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What can replace the inner product in non-Hilbert Banach spaces? To answer

this natural question we may proceed as follows. Let X* be the dual space of

a real Banach space X, and denote the norms of both X and X* by | • |. For

each x in X define

J(x) = {x* eX*:(x, x*) = \x\2 = \x*\2}.

This weak-star compact convex subset of X* is always nonempty by the Hahn-

Banach theorem, and the mapping J : X —> 2X" is called the normalized duality

mapping of X. For x and y in X we now define two semi-inner-products by

and

Equivalently,

(y, x)+ = max{(y, x*) : x* e J(x)}

(y, x)- = min{(y, x*) : x* e J(x)}.

(y,x)+=lim(\x + ty\2-\x\2)/(2t)
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and

(y,x)-=lim(\x + ty\2-\x\2)/(2t).

These semi-inner-products have some, but, in general, not all the properties of

an inner product. The duality mapping is single-valued, and (y,x)+ — (y,x)-

if and only if X is smooth. When X is a Hubert space that is identified
with its dual, the duality mapping becomes the identity, and (y, x)+ = (y, x)_

coincides with the inner product of X. Consider, for example, the sequence

spaces lp, 1 < p < oo. For 1 < p < oo the duality mapping of lp is single-

valued, 7(0) = 0, and

(Jx)j = (\XjY~1 sgnxj)/\x\p-2

for all x ^ 0 and j = 1, 2, .... In this case

(y, x)+ = (y, x). = ( JTyjXj\Xj\p-2 ) /\x\p~2.

If, however, p = 1,

1 X)j     \[-\x\,\x\]   ifxj = 0,

and 7 is set-valued. In this case (y, x)+ = (y, x)- if and only if x = 0 or

y, = 0 whenever Xj — 0.

Sometimes it is advantageous to use more general duality mappings. Let

cp: [0, oo) —► [0, oo) be continuous and strictly increasing with cp(Q) = 0 and

linii-^oo cp(t) = oo . The duality mapping of X with gauge function cp is defined

by
J(p(x) = {x* e X*: (x, x*) = \x\<p(\x\) and ¡jc*| = ^(M)}.

This duality mapping is the subdifferential of the convex function <P(|x|) where

<p(i) = / <p(s)ds.
Jo

While the normalized duality mapping of the sequence spaces lp , 1 < p < oo,

is demicontinuous, the duality mapping J<p with cp(t) = tp~x is, in fact, weakly

sequentially continuous.

Since duality mappings were introduced by Beurling and Livingston [4] (see

also [12, 13, 14, 15]) and the early work of Browder [5], Asplund [2], Kato
[11], and others, they have continued to be a very useful tool in both linear

and nonlinear functional analysis (see, for example, the papers [19, 16, 23,

17, 1] and the books [3, 6, 10]). One of the main reasons for this is their close

connection with accretive and monotone operators. Recall that a set AcXxX

with domain D(A) and range R(A) is said to be accretive if

|*i - x2\ < \xi -x2 + r(yi - y2)\

for all Xj e D(A), y, g Ax¡ , / = 1, 2, and all positive r. Equivalently, the
operator A is accretive if

(yi - y2, *i - x2)+ > o

for all x¡ e D(A), y, e Ax¡, / = 1, 2. If, in addition, R(I + A) = X, then A
is called w-accretive. Such operators are important because they govern many
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nonlinear evolution equations and, in particular, generate nonlinear nonexpan-

sive semigroups. A subset M c X x X* is called monotone if

(y* - ya, xi - x2) > o

for all Xi e D(M), y\ e Mx¡, i" = 1,2. It is said to be maximal monotone if,

in addition, there is no proper monotone extension of M. Duality mappings

are always maximal monotone. If X is reflexive and both X and X* are

strictly convex, then M is maximal monotone if and only if R(J + M) = X.
Such operators are important in the study of nonlinear elliptic boundary value

problems and in optimization theory.

In Hubert space the class of accretive operators coincides with the class of

monotone operators. Outside Hubert space, the properties of accretive oper-

ators are often determined by the continuity properties of duality mappings

that are, in turn, often equivalent to differentiability properties of the norm.

Since a monotone operator remains monotone even if the original norm of X
is replaced by an equivalent one, renorming theorems are helpful in monotone

operator theory. We also note [18], for example, that the normalized duality

mapping of a Banach space is strongly monotone if and only if the space is

uniformly convex with a modulus of convexity of power type 2. Thus it is not

surprising that the geometry of Banach spaces plays such an important role in
the study of nonlinear operators.

In the book under review, a completely rewritten and expanded version of [7],

the author uses duality mappings to link several topics in linear and nonlinear

functional analysis. She begins with some convex analysis and continues with a

study of the properties of duality mappings in various Banach spaces. Several

renorming results are then followed by a chapter devoted to degree theory for

^4-proper mappings. Finally, there is a discussion of monotone and accretive

operators, as well as nonlinear semigroups. Each of the six chapters also contains

exercises and bibliographical comments. Since the book is quite self-contained,

it can serve as a supplementary text for a basic course in nonlinear analysis.

Unfortunately, it is marred by numerous misprints and inaccuracies. Here is

a small sample from the first few pages: on p. 6, line 18, " -F(x) " is missing

from the definition of the directional derivative; on p. 14, the proof of Corollary

2.7 should refer to Proposition 2.5, Theorem 2.6, and Corollary 1.20; on p. 17,

line 3, the definition of the conjugate function is incorrect; an inequality sign

is missing on p. 20, line 16, and an equality sign is missing on p. 21, line 27;

the last line on p. 21 should refer to Corollary 2.7. Also, the book is not as

up-to-date as one might hope. On p. 207, for example, the author states that

except in Hubert space, it is not known whether every nonexpansive semigroup

(on a closed convex subset of X) is generated by an accretive operator via the

exponential formula. As a matter of fact, this is known to be true whenever

the space X is reflexive with a uniformly Gâteaux differentiable norm [20].

Moreover, if, in addition, the norm of X* is Fréchet differentiable, then there

is a bijective correspondence between m-accretive operators in X x X and

semigroups on nonexpansive retracts of X.

We conclude by mentioning that several recent applications of duality map-
pings can be found in [21, 8, 24, 25, 22, 9].
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