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12[65-06]—Proceedings of the Third International Conference on Spectral and High

Order Methods, Andrew V. Ilin and L. Ridgeway Scott (Editors), Houston
Journal of Mathematics, Houston, Texas, 1996, viii+613 pp., 27 1

2 cm, softcover,
$49.00

This is the third volume of proceedings from an ongoing series of conferences,
held every third year so far, devoted to the subject of “Spectral and High Order
Methods”. The volume is divided into overlapping “chapters” devoted to spectral
methods, finite elements, spectral elements, finite differences, domain decomposi-
tion, h-p methods, multigrid methods, and parallel computations.

In brief, these proceedings mirror the general landscape of computation but with
added emphasis on higher order methods. Many numerical analysts, including my-
self, hold it as an “article of faith” that higher order (stable) methods are “better”
than low order methods even in nonsmooth problems where the “higher order” will
not come through; at the least they are not “worse”. Some of the articles here
substantiate this “article of faith”.

Lars B. Wahlbin

13[53-01, 06Y25, 68U05]—An introduction to computational geometry for curves

and surfaces, by Alan Davies and Philip Samuels, Oxford University Press, New
York, NY, 1996, viii+205 pp., 24 cm, hardcover, $35.95

The problem of how to design, store, manipulate, and display curves and surfaces
with a digital computer has become of increasing importance in recent years, and
there are several books (and many proceedings volumes) on the subject. This
book provides a novel introduction which may be especially useful to students and
beginners.

The book is divided into two parts. The first four chapters deal with the differen-
tial geometry of curves and surfaces. They treat the standard topics of parametriza-
tions, curvature, torsion, Frenet frames, envelopes, fundamental forms, geodesics,
and the Dupin indicatrix. The Weingarten matrix and the Gauss map are also
dealt with.

The second four chapters discuss many of the standard ways of dealing with
curves and surfaces. For curves these include Lagrange and Hermite interpolation,
cubic splines, Bezier and Ferguson curves, NURBS, and composite curves. For
surfaces, they include Coons, bicubic, Bezier, rational, tensor product, and spline
patches. The book concludes with a very limited bibliography.

1331

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1332 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

The book is not meant to be a state-of-the-art monograph and has been designed
to be read by both undergraduates and graduates. There are some theorems and
proofs, many examples, and an extensive set of problems. A novel feature of the
book is the inclusion of full solutions of all problems which should make the book
particularly useful for self study.

Joseph D. Ward

14[65D17]—The mathematics of surfaces, IV, Glen Mullineux (Editor), Oxford
University Press, New York, NY, 1996, xiv+569 pp., 24 cm, cloth, $145.00

These are the proceedings from a conference at Brunel University in 1994. While
otherwise a typical “Proceedings”, it is distinguished by the two articles of R. E.
Barnhill and N. Dyn on the work of the late John Gregory (“From computable error
bounds through Gregory’s square to convex combinations”, and “Rational spline
interpolation, subdivision algorithms and C2 polygonal patches”, respectively).

Lars B. Wahlbin

15[11A05, 11A51, 11A55, 11T06, 11Y11, 11Y16, 68Q25]—Algorithmic

number theory, Volume I: Efficient algorithms, by Eric Bach and Jeffrey Shal-
lit, The MIT Press, Cambridge, MA, 1996, xvii+512 pp., 231

2 cm, hardcover,
$55.00

This book treats the design and analysis of algorithms for solving problems in
elementary number theory for which more or less efficient algorithms are known.
For example, good algorithms are known for testing large integers for primality, but
none are known for factoring large composite integers. Primality testing appears in
Chapter 9 of this book, while factoring is reserved for a projected second volume.

Algorithmic number theory is one of the principal sources of examples of prob-
lems in complexity classes studied in theoretical computer science. This is especially
true for the randomized or probabilistic complexity classes. For example, let RP
denote the class of languages (sets) L for which there is a randomized algorithm
(one which can choose random numbers) whose running time is bounded by a poly-
nomial in the size of the input, which accepts inputs in L (says that the input is
an element of L if it really is in L) with probability ≥ 0.5, and which rejects every
input not in L (says that the input is not in L whenever it really is not in L).
The algorithm is allowed to assert that an input is not in L when it really is in L,
provided that this happens for no more than half of the choices of random numbers.
An algorithm in class RP is called a Monte Carlo algorithm.

Let COMPOSITE be the language of composite numbers, that is, the set of binary
representations of all composite positive integers {4, 6, 8, 9, 10, . . .}. Here is a Monte
Carlo algorithm which shows that COMPOSITE is in the complexity class RP . Let
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(b/n) denote the Jacobi symbol.

Input a binary number n.

If n < 4, print n 6∈ COMPOSITE and stop.

Choose a random integer b in 1 < b < n with uniform distribution.

If gcd(2b, n) 6= 1, print n ∈ COMPOSITE and stop.

If b(n−1)/2 ≡ (b/n) (mod n), print n 6∈ COMPOSITE and stop.

Print n ∈ COMPOSITE and stop.

If the input number n is a prime > 4, then the algorithm will say that n is
not composite because b(n−1)/2 ≡ (b/n) (mod n) by Euler’s Criterion. Solovay and
Strassen proved that if n is odd and composite, then b(n−1)/2 6≡ (b/n) (mod n) for
at least one-half of all b in 1 < b < n which are relatively prime to n. Since one
can compute gcd(b, n), b(n−1)/2 mod n, and (b/n) in O(log3 n) bit operations when
1 < b < n, COMPOSITE is in complexity class RP .

Chapter 1 is a general introduction which precisely delineates the material cov-
ered and distinguishes it from computational number theory. To the authors, com-
putational number theory consists of constructing tables, gathering evidence for
conjectures, searching for counterexamples, and proofs by enumeration of cases, all
in number theory. This contrasts with algorithmic number theory, which studies
number-theoretic algorithms and may be defined as finding solutions to equations,
or proving their nonexistence, while making efficient use of time and space. For ex-
ample, from this viewpoint, proving that n is prime means efficiently showing that
the equation n = xy has no solution in integers x, y > 1. This chapter also outlines
the basic facts and history of number theory and computational complexity.

Chapter 2 presents the basic results of elementary and analytic number theory
which are needed later. These include Euler’s Theorem, the Möbius inversion for-
mula, Euler’s summation formula, and formulas for estimating sums taken over the
primes.

Chapter 3 is a survey of computational complexity theory, including language
classes, reductions, NP-completeness, and computational models.

After these preliminaries, Chapter 4 begins the real subject matter of the book
by analyzing the Euclidean and binary algorithms for the greatest common divisor.
The Euclidean algorithm computes a GCD by repeatedly dividing the larger number
by the smaller one and replacing the larger number by the remainder in this division.
When the smaller number is 0, the large one is the answer. The binary GCD
algorithm removes all factors of 2 from the input numbers and then repeatedly
subtracts the smaller number from the larger one. The larger number is replaced
by the difference after all factors of 2 have been removed. The power of 2 in the
GCD is computed separately. The Euclidean algorithm was the first nontrivial
algorithm whose worst-case running time was analyzed. This was done more than
150 years ago by Lamé.

Chapter 5 continues with basic algorithms for computing in the ring of integers
modulo n: the power algorithm for ae mod n, the Chinese Remainder Theorem,
and algorithms for Legendre and Jacobi symbols.

There are many analogies between the ring Z of integers and the polynomial ring
k[X ], where k is a finite field. Chapter 6 discusses finite fields and some of these
analogies. It describes the structure of the field k[X ]/(f), where f is an irreducible

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1334 REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

polynomial in k[X ]. Also discussed are the Euclidean algorithm in k[X ], continued
fractions in the field k(( 1

X )) of expressions f =
∑

i≤d ciX
i with ci ∈ k, and the

generalized Jacobi symbol (g/f) for f, g ∈ k[X ].
Chapter 7 studies algorithms for solving certain equations over finite fields.

It begins with the algorithms of Tonelli and Cipolla for finding square roots in
Fq and continues with efficient algorithms for computing dth roots in Fq. It de-
scribes Hensel’s lemma, randomized algorithms for factoring polynomials, and what
is known about deterministic algorithms for factoring polynomials.

Chapter 8 reviews important results from analytic number theory needed to
analyze algorithms for prime numbers. It discusses the prime number theorem, the
Riemann Hypothesis, the Extended Riemann Hypothesis, primitive roots, Linnik’s
theorem on primes in arithmetic progression, the difference between consecutive
primes, and extensions of this theory to prime ideals in algebraic number fields. The
final section lists many explicit estimates for functions related to prime numbers.

Chapter 9 discusses algorithms for testing primality, for generating “random”
prime numbers, for finding the nth prime number, for computing the number π(x)
of primes ≤ x, and for creating a table of primes between 1 and n. Primality
tests described here include converses to Fermat’s theorem, special tests for Fermat
and Mersenne numbers, probabilistic prime tests, fast tests which are valid if the
Extended Riemann Hypothesis is true, and correct tests whose running time is
small provided the Generalized Riemann Hypothesis holds. The authors mention
Carmichael numbers, Euler pseudoprimes and strong pseudoprimes. These are the
numbers that cause certain probabilistic prime tests to produce incorrect results.
Euler pseudoprimes are the composite numbers which the Monte Carlo algorithm
above says are prime. Prime tests using elliptic curves are saved for the second
volume, as is the result of Aldeman and Huang that the set of primes is in complexity
class ZPP. Sieves are recommended for constructing tables of primes and also
for tabulating the number of prime divisors function, d(n). The authors give a
simplified version of the algorithm of Lagarias, Miller and Odlyzko for computing
π(x) in O(x2/3+ε) time and O(x2/3+ε) space.

There are dozens of interesting exercises at the end of each chapter, as well as
extensive notes which embellish the text, tell the history of the subject matter, and
give references to the literature.

Appendix A gives solutions, or at least hints of or references to solutions for every
exercise except the few that are open problems. The bibliography lists more than
1750 references. There is a two page index to notation and 24 pages of ordinary
index.

The only typo known to me is one reported to me by an author: The bound on
q in Theorem 8.7.13 on page 232 should be O(p2e(log n + e log p)2).

This beautifully written volume is an excellent survey of the subject. I look
forward to seeing the second volume.

S. S. Wagstaff, Jr.

Department of Computer Sciences

Purdue University

West Lafayette, Indiana 47907-1398
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