
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 34, Number 2, April 1997, Pages 205–206
S 0273-0979(97)00708-8

Discrete-time Markov control processes: Basic optimality criteria, by O. Hernández-
Lerma and J. B. Lassere, Appl. Math., vol. 30, Springer-Verlag, Berlin and
New York, 1996, xiv+216 pp., $34.95, ISBN 0-387-94579-2

Markov control processes (also called Markov decision processes) arise in stochas-
tic optimization models drawn from a wide variety of applications in engineering,
economics, management science, biology and medicine. Only discrete-time models
are considered in this book, thus avoiding various difficult technical issues encoun-
tered in continuous-time stochastic control theory. Let xt denote the state at time
t = 0, 1, 2, · · · and at an action (or control) at time t. The actions influence the
stochastic dynamics of the state process xt, via the one-step transition probabilities
Q(xt+1 ∈ B|xt, at) for any Borel subset B of the state space X . Alternatively, the
dynamics are often expressed through a difference equation of the form

xt+1 = F (xt, at, ξt)(1)

with {ξt} an IID sequence of exogenous random inputs. The goal is to choose a
control sequence {at} to optimize some performance criterion J on either a finite
or infinite time horizon. On an infinite horizon a discounted cost criterion

J = E

[ ∞∑
t=0

αtc(xt, at)

]
(2)

can be considered, where c(·, ·) is a running cost function and 0 < α < 1 a discount
factor. Another frequently used criterion is average cost per unit time, which arises
naturally by taking a limit α → 1−. The information available to the controller
must also be specified. This book is concerned with complete state information, in
which at can be chosen as a function of xt, namely at = ft(xt). The sequence {ft}
is a Markov control policy, which is stationary if ft = f does not depend on t.

The method of dynamic programming is very often used to study Markov con-
trol problems. A formal description of dynamic programming considers the value
function, which is the minimum v(x) of the criterion J considered as a function of
the initial state x0 = x. Under suitable assumptions the value function satisfies a
nonlinear equation (the dynamic programming equation), which for the criterion
(2) becomes

v(x) = min
A(x)

[
c(x, a) + α

∫
X

v(y)Q(dy|x, a)
]
,(3)

with A(x) the set of possible control actions a if x is the state. To determine an
optimal stationary Markov control policy f , arg min is taken on the right side of
(3) for each x ∈ X . However, a measurable selection theorem is generally needed
to insure Borel measurability of f .

A main goal of the book is to put dynamic programming on a mathematically rig-
orous basis in a general setting which avoids unwanted boundedness, compactness or
continuity assumptions which may be violated in applications. However, by avoid-
ing utmost generality the authors have succeeded in making the book accessible to
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readers with a graduate-level background in analysis and a basic understanding of
probability. The authors call their model semicontinuous - semicompact. It lies in
generality between the so-called semicontinuous model considered in Controlled
Markov Processes, by E. B. Dynkin and A. A. Yushkevich, Springer-Verlag, 1979,
and the more mathematically demanding Borel model [see e.g. M. Schäl and W.
Sudderth, Stationary policies and Markov policies in Borel dynamic programming,
Probab. Theory Rel. Fields 74 (1987), 91–111].

An alternative to dynamic programming is an infinite-dimensional linear pro-
gramming formulation of Markov control problems. This approach is nicely intro-
duced in the final chapter. The linear programming formulation has the advantage
that it can handle Markov control problems with constraints.

The book is well written and provides a good entree to the subject for nonex-
perts. It is self-contained, except for various technical results which are summarized
with references (for example, measurable selection theorems.) The mathematical
developments are illustrated by a few examples, including consumption-investment
and inventory-production models. A broader perspective on the role of Markov
control processes in applications can be found in the following references: D. B.
Bertsekas, Dynamic Programming: Deterministic and Stochastic Models, Prentice-
Hall, 1987; D. J. White, A survey of applications of Markov decision processes, J.
Opl. Res. Soc. 44 (1993), 1073–1096; P. Whittle, Optimal Control: Basics and
Beyond, John Wiley and Sons, 1996.
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