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Studies of the dynamical systems of billiard type (or simply billiards) form one of
the most fascinating and notoriously difficult areas in the modern theory of dynam-
ical systems. Billiards are visual and arise naturally in applications (primarily in
classical mechanics, statistical mechanics, optics, acoustics, and quantum physics).
For instance, the Boltzmann gas of elastically colliding balls in a box, which is
the most fundamental and venerable model in statistical mechanics, is a billiard
system. Billiards demonstrate a full variety of possible dynamics from the most
regular (integrable) one to the strongest possible stochastic behavior, when typical
(almost all) orbits cannot be distinguished from realizations of random processes
with almost independent values.

Recall that a billiard is a dynamical system generated by the free motion of a
point particle within a bounded domain Q with a piecewise smooth boundary ∂Q
in Euclidean space or on a torus. When the particle reaches a regular point of
the boundary (where there is a unique normal to ∂Q) it gets reflected according
to the law of specular (or elastic) collisions; i.e., the angle of incidence equals the
angle of reflection. These angles are measured between the velocity vector v of the
particle (which can be always assumed to be a unit vector) and the inward unit
normal vector n(q), where q is the point of reflection, q ∈ ∂Q. Thus billiard orbits
in the configuration space (a billiard table) Q are broken lines. Hence a billiard is
a Hamiltonian system with a potential identically equal to 0 within Q and ∞ at
∂Q. Therefore, a billiard dynamics (billiard flow) Φt preserves a phase volume m
(Liouville measure) in the phase space Ω. The set of all orbits which eventually
hits singular points of the boundary has m-measure zero. Because the book under
review deals exclusively with two-dimensional billiards, we assume from now on
that the billiard table Q is a planar domain or belongs to a 2D torus. Then Ω
becomes a 3D manifold.

Let ∂Q = Γ1 ∪ Γ2 ∪ · · · ∪ Γk, where Γi, 1 ≤ i ≤ k, are smooth (C�, � ≥ 3, to
avoid pathologies) compact curves. A smooth component Γ of the boundary of a
billiard table is called dispersing, focusing or neutral if it is convex outward, in-
ward or has identically zero curvature, respectively. A billiard may have the most

2000 Mathematics Subject Classification. Primary 37D50; Secondary 37D25, 37A25, 37N05,

82B99.

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

683

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



684 BOOK REVIEWS

regular (integrable) dynamics such as billiards in circles and ellipses. The book
under review deals with the billiards which have the most irregular (stochastic)
behavior. Although it is called Chaotic Billiards, this title is, in some sense, mis-
leading because the book is completely devoted to hyperbolic billiards rather than
to chaotic ones. Hyperbolic dynamical systems demonstrate strong chaos but there
are many classes of dynamical systems (including billiards) with different forms of
weakly chaotic dynamics.

Recall that a dynamical system is called hyperbolic if its Lyapunov exponents
do not vanish almost everywhere with respect to corresponding invariant measure.
The fundamental Oseledec’s theorem [23] establishes the existence of Lyapunov
exponents for a very general class of measure preserving conservative dynamical
systems. The celebrated geodesic flows on surfaces of negative curvature were the
first class of hyperbolic systems, studied by Hadamard, Hedlund and Hopf. This
class was dramatically generalized after the introduction of Anosov systems and
Smale’s axiom A-systems.

The studies of hyperbolic billiards were initiated by Sinai’s remarkable ground-
breaking 1970 paper [27] which is fundamental to the entire theory of hyperbolic
systems with singularities. In hyperbolic billiards there are singularities of two
types. The first one is related to the existence of collisions tangent to the bound-
ary, and the second with the existence of singular (“corner”) points on the boundary
of a billiard table. Therefore, a standard proof of ergodicity of smooth hyperbolic
dynamical systems via a Hopf chain which connects almost any pair of points in a
phase space and consists of smooth local manifolds alternating between the stable
and unstable ones is not applicable. Sinai developed a very elegant although techni-
cally extremely sophisticated and challenging theory to account for that. Obviously
a billiard dynamical system is completely defined by the geometry of the boundary
∂Q of a billiard table. This connection becomes especially transparent if one stud-
ies the so called billiard map. Consider a 2D cross-section M ⊂ Ω consisting of all
unit vectors with footpoints on the boundary ∂Q and pointing to the interior of
the billiard table. Then the billiard map F sends a point from one collision to the
point of the next collision with the boundary. F preserves an absolutely continuous
probability measure µ which is the projection of m onto M . It is easy to see that
topologically M is a union of not more than k cylinders. In fact, a cylinder corre-
sponds to every connected component of ∂Q. There exist natural coordinates (r, ϕ)
on M , where r is a length coordinate on the boundary ∂Q and ϕ, −π

2 ≤ ϕ ≤ π
2 ,

is the angle between the unit normal vector n(q) at the point of reflection and the
velocity vector v of the particle.

Dynamics of hyperbolic billiards can be conveniently described by the so-called
wave fronts, which are (C1-smooth) orthogonal cross-sections of narrow families of
directed lines (beams of rays) representing billiard orbits. The curvature of such
beams changes in the course of the dynamics. It is easy to compute that if the
beam did not experience reflections from ∂Q on the interval [0, t], then

(1) κt =
κ0

1 + tκ0
,

where κ0 and κt are the initial curvature of the wave front and its curvature at
the moment t. Thus (1) describes the evolution of wave fronts during a free path
between the reflections from ∂Q. At the moments of reflections at the boundary,
the curvature of a wave front changes according to the fundamental mirror formula
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of the geometric optics

(2) κ+ = κ− +
2k(q)

cosϕ
,

where κ− and κ+ are the curvatures of the wave front at the moments just before
and just after reflection off the boundary at the point q ∈ ∂Q, respectively, k(q) is
the curvature of the boundary at this point and cosϕ is the corresponding incidence
angle.

All the properties of the hyperbolic billiards could be deduced from the formulas
(1) and (2). However, in attempting to do that, one encounters “enormous technical
difficulties”, as the authors correctly write, and this book does a very good job in
presenting a clear and detailed exposition of fundamentals of these techniques [28],
[29], [25]. On the other hand, for billiards in polygons the fundamental mirror for-
mula (2) gives nothing because the curvature of wave fronts does not change at the
reflections. The billiards in polygons (and polyhedra) are nonhyperbolic. There-
fore, studies of such billiards require absolutely different techniques [19], [29], [22].
It is a beautiful area of mathematics and I respectfully disagree with the statement
of the authors that billiards studied in their book are the “least elementary” ones.
The theory of billiards in polygons and polyhedra is in my view mathematically not
easier, but of course it deals with a very tiny and specific subclass of billiards. Thus,
the book under review deals with billiards where the curvature of the boundary is
not identically zero because billiards in polygons and polyhedra are nonhyperbolic.

Sinai [27] introduced a very important class of dispersing billiards which plays
a fundamental role in the theory of nonuniformly hyperbolic dynamical systems
as geodesic flows on manifolds of negative curvature play in the theory of smooth
hyperbolic systems. A billiard is called dispersing if all regular components of the
boundary are dispersing; i.e., they have a positive curvature. It is easy to see from
(1) and (2) that any wave front with positive curvature at t = 0 in dispersing
billiards will have a positive curvature at any t > 0; i.e., the corresponding beam
of rays will be divergent and the distance in phase space between the billiard or
bits 2in such a beam will (locally) increase. This mechanism of hyperbolicity is
naturally called the mechanism of dispersing. It is analogous to the mechanism
of hyperbolicity in geodesic flows on manifolds with negative curvature. The most
celebrated example of dispersing billiards is a 2D plane torus with removed convex
subset (scatterer) with a piecewise smooth boundary. This very billiard table, be-
sides being an instructive example introduced by Sinai, is also of great importance
in nonequilibrium statistical mechanics. By letting a billiard particle move on the
plane between a periodic array of convex disjoint scatterers, one gets the celebrated
periodic Lorentz gas. Lorentz introduced this classical model (with arbitrary con-
figuration of scatterers) of statistical mechanics in 1905. Although the natural
invariant measure for the periodic Lorentz gas is infinite, this dynamical system
can be reduced to Sinai’s billiards by making use of the fact that the dynamics
commutes with Z

2 action. Dispersing billiards enjoy the strongest statistical and
stochastic properties. They are ergodic, mixing, Kolmogorov systems (K-systems),
B-systems (metrically isomorphic to Bernoulli shifts), satisfy the Central Limit
Theorem of the probability theory and enjoy the exponential decay of correlations
for “good” functions on the phase space. (A more or less standard choice is the
class of Hölder continuous functions.)
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If at least one component of the boundary ∂Q is focusing, then the situation
changes drastically and the corresponding billiards demonstrate all variety of be-
havior from the most regular (integrable in circles and ellipses) to the completely
hyperbolic ones with strong statistical and stochastic properties. In 1973 Lazutkin
established that if the boundary ∂Q of a billiard table is a sufficiently smooth con-
vex curve, then there exists an uncountable family of caustics converging to ∂Q [21].
Recall that a curve γ is a caustic for a billiard if from the existence of one link of a
billiard orbit tangent to γ it follows that any other link of this orbit is also tangent
to γ. If there is just one caustic, then the corresponding billiard is nonergodic. The
mirror formula (2) shows that any reflection from the focusing boundary pushes
to the focusing (i.e., convergence) of wave fronts rather than to their divergence,
required for hyperbolicity. However, there are billiards with some focusing compo-
nents [4] and even without dispersing components [5] which are hyperbolic. The
mechanism of hyperbolicity in such billiards is different from the dispersing one and
is called the mechanism of defocusing. In dealing with billiards with at least one
focusing component, one must consider the evolution of wave fronts with negative
curvature, i.e., the evolution of convergent (focusing) beams of rays. It follows im-
mediately from (1) that dispersing wave fronts continue to be dispersing during the
entire free path between two consecutive reflections from the boundary. To the con-
trary, a focusing wave front can get transformed into a dispersing one if t > |κ0|−1,
i.e., if a free path of the particle is long enough. At the moment td = |κ0|−1, the
event of defocusing of a focusing beam occurs and this beam becomes a dispersing
one. Thus, a free path τ = τc + τd, where τd (τc) is the time interval in which this
beam of rays was divergent (convergent). The mechanism of defocusing generates
hyperbolicity if divergence (dispersing) dominates convergence (focusing) and thus
such billiards enjoy most of the ergodic and statistical properties that dispersing
billiards have. The simplest example of a hyperbolic focusing billiard arises by cut-
ting a circle by a chord, which is not a diameter, and then taking the bigger piece
as a billiard table. After the discovery of the mechanism of defocusing, the theory
of billiards in some sense assumed a leading role to the theory of geodesic flows. In
fact, by using the same geometric ideas, Osserman and then Donnay constructed
hyperbolic geodesic flows on surfaces that have pieces with positive curvature [17].

Because the billiards with focusing components demonstrate all possible dynam-
ical behaviors ranging from the integrable to the hyperbolic, a natural question is
which focusing components can serve as boundary components for hyperbolic bil-
liards [6]. To a large extent, this problem is now completely resolved [18], [7], [10].
The claim is that such focusing components must be absolutely focusing [6]. The
notion of absolute focusing seems to be a new one in a geometric optics. A smooth
component Γ of a billiard table’s boundary is called absolutely focusing [6], [7] if
any narrow parallel beam of rays which falls on Γ becomes focused (convergent) af-
ter the last reflection in a series of consecutive reflections from Γ. Observe that the
standard notion of a focusing component takes into account just the first reflection
from the boundary by a parallel beam of rays which according to (2) immediately
becomes convergent. Absolute focusing can be characterized in local terms as well
by requiring that any initially parallel beam of rays that falls on Γ becomes focused
between any two consecutive reflections in the series of reflections from Γ (as well
as after the last reflection in this series) [18], [7]. Although the last definition seems
to be more restrictive, these two are in fact equivalent [7]. By choosing all focusing
components of the boundary to be absolutely focusing and putting each of them
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sufficiently far from any other nonneutral component of the boundary ∂Q, one can
ensure hyperbolicity of a billiard [16], [32], [4], [5]. On another hand this strategy
does not work for nonabsolutely focusing curves [10].

There are two techniques that are used to establish hyperbolicity. The first
one deals with special continued fractions which are intimately related to billiard
dynamics. Consider a (nonsingular) billiard orbit of a point x ∈ M . Let τn,
n = 1, 2, . . . , be a time (free path) between the (n− 1)th and the nth reflections of
this trajectory from the boundary ∂Q, and xn = Fnx, Rn = 2kn

cosϕ(xn)
, where kn is

the curvature of ∂Q at the point of the nth reflection and ϕ(xn) is the corresponding
angle of incidence. A remarkable infinite continued fraction discovered by Sinai,

(3) κs(x) =
1

τ1 +
1

R1 +
1

τ2 +
1

R2 + ...,

gives a (formal) expression for a tangent to a (local) stable manifold passing through
x [29]. By reversing the time, one gets the corresponding expression for an unstable
manifold at x. Therefore, the first step in proving hyperbolicity is to establish that
the infinite continued fraction (3) exists for almost all points x ∈ M . For dispersing
billiards, the signs of all elements of the continued fraction (3) are the same and
therefore there exists a general Seidel-Sterne criterion of convergence. Thus, for
dispersing billiards the problem of convergence of (3) becomes essentially trivial. If
a billiard table has at least one focusing boundary component Γ, then the blocks of
the continued fraction (3) that correspond to the series of consecutive reflections off
Γ have elements with alternating signs. There are no general criteria of convergence
of such continued fractions. Therefore, the discovery of new classes of hyperbolic
billiards becomes a challenge.

The second approach to proving hyperbolicity goes back to Alekseev [1] and is
called a cone method. This method was extended to any dimension by Alekseev’s
former student Wojtkowski [31]. Now the cone method has become almost universal
and has been applied to a large variety of dynamical systems, including billiards.
From a general point of view, the continued fraction technique deals directly with
the local stable and unstable manifolds, whereas the cone approach deals with the
action of the differential DF of the billiards map and the invariant under DF
families of cones in the tangent space TM .

Although hyperbolicity is the fundamental ingredient to ensure stochasticity
of the dynamics, many questions remain on how “strong” is this “chaos” in the
dynamics. Because billiards have a natural invariant measure, the corresponding
questions immediately lead to the studies of ergodic and statistical properties of
hyperbolic billiards. The first fundamental problem is ergodicity. In fact, the
entire area of hyperbolic billiards (and the ergodic theory itself) developed from
the attempts to prove ergodicity of the Boltzmann gas (Boltzmann hypothesis,
BH). Sinai proved BH for two discs on the torus [27]. This system is equivalent
to dispersing billiards. When the number of particles is greater than two, then
the corresponding billiard becomes only semi-dispersing; i.e., its boundary consists
of pieces of cylinders. (Each cylinder corresponds to collisions of a certain pair
of particles.) This enormously complicates the analysis of this system. However,
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the developments in recent years in the sharpening of these techniques gives hope
that the full proof of BH is within reach [24], [25]. For nonuniformly hyperbolic
dynamical systems, a theory has been developed which allows one to deduce from
ergodicity stronger ergodic properties, such as mixing, K-property and B-property
[29], [28], [20], [15]. Therefore, ergodicity is a key property for such systems that
include most hyperbolic billiards.

The next circle of questions deal with statistical properties which are essentially
based on the rate of mixing, i.e., on the rate of correlations decay. These properties
are the Central Limit Theorem as well as other limit theorems of probability theory
such as the local limit theorem, the law of iterated logarithm, the almost-sure
invariance principle, etc.

The studies of statistical properties of billiards are closely related to the problems
of statistical mechanics. For instance, the fundamental problem of irreversibility
refers to the relationship between the microdynamics of particles, described by the
time-invertible Newton’s law, and time-noninvertible macro-dynamics described by
the partial differential equations of hydrodynamics [29]. The theory of dispersing
billiards allows us to derive the diffusion equation for the periodic Lorentz gas with
bounded free path from its completely deterministic and time-invertible dynamics
[11].

Recent impressive progress in this area is essentially based on the remarkable
advances due to Young [33], [34] of previously existing techniques which allowed
researchers to obtain, in particular, exponential estimates for the rate of decay of
correlations in dispersing billiards as well as power-like estimates for billiards with
slow decay of correlations, e.g., for some focusing billiards, and to prove numer-
ous limit theorems for various important billiard systems (see [14] and references
therein, [29], [12], [13], [3]). This area is in full bloom now.

However, some fundamental (and intrinsic for billiards) questions about the dy-
namics of hyperbolic billiards remain. They are mostly related to the fundamental
problem of the mechanisms of hyperbolicity. Even in two dimensions it is not known
whether there is any other general strategy to design hyperbolic billiards besides
choosing all focusing components to be absolutely focusing and placing other com-
ponents of the boundary sufficiently “far” from them. In higher dimensions the
situation becomes much more complex even for dispersing billiards [2]. Needless to
say, the complications for billiards with focusing components has become extremely
severe. The reason for all these complications is provided by a fundamental optical
phenomenon called astigmatism. In fact, the mechanism of defocusing requires that
wave fronts must experience a strong focusing when they collide with the boundary
∂Q. However, in view of astigmatism, the strength of focusing varies in differ-
ent planar sections of the wave front and becomes quite weak in some sections.
Therefore, there were doubts that the mechanism of defocusing works in higher
dimensions. It does work though [9]. However, the classes of focusing components
used so far are restricted to the pieces of spheres. To extend this class and construct
open sets of admissible focusing components is a challenging problem.

Recall also that a generic Hamiltonian system is neither hyperbolic nor inte-
grable. Such a system has instead a so-called divided phase space where the sets
with regular dynamics (KAM-tori) coexist with the sets with chaotic dynamics,
and each of these sets has positive measure. To understand the dynamics of such
systems is the most fundamental problem in the theory of Hamiltonian systems.
Although billiards do have some specific features, their studies may advance this
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area at least by providing exact and visual examples of coexistence of any number
of KAM-islands with any number of chaotic components [8].

The book under review will play an outstanding role in all future developments of
the theory of hyperbolic billiards and its applications. The fundamentals of the the-
ory of two-dimensional hyperbolic billiards, which have existed for almost 40 years,
were dispersed so far in numerous lengthy papers (mostly written in Russian). The
authors provide all the technical details for proving hyperbolicity, ergodicity and
statistical properties of dispersing billiards. Recent powerful techniques for study-
ing statistical properties, such as Young towers and coupling, are also very clearly
presented. In addition, the book gives a fairly complete analysis of hyperbolic bil-
liards with constant curvature focusing components (arcs of circles). The last short
chapter dealing with focusing billiards of general type is much more sketchy. How-
ever, the different approaches are carefully discussed as well as their comparison.
The authors also provide a good number of historic remarks which are with a very
high probability correct. (An anecdotal example of a “small probability event” is
the reference to R. L. Dobrushin as a physicist.)

Overall, this book is an invaluable source for students and individual researchers
to learn the fascinating and flourishing area of hyperbolic billiards and to contribute
to it. It contains many carefully chosen exercises and of course many figures. The
well-written appendices on measure theory, probability theory and ergodic theory
make the exposition essentially self-contained. I highly recommend this book as the
only source for graduate and undergraduate courses on the theory of 2D hyperbolic
billiards as well as for individual studies.
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