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The term additive combinatorics was coined a few years ago by Terry Tao to
describe a rapidly developing and rather exciting area of mathematics. My personal
experience is that rather few people have heard the term, though they are often
familiar with some of the landmark results. When asked to define the area, I often
experience a little difficulty, and in this respect I perhaps have a little in common
with Dr. M. Kirschner, head of the Harvard School of Systems Biology, who said,1

“Systems biology is like the old definition of pornography: I don’t know what it is,
but I know it when I see it.” He went on to say that “it’s a marriage of the natural
science [sic] and computer science with biology, to try and understand complex
systems.” Well one might say that additive combinatorics is a marriage of number
theory, harmonic analysis, combinatorics, and ideas from ergodic theory, which aims
to understand very simple systems: the operations of addition and multiplication
and how they interact.

Even that definition is something of an oversimplification, as a glance at the
choice of topics in the book under review shows. Let us begin by mentioning a
selection of theorems whose pornographic appeal might be debated but which are
undoubtedly additive combinatorics from the moment one sees them.

An extremely old result is the Cauchy-Davenport theorem.2 Suppose that A and
B are subsets of Z/pZ, where p is a prime. Define the sumset A + B to be the set
consisting of all elements of the form a + b where a ∈ A and b ∈ B. Then we have
the inequality

|A + B| � min(|A| + |B| − 1, p).
This is proved in three different ways in the book: one combinatorial, one more
algebraic, and the other somewhat Fourier-analytic. One starts to get some of the
flavour of additive combinatorics when one asks under what conditions equality

2000 Mathematics Subject Classification. Primary 11–02; Secondary 05–02, 05D10, 11B13,
11P70, 11P82, 28D05, 37A45.

Part of this review was written, appropriately enough, while the author was attending the
semester in Additive Combinatorics at the Institute for Advanced Study, Princeton. He thanks
the Institute for their staging of this most enjoyable and productive programme.

1Quote taken from Boston’s Biotech Moment by Charles P. Pierce, Boston Globe, December
14, 2003 (available online).

2Note that Cauchy died in 1857 and Davenport was born in 1907. See [1] for some remarks
which explain how this theorem came to have this name.
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can occur in the Cauchy-Davenport theorem. In this regard one has a theorem
of Vosper: assuming that |A|, |B| � 2 and that |A + B| � p − 2 to avoid rather
degenerate cases, equality occurs if and only if A and B are arithmetic progressions
with the same common difference.

Vosper’s theorem relates two somewhat different kinds of structure: the rather
combinatorial notion of structure encoded in the size of the sumset A + B and the
extremely rigid, algebraic notion of structure that is an arithmetic progression.

A remarkable theorem of Frĕıman-Ruzsa is in a similar spirit to Vosper’s theorem
but lies significantly deeper. Suppose that A is a finite subset of Z. Then it is very
easy to show that |A + A| � 2|A| − 1 and that equality can occur if and only if A
is an arithmetic progression. But what if we assume only that |A + A| � K|A|, for
some absolute constant K? Must A still have “rigid” structure?

The Frĕıman-Ruzsa theorem says that the answer is yes : the set A must be
contained within a generalised arithmetic progression, a set of the form

{x0 + l1x1 + · · · + ldxd : 0 � li < Li},
where d � f1(K) and L1 . . . Ld � f2(K)|A|. Such a set should be thought of as the
projection of a box in Zd down to Z.

Frĕıman discussed these issues in his 1966 book; an extremely elegant and quite
short proof of the theorem was given by Imre Ruzsa some 25 years later. Ideas from
both of these sources are a major part of the foundation of additive combinatorics,
and they are discussed at length and with full background in the book under review.

Another major theme in the subject was initiated by Klaus Roth in his 1953
paper On certain sets of integers, the title being somewhat of a masterpiece of un-
derstatement. In this paper Roth addressed a question of Erdős and Turán, proving
that every “large” subset A ⊆ {1, . . . , N} contains three distinct integers in arith-
metic progression. He showed that a suitable notion of large in this context is that
|A| � cN/ log log N ; the important feature of this bound is that the denominator
tends to infinity with N , so that one may assert in a certain sense that sets of
positive density contain three term progressions.

It is natural to ask what happens for progressions of length k � 4. This issue was
not resolved until the landmark work of Szemerédi, who proved in 1969 that sets
of positive density contain 4-term progressions and then generalized this to k-term
progressions in 1975. His proof of the latter assertion, now known as Szemerédi’s
theorem, is legendarily difficult,3 but aside from its intrinsic importance the paper
led to one of the most important ideas in graph theory, the Szemerédi regularity
lemma.

Remarkably there have been several subsequent proofs of Szemerédi’s theorem,
and it would scarcely be an exaggeration to say that each of them has opened up
an entirely new field of study. In 1977 Furstenberg proved the result by an ergodic-
theoretic approach. In 1998 Gowers obtained the first sensible bounds, similar
in strength to Roth’s bound mentioned above, using a kind of “higher Fourier
analysis”. Intruigingly, this used Frĕıman’s theorem as an essential tool. Around
2003 Nagle, Rödl, Skokan, and Schacht and independently Gowers gave a fourth
proof by developing a hypergraph regularity lemma.

Tao has remarked that the many proofs of Szemerédi’s theorem act as a kind of
“Rosetta Stone”. There is much to be gained by studying the relations between

3Tim Gowers remarked that “it takes a few seconds even to check that the diagram near the
beginning of the dependences between the various lemmas really does indicate a valid proof.”
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the different arguments, and indeed in proving that the primes contain arbitrarily
long arithmetic progressions, Tao and the reviewer studied aspects of all four of the
proofs mentioned above.

The theorems stated so far have only involved addition. Once multiplication is
introduced as well, an incredibly rich variety of questions may be asked. Some of
the most classical results in additive number theory, such as Lagrange’s theorem
that every integer is the sum of 4 squares or Vinogradov’s result that every large
odd number is the sum of three primes, can be regarded as additive-combinatorial
questions about multiplicatively defined sets. However those sets, referred to in the
books of Nathanson as the classical bases, are very particular. Though I am shying
away from a definition of additive combinatorics, the subject often concerns more
general situations. A wonderfully general setting in which one can say something
nontrivial about the interaction of addition and multiplcation is provided by the
sum-product phenomenon: in a wide variety of settings, a set cannot have both
additive and multiplicative structure. The first such result, proved by Erdős and
Szemerédi, showed that if A ⊆ Z is a set of n integers, then at least one of A + A
and A · A = {aa′ : a, a′ ∈ A} has size greater than an absolute constant times
n1+c, for some c > 0. Extremely recently Solymosi showed that one can take c to
be anything less than 1/3, the best result currently known; it is a fascinating open
question to decide whether or not an arbitrary c < 1 is permissible.

Study of the sum-product phenomenon in finite fields has proved very fruitful. A
result of Bourgain, Katz, and Tao, refined by Bourgain, Glibichuk, and Konyagin,
tells us that a similar conclusion to the above holds if A is taken to be a subset of
Z/pZ, p a prime, unless A is nearly all of Z/pZ. This is a rather different result,
since multiplication does not “blow things up” in Z/pZ the same way it does in Z

or, more precisely, there is no order relation on Z/pZ which interacts nicely with
multiplication.

One application of this result is Bourgain’s estimate for exponential sums over
subgroups of the multiplicative subgroup (Z/pZ)×. If H is such a subgroup and if
H is not incredibly small (|H| > pε will do), then we have

1
|H| |

∑
x∈H

e(xr/p)| = o(1)

for all nonzero r ∈ Z/pZ. Although not obvious at first sight, this is a rather
strong statement to the effect that multiplicative subgroups of Z/pZ have rather
little additive structure. Before the sum-product technology was imported, this
statement was known only under the much weaker condition that |H| > p1/4+o(1);
this result, due to Heath-Brown, required deep number-theoretical arguments.

Having set the scene, let us say something about the book under review. It is
organised into 12 chapters. Starting with a discussion of basic tools from proba-
bility theory in Chapter 1, the early chapters develop basic tools common to many
different papers in the subject, whilst the later chapters discuss particular topics.
The material in Chapter 1 covers some of the same ground as the wonderful book
The Probabilistic Method by Alon and Spencer, but it is much more condensed.
This is a nice discussion of the material, and it also serves to introduce some of
the notation, particularly the expectation notation E, which is important to the
subject.

Students of mine have found Chapter 2 to be extremely useful. It gives a rather
systematic and comprehensive treatment of inequalities for sumsets. Prior to this
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account one generally had to refer to the somewhat scattered literature and in
particular to a number of brilliant but not always easy-to-access papers of Imre
Ruzsa. Let us give some examples to illustrate the flavour. Suppose that A is a
subset of some abelian group G satisfying the doubling condition |A + A| � K|A|.
Then the size of the iterated sumsets sA − tA = A + · · · + A − A − · · · − A (here
there are s+ t copies of A) can be controlled in the sense that one has an inequality

|sA − tA| � KC(s,t)|A|.
This is extremely useful in practice, as it allows us to think of the theory of sets
with small doubling as a kind of approximate abelian group theory, a concept which
is elaborated upon in the book. Analogues of these inequalities in the nonabelian
setting are also given; these have proved very useful indeed and appeared for the
first time in this book, though they have now been covered in a separate paper of
Tao.

Much is also made of the relation between the small doubling condition and
another property that a set A may enjoy, that of having large additive energy :
many solutions to a1 + a2 = a3 + a4. A simple application of the Cauchy-Schwarz
inequality shows that a set with small doubling has large additive energy, but the
converse fails (A could be the union of an arithmetic progression of length n/2 and
a further n/2 random points). A remarkable result known as the Balog-Szemerédi-
Gowers theorem provides a partial converse: if A has large additive energy, then
there is a big subset A′ ⊆ A with small doubling. This result has proved invaluable
because sets with large additive energy often arise in nature, for example as a
byproduct of Fourier-analytic arguments, whereas the small doubling condition
allows one to prove strong structural results such as the Frĕıman-Ruzsa theorem
discussed earlier.

The Balog-Szemerédi-Gowers theorem is discussed at some length. A nonabelian
version is stated, as well as an asymmetric version which the authors extracted from
Bourgain’s work on exponential sums over subgroups. This latter result does not,
to my knowledge, appear anywhere else in the literature. The actual proof of the
Balog-Szemerédi-Gowers theorem is deferred to Chapter 6.

A nice feature of Chapter 2 is the introduction of the Ruzsa distance between
two sets A and B in some ambient group G. This provides a unified discussion of
a number of the results just mentioned.

Chapter 3 discusses a number of results with the flavour of the geometry of num-
bers, a subject which, according to Peter Swinnerton-Dyer4 “went out of fashion
in England in the 1950s and elsewhere considerably earlier.” These results about
intersections of lattices with convex bodies have found a new lease of life in ad-
ditive combinatorics, particularly in association with the Frĕıman-Ruzsa theorem
and in more recent work of the authors on random matrices. This chapter is very
useful on account of its brevity and also its perspective, which has the additive-
combinatorial applications in mind. Many of the results here, though in some sense
classical, would be rather hard to extract from the literature. There is also a brief
discussion of the Brunn-Minkowski inequality and related issues.

Chapter 4 is, with Chapter 2, found to be the most useful by students. The
Fourier transform is introduced, and its role in additive combinatorics discussed at
length. The use of exponential sums in additive number theory goes back a long

4In a Cambridge lecture course in 1999.
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way—at least to the work of Hardy and Littlewood. Since then it has appeared
systematically in papers on combinatorial number theory, for example in the work
of Roth, Frĕıman-Ruzsa, and Gowers discussed in the introduction. This book
represents the first attempt that I know of to give a systematic discussion of the
Fourier transform as applied in this area; before this, one had to go to a disparate
collection of original papers. The topics are rather different from those that would
be featured in a course on Euclidean harmonic analysis, and much of the discussion
centres on the subtle relationship between the additive structure of a set or function
and properties of its Fourier transform. Particularly useful in this regard is the
introduction and subsequent development of the notation Specα(A) for the α-large
spectrum of a set A, defined to be the set of points where the Fourier transform of
A is at least α of its maximum value.

Chapter 5 deals with inverse problems in additive combinatorics. In particular
the theorems of Vosper and Frĕıman-Ruzsa mentioned earlier are proved here, the
latter by the interesting new method of universal ambient groups which does not
appear elsewhere in the literature. A number of refinements of these theorems due
to Frĕıman and later authors are presented, in particular an argument of Chang
giving reasonably good bounds for the Frĕıman-Ruzsa theorem. In addition there
is an extended discussion on the important notions of Frĕıman homomorphism and
Frĕıman isomorphism. Frĕıman isomorphisms preserve structures that result from
adding at most some fixed number s of elements of a set A; because of the restric-
tion on s, they are rather weaker as a concept than group homomorphisms, but
consequently more flexible. It is often very advantageous to work with a particu-
lar Frĕıman-isomorphic copy of a set A, as, for example, in Ruzsa’s proof of the
Frĕıman-Ruzsa theorem.

Chapter 6 is entitled “Graph-theoretic methods”, and it is a rather eclectic mix of
topics, all of which have at least something to do with a graph. The chapter begins
with a pleasant collection of topics from extremal graph theory and Ramsey theory.
These are presented with an eye towards applications in additive combinatorics: for
example, Ramsey’s theorem is used to prove Schur’s beautiful theorem that in any
finite colouring of the integers there is a monochromatic solution to x+y = z. There
is then a brief digression away from graph theory, as a proof is given of the Hales-
Jewitt theorem and (as a corollary) van der Waerden’s theorem on the existence of
monochromatic progressions of arbitrary length in finite colourings of the integers.
The rest of the chapter is devoted to two important topics. Firstly, the proof of the
Balog-Szemerédi-Gowers theorem, deferred from Chapter 2, is at last furnished.
Secondly, there is a discussion of Ruzsa’s proof of Plünnecke’s inequality which
involves, among other ingredients, Menger’s theorem from elementary graph theory.
This inequality gives a much cleaner version of the iterated sumset inequalities of
Chapter 2; for example, if |A + A| � K|A|, then |sA − tA| � Ks+t|A| for every
s, t � 0. For many applications the rougher results of Chapter 2 are sufficient, but
the elegance of this proof makes this section highly recommended reading.

The first six chapters of the book are, in large part, essential reading for any
student of the subject. From Chapter 7 onwards the material is more topics-based.

Chapter 7 begins with a discussion of the Littlewood-Offord problem: take el-
ements v1, . . . , vd in some abelian group G, and make a random choice of d signs.
What is the probability Pv that ±v1 ± v2 ±· · ·± vd is zero? When G = Z and none
of the vi is zero, this probability is bounded by C/

√
d, a result that is clearly sharp
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(take all the vi to equal one). The inverse Littlewood-Offord problem asks what
can be said about v1, . . . , vd if many of these sums do vanish. One of the highlights
of this chapter is a result of the authors, stating that if G = Q and Pv � d−A, then
the elements vi must be efficiently contained inside a reasonably small generalised
arithmetic progression of dimension bounded in terms of A. Results such as this
are then applied to random matrices and, in particular, to the beautiful problem
of estimating the probability pn that a random n × n matrix with ±1 entries is
singular. A sketch is given of the authors’ proof that pn � ( 3

4 + o(1))n. This gets
about half way to the expected truth, which is that pn ∼ 2n2( 1

2 )n. The thinking
behind this guess is that by far the most likely way for a ±1 matrix to be singular
is for two rows to be multiples of one another. There is also a discussion of ran-
dom symmetric matrices with ±1 entries; remarkably, all that is known about the
corresponding singularity probabilty p̃n here is the bound p̃n � n−1/8+o(1). The
elegant proof of this result of Costello, Tao, and Vu finishes the chapter.

It is certainly worth noting that the authors’ work in this area has led to an
impressive string of papers, most recently a preprint [3] establishing a very general
universality principle for the eigenvalue distribution of random matrices.

Chapter 8 discusses point-line arrangements in Euclidean space and Erdős prob-
lems such as the distinct distances problem: what is the minimum number of dis-
tinct distances gd(n) defined by a set of n points in Rd? A key result here is the
Szemerédi-Trotter theorem, which gives an upper bound for the number of inci-
dences between l lines and p points. This is applied to give sum-product type
results in R. For example, we find a proof of Solymosi’s result that if A ⊆ R

has size n, then either |A + A| or |A · A| has size � n14/11−o(1) (very recently, as
mentioned earlier, he has improved the 14/11 here to 4/3). These sum-product
phenomena in Euclidean space have a very different flavour to those in Z/pZ, as
geometry—and, in particular, order relations and convexity—come into play. The
chapter concludes with a discussion of the sum-product phenomenon in C. The
arguments in this chapter are uniformly very elegant, and the chapter could stand
alone as a 3- or 4-lecture course.

Chapter 9 has a rather different flavour in that it concerns algebraic methods
which are more rigid than the O( ), o( )-style material of much of the rest of the
book. The first topic is the Combinatorial Nullstellensatz and its applications,
discussed in a 2000 paper of Noga Alon (the authors have overlooked the fact that
the actual result is of somewhat earlier vintage, dating back at least as far as a 1992
paper of Alon and Tarsi). Among the pleasant applications of this result is a short
proof of the Erdős-Heilbronn conjecture,5 an analogue of the Cauchy-Davenport
theorem in which only distinct sums are allowed. If A, B ⊆ Z/pZ are two sets, then
we write A+̂B for the set of all sums a + b with a ∈ A, b ∈ B, and a �= b. The
assertion is then that |A+̂B| � min(|A| + |B| − 3, p). After this, the Chevalley-
Warning theorem is discussed and used to prove the lovely Erdős-Ginzberg-Ziv
theorem: given any 2n− 1 integers a1, . . . , a2n−1, there is some subset of exactly n
of them whose sum is divisible by n. There is an interesting discussion of Stepanov’s
method and its use in obtaining sum-product estimates in Z/pZ (in this specific
context, however, more elementary methods are now available). Finally, the first
author’s elegant discrete uncertainty principle is proved: the size of the support of
a function f : Z/pZ → C and that of its Fourier transform must be at least p + 1.

5This conjecture was first established by Dias de Silva and Hamidoune using different methods.
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This is then used to supply the third proof of the Cauchy-Davenport theorem in
the book.

In Chapter 10 the first case of Szemerédi’s theorem is discussed, that of arith-
metic progressions of length three. Roth’s 1953 argument is discussed, as is Bour-
gain’s proof of the best bound for this problem that was known in 2006, namely
that any subset of {1, . . . , N} of cardinality at least C

√
log log N

log N N contains three
elements in progression (recently, Bourgain has improved the power of log here to
2/3). The exposition here incorporates a significant technical refinement in the part
of the argument that has to do with understanding the large spectrum of a Bohr
set—this first appeared in UCLA lecture notes of Tao. A variant of my result on
versions of Roth’s theorem relative to the primes is discussed, and there is another
proof of Roth’s theorem using a kind of “finitary ergodic” argument close to a tech-
nique of Bourgain from 1989. The reason for this, and indeed the motivation for the
rather unusual presentation of some of the results here, is to get the reader thinking
along the lines that eventually lead to the theorem of Tao and Green (the reviewer)
on long arithmetic progressions of primes. Finally, two arguments of Szemerédi are
discussed. Firstly, there is material on his extremely important regularity lemma
for graphs and the observation of Ruzsa and Szemerédi that this implies Roth’s
theorem. Lastly, there is a combinatorial proof of Roth’s theorem, which was a
precursor to his 1975 tour de force on progressions of arbitrary length.

Chapter 11 discusses Szemerédi’s theorem for longer progressions. It begins with
a discussion of the Gowers uniformity norms Uk. Let G be a finite abelian group
and let f : G → C be a function. Then the U2-norm of f is the 4th root of

1
|G|3

∑
x,h1,h2

f(x)f(x + h1)f(x + h2)f(x + h1 + h2),

a kind of average of f over 2-dimensional parallelograms. The U3-norm of f is the
8th root of

1
|G|4

∑
x,h1,h2,h3

f(x)f(x + h1) . . . f(x + h1 + h2 + h3),

an average of f over 3-dimensional parallelepipeds, and the higher norms are defined
similarly. The Gowers Uk-norm can perhaps best be understood when f(x) =
e2πiφ(x) is a pure phase function, in which case it detects biases in the kth iterated
difference (discrete derivative) of φ. Since Gowers’s results and work by Host-Kra in
ergodic theory these norms have assumed a central role in additive combinatorics.

The inverse question for the Gowers norms, which asks under what circumstances
the Gowers Uk-norm of bounded function can be large, is introduced. The inverse
question for the U3-norm in the case that G is a vector space over a finite field is
resolved (f must correlate with a quadratic phase), and this is used to establish
Szemerédi’s theorem for progressions of length 4. This whole argument corresponds
very closely to Gowers’s original argument.

The rest of the chapter is quite sketchy and merely offers a taste of what lies
beyond. The first topic is a discussion of the first author’s very nice “quantitative
ergodic theory” proof of Szemerédi’s theorem, which arguably represents the most
accessible proof of the theorem currently known. Some of the ideas here are also
of relevance to the theorem of Tao and Green on progressions of primes, which is
sketched in the last section of the chapter. Before that, there are short discussions
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of Furstenberg’s famous ergodic-theoretic proof of Szemerédi’s theorem and also of
the hypergraph regularity approach of Gowers and Rödl et al.

Chapter 12 feels rather like a savoury course, following the dessert as something
of an afterthought. Nonetheless it contains some very elegant results of Szemerédi
and the second author, chiefly concerning their resolution of a conjecture of Erdős
and Folkman: if C is sufficiently large and if A = {a1 < a2 < a3 < . . . } is a set of
natural numbers such that |A∩{1, . . . , N}| � C

√
N for all N , then the set of sums

{
∑

i∈I ai : |I| < ∞} contains an infinite arithmetic progression.
Last, but by no means least, there is an extremely extensive bibliography of some

388 papers.
The choice of material in this book is for the most part in very good taste, and

the proofs are efficient and frequently elegant. As regards the choice of topics, it
is important to acknowledge (as the authors do) the debt the subject owes to the
two books of M. Nathanson, who first brought many of these topics (the Frĕıman-
Ruzsa theorem, Plünnecke’s inequalities, . . . ) to a wider audience. Perhaps the
most obvious omission from this book is any serious discussion of nilsequences,
which seem set to play a major role in the future development of the subject. This
is certainly forgivable, however, since at the time the book was written there had
been little exploration of nilsequences outside of the ergodic literature.

Some parts of this book are better exposited elsewhere. In my opinion this
is particularly true of Chapters 10 and 11, where the first author and others have
subsequently written more accessible accounts. Of particular note in this regard are
Tao’s Montréal notes [2], which should probably be consulted long before Chapter
11 of this book. These comments notwithstanding, there are some parts of Chapter
10 in particular where a novel perspective is taken which is certainly welcome in
the literature.

This book is more suitable as a reference text than for a course, though it
would certainly be a useful accompaniment to a graduate course designed around a
carefully selected subset of the material such as that given by Gowers in Cambridge
in 1999 (which is where I learnt much of this material). I plan to use parts of it
myself when lecturing a similar such course in 2009.

There are a few parts of the book that are rather heavy going, although this often
reflects the difficulty of the underlying material. This is particularly true of parts of
Chapter 10. Occasionally the use of the O( ) notation is taken too far, for example
in Theorem 2.35 and Theorem 4.42 (the former argument is particularly difficult
to scan, and here it might have been beneficial to write in explicit constants).

In my opinion the typesetting of this book leaves something to be desired. I am
not fond of the font used in this series by Cambridge University Press, and some
of the bracketing in, for example, Section 7.2 is rather heavy and unattractive. It
surprises me that the notation and typesetting on pages 394 and 395, where the
argument is already difficult enough, made it past the proof stage. The setting
of citations in italics ([195],[374]) in the statement of theorems but not elsewhere
seems very ugly to my admittedly untrained eye.

In summary, the book under review is a vital contribution to the literature, and
it has already become required reading for a new generation of students as well as
for experts in adjacent areas looking to learn about additive combinatorics (Chap-
ter 4, for example, might be found very interesting to some theoretical computer
scientists). This was very much a book that needed to be written at the time it
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was, and the authors are to be highly commended for having done so in such an
effective way. I have three copies myself: one at home, one in the office, and a spare
in case either of those should become damaged.

References

[1] H. Davenport, A historical note, J. London Math. Soc. 22 (1947), 100–101. MR0022865
(9:271b)

[2] T. C. Tao, The ergodic and combinatorial approaches to Szemerédi’s theorem, Additive com-
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