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Dimension in the fractal sense and dimension in the topological sense—although
both born in the early 1900s from closely related sources and having much in com-
mon in the early years—developed more or less independently for fifty years. But
recently they have been brought together again in connection with investigation of
universal spaces as I will describe later. In the monograph under review, Stephen
Lipscomb describes the mathematics involved in the study of these universal spaces.
The account extends over most of the past century and includes some work pub-
lished as recently as 2008. This book will of course be an essential reference for
those working on dimension theory in point-set topology. But I hope the next few
pages will suggest that this book will also appeal to those interested in fractals—in
particular in iterated function systems.

This review is not a historical account. Lipscomb devotes a full chapter to
describing who did what, when, and the interdependence of their results. So I shall
not attempt to sort that out here.

1. Iterated function systems

The fractals involved here are specifically those described by iterated function

systems. Let A be a finite set; it will be called an alphabet and its elements will be
called letters. As usual, letters will be combined into words or strings denoted by
juxtaposition: a1a2 · · · an.

Now write N(A) for the set of all infinite strings from the alphabet A. An
overbar will be used when a block repeats indefinitely from some point on: 0110 :=
01101010101010 · · · . We consider N(A) to be a topological space by taking A to
be discrete and using the (infinite) product topology for N(A).

Let X be a space: a topological space, usually a metric space. For each letter
a ∈ A, let wa : X → X be a function fromX into itself. The collection {wa : a ∈ A }
is an iterated function system or IFS. We iterate the functions wa in all possible
ways: if a1a2 · · · an is a word, write

wa1a2···an
= wa1

◦ wa2
◦ · · · ◦ wan

.
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Under the right conditions, infinite iterates

(1) wa(x) = wa1a2···(x) := lim
n→∞

wa1a2···an
(x) (for x ∈ X)

are defined for all a = a1a2 · · · ∈ N(A). If (X, ρ) is a complete metric space and

(2) ∃c < 1, ∀a ∈ A, ∀x, y ∈ X, ρ
(

wa(x), wa(y)
)

≤ cρ(x, y)

(so that each wa is a contraction onX), then the the limits (1) exist for all a ∈ N(A),
and the value is independent of x. So the iterated function system defines a function
p : N(A) → X, where p(a) = wa(x). And under condition (2) the function p is
continuous. The set of values of p,

(3a) K = { p(a) : a ∈ N(A) }

is called the attractor of the IFS. The string a is called an address of the point p(a).
Note that K is homeomorphically a quotient of N(A) in the following sense: Define
the equivalence relation ∼ on N(A) by a ∼ b ⇐⇒ p(a) = p(b). Then p induces a
continuous bijection from the quotient topological space N(A)/∼ onto K. Because
of compactness, the bijection is a homeomorphism.

In the setting mentioned above, where X is a complete metric space and (2)
holds, the attractor may also be constructed in another way. It it the unique
nonempty compact set K satisfying

(3b) K =
⋃

a∈A

wa(K).

Write CX for the collection of nonempty compact subsets ofX. Under the Hausdorff
metric, CX is a complete metric space. With the definition

(4a) W(E) :=
⋃

a∈A

wa(E), for E ∈ CX ,

we get a map W : CX → CX , the Hutchinson operator. Under hypothesis (2), the
map W is a contraction on the complete metric space CX , so it has a unique fixed
point K which is obtained as the limit of iterates

W ◦W ◦ · · · ◦ W(E),

starting with any nonempty compact set E.
Many examples (which are today known as fractals, and as attractors of IFSs)

were first described about a century ago. Some of them will be seen again later, so
I will mention them now.

Cantor set. Let A = {0, 1}, X = R, w0(x) = x/3, and w1(x) = (x + 2)/3 to get
the Cantor set C. The maps are homotheties, centered at 0 and 1, with contraction
ratio 1/3. A few addresses are shown on the left side of Figure 1. “Identify adjacent
endpoints” to get the interval I = [0, 1] shown on the right side. The interval I
is also an attractor, obtained using homotheties, centered at 0 and 1, but with
contraction ratio 1/2. Imagine letting the ratio vary. When the ratio increases

Figure 1. Cantor set C; interval I
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Figure 2. Space N({z, a, b}); Sierpinski gasket G

Figure 3. Menger sponge M

from 1/3, the gaps in the attractor decrease in size, until at ratio 1/2 adjacent
endpoints merge. In I, the address of a point is its binary expansion.

Sierpinski gasket. Let A = {z, a, b}, X = R2. Let wz, wa, wb be homotheties
with ratio 1/3 and centers at the vertices of an equilateral triangle. Then we get
the attractor shown on the left of Figure 2. “Identify adjacent endpoints” to get the
Sierpinski gasket G, shown on the right. (Or: G itself is the attractor if the ratio for
the homotheties is 1/2 instead of 1/3. We can imagine the ratio increasing from 1/3
to see the adjacent endpoints approach each other, and at ratio 1/2 they merge.)
Note that G is the union of three parts Gz = wz(G), Ga = wa(G), Gb = wb(G),
and that any two of these parts meet in exactly one point.

Menger sponge. This familiar fractal M is pictured in Figure 3. The alphabet
has 20 letters, and the maps wa are homotheties with ratio 1/3. This time, however,
some pairs wa(M), wb(M) meet in more than one point, while other pairs do not
meet at all.

2. Separable metric space

The dimension theory involved here is specifically the theory of topological di-
mension. I begin with a description of the covering dimension or Lebesgue dimen-
sion (from p. 200): A family U of subsets of a space X has order n iff some point
of X belongs to n different sets of U , but no point of X belongs to n + 1 or more
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different sets of U . The space X has covering dimension ≤ n iff for each finite open
covering {V1, . . . , Vk} of X there is an open covering {U1, . . . , Uk} of order ≤ n+1
such that each Ui ⊆ Vi. Then we may write dimX ≤ n. When dimX ≤ n but not
dimX ≤ n − 1, then we write dimX = n. Also, dim∅ = −1 by convention; and
dimX = ∞ iff dimX ≤ n fails for all natural numbers n. Of course dimRn = n,
although the usual proof of that relies on algebraic topology.

Another topological dimension is the (small or weak) inductive dimension. Begin
with ind∅ = −1. Then (inductively) define indX ≤ n if and only if there is a base
U for the topology of X such that indB(U) ≤ n− 1 for all U ∈ U . (Here we wrote
B(U) for the topological boundary of the set U because topologists may reserve
the notation ∂U for another type of boundary.)

By the end of the 1930s there was an extensive theory of topological dimension for
separable metric spaces. It can be found in the text by Hurewicz & Wallman [2].
The fact that dimX = indX (for separable metric space X) was an important
element in some of the proofs. At that time there was no satisfactory dimension
theory for more general spaces (not metrizable, or metrizable but not separable).

Here are a few of the basic results, taken from [1, pp. 257–260] (all spaces are
metrizable):

Subspace Theorem: Let S ⊆ X. Then dimS ≤ dimX.
Sum Theorem: Let {Fγ}γ∈Γ be a locally countable closed covering of X

such that dimFγ ≤ n for each γ. Then dimX ≤ n.
Decomposition Theorem: Let n ≥ 0. Then dimX ≤ n if and only if there

is a decomposition X =
⋃n+1

i=1
Xi, where each Xi ⊆ X satisfies dimX ≤ 0.

Product Theorem: dim(X × Y ) ≤ dimX + dimY (unless X = Y = ∅).

If “dim” is replaced by “ind”, then these results are still true for separable metric
spaces. But dimX = indX can fail for nonseparable metric spaces. And ac-
cordingly some of these basic results (with “dim” replaced by “ind”) also fail for
nonseparable metric spaces.

Universal spaces. Let C be the Cantor set. Then C is a separable metric space
and dimC = 0. If X is any separable metric space with dimX = 0, then X embeds
in C, meaning X is homeomorphic to a subset of C. This is what it means to say
that C is a universal space for the class of separable zero-dimensional metric spaces.

Menger [4] constructed the space M (now called the Menger sponge) specifically
as a universal space for the class of separable one-dimensional metric spaces. Any
separable metric space X with dimX = 1 embeds in M and, therefore in particular,
it embeds in R3. (The existence of graphs that are not planar shows that not every
one-dimensional separable metric space embeds in R2.) In the same paper, Menger
described universal spaces for the higher-dimensional cases (complete proofs were
supplied later by Lefschetz). These are fractals Mn ⊆ R2n+1 for n ∈ N, and Mn

is a universal space for separable metric spaces of dimension n. This sequence of
spaces begins with M0 = C, the Cantor set, and M1 = M , the Menger sponge. The
spaces Mn may be described as attractors for iterated function systems, although
of course Menger did not use that language.

Another universal space was described in 1931 by Nöbeling [5]. Write I = [0, 1]
for the interval, and Nn :=

{

x ∈ I2n+1 : x has at most n rational coordinates
}

.
Then for all n ∈ N, space Nn is universal for separable metric spaces of dimension
n. This sequence begins with N0 = [0, 1] \ Q, the irrationals. The spaces Nn are
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no longer attractors for iterated function systems. After Menger, dimension theory
abandoned IFSs for the most part.

Also notable is another universal space. The Hilbert cube I∞, the product of
countably many copies of the interval I, is a universal space for separable metric
spaces.

3. General metric space

The theory of topological dimension developed in the 1950s into a theory for
topological spaces, and in particular for metric spaces not necessarily separable. In
order to keep the important “basic results” enumerated above, it is necessary to
use the covering dimension and not the inductive dimension.

But what about universal spaces? Of course there can be no universal space for
all zero-dimensional metric spaces simply on grounds of cardinality, since a discrete
space of any cardinality is zero dimensional. But what about spaces of at most
a given weight? The weight of a space is the minimum cardinal of a base for the
topology. A metric space is separable if and only if its weight is ≤ ℵ0.

A topological space JA is a key construction. We think of JA as an analog of
the interval I. Let A be a set, considered as a discrete space; also considered as
an alphabet. The set A could be finite, but we will also allow A to be infinite,
even uncountable. The space N(A) of infinite strings from A is zero dimensional.
If |A| = α, then N(A) has weight α. (We wrote |A| for the cardinal of A.) To
construct JA we will “identify adjacent endpoints” in N(A), as I now describe. We
will say that two strings in N(A) are adjacent iff they are of the form

a1 · · · anpq and a1 · · · anqp,

where n ≥ 0; a1, . . . , an, p, q ∈ A; and p �= q. Some examples of adjacent strings
have been seen above: In Figure 1, 01 and 10 are adjacent, 001 and 010 are adjacent.
In Figure 2, zb and bz are adjacent, azb and abz are adjacent.

On the topological space N(A), define an equivalence relation ∼ of adjacency
as follows: Every string is related to itself, and adjacent strings are related to each
other. So the equivalence classes have either one or two elements only. Define JA
as the space N(A)/∼ with the quotient topology. We say that JA is obtained from
N(A) by identifying adjacent endpoints. The cardinal of A determines JA up to
homeomorphism, so we sometimes write Jα if the cardinal α is all that is of interest.

Theorem. Let |A| = α ≥ ℵ0. If X is a metric space with dimX = 1 and weight

α, then X embeds in JA.

We have already seen some of the spaces Jn in Figures 1 and 2. Think of
N({0, 1}) as the Cantor set, and J{0,1} as the interval [0, 1]. Similarly, J3 = J{z,a,b}
is the Sierpinski gasket.

If n is finite, Jn may be realized as an attractor of an iterated function system
in a natural way: Let A be an n-letter alphabet. Take the n vertices {va}a∈A of
an (n − 1)-simplex in Euclidean space of dimension ≥ n − 1. Let map wa be the
homothety with center va and ratio 1/2. Then the attractor K satisfies

K =
⋃

a∈A

wa(K).

This IFS is “just touching” in a very strong sense: For all a, b ∈ A, a �= b, the two
images wa(K), wb(K) intersect in just the single point (va + vb)/2.
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Lipscomb described the spaces JA in his thesis in 1973. In 1980 he attended a
lecture by Michael Barnsley, which included an image of the Sierpinski gasket. It
was then (50 years after the divorce) that dimension theory and iterated function
systems got back together.

Infinite IFS. When A is infinite (even uncountable), we wish to similarly realize
JA using an IFS. Additionally, this will show how to place a natural metric on JA.
(When we say that JA is a universal space for one-dimensional metric spaces of
weight α, it should in particular be a metric space.)

The iterated function system discussion used above will need to be generalized
for this purpose. First, we must allow an infinite alphabet A. Second, we must
allow noncompact attractors: if A is uncountable, then space JA is not separable,
so it cannot even be embedded in a compact metric space.

Let X be a metric space. Write BX for the set of all nonempty, closed, bounded
subsets of X. The Hausdorff metric makes this a metric space. If X is complete,
then so is BX .

Let A be our set, and for each a ∈ A let wa map X to itself. Then {wa : a ∈ A }
will still be called an iterated function system. If, in addition, whenever E ⊆ X is
bounded,

⋃

a∈A wa(E) is also bounded, then the IFS {wa : a ∈ A } is called bounded.
If we have a bounded IFS on a complete metric space and it satisfies (2), then the

limits (1) exist for all a ∈ N(A) and are independent of x, so we get a continuous
function p : N(A) → X defined by p(a) = wa(x). Thus, we obtain a set of “points
with addresses”:

(3a) K := { p(a) : a ∈ A } .

However, since N(A) is not compact, we no longer know that the set K in (3a) is
closed. The map p still induces an equivalence relation ∼ on N(A), and the map p
still induces a continuous bijection from N(A)/∼ onto K. But again we no longer
know that this is a homeomorphism, that K has the quotient topology.

In this setting (a complete metric space X, a bounded IFS, and (2)), let us define
a Hutchinson operator:

(4b) W(E) :=
⋃

a∈A

wa(E) for E ∈ BX .

First note that, in general, if E is closed and bounded, the continuous images wa(E)
need not be closed. But even if all images wa(E) are closed (as they are in Perry’s
IFS, below), the infinite union

⋃

a∈A wa(E) may still fail to be closed. These are
the reasons for the closure in the definition (4b). Now (under our hypotheses), the
Hutchinson operator W is a contraction on the complete metric space BX , so there
is a unique nonempty closed bounded set K such that

(3c) K =
⋃

a∈A

wa(K).

However, we do not know, in general, that this set K satisfies the equation (3b)
without the closure. We do not know that the set in (3a) is the same as the set in
(3c); that is, we do not know that every point of the set in (3c) has an address.

The considerations above show that this new notion of IFS is more subtle than
the old. By definition, the IFS has a topological attractor iff the set in (3a) is closed
and has the quotient topology from N(A). This implies that the set K in (3a) is
the set in (3c) and so also satisfies (3b).
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Aside. I include another note (not related to dimension theory) on a use for non-
compact IFSs. For a prime p, the locally compact field Qp of p-adic numbers can
support a study in many ways much like real analysis. For an analog of complex
analysis, we need the extension Cp of Qp; see [3]. It is both complete in the metric
sense (Cauchy sequences must converge) and in the algebraic sense (algebraically
closed). Now Cp is infinite dimensional over Qp, it is not locally compact, and
closed bounded sets are not necessarily compact. Iterated function systems are
useful tools in conventional complex analysis, for example in the study of Julia
sets. For the corresponding study in Cp, in order to use an IFS, we will have to
allow attractors that are not compact (although closed and bounded).

IFS in Hilbert space. Now we return the question of realizing the universal one-
dimensional space JA as topological attractor of an IFS. In 1996 Perry proposed
that such an IFS should be found in (nonseparable) Hilbert space. This was carried
out by Miculescu and Mihail in 2008. Another realization of JA in Hilbert space
is due to Milotinović. The Perry IFS for this is easily described. The space X =
l2α is a Hilbert space with orthogonal dimension α = |A|. That is, there is an
orthonormal set of cardinality α. The maps wa will be homotheties with ratio 1/2.
For the centers va of the homotheties, choose one letter z and let vz = 0; the other
centers va are an orthonormal basis for (a subspace of) the Hilbert space. The
topological attractor exists and is homeomorphic to JA. Carrying out this proof
requires some effort—it is three chapters of the book. (Those chapters contain
complete descriptions of the Hausdorff metric and of nonseparable Hilbert space,
as well. Some of the analysis applies to infinite IFSs in general, not just to the
particular IFS used here.)

Higher dimension. Once the universal space JA for one-dimensional weight α
metric spaces is known, it can be used to construct other universal spaces.

Theorem. Let |A| = α ≥ ℵ0. The space J∞
A , the product of countably many copies

of JA, is a universal space for the class of metric spaces of weight α.

To provide an analog of the Nöbeling universal space, we need a notion of a
rational coordinate. A point of JA is called rational iff it has two addresses and
irrational iff it has one address. For example, in J2 = I, the rational points of J2
are the dyadic rationals in I.

Theorem. Let |A| = α ≥ ℵ0 and n ∈ N. The space

Jn+1

A (n) :=
{

(x1, . . . , xn+1) ∈ Jn+1

A : at most n of the xi are rational
}

is a universal space for the class of metric spaces with dimension n and weight α.

Visualization in 3-space. For finite n, the fractal Jn appears naturally in Rn−1.
But for visualization, sets embedded in Rk with k ≤ 3 are best. Now since dim Jn =
1 and Jn is a separable metric space, we know that Jn embeds homeomorphically
into R3. But usually such an embedding will obscure the IFS structure. Is there
an affine embedding into R3?

There is no problem with J2 the interval, J3 the Sierpinski gasket (Figure 2), or
J4 the Sierpinski tetrahedron or Sierpinski cheese. It is a surprise [6] that J5 does
admit an affine embedding in R3. It may be realized as the attractor of an IFS of
five maps, all homotheties with ratio 1/2.
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Figure 4. Hexahedron; five just touching; J5

This is illustrated in Figure 4. Join two regular tetrahedra face-to-face to obtain
a convex hexahedron with six triangular faces and five vertices. The vertices are
the centers for the five homotheties used for the IFS. Consider the five images of the
hexahedron: the important property is that any two of them intersect in exactly
one point. See how the top and bottom hexahedra meet in the triangular gap not
occupied by the other three hexahedra. (Links to the VRML files that will let you
rotate these figures to help in visualizing them in three dimensions are available from
the reviewer’s website: http://www.math.ohio-state.edu/~edgar/preprints/

lipscomb/.)
What about higher Jn? For a just-touching attractor of an IFS consisting of n

homotheties with ratio 1/2, the Hausdorff dimension is log n/ log 2. For n ≥ 8, this
Hausdorff dimension is ≥ 3, so our attractor Jn cannot embed in R3. But it seems
the cases J6 and J7 are open. Can one place six points in 3-space in such a way

that the corresponding attractor (for the IFS of six homotheties with ratio 1/2) will
consist of six parts, but that any two of the parts intersect exactly in one point?
Perhaps some pairs of the parts are interlocking, one passing through the spaces in
the other. It is probably impossible, but still interesting to contemplate.
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(1926), 476–482.
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