an array of bilateral
dummy variables assumed to reflect the bilateral trade costs between that pair of regions (e.g., common
land border, common language, bilateral trade agreement, etc.); we denote this the “traditional” gravity
equation specification. This traditional gravity equation gained acceptance among international economists
and policymakers in the last 25 years for at least three reasons: formal theoretical economic foundations
surfaced for a specification similar to the traditional gravity model (cf., Anderson, 1979; Helpman and
Krugman, 1985; Bergstrand, 1985); consistently strong empirical explanatory power (high R? values);
policy relevance for analyzing the multitude of free trade agreements over the past 15 years.

However, the traditional specification has come under scrutiny. First, since bilateral trade flows
are determined in an N-region world (N>2), the traditional specification ignores the fact that the
“remoteness” of regions i and j from the rest-of-the-world’s (ROW?’s) regions should influence the volume
of trade from i to j and the economic size of the ROW’s regions matters as well. Second, applications of
the traditional gravity equation to study bilateral trade costs often yielded seemingly implausible findings.
For instance, coefficient estimates for dummy variables representing the effects of international economic
integration agreements (EIAs) on international trade were frequently negative (cf., Frankel, 1997) and
estimates of the effects of national borders (that is, a national EIA) on intra-continental inter-regional trade
flows were often seemingly implausibly high (cf., McCallum, 1995; Helliwell, 1998).! The latter finding —
now famously termed McCallum’s “border puzzle” — inspired a cottage industry of papers in the
international trade literature to explain this result, cf., Michael A. Anderson and Stephen L.S. Smith
(1999a, 1999b) and John F. Helliwell (1996, 1997, 1998), as well as a new approach to international
macroeconomic issues.

While two early formal theoretical foundations for the gravity equation with trade costs — first

Anderson (1979) and later Bergstrand (1985) — addressed the role of “multilateral” prices, a solution to the

LA nation, of course, can be considered an EIA of sub-national regions.
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border puzzle surfaced in Anderson and van Wincoop (2003), which refined the theoretical foundations for
the gravity equation to emphasize the importance of accounting properly for the endogeneity of prices in
the gravity model. Three major conclusions surfaced from the Anderson and van Wincoop (henceforth, A-
vW) study, “Gravity with Gravitas.” First, a complete derivation of a standard (Armington conditional)
general equilibrium model of bilateral trade in a multi-region (N>2) setting with iceberg trade costs
suggests that traditional cross-section empirical gravity equations have been misspecified owing to the
omission of theoretically-motivated multilateral (price) resistance terms for exporting and importing
regions. Second, to properly estimate the full general equilibrium comparative-static effects of a national
border or an EIA, one needs to estimate these multilateral resistance (MR) terms for any two regions with
and without a border (in a manner consistent with theory). Third, due to the underlying nonlinearity of the
structural model to explain trade flows, estimation requires a custom nonlinear-least-squares (NLLS)
program to account properly for the endogeneity of prices.

While the A-vW approach yields consistent, efficient estimates of gravity equation coefficients for
the effects of national borders or EIAs (in the absence of measurement and specification bias), Feenstra
(2004, Ch. 5) notes that a “drawback” to the estimation strategy is that it requires a custom NLLS program
to obtain estimates. One critical reason the gravity equation has become the workhorse of empirical
international trade in the past 25 years is that one can use ordinary linear least squares (OLS) to explain
trade flows and potentially the impact of policies (such as national borders or EIAS) on such flows.
Unfortunately, the need to apply custom NLLS estimation will likely continue to impede incorporating
these important price terms into estimation of gravity equations using the A-vW approach, in favor of an
“alternative.”

The alternative — and computationally less taxing — approach to estimate unbiased gravity equation
coefficients, which also acknowledges the influence of theoretically-motivated MR terms, is to use region-
specific fixed effects, as noted in A-vW and Feenstra (2004). An additional benefit is that this method
avoids the measurement error associated with measuring regions’ “internal distances” for the MR variables.
Indeed, van Wincoop himself — and nearly every gravity equation study since A-vW — has employed this
simpler technique of fixed effects, cf., Andrew Rose and Eric van Wincoop (2001) and Rose (2004). Using
the case of McCallum’s border puzzle as an example, Feenstra (2004, Ch. 5 Appendix) shows that fixed-
effects estimation of the gravity equation can generate unbiased estimates of the average border effect of a
pair of countries.

However, fixed-effects estimation also has drawbacks. First, without the structural system of

equations, one still cannot generate region- or pair-specific comparative statics; fixed effects estimation
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precludes estimating MR terms with and without EIAs.? Second, many explanatory variables of interest are
region specific; using region-specific fixed effects precludes direct estimation of partial effects of numerous
potentially-important explanatory variables. For instance, typical gravity studies often try to estimate the
effects of exporter and importer populations, immigrant stocks, or internal infrastructure measures on
bilateral trade; such variables would be subsumed in the fixed effects.

Consequently, the empirical researcher faces a tradeoff. The advantage of the A-vW customized-
NLLS-estimation approach is that it can potentially generate consistent, efficient estimates of average
border effects and comparative statics; the disadvantage is that it is computationally burdensome relative to
OLS and subject to measurement error associated with internal distance indexes. The advantage of
Feenstra’s fixed-effects estimation approach is that it uses OLS and avoids internal distance measurement
error for MR terms; the disadvantage is that one cannot retrieve the multilateral price terms to generate
guantitative estimates of comparative-static effects without also employing the structural system of
equations. Is there a way to estimate consistently gravity equation parameters — and compute region-
specific or pair-specific comparative statics — using “good old” OLS?

This paper has two major goals. First, we offer a simple OLS technique for estimating average
effects and comparative statics from a gravity equation including theoretically-motivated exogenous
multilateral resistance terms. The advantage of this approach over A-vW is that “good old” ordinary least
squares — bonus vetus OLS - is computationally simple. The advantage over fixed effects is that we can
then provide ready quantitative estimates of comparative statics using the estimated coefficients without
employing the structural system of equations. We can estimate the comparative statics analytically. We do
not dispute that A-vW’s NLLS procedure provides consistent, efficient estimates of the gravity equation
parameters. However, for a very small loss of efficiency, our procedure — henceforth, “BV-OLS” — offers
an enormous gain in estimation simplicity and economic transparency for many practical contexts.
Moreover, while simulations show that our BV-OLS approximation results in a trivially small estimation
bias, we also show econometrically that the bias is small relative to other potential biases associated with
mis-measurement of internal distances and other potential specification errors acknowledged by A-vW.
The key methodological innovation for this literature is the use of a first-order log-linear Taylor-series
expansion centered around a symmetric world to derive an estimable OLS equation that includes

theoretically-motivated exogenous variables to capture the influence of multilateral (and world) resistance

%In their robustness analysis, Anderson and van Wincoop themselves demonstrate evidence using fixed-
effects for unbiased estimates of the average border effect. In correspondence, Eric van Wincoop notes that “people
often introduce the region fixed effects to the gravity equation referring to our paper for motivation but then fail to
compute (using the system of structural equations) changes in the multilateral resistance variables when doing
comparative statics” (e-mail, August 24, 2004).



terms. The Taylor-series expansion is rarely used by trade economists but is commonly used in modern
macroeconomics.’

Second, to maintain tractability for the reader, we apply our technique to trade flows using the
same context and data sets as McCallum, A-vW, and Feenstra. However, the insights of our paper have
significant potential to be used in numerous related contexts assessing trade costs, especially estimation of
the effects of tariff reductions and free trade agreements on world trade flows — the most common usage of
the gravity equation. A-vW argue that — since the gravity equation has been used traditionally to explain
cross-sectionally the effects of a variety of policy-induced, cultural, and geographic factors on world trade
flows — “all can be improved with our methods” (2003, p. 172). We show that the linear-approximation
approach of BV-OLS works just as effectively in the context of world (intra- and inter-continental) trade as
in the narrower McCallum-AvW-Feenstra context of regional (intra-continental) trade. Using Monte Carlo
techniques we demonstrate that the estimated bias (of the distance elasticity) of BV-OLS over nonlinear
least squares for world trade is less than 0.5 of one percent, smaller than that for intra-continental trade
flows. Moreover, we demonstrate clearly the substantive reduction in bias using BV-OLS relative to the
traditional OLS specification as well as an OLS specification using “atheoretical” measures of remoteness.

The remainder of the paper is as follows. Section 2 discusses the gravity equation literature and A-
VW analysis to motivate our paper. Section 3 uses a first-order log-linear Taylor-series expansion to
motivate a simple OLS regression equation (BV-OLS) that can be used to estimate average effects and
comparative statics. Section 4 shows that BV-OLS works; we apply the estimation technique suggested by
section 3 to the McCallum-A-vW-Feenstra data set and compare our coefficient estimates to these papers’
findings. Section 5 compares the comparative-static-effect estimates from BV-OLS to those of A-vW and
provides intuition for why BV-OLS works in the context of the theoretical general equilibrium model.
Section 6 shows that BV-OLS works well in general; we use Monte Carlo simulations to show that
estimated border effects using “good old” OLS are virtually identical to those using A-vW’s technique
either in the context of interregional trade flows (the McCallum-AvW-Feenstra context) or in the context
of international trade flows (the typical empirical context). Section 7 explains why BV-OLS works so

well, addressing the empirical irrelevance of higher-order terms. Section 8 concludes.

2. The Gravity Equation and Prices

The gravity equation is now considered the empirical workhorse for studying interregional and

3By “loss of efficiency” in this paragraph, we mean that our approach uses a first-order approximation of
the underlying system of equations.
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international trade patterns, cf., Frankel (1997), Eichengreen and Irwin (1998), and Feenstra (2004). Early
applications of the gravity equation — Tinbergen (1962), Linnemann (1966), Aitken (1973), and Sapir

(1981) — assumed a specification similar to that used in McCallum (1995):

InX; = B + B, InGDP, + B, InGDP, - g, InDIS; + 8,ADJACENCY; + ZEIA; + g; (1)

where X;; denotes the value of the bilateral trade flow from region i to region j, GDP; (GDP;) denotes the
nominal gross domestic product of region i (j), DIS;; denotes the distance (typically in miles or nautical
miles) from the economic center of region i to that of region j, ADJACENCY ; is a dummy variable
assuming the value 1 (0) if two regions share (do not share) a common land border, and EIA;; is a dummy
variable assuming the value 1 (0) if two regions share (do not share) an economic integration agreement. In
the McCallum Canada-U.S. context, EIA;; would be a national “border” dummy reflecting membership in
the same country and ADJACENCY ; was ignored.* Traditionally, economists have focused on estimates
of, say, B, an estimate of the “average” (treatment) effect of an EIA on trade from i to j. As discussed in
the early gravity equation studies cited above, traditional specification (1) excludes price terms. The
rationale for their exclusion in these studies was that prices were endogenous and consequently would not
surface in the reduced-form cross-section bilateral trade flow equation.®

However, theoretical foundations in Anderson (1979), Bergstrand (1985), Deardorff (1998), Eaton
and Kortum (2002), A-vW (2003), and Feenstra (2004) all suggest that traditional gravity equation (1) is
likely misspecified owing to the omission of measures of multilateral resistance (or prices). In reality, the
bilateral trade flow from i to j is surely influenced by the prices of (substitutable) products in the other N-2
regions in the world, which themselves are influenced by the bilateral distances (and EIAs, etc.) of each of i
and j with the other N-2 regions. Bergstrand (1985) provided early empirical evidence of this omitted
variables bias, but was limited by crude price-index data. As Feenstra (2004) reminds us, published price

indexes probably do not reflect accurately “true” border costs (numerous costs associated with international

*In the remainder of the paper, boldfaced regular-case (non-bold italicized) variables denote observed
(unobserved) variables.

*The traditional argument is as follows. Suppose importer j’s demand for the trade flow fromitojisa
function of j’s GDP, the price of the product in i (p;), and distance from i to j. Suppose exporter i’s supply of goods
is a function of i’s GDP and p;. Market clearing would require county i’s export supply to equal the sum of the N-1
bilateral import demands (in an N-country world). This generates a system of N+1 equations in N+1 endogenous
variables: N-1 bilateral import demands X%, (j = 1,...,N with j#i), supply variable X3, and price variable p;. This
system could be solved for a bilateral trade flow equation for X;; that is a function of the GDPs of i and j and their
bilateral distance. Then p; is endogenous and excluded from the reduced-form bilateral trade flow gravity equation.



transactions) and are measured relative to an arbitrary base period.

A-vW raised two important considerations. First, A-vW showed theoretically that proper
estimation of the coefficients of a theoretically-based gravity equation (such as £) needs to account for the
influence of these (nonlinear) endogenous price terms. One approach is NLLS estimation, and the other is
the use of region-specific (i, j) fixed effects. Second, these techniques yield partial effects of change in a
bilateral trade cost on a bilateral trade flow, but not general-equilibrium effects. A-vW clarified that the
comparative-static effects of a change in a trade cost were influenced by the full general-equilibrium
framework. Regardless of which of the two techniques above was used to estimate coefficient parameters,
the comparative statics of a change in a trade cost require estimation of the full structural model (cf.,

footnote 2), which necessarily reflect economic sizes and trade costs of all countries.

A. The Theoretical Model

To understand the context, we initially describe a set of assumptions to derive a gravity equation;
for analytical details, see A-vW (2003). First, assume a world endowment economy with N regions and N
(aggregate) goods, each good differentiated by origin. Second, assume consumers in each region j have

identical constant-elasticity-of-substitution (CES) preferences:
N ol(oc-1) (2)
- (o-D)/c -
UJ._[Zlc:ij ] ji=1,..,N
i=

where U; is the utility of consumers in region j, C; is consumption of region i’s good in region j, and ois

the elasticity of substitution (assuming o > 1).° Maximizing (2) subject to the budget constraint:

N
Y, =Y pit,C; (3)
i=1

where p; is the exporter’s price of region i’s good and t; is the gross trade cost (one plus the ad valorem
trade cost’) associated with exports from i to j, yields a set of first order conditions that can be solved for

the demand for the nominal bilateral trade flow from i to j:

6Consumption is measured as a quantity. We can also set up the model in terms of a representative
consumer with M; consumers in each country, but the results are analytically identical.

"As conventional, we assume that all trade costs consume resources and can be interpreted as goods “lost in
transit” (i.e., iceberg trade costs).
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pitij
Xy = [Tjj Y, 4)
where P; is the CES price index, given by:
N U(-0)
Pj = [2—11 (pitij)l_ol )

Third, an assumption of market clearing requires:
N
Y = Z xij (6)

j=1

Following A-vW, substitution of (4) and (5) into (6) and some algebraic manipulation yields:

1-o
X - (ﬁj b @
ij YT PI PJ
where

N ] U(l-0)

P = Zlej(tij / Pj) ®)
L= i
- . 11/(1-0)

P =Y 4t /P) ©)
L i=1 B

under a fourth assumption that bilateral trade barriers t; and t; are equal for all pairs. Y denotes total

income of all regions, which is constant across region pairs, and & (&) denotes Y; /YT (Y; /Y").

B. The Econometric Model

As is common to this literature, for an econometric model we assume the log of the observed trade
flow (InX;) is equal to the log of the true trade flow (InX;) plus a log-normally distributed error term (¢;).
Y, can feasibly be represented empirically by observable GDP,. However, the world is not so generous as

to provide observable measures of bilateral trade costs t;. Following the literature, a fifth assumption is that
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the gross trade cost factor is a log-linear function of observable variables, such as bilateral distance (DIS;)),

e5AD‘]ACENCY‘J' , and eaEIAiJ' , the latter two representing the ad valorem equivalents of a common

land border and a common EIA, respectively:

) 5ADJACENCYijeaEIAij

tij = DISIje (10)

O6ADJACENCY;;

where e I equals e’ (> 1) if the two regions share a common land border (assuming &> 0)

oEIA

and e i equals e“ (> 1) if the two regions are in an economic integration agreement (assuming « > 0).

One could also include a language dummy, a bilateral tariff rate, etc.; for brevity, we ignore these.

In the McCallum-AvW-Feenstra context of Canadian provinces and U.S. states, EIA;; = 1if the two
regions are in the same country and these studies ignored ADJACENCY; (i.e., a common land border). In
the context of the theory, estimation of the gravity equation’s parameters should account for the multilateral
(price) resistance terms defined in equations (8) and (9). A-vW describe one customized nonlinear
procedure for estimating equations (7)-(10) to generate unbiased estimates in a two-country world with 10
Canadian provinces, 30 U.S. states and an aggregate rest-of-U.S. (the other 20 states plus the District of
Columbia), or 41 regions total. A-vW also estimate a multicounty model, but discussion of that is treated

later. This procedure requires minimizing the sum-of-squared residuals of:

|n[xij /(GDPiGDPj)] - a, +2,InDIS, + a,EIA,

(11)
subject to the 41 market-equilibrium conditions:
41
Pll—a _ Z Pia—l(GDPi /GDPT)eallnDISil+azElAi1
i=1
(12.1)

41
P41170 _ Z F’iU*l(GDPi /GDPT)eallnDISi41+azElAi41 (12.41)

i=1
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to estimate a,, a,, and a, where, in the model’s context, a, = -InGDP", a, = -p (¢-1) and a, = -a (o-1). This

obviously requires a custom NLLS program.

C. Estimating Comparative-Static Effects

As A-vW stress, the multilateral resistance terms P;* and P;"*” are “critical” to understanding the
impact of border barriers on bilateral trade. Once estimates of a,, a,, and a, are obtained, one can then
retrieve estimates of P;"” and P;° for all j = 1,...,41 regions both in the presence and absence of a national
border. Let P,** (P*.*°) denote the estimate of the multilateral resistance term of region i with (without) an
EIA following NLLS estimation of equations (11) and (12.1)-(12.41). In the context of the model, A-vW
and Feenstra (2004) both show that the ratio of bilateral trade between any two regions with an EIA (X;)
and without an EIA (X) is given by:

Xij / X:; _ eazE|Aij (Pi*lfa / Pilfa )(Pj*l—o- / le—o-) (13)

Comparative-static effects of an integration agreement are then calculated using equation (13). Clearly, the
multilateral price terms with and without borders are critical to estimating these effects.

Consequently, A-vW (2003) “resolved” the border puzzle theoretically and empirically. However,
the appealing characteristic of the gravity equation, that likely has contributed to its becoming the
workhorse for the study of empirical trade patterns, is that it has been estimated for decades using OLS.
The A-vW procedure cannot use OLS. This will likely inhibit future researchers from recognizing
empirically the multilateral price terms, as suggested by van Wincoop in footnote 2.

A-vW (2003) and Feenstra (2004) both note that a ready alternative to estimating consistently the
average border effect is to apply fixed effects. However, both studies also note that a fixed-effects
approach cannot readily generate estimates of the comparative statics. Feenstra (2004) acknowledges that
the fixed-effects approach is less efficient than A-vW’s custom nonlinear estimation procedure; however,
the former is simpler to estimate the average border effect. However, while fixed effects can determine
gravity equation parameters consistently, estimation of country-specific border effects still requires
construction of the structural system of price equations to distinguish multilateral resistance terms with and
without borders. We demonstrate in the remainder of this paper that a simple OLS technique that yields
virtually identical estimates of the average effects and comparative statics surfaces by applying a Taylor-

series expansion to the theory.

3. Bonus Vetus OLS

In this section, we apply a first-order log-linear Taylor-series expansion to the system of price
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equations above to generate a reduced-form gravity equation — including theoretically-motivated
exogenous multilateral-and-world-resistance (MWR) terms — that can be estimated using OLS. A first-
order Taylor-series expansion of any function f(x;), centered at X, is given by f(x;) = f(x) + [f'(X)](x;-x). Of
course, the Taylor-series expansion requires some arbitrary choice for x. In modern dynamic
macroeconomics, where such expansions are common, the Taylor-series expansion is usually made around
the steady-state value, suggested by the theoretical model.?

Since the solution to a Taylor-series expansion is sensitive to how it is “centered,” we consider two
cases. In our static context, a natural choice is an expansion centered around a “symmetric” world, which
we will solve in the second subsection. An empirically implausible — but theoretically feasible — case is a
“frictionless” world (zero trade costs). First, we derive an OLS model assuming the world is frictionless.
Despite a restrictive setting, the solution under this simpler scenario illustrates some fundamental insights
about specifying theoretically-motivated “exogenous” multilateral-and-world-resistance terms and
illustrates the essence of our approach. Second, since the real world is far from frictionless, we derive the
expansion also centered around a “symmetric” world in (positive) trade costs and incomes.® This
assumption may be more conceptually appropriate since OLS estimation defines variables as deviations
around their “mean” values; hence, we associate centering around a “symmetric” equilibrium with
centering around the “means.” Moreover, we show later in sections 4, 5, and 6 why such an assumption is
very useful to generate OLS-based estimates of gravity equation parameters and comparative-static effects
that are consistently virtually identical to those using A-vW’s custom NLLS approach. The basic intuition
is that, in the second case, much of the dispersion of incomes can be accounted for by an intercept.

We begin with N equations (8) from Section 2:

o)t / PJ.)”]

N 1U(1-0) (8)
P - [Z

j=1

fori=1,.., N. It will be useful for later to rewrite (8) as:

N
j=1

(14)

8We find that a first-order Taylor series works well, using a Monte Carlo robustness analysis. Higher-order
terms are largely unnecessary but would reduce the remaining small bias; we address this more in section 7.

*That is, every region faces the same trade costs with every other region and is identically sized.
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where e is the natural logarithm operator.

A. Case 1: Derivations for a Frictionless World

In a frictionless world, we are assuming t; =t = 1for all i,j = 1,..., N. Hence, equation (8) simplifies

to:
1o N o-1 (15)
P =2 6P
forall i =1,..., N. Multiplying both sides of equation (15) by P,”* yields:
o (16)
1=36(RP)"

=1
As noted in Feenstra (2004, p. 158, footnote 11), the solution to equation (16) is:

P=P=1 (17)

forall i =1,..., N. Note that t9j can vary across N countries in this case.
Consequently, a first-order log-linear Taylor-series expansion of equation (14) centeredatP =t=1
(and InP =Int =0) is:

1+INP =1-Y 6 InP* +(1- o)) 0 Int, (18)
j=1 i=t

using d[e®*""|/d(InP) = (1- &)e™ """ . Subtracting 1 from both sides, multiplying both sides by
6, and summing both sides over N yields:

N N
GInP +(1-0)Y Y 66,Int, (19)

] ©
1 i=l j=

AMZ
Mz
Mz

ellnPIlD'

1 i

I
N

=N

J

Noting that the first RHS term can be expressed in alternative ways,

N

_ZQ

™Mz

]
=N

OInP™ = —i OInP™ = —ZN: 6InpP™

] .
J i=1

N N N
we can substitute —Y, € InP™ for = 8 6, In P in equation (19) to yield:
i=1 i=1 j

j=1
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> INP ==y NP +(1-c)y Y 66 Int,
or
> 0InP =y InP =(1/2)(1-0)y. ¥ 60 Int, (20)

Substituting equation (20) into equation (18), after subtracting 1 from both sides of eq. (18), yields:

Mz

]

NP~ =—InpP* = (0—1)[2“ oInt, —(1/2)y ¥ 0

i=1 j

00 Int ] (21)

1

and it follows that:

Mz

NP e ==Inp* =(o-1)| S aInt, - W25 % 0

i=1 i=

60 Intij] (22)

]

=N
1
=N

i

Although (by assumption) t; = Z flnt, need not equal Z Olnt, 10

ti,

Equations (21) and (22) are critical to understanding this analysis. The benefit of the first-order
log-linear expansion is that it identifies the exogenous factors determining the multilateral price terms in
equation (7) in a manner consistent with the theoretical model. To understand the intuition behind
equation (22) — analogous for (21) — we consider separately each of the two components of the RHS. The
first component is a GDP-share-weighted (geometric) average of the gross trade costs facing country j
across all regions. The higher this average, the greater overall multilateral resistance in j. Holding
constant bilateral determinants of trade, the larger is j’s multilateral resistance, the lower are bilateral trade
costs relative to multilateral trade costs. Hence, the larger the bilateral trade flow from i to j will be. The
analogous intuition applies to equation (21).

Now consider the second component on the RHS of equation (22). The Taylor-series expansion
here makes transparent the influence of world resistance, which is identical for all countries. In A-vW,
this second component is only implicit. World resistance lowers trade between every pair of countries.

This term is constant in cross-section gravity estimation, embedded in and affecting only the intercept.

001 instance, internal distances t; and t; will likely differ, as will 6, and 6. For transparency and
consistency with A-vW'’s notation, we note that InP,”* = -InP,>; analogously for j.
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(However, the term cannot be ignored in estimating “border effects.”)* Together, these terms indicate that
the level of bilateral trade from i to j is influenced — not just by the level of bilateral relative to multilateral
trade costs, but also — by multilateral relative to world trade costs. Our estimation can account for the role
of world resistance.

In the context of the theory just discussed, we can obtain consistent estimates of the gravity
equations’ coefficients — accounting for the endogenous multilateral price variables — by estimating using

OLS the reduced-form gravity equation:

InX, = 4'+InGDP, +InGDP, — (o -1)Int,

(Zomnt)-2(2% 00 int,) (23)

i=1 j=1

+(0—1

N—
[

+(a—1)_(§ i |ntﬁ)—;(zl 3 00 int,|

where ,Bo': —InYT isa constant across country pairs. Thus, in the context of the theoretical model, the

influence of the endogenous multilateral price variables can be accounted for, once we have measures of t;;,
using theoretically-motivated exogenous multilateral resistance variables. This is the first major result of
this paper.

We close this section noting that it will be useful now to exponentiate equation (23). After some

algebra, this yields:

O (T ®
YY /YT \t,(6) t,(8)/t'(6)

where t (6) =17, t*, t () =IT, t, t"(6) = IT IT} t/", and recall 6= Y,/Y" and t; = t; (by

=1 7ij ? i=

assumption). BV-OLS significantly simplifies the gravity equation implied by equations (7)-(9). Based

upon a first-order log-linear expansion of the A-vW model, equation (24) is a simple reduced-form

“Moreover, in panel estimation, changes in world resistance over time — along with changes in world
income — provide a rationale for including a time trend.
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equation capturing the theoretical influences of bilateral, multilateral, and world trade costs on (relative)
bilateral trade. As noted, multilateral-and-world-trade costs are GDP-share weighted. Given data on
bilateral trade flows, national incomes, and bilateral trade costs, equation (24) can be estimated by “good
old OLS,” noting the possible endogeneity bias introduced by GDP-share weights in RHS variables.*> But
will this equation work empirically?

At this juncture, we ask four critical questions that guide the direction of the remainder of our
paper. First, does centering the Taylor expansion around a frictionless equilibrium make economic and/or
econometric sense, or is there a more plausible alternative? Second, does BV-OLS estimation work
empirically as an approximation to A-vW (allowing for measurement and specification error), and why?
Third, using Monte Carlo analysis to eliminate measurement and specification errors, does BV-OLS work
well? Fourth, if the linear approximation of BV-OLS works well, why does it work well?

The next sub-section (3B) addresses the first question. Sections 4 and 5 address the second set of

questions. Finally, sections 6 and 7 address the third and fourth questions, respectively.

B. Case 2: Derivations for a Symmetric World

The world is far from frictionless. Yet, a Taylor-series expansion requires some “center.” An
alternative center would be a symmetric world — where countries have identical economic (GDP) sizes (4
= 1/N) and trade costs (t; = t), but the latter are positive (t > 1) unlike the previous case. One can interpret
the centering around a symmetric equilibrium as centering around the “means” of GDP shares and trade
costs. This has a ready econometric analogue when the resulting trade-flow equation is estimated by OLS
with cross-sectional data since OLS coefficients correspond to variables that are defined as deviations
around their respective “means.” We now show that a gravity equation similar to equation (24) surfaces
under this centering that can potentially yield virtually identical coefficient estimates to those generated by
NLLS structural estimation.

In a symmetric world, equation (8) can be expressed as:
Pl*O' — Na:)aflt l-o (25)

where P denotes the multilateral price term under symmetry. It will be useful to note now that (25) can be

solved for P as a function of N, &, and t:

P — (Ne)ll[z(l—a)]tllz — tﬂz (26)

12\We ignore here the possibility of “zero” trade flows. Such issues have been dealt with by various means;
see, for example, Felbermayr and Kohler (2004).
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since &= 1/N in a symmetric world.

A first-order log-linear Taylor-series expansion of equation (14) is:

P*7 1+ (1- 6)P*“(InP - InP)
N
=Y [ Pt (P ) (1- o) (In P~ InP)
j=1

(@) g, ) (@ )0 o), e N

_ (plo/N)i [1- (1- 0)(In P~ InP)+ (Ing, - In6) + (1- o) (Int, - |nt)]

using equation (25) and d[e‘l“’)'“"] /d(InP) = (1- &)e™ """ . Dividing both sides of (27) by

P yields:

Mz

(1- o)(INP, - NP)= ~(1- IN*Y (NP, - InP)

1

i

+N lz (In@ In@) Z’j(lntij - Int)

j=1

(28)
N
-(1- )N 12 |nP+NlZ Ing, + (1- 6)N ). Int,
j=1

j=1
+(1-o)InP-1no-(1- o)Int

Using (25), add (1-0) InP = InN + InO - (1-0) InP + (1-0) Int to (28) to yield:

N N N
NP7 = INN-N"), InP""+ N}, Ing + (1- 5)N2, Int, (29)

=1 =1 =1

To solve for In P;*°, sum both sides of equation (29) overi=1,...,N:
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N
o _ -1 l-o
INP~7 = NInN-NN") InP,

i=1 =1
(30)
N N N
+NNTY In@ +(1- o)N'Y. Y Int,
=1 i=1 j=1
N N
Since ) IR = ) In P then (30) simplifies to:
i=1 =1
N 1 1 N 1 N
Y InP*" = =NInN+=) Ing, + =(1- )NY, ) Int, (31)
j=1 : 2 25 b2 i=1 j=1 :
N
Substituting (31) for z In le_" in (29) yields:
j=1
1 _ ro 3 i N _Ei N N
InP** =-InP*" = (o 1)[N (lelntijj v (izl,zllnt“ﬂ
1] 1 1 (32
‘Z[N@'“@J "”(Nﬂ
and, by implication:
o1 _ ro B i N _Ei N N
InP™* =-InP™* = (o 1)[N(§1|nt“) v (;;Intij)}
(33)

13 ma)nf )]

Equations (32) and (33) are similar to equations (21) and (22), but share two key distinctions.
First, since this derivation allows an expansion around &, additional terms are present in both equations
reflecting deviations around identical GDP shares (1/N). Second, because of this additional expansion, the

trade cost terms are simple averages — rather than GDP-share-weighted averages — of the logs of the t;’s
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since the dispersion of incomes is treated separately.

The second bracketed RHS term (second line) in either equation (32) or (33) represents deviations
of GDP shares around symmetry. If all regions are the same size in GDP, this last term is zero. The more
GDP shares deviate from symmetry, the higher is multilateral resistance and the greater the bilateral trade
flow. The intuition parallels that of GDPs of exporter i and importer j in the standard gravity equation,
such as equation (7). For given economic size of two regions, bilateral trade is diminished the more
asymmetric in size are regions i and j. Similarly here, the greater the asymmetry in all regions’ economic
sizes, the smaller will be multilateral trade of any particular country.** Holding bilateral determinants
constant, bilateral trade from i to j will be greater the more asymmetric are all regions’ economic sizes.

Centering on a symmetric world, we can obtain estimates of the gravity equations’ coefficients

accounting for multilateral resistance by estimating using OLS the gravity equation:

InX; = '+ INGDP, + INGDP; - (o - 1) Int;

1 11 (38
+(o-1) N thij —EW ZZ Intij (34)

where B,'= - InY T -

1 1
W[Z Inejj - In( Wj] is a constant across country pairs. Thus, in the context of
j=1

the theoretical model, the influence of the endogenous multilateral price variables can be accounted for

using slightly different theoretically-motivated exogenous multilateral resistance variables.*

13Asymmetry in GDP shares across all bilateral partners (which causes the second bracketed term to
become negative) raises multilateral resistance, analogous to the traditional gravity equation notion that greater
asymmetry in bilateral GDP shares increases bilateral trade resistance, cf., Baier and Bergstrand (2001).

%In estimation of equation (34), the second component of each multilateral resistance term is constant
across country pairs, and thus only influences the estimate of the intercept. However, we leave these “world-
resistance” terms in each multilateral resistance term because they will be important in estimating later “border
effects.” Indeed, the variables measuring GDP-share asymmetries are also important theoretically for estimating
border effects, but — as in A-vW — we will ignore these later in estimating border effects because they will be
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As in the previous section, exponentiating equation (34) yields the analogue to equation (24). In
the context of an N-region world, the log-linear approximation of the general equilibrium model yields the

simple reduced-form gravity equation :

~(o-1)
EAURI) (LU )
YY, /YT tt, /t7

where = (N HJ.”:IHJ.“”)A, t =TIt t, =TIt t" =TT IT7, t, and recall t; = t; (by assumption).
Compare equations (24) and (35). The latter differs from the former in one critical dimension. In
equation (35), the effect of dispersion of GDPs is accounted for entirely in the first term on the RHS and
affects only the intercept; dispersion of GDPs is captured in 6. The Taylor expansion around GDP shares
effectively removes the GDP-share weights from the multilateral and world trade cost variables. By
implication, the RHS term in brackets is a function of exogenous (trade cost) variables. This reduces the
influence of dispersion of economic mass on estimates of key parameters, such as the effect of trade costs
—including borders — on trade flows, -(o-1). Consequently, we expect OLS estimation of equation (34) —
BV-OLS centered around a symmetric equilibrium — to yield closer estimates to the “true” parameters than
OLS estimation of (23).%

The preceding discussion addresses the first question asked at the end of section 3A: Does
centering the Taylor expansion around a frictionless world make economic sense, or is there a better
alternative? This section argued that centering around a symmetric world seems more plausible
economically and econometrically. The second question posed at the end of section 3A was: Does BV-
OLS estimation work empirically as an approximation to A-vW (allowing for measurement and

specification error)? Sections 4 below address this question.

4. BV-OLS Works: Estimation of Average Effects
The goal of this section is to show that one can generate virtually identical gravity equation

coefficient estimates (“average effects”) to those generated using the technique in A-vW but using instead

quantitatively trivial and it will facilitate estimation of such effects.

¥1n fact, while for brevity we do not report estimates for equation (23), both econometric and simulation
results confirm this argument. Results are available on request. Note also that (to deal with “zero” trade flows)
equation (35) can potentially be estimated using a pseudo Poisson maximum likelihood procedure with an additive
error term.
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OLS with exogenous multilateral-resistance terms determined by theory. While the approach should work
in numerous contexts, for tractability for the reader we apply it in this paper to McCallum’s U.S.-Canadian
case, since this is a popular context; in a later section, we also do a Monte Carlo analysis for world trade
flows among countries. We estimate the McCallum, A-vW, fixed-effects, and our versions of the model
using the A-vW data provided at Robert Feenstra’s website, and compare our coefficient estimates with the
other results. We show that A-vW, fixed effects, and our methods can yield virtually identical gravity-
equation coefficient estimates, even though both BV-OLS and fixed effects are computationally simpler.
Before estimating (34), we need to replace the unobservable theoretical trade-cost variable t;; in

(34) with an observable variable. First, we will define a dummy variable, BORDER;;, which assumes a

j!
value of 1 if regions i and j are not in the same nation; hence, EIA;; = 1- BORDER;;.*® Take the

logarithms of both sides of equation (10) and then substitute the resulting equation for In t; into (34) to

yield:
Inx, = B'-p(c—1)InDIS, — (o — 1)) BORDER, )
+ p(c-1)MWRDIS, + a(c—1)MWRBORDER, + ¢,
where
17N 1/N 1 N N
MWRDIS; = | —| Y. InDIS, +(Z InDISi,)— InDIS, and (37)
N j=1 ! N i=1 ! N2 i=1 j=1 !
17 1/x 1
MWRBORDER, = [N(z BORDERJ +N(Z BORDER”)—W(Z > BORDERUH (38)

where x; = X;;/ GDP; GDP;. We will term this the “BV-OLS” model, noting that — to conform to our
theory — the coefficient estimates for InDIS (BORDER) and MWRDIS (MWRBORDER) are restricted
to have identical but oppositely-signed coefficient values. “MWR” denotes Multilateral and World
Resistance.

As readily apparent, equation (36) can be estimated straightforwardly using OLS, once data on

181t will be useful now to distinguish “regions” from “countries.” We assume that a country is composed of
regions (which, for empirical purposes later, can be considered states or provinces). We will assume N regions in
the world and n countries, with N > n. Our theoretical model applies to a two-country or multi-country (n > 2)
world. We will assume n > 2. A “border” separates countries. Also, we use BORDER rather than EIA so that the
coefficient estimates for DIS and BORDER are both negative and therefore are consistent with A-vW (2003) and
Feenstra (2004). The model is isomorphic to being recast in a monopolistically-competitive framework.
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trade flows, GDPs, bilateral distances, and borders are provided. We note that the inclusion of these
additional MWR terms appears reminiscent of early attempts to include — what A-vW term — “atheoretical
remoteness” variables, typically GDP-weighted averages of each country’s distance from all of its trading
partners. However, there are three important differences here. First, our additional (the last two) terms are
motivated by theory; moreover, we make explicit the role of world resistance. Second, in the context of
our Taylor series around a symmetric equilibrium, the distances of each country from all of its trading
partners should not be weighted by GDP shares.'” Third, previous atheoretical remoteness measures
included only multilateral distance, ignoring multilateral (and world) “border” variables (and multilateral
and world resistance versions of other “bilateral” variables, such as adjacency, language, etc.).

We follow the A-vW procedure (for the two-country model) of estimating the gravity equation for
trade flows among 10 Canadian provinces, 30 U.S. states, and one aggregate region representing the other
20 U.S. states and the District of Columbia (denoted RUS). As in A-vW, we do not include trade flows
internal to a state or province. We calculate the distance between the aggregate U.S. region and the other
regions in the same manner as A-vW. We also compute and use the internal distances as described in A-
vW for MWRDIS. Hence, there are 41 regions. Some trade flows are zero and, as in A-vW, these are
omitted. Asin A-vW and Feenstra (2004), we have 1511 observations for trade flows from year 1993.

Table 1 provides the results. For purposes of comparison, column (1) of Table 1 provides the
benchmark model (McCallum) results estimating equation (36) except omitting MWRDIS and
MWRBORDER. Columns (2) and (3) provide the model estimated using NLLS as in A-vW for the two-
country and multi-country cases, respectively. Column (4) provides the results from estimating equation
(36) using BV-OLS. For completeness, column (5) provides the results from estimating equation (36)
using region fixed effects instead of MWRDIS and MWRBORDER.

Table 1’s results are generally comparable to Table 2 in A-vW. Column (1)’s coefficient estimates
for the basic McCallum regression, ignoring multilateral resistance terms, are biased, as expected. This
specification can be compared with Feenstra (2004, Table 5.2, column 3), since it uses US-US, CA-CA,
and US-CA data for 1993. Note, however, we report the border dummy’s coefficient estimate (“Indicator

border”) whereas Feenstra reports instead the implied “Country Indicator” estimates.® Columns (2) and

YHowever, as shown earlier, these terms would include the GDP-share-weighted average distances if we
centered our first-order log-linear approximation around a “frictionless” equilibrium.

8|n Feenstra’s Table 5.2, column 3, he does not report the actual dummy variable’s coefficient estimate
(comparable to our estimate of 0.71). Instead, he reports only the implied “Indicator Canada” and “Indicator US”
estimates of 2.75 and 0.40, respectively. The implied Indicator Canada and Indicator US estimates from our
regression are 2.66 and 0.48, respectively; the difference is that we restrict the GDP elasticities to unity. When we
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(3) in Table 1 report the estimates (using GAUSS) of the A-vW benchmark coefficient estimates; these
correspond exactly to those in A-vW’s Table 2 and (for the two-country case) Feenstra’s Table 5.2,
column (4). The coefficient estimates from our BV-OLS specification (36) are reported in column (4) of
Table 1. While the coefficient estimates differ from the NLLS estimates in columns (2) and (3), they
match closely the coefficient estimates using fixed effects in column (5). Recall that — as both A-vW and
Feenstra note — fixed effects should provide unbiased coefficient estimates of the bilateral distance and
bilateral border effects, accounting fully for multilateral-resistance influences. Our column (5) estimates
match exactly those in A-vW and Feenstra (2004).%°

We now address the difference between bilateral distance coefficient estimates in columns (2) and
(3) and those in columns (4) and (5). While Feenstra (2004) omitted addressing this difference, A-vW did
address it in their sensitivity analysis (2003, part V, Table 6). As A-vW (2003, p. 188) note, the bilateral
distance coefficient estimate using their NLLS program is quite sensitive to the calculation of “internal
distances.” In their sensitivity analysis, they provide alternative coefficient estimates when the internal
distance variable values are doubled (or, 0.5 minimum capitals’ distance). These are reported in column
(6) of our Table 1; note that the absolute value of the distance coefficient increases with virtually no
change in the border dummy’s coefficient estimate. Using the same procedure, we increased the internal
distance variables’ values by a factor of ten (or, 2.5 times minimum capitals’ distance); the coefficient
estimates are reported in Table 1, column (7). We see that the bilateral distance coefficient estimate is now
much closer to those in columns (4) and (5).

These results confirm A-vW’s suspicion that the NLLS estimation technique is sensitive to both
measurement error in internal distances and potential specification error. Fixed-effects estimates, of
course, do not depend on internal distance measures. The empirical results suggest that the (log-linear)
BV-OLS estimation procedure avoids the potential bias introduced by measurement error and potential
specification error better than the nonlinear estimation procedure. First, BV-OLS estimates are insensitive
to measures of internal distance. As A-vW note (p. 179), internal distances are only relevant to calculating
the multilateral resistance terms (in our context, only the multilateral and world resistance (MWR) terms).
Examine equations (36) and (37) closely. Since the BV-OLS MWRDIS variable is linear in logs of
distance, a doubling of internal distance simply alters the intercept of equation (36). The measurement

error introduced by internal distances in A-vW’s structural estimation is avoided in BV-OLS and fixed-

relax the constraints on GDP elasticities, our estimates match those in Feenstra’s Table 5.2, column 3 and A-vW'’s
Table 1 exactly.

%The coefficient estimates from the fixed-effects regression in A-vW'’s Table 6, column (viii) are not
reported. However, they were generously provided by Eric van Wincoop in e-mail correspondence, along with the
other coefficient estimates associated with their Table 6. A-vW’s Distance (Border) coefficient estimate using fixed
effects was -1.25 (-1.54).
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effects estimation. Second, BV-OLS avoids potential specification bias, such as one raised by Balistreri
and Hillberry (2004). That study argued that A-vW’s NLLS estimates ignored the constraint that the
constant (a,) needed to equal (the negative of the log of) world income; once this structural constraint is
imposed, the A-vW coefficient estimates (especially that for distance) are closer to the fixed-effects

estimates. By contrast, BV-OLS and fixed effects avoid this specification error.

5. Why BV-OLS Works: Estimation of Comparative-Static Effects and Intuition

This section has three parts. In section A, we use BV-OLS to estimate comparative statics without
the nonlinear system of equations. In section B, we provide intuition for why BV-OLS works in providing
a good approximation of the comparative-static (average) country effects addressed in A-vW (2003). Yet,
the multilateral resistance terms from BV-OLS are derived from linear “approximations”; consequently,
MR terms estimated using BV-OLS are not likely to provide very precise estimates of region-specific or
region-pair-specific comparative statics. Accordingly, in section C, we describe briefly a simple “fixed-
point iteration” procedure that can be used to generate the identical MR terms and comparative statics as in

A-vW, but again without the complex NLLS estimation procedure.

A. Estimation of Comparative Statics using BV-OLS

As A-vW note and Feenstra (2004, p. 161) emphasizes, consistent estimates of the gravity
equation coefficients and the average border effect can be obtained estimating eq. (1) adding region-
specific fixed effects. However, to estimate the country-specific border effects, the fixed-effects technique
falls short. As A-vW note, one still needs to use the coefficient estimates from column (5) in Table 1
along with the nonlinear system of equations (12.1)-(12.41) to generate the country-specific border effects.
By contrast, the BV-OLS procedure allows one to estimate the country-specific border effects without

employing the nonlinear system of equations. We now demonstrate this.**

20ur Taylor-series expansion illustrates that the intercept also reflects world resistance and the dispersion
of world income. We note that Balistreri and Hillbery (2004) addressed other concerns about the A-vW study as
well, including A-vW’s exclusion of interstate trade flows and their imposing symmetry on U.S.-Canadian border
effects. Due to space limitations, we do not address these issues.

2! The discerning reader will note that the last two bracketed terms on the RHS of equation (36) effectively
“de-mean” the InDIS;; and BORDER;; variables. Of course, estimation with region-specific fixed effects is
equivalent econometrically to de-meaning InDIS;; and BORDER;;. However, BV-OLS is distinguished from fixed
effects estimation in three dimensions. First, while fixed-effects dummy variables can “account” for variation in MR
terms in estimation, such dummies cannot identify the source of multilateral resistance; BV-OLS can. Second,
ideally the Taylor-series expansion should include higher-order terms, which would cause the MWR terms in BV-
OLS to include variables other than just the means; the similarity to fixed effects is due to a first-order expansion.
Third, econometrically BV-OLS is not identical to fixed effects because the LHS variable in BV-OLS, x;, is not de-
meaned. This will cause BV-OLS estimates to differ from fixed effects. The distinction between BV-OLS and
fixed-effects results is also confirmed empirically by noting the correlation coefficient between the MWR terms in
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Recall equation (13) to calculate (region-specific) border effects for x;, using its log-linear form:

1

BBIJ = |nXU = InXIJ* = 8.2 = Ir‘]Pil_(I + Inl:)i.kl_0 = Ir‘]le_0 + Ir]l:)j*l_(j (39)

where a, is the estimate of -«(0-1) and a, < 0. We substitute equation (10) into equations (32) and (33) to

find estimates of the multilateral price terms with and without national borders:

BV-OLS and those implied by the coefficient estimates of the relevant dummy variables using fixed effects is 0.81.
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where BORDER;; = 1 if regions i and j are not in the same nation and 0 otherwise.

Equations (40) are reported to emphasize three points, noting that the last two equations for
country j are symmetric to the first two for country i. The first two equations for country i differ in two
respects. First, InP,* differs from InP,":° because the former includes the “border” component. Second,
note that the GDP shares will differ in the two equilibria, because GDPs are endogenous variables. Thus,
the multilateral resistance terms are endogenous variables. However, we will ignore the latter differences
since — at the suggestion of A-vW (2003, footnote 26, p. 183) — the GDP-share changes are quantitatively
trivial and, consequently, the multilateral price terms are determined exclusively by exogenous distance
and border variables. Our robustness analysis will support this simplification.? Finally, as footnote 21
addressed, equations (40) distinguish BV-OLS from fixed effects; the latter cannot deliver comparable
equations of multilateral resistance terms without constructing the n