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The reader has heard the cliché that algebraic varieties are the locuses 
of solutions of polynomial equations; true as far it goes, but even in simple 
cases, one can know a lot about the equations and almost nothing about 
the solution set. Conversely, and more to the present point, even for a 
variety having an extremely natural and simple description, writing out 
the defining equations might be enormously expensive and unrewarding. 

First of all, I want to give the flavour of toric geometry with two simple 
examples illustrating the main point, before discussing the background 
and the content of Professor Oda's very substantial book. Consider the 
quotient Cn/G of Cn by a diagonalised group action 

(xu...,xn)>-> {ei(g)xu...,en{g)xn), 

where G is a finite Abelian group and et : G —• C* characters of G. This 
quotient can be seen as an explicit affine variety: make a list of G- invariant 
monomials, that is, 

{;cm = n * r \mi > 0 and Y[ei(g)m< = l v # e G} > 

then write out all the multiplicative relations between the generators, and 
finally, take these as the defining equations of a variety. Try it with 

w = 2, G = Z/22 and (x,y) *-> (C*,C9J>) 
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where Ç = exp(27r//22). As a second example, if 0 < a < n - 1, the 2 x 2 
minors expressing the determinantal condition 

rk XQ X\ -" Xa-\ Xa+{ ••• Xn-\ 

X\ X"i ' • ' XQ XQ+2 ' ' ' Xn 
< 1 

are homogeneous monomial equations, and define the rational normal sur
face scrolls Fb c P" (with b = \n - 2a\). These surfaces have appeared 
throughout projective and algebraic geometry since their introduction by 
C. Segre [0] and del Pezzo in the 19th century. (It's a common postwar 
provincialism to refer to them as Hirzebruch surfaces.) 

The varieties in either example have lots of nice simple structural prop
erties which are only obscured by writing out tables of generators and 
defining equations; thus a coordinate hyperplane (xi = 0) c C" drops to a 
codimension 1 locus Dt c Cn/G in the quotient, but to see the ideal of Dt 
one has the job of listing all G-invariant monomial multiples of Xj. 

Toric varieties or torus embeddings is a class of algebraic varieties ob
tained by abstracting out the key monomial structure possessed by these 
examples; these varieties occur just about everywhere in math, and they 
are to general algebraic varieties much as Abelian groups are to general 
groups. The main point of toric geometry is that any reasonable ques
tion concerning toric varieties can be phrased in terms of arrangements 
of convex bodies in lattices; this leads to a dictionary between the alge
braic geometry of toric varieties and the convex geometry of cones a c If1 

(I intend to be sloppy: the a are polyhedral cones in R", with vertexes in 
Zn). 

For example, the scroll Fb is a union of 4 affine pieces, each isomorphic 
to C2, glued together by birational maps of the form (x,y) i-> (xayb,xcyd). 
The figure gives a diagram in Z2 from which the trained eye can read off 
at once all the geometric properties of the scroll Fb. The 4 affine pieces of 
Fb are given by the layout of 4 cones forming a fan; the 6 matrixes taking 
a basis of Z2 associated with one cone to another define the glueing maps. 
The fact that the 4 cones cover all of R2 means that F^ is compact. The 
vertical projection of Z2 (compatible with the fan in an obvious sense) 
gives the P^fibration of ¥b. One section of Fb has negative selfintersec-
tion (normal bundle) because the union of the top two cones is convex; 
amalgamating them into a single cone contracts the section to a point, etc. 

I now discuss sample areas of math where toric geometry plays an im
portant role, without trying to sort out the historical issue of which were 
the original motivation, and which have subsequently seen to be closely 
related. 

By the resolution of singularities, many problems in algebraic geometry 
reduce to a normal crossing divisor in a complex manifold. Locally, this 
is a union of coordinate hyperplanes, say D: (x\ •... • x/c = 0) c U = Cn. 
A finite covering V —• U branched along U is locally given by taking 
various roots of monomials, say ri/[x^x • ... • x^k. I can take V to be 
normal, and then it's of the form Cn/G as in my first example. How best 
to resolve the singularities of F is a question that goes back to F. Klein, 
and more especially to R. J. Walker's original proof of the resolution of 
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FIGURE 1 

surface singularities. In modern terms, the answer in the surface case is to 
make a fan in Z2 given by a finite continued fraction; the resolution is the 
associated toric variety. If ƒ : X —• C is an analytic function on a variety, 
Hironaka's resolution of singularities allows us to blow up f~l(0) to be a 
normal crossing divisor D c U, so locally ƒ = x"1 •... - x£k. Mumford's 
semistable degeneration theorem says that for some r > 1, the covering 
V —• U associated with a suitable root (p = <J~f has a toric resolution such 
that <p~l(0) is a normal crossing divisor, and locally cp = X\ •... • x^; that 
is, one can reduce to the case when all the at — 1. Mumford's seminar [5] 
was responsible for promoting toric geometry as a subject in its own right 
in the early 1970s (and also for some of the awful terminology). 

Another way of describing a toric variety is as a partial compactification 
of an algebraic torus, or a torus embedding: an «-dimensional toric variety 
X contains an algebraic torus T = C* x • • • x C* (n factors), with an action 
of T on X extending the multiplication map T x T —• T. A monomial 
x^ on X is then an eigenvector of the action of T on the rational function 
field of X for some character ju : T —• C* ; if X is affine, the monomials that 
are regular on X form a convex cone in the character lattice of T, and du
ally, X can be described as the space of representations of this semigroup. 
Many of the initial definitions and results of toric geometry first occur in 
Demazure's study of maximal connected algebraic subgroups of the 
Cremona group [2]. The main idea here is that the automorphism group 
of a toric variety X is an algebraic group G with T c X as its maximal 
torus, and the cones in the character lattice of T used to construct X also 
describe the root system of G. 

Quotients of symmetric domains by arithmetic groups appear in the 
study of modular forms in arithmetic and analysis, and in the geometry of 
moduli spaces; the question of compactifying these is another important 
application of toric geometry. If a polyhedral fundamental domain for the 
quotient has a tube going out to a cusp at infinity, a compactification is a 
piece of a complex space that caps this off; according to Satake, this can 
often be described in terms of glueing together open sets in toruses (C*)n 

by monomial identification. The systematic study of these compactifica-
tions leads to problems of subdivisions of cones in number fields. The 
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most beautiful example of this is Hirzebruch's resolution [3] of the cusps 
of Hubert modular surfaces: take the periodic continued fraction of a real 
quadratic irrationality y/D, use it to make a fan in R2 and hence a toric 
variety, and finally glue this to itself using a monomial identification com
ing from a unit of the number field Q(y/D). 

The toric dictionary can also be read in the opposite direction, associ
ating with purely combinatorial data the living structure of an algebraic 
variety. This can be viewed as a far-reaching extension of the geometric 
realisation of a simplicial complex. For example, Riemann-Roch and Serre 
duality for complex projective varieties apply directly to questions on the 
number of lattice points in the interior of a convex cone, and the Hodge 
index theorem to the isoperimetric inequalities for plane polygons. Via 
the Stanley-Reisner ring (the coordinate ring k[V] of V c kn, where V 
is a union of coordinate linear subspaces), cohomological properties of 
varieties translate into new properties of combinatoric objects, such as 
Cohen-Macaulayness. The most spectacular result in this vein is Stanley's 
paper [4], which proves the necessity of a criterion for a sequence of in
tegers to be the number of faces of an r-dimensional simplicial convex 
polytope P. This goes from P to a complex projective toric variety Xp, 
and then to its cohomology ring H*(XP, Z), a surprising new object in the 
study of polytopes; the key idea of the proof is then to use inequalities on 
the Betti numbers of Xp coming from the hard Lefschetz theorem, a deep 
result in the Hodge theory of projective varieties. 

Already in two of the applications discussed above, toric varieties have 
appeared as local analytic models for varieties or complex spaces, thus 
overcoming their somewhat limited scope for self-expression. Toric 
varieties also commonly occur as ambient spaces, with An and Pn only 
the most primitive examples. It often happens that interesting properties 
of a polynomial function f(x\9...9xn) = YlamXm or the variety (ƒ = 0) 
depend in the first instance not on the actual coefficients <zm, but only on 
whether am is zero. The Newton polyhedron of ƒ is defined as the convex 
hull in Zn of the monomials xm with am ^ 0, and toric varieties associated 
with it provide natural ambient spaces for the study of ƒ ; by results of 
Kushnirenko, Khovansky, Varchenko and others, almost all properties of 
ƒ of interest in singularity theory and algebraic geometry can be phrased 
in terms of Newton( ƒ), provided that ƒ is nondegenerate. This is an enor
mous extension of the toric dictionary to a large class of subvarieties of 
toric varieties. 

This book is of the Topics' kind, and is remarkable for the amount of 
material covered in its 200 pages. This divides into foundational stuff on 
toric varieties, applications to the geometry of surfaces and 3-folds, and an 
appendix containing preliminaries on convex geometry, as well as a treat
ment of Stanley's proof. Quite a lot appears here for the first time in book 
form, in particular the material on toric 3-folds and birational geometry, 
and results of the Sendai school: the detailed treatment of M-N. Ishida's 
dualising complex for toric varieties, and the material in §4.2 on compact-
ifications and Tsuchihashi cusps. The book does not cover Mumford's 
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semistability theorem, the material on Newton polyhedrons, or arithmetic 
aspects of the compactification of cusps. 

The chapters are uneven in level of difficulty, and several of the sections 
start with a rather hard technical treatment of foundational material, be
fore going on to discuss quite simple examples; the reader might for ex
ample get a lot out of the first half of §1.5, the example on pp. 108-109, 
§4.1, or the final §A.5 after only a brief dip into the definitions in §1.1. 
Although familiar with the material and reasonably competent in algebraic 
geometry, the reviewer gave up trying to decode the proofs of compactness 
on pp. 16-17 and p. 21. §3.2 has the technical aim of giving the dualis
ing complex in explicit form, and some readers may find the sections on 
differential forms in [1] easier going. 

The book is a line by line translation of the Kinokuniya Japanese edi
tion; the original was possibly intended for the use of graduate students 
with a higher technical stress tolerance than their western counterparts. 
The formal language of toric geometry, designed for stating and checking 
the truth of theorems in reasonable generality, is almost as painful and 
unnatural to write out as it is to decipher, whereas the subject matter itself 
is really very easy. To my knowledge, anyone who has seriously got into 
toric geometry has largely bypassed the formalism, using the experience of 
practical computation with a handful of concrete examples as the substan
tive justification for the truth of results. My only serious reservation with 
the book is that the author has not been able to pass on this experience 
to the reader; he might have done well to trespass for another 50 pages 
on the goodwill of the Ergebnisse editors by providing each section with 
exercises and worked numerical examples. 
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