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This book takes an in-depth look at one of the places where probability and
group theory meet. On the surface, probability (the mathematics of randomness)
and group theory (the mathematics of symmetry) seem at opposite poles. The
present account of sets of probability measures invariant under a group shows that
there is a beautiful interface.

It is easiest to explain the subject by considering its first important develop-
ment, de Finetti’s theorem on exchangeability. Let X be the set of infinite binary
sequences endowed with its usual product structure. This is the probabilist’s clas-
sical coin-tossing space since a typical point x = 011001 . . . can be thought of as a
mathematical model of flips of a coin. Let P be a probability measure on X . For
example, if 0 ≤ θ ≤ 1 is fixed, P = Pθ can be specified by assigning to the cylin-
der set (x1, x2, . . . , xn, ∗ ∗ ∗ . . . ) the measure θj(1 − θ)n−j with j = x1 + x2 + · · · .
This is the measure corresponding to “flip a coin independently with probability of
heads θ”. A measure P is exchangeable if it is invariant under permuting coordi-
nates. That is to say, for every n, x1, x2, . . . , xn and all permutations σ ∈ Sn (the
symmetric group on n lettters)

P (x1, x2, . . . , xn) = P (xσ(1), xσ(2), . . . , xσ(n)).

Thus P (10) = P (01), P (001) = P (010) = P (100), etc., where we write P (10) for
the probability assigned to the cylinder set {x : x1 = 1, x2 = 0}.

Observe that Pθ is exchangeable and that the exchangeable probabilities form
a convex set. De Finetti’s Theorem identifies the extreme points of this convex
set and shows that every exchangeable probability is a unique barycenter of the
extreme points.

Theorem (de Finetti’s Theorem for zero/one sequences). Let P be an exchangeable
probability measure on coin tossing space. Then there exists a unique probability
measure µ on [0, 1] such that

P =

∫ 1

0

Pθµ(dθ).

This theorem was first proved by Bruno de Finetti as a contribution to the
philosophy underlying probability and statistics. Some of this background is given
in Section 2 below. The statement is so simple and elegant that it is natural to seek
generalizations. What about, e.g., 3-values or Polish space values? What about
more general groups or semi-groups? For example, what are the extreme points
of the set of probability measures on R

∞ that are invariant under the orthogonal
group On for all n? These and related extensions are the main subject matter of
Olav Kallenberg’s book.
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The book presents a deep, mathematically careful amalgamation of a large lit-
erature (372 references directly related to exchangeability). It is a model of schol-
arship. The proofs are readable and complete. There is some new material due
to the author and much that will appear new because the author has polished up
a hard-to-locate gem. In this review, I will try to explain why exchangeability is
interesting, give some of its applications, and explain some of the author’s major
contributions.

1. Background

De Finetti was a major contributor to the foundations of probability and statis-
tics. He suggested a basic reinterpretation of things such as, “What does it mean
to say that the chance of heads in a coin flip is about 1

2?” The mathematics of coin
tossing has been well understood since Pascal and Fermat in 1650. One introduces
a mathematical model for n repeated flips of a coin; the chance of the outcome
x1, x2, . . . , xn is θj(1 − θ)n−j with j = x1 + x2 + · · · + xn. Bernoulli asked the
inverse question: If we observe j heads out of n trials, what can we say about θ?
Bayes and Laplace postulated an a priori distribution µ(dθ) which quantifies what
is known about θ. Then, the chance of observing x1, x2, . . . , xn is

(1)

∫ 1

0

θj(1− θ)n−jµ(dθ).

All of this begs the question, “What on earth is θ?” De Finetti, along with Ramsey
and later Savage took a very different view of the basics. They were willing to
assign probabilities to observables, such as the next n flips of a coin. They were less
than happy assigning probabilities to unobservable abstractions such as θ. Thus,
for de Finetti, P (x1, x2, . . . , xn) represents a person’s subjective probability for
the next n tosses. This is something to be determined by previous experience
and introspection. The question now arises, What is the connection between this
subjective interpretation and the Bayes–Laplace formulation (1)?

De Finetti’s Theorem shows that they are equivalent. Moreover, just from the
assumption that P is symmetric, the mathematics build a parameter space [0, 1],
a parameterized family of measures Pθ, and a prior distribution µ(dθ). It is a
remarkable theorem.

De Finetti extended the theorem to finite-valued and then R
d-valued observa-

tions. Hewitt and Savage extended it to fairly general topological spaces via an
early version of Choquet theory. Here is a modern version. Let P be a proba-
bility on a countable product of a Polish space A. Suppose P is exchangeable,
P (A1 × A2 × · · · × An) = P (Aσ(1) × Aσ(2) × · · · × Aσ(n)) for all n, A1, A2, . . . , An

in A and σ. Then there is a unique probability µ on P(A) (the set of probability
measures on A) such that

(2) P (A1 ×A2 × · · · ×An) =

∫
P(A)

∏
θ(Ai)µ(dθ).

In the language of convex sets and Choquet theory, the set of exchangeable measures
is a convex simplex with extreme points the product measures. The formula (2)
shows that every exchangeable P is a unique mixture (barycenter) of extreme points.
There is a small but healthy subject, nonparametric Bayesian statistics, which
constructs natural measures µ on P(A) and shows how to work with them. An
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introduction to the subject of “measures for measures” is in Ghosh–Ramamoorthi
[6].

The nonparametric version requires integrating over a huge space. Suppose the
basic space is R; it is natural to ask what additional symmetry assumptions are
required to get down to the basic models of a statistician’s toolkit, the normal dis-
tribution (or other standard families). The first theorems here are due to David
Freedman. Suppose P is a probability measure on R

∞ which is orthogonally in-
variant: P (A1 × A2 × · · · × An) = P (Γ(A1 × · · · × An)) for all n, all intervals Ai

and all Γ ∈ On. Then there exists a unique probability measure µ on [0,∞) with

(3) P (A1 × · · · ×An) =

∫ ∞

0

∏
Φσ(Ai)µ(dσ).

In (3), Φσ(A) = 1
σ
√
2π

∫
A
e−t2/2σ2

dt is the usual scale family of Gaussian distri-

butions. One gets a mixture of location-scale families by restricting to invariance
under the subgroup of On fixing the line from 0 to (1, 1, . . . , 1). Orthogonal invari-
ance, in many variations, is a theme running through the book.

A third theme, contractability, is also simple to illustrate. Ryll and Nardzewski
showed that P is exchangeable if and only if any subsequence of n coordinates has
the same measure as the first n. Thus the theory extends to measures invariant
under a semi-group, such as removing an infinite subsequence; these are called
“contractable”. This is varied and developed in surprising ways in the book under
review.

2. Higher dimensional arrays

A major theme of the book is de Finetti’s Theorem for arrays where invariance
of only rows and columns are postulated. Thus one has a measure on, say, zero/one
matrices which is invariant as

P (xij ; 1 ≤ i, j ≤ n) = P (xσ(i)τ(j); 1 ≤ i, j ≤ n)

for all n, all xij ∈ {0, 1} and σ, τ permutations in Sn. These problems arose
in Bayesian analysis of variance. It was expected that there would be a slight
extension of the representation (1) with perhaps a row parameter for each i and a
column parameter for each j. The story turned out differently. To explain, let me
give a probabilistic description of a way of producing a row/column exchangeable
array. Begin with an arbitrary Borel function ϕ : [0, 1]2 → [0, 1]. Pick independent
uniform random variables Ui, Vj , 1 ≤ i, j ≤ n on [0, 1]. To make the (i, j) entry of
the array, flip a ϕ(Ui, Vj) coin, writing one or zero as it comes up heads or tails.
The construction is evidently symmetric and extendable to infinite arrays. Call
it a ϕ-process and write Pϕ for the associated measure. The probabilist David
Aldous and logician Douglas Hoover independently proved that any row/column
exchangeable P is a mixture of ϕ-processes

P =

∫
Pϕµ(dϕ).

The uniqueness of µ was a difficult problem. After all, if ϕ is transformed by a
measure-preserving transformation in each variable, the same distribution is in-
duced. Hoover produced a model-theoretic proof for a correct version of unique-
ness. The probabilists struggled to find their own proof. This was finally achieved
by Kallenberg; a full report is in Section 7.6 of the book under review. We note
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that clarifying uniqueness was only a small part of Kallenberg’s work. His main
result is to extend the Aldus–Hoover theorem to the contractable case.

These theoretical investigations had unexpected applications. We mention two
briefly: work on the psychology of vision and work on graph limits.

The psychology of vision. The perception psychologist Bela Julesz studied what
properties of a pattern made the difference between foreground and background.
When are patterns visually distinguishable? Clearly, if one pattern is denser than
another (more ink on the page), the eye will see the difference. Even if the density
is the same, if one pattern is random and another is clumpy or clustered, the eye
sees the difference. A long series of experiments seemed to show that the eye mainly
sees these first- and second-order statistics. Abstracting, he conjectured that if two
patterns had the same first- and second-order statistics, the eye would find them
visually indistinguishable.

In one more careful version he generated stochastic arrays Xij , 1 ≤ i, j ≤ n.
Two arrays have the same kth order statistics if P (Xij = xij , (i, j) ∈ s) =
P (Yij = xij , (i, j) ∈ s) for all s with |s| = k. A host of probabilists and engineers
had tried and failed to produce counterexamples to the Julesz conjecture: if two
row/column exchangeable arrays have the same first- and second-order statistics,
they will be visually indistinguishable.

I heard about this problem while David Freedman and I were trying (and failing)
to prove the Aldous–Hoover theorem. We knew about ϕ-processes and could show
they were extreme points. We could not show there were no other extreme points.
Consider the following two processes. The first is fair coin tossing (thus ϕ(x, y) ≡
1
2 ). The second has ϕ as pictured:

0 1

1 0

The second process has a simple description: fill out the first row of an array by
flipping a fair coin. For the other rows, flip a fair coin once; if it comes up heads,
copy the original top row. If it comes up tails, copy the opposite of the original top
row (mod 2). This process has the same first-, second-, and third-order statistics
as fair coin tossing. By its construction, it results in a stripey pattern, clearly
distinguishable from coin tossing. This is shown in Figure 1.

When we told Julesz, he had a wonderful reaction: “Thank you. For twenty
years Bell Labs has paid me to study the Julesz conjecture. Now they will pay me
for another twenty years to understand why it is wrong.” The story goes on; see
[4] for references and details.

Graph limits. A very recent appearance of the Aldous–Hoover theorem comes
from the emerging theory of graph limits. Laszlo Lovasz, with many coauthors, has
been developing a limiting theory for large dense graphs to answer questions such as
When are two large graphs close? and When does a sequence of graphs converge? A
very appealing theory using subgraph counts has emerged. This unified things such
as Erdös–Renyi random graphs, quasi-random graphs, graph testing, Szemerédi’s
regularity lemma, extremal graph theory, and much else. The subject is in rapid
growth, but the surveys by Borgs et al. [1] are most useful.

It turns out that the natural limit of a sequence of graphs is no longer a graph,
but rather a symmetric function ϕ : [0, 1]2 → [0, 1]. One gets a realization of the
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Figure 1. A counterexample to the Julesz conjecture.

limiting object by choosing a sequence Ui, 1 ≤ i < ∞, uniformly and independently
in [0, 1], forming an infinite symmetric zero/one matrix by flipping a ϕ(Ui, Vj) coin
for i < j, and taking the resulting symmetric matrix as the adjacency matrix of a
graph. Of course, if ϕ(x, y) ≡ p one gets Erdös–Renyi random graphs, but every
convergent sequence of graphs converges to a mixture of such ϕ-graphs.

The evident parallel between graph limits and the Aldous–Hoover theorem was
made explicit in joint work with Svante Janson [5]. The graph theorists’ many
variations (weights on vertices and edges, bipartite, directed or hypergraphs) are
all special cases of the exchangeable theory. Of course, the graph theorists bring
fresh questions and new tools and results. The mix is being worked out as you read
this!

The above stories motivate the study of exchangeable arrays. The book also de-
velops versions of the theorems for arrays invariant under the orthogonal group, and
versions undertaking subsequences of the rows and columns. Random arrays can
be replaced by random functions f(x, y) with, say, x, y in [0, 1]. There are versions
for higher dimensional arrays. One of my favorite extensions, due to Kallenberg,
considers processes indexed by C∞

2 , the infinite hypercube consisting of infinite
binary sequences which terminate with all zeros. The symmetry group G of C∞

2

consists of the semi-direct product of S∞ and C∞
2 . One may ask for the structure

of random processes {Xx}X∈C∞
2

which are invariant under G. This includes many
of the previous problems by looking at various “slices”. Kallenberg gives an elegant
parameterization, analogous to the original Aldous–Hoover theorem.

3. Summary

The book contains many gems. One striking example concerns extensions of Bob
Connelly’s game of “Say Red” [2]. In the original, an ordinary deck of cards is well
shuffled, the cards are turned up one at a time and you are permitted to say “red”
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at any time. If the next card turned up is red, you win $1. If black, you lose $1.
You must say red sometime. If you say red before any cards are turned up, your
chance of winning is 1

2 . What is the expected value under the optimal strategy? If
you have not seen this before, you will be surprised to learn that the expectation
is 1

2 for any strategy. What if you can make a sequence of, say, five dollar-sized
bets on red at times of your choosing as the cards are turned up? What if you
can choose the amounts bet (subject to the total bet being $5)? The reader will
have to look in Chapter 5 for this as well as sweeping generalizations to decoupling
inequalities. These extend the classical identities of Wald. Putting all of these
useful, slightly magical identities into a unified framework, bringing them to their
natural level of generality, and relating them to the world of exchangeability is a
superb contribution.

The book offers complete coverage of the topics included. Surveys of other
points of view and other extensions of de Finetti’s basic theorem to partial ex-
changeability can be found in articles in the same issue as [5] as well as in [3].
These extensions treat problems such as “When is a probability measure a mix-
ture of Markov chains?” and “How can mixtures of other standard families (e.g.,
Poisson or exponential distributions or Wishart matrices) be characterized?” The
general theory translates these questions into the language of projective limits and
leans on statisticians’ versions of the D-L-R equations of statistical physics. While
these extensions are not treated in the present book, it does contain a good set of
references.

Kallenberg has written a definitive, wonderful account of the topics treated. The
care, clarity, depth, and scholarship are truly admirable.
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