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Schur algebras consist of certain families of finite dimensional algebras which
connect the representation theories of the symmetric groups Sr and the general
linear groups GL(n, k) over a field k. When k = C, the complex numbers, the
theory goes back to the early years of the last century (i. e., the early development
of representation theory). For example, using the determination of the complex
irreducible characters of the symmetric groups by G. Frobenius, I. Schur worked
out the polynomial representation theory for the groups GL(n, C), establishing
complete reducibility and calculating the irreducible characters. H. Weyl further
highlighted this point of view in his famous book [W], extending it to other classical
groups. Subsequently, this whole approach often came to be called “Schur-Weyl-
Frobenius reciprocity”. (For references and further discussions, see C. Curtis’ book
[C] on the history of representation theory.)

In modern times, J. A. Green’s Yale lectures [G], published in 1980, presented
a theory relating Schur algebras over fields k of arbitrary characteristic and the
modular representation theory of symmetric groups. His notes still remain a good
introduction to this branch of representation theory. Over the past several decades,
this theory of Schur algebras expanded in an important direction, coincidentally
with the rise of “q-mathematics”. For the purposes of this review, we can infor-
mally think of the latter subject as involving situations in which a finite group
algebra, algebra of functions on a Lie group, etc., is deformed by introducing a pa-
rameter q. Historically, q-Schur algebras first arose in the work of M. Jimbo [J] in
connection with physics. Independently, R. Dipper and G. James [DJ] introduced q-
Schur algebras over general fields k in connection with the modular “non-describing
characteristic” representation theory of the finite general linear groups GL(n, F).
To be more precise, this involves the representation theory of GL(n, F) over fields k
of characteristic p not dividing the order of the finite field F. This connection with
the modular representation theory of finite general linear groups probably remains
today the most important application of the theory of q-Schur algebras over general
fields.

We will give several descriptions of q-Schur algebras, beginning with the one
related to Hecke algebras of symmetric groups. First, we introduce some definitions.
Fix a positive integer r, and let S be the set of fundamental “reflections” (j, j + 1),
j < r, in the symmetric group Sr. For s, s′ ∈ S, let m(s, s′) be the order of ss′. The
(Iwahori-)Hecke algebra H = H(Sr, k, q) associated to Sr is the finite dimensional
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k-algebra defined by generators Ts, s ∈ S, and relations






T 2
s = q · 1 + (q − 1)Ts

TsTs′Ts · · ·
︸ ︷︷ ︸

m(s,s′)

= Ts′TsTs′ · · ·
︸ ︷︷ ︸

m(s,s′)

(1)

over all distinct s, s′ ∈ S. Here q is an arbitrary non-zero element in the field
k. For example, if we take q = 1k, the identity element of k, then H is just the
group algebra kSr. In connection with the finite group GL(n, F), we would take
q = |F| · 1k; in this case, H is isomorphic to the endomorphism algebra of the
permutation module for GL(n, F) defined by a Borel subgroup. The algebra H is
an example of the kind of deformation of kSr mentioned above. While the two
books under review focus primarily on the theory of Hecke algebras associated to
symmetric groups, these algebras can be defined for any Coxeter group W . When
k = C there exists a vast literature relating the theory of Hecke algebras to the
representation theories of complex Lie algebras, finite groups of Lie type, . . . . See
[KL], [KT], [CR], . . . . In addition, the methods here often involve sophisticated
geometric theories (e. g., intersection cohomology).

Now let V be a vector space of dimension n over k with fixed ordered basis
v1, . . . , vn. For a sequence I = (i1, . . . , ir) of integers ij, 1 ≤ ij ≤ n, put vI =
vi1 ⊗ · · · ⊗ vir

. For σ ∈ Sr write Iσ = (iσ−1(1), . . . , iσ−1(r)). The tensor space V ⊗r

carries the structure of a right H-module by setting, for s = (j, j + 1) ∈ S,

vITs =

{
qvIs, if ij ≤ ij+1;

vIs + (q − 1)vI , otherwise,
(2)

since it can be verified that the relations (1) hold for the operators on V ⊗r defined
in (2). Taking q = 1k, H ∼= kSr, the group algebra over k of Sr, and (2) is the usual
permutation action. In general, the q-Schur algebra Sq(n, r) can then be defined as
the endomorphism algebra

Sq(n, r) = EndH(V ⊗r).(3)

Thus, if q = 1k, then S1(n, r) ∼= S(n, r), the classical Schur algebra over k. Much
of this formalism works in a characteristic-free setting, replacing H, etc. by the
corresponding objects over the ring Z[q, q−1] of integer Laurent polynomials in a
variable q. Because V ⊗r is a direct sum of “q-permutation modules”, it behaves
nicely with respect to base change.

The tensor space V ⊗r provides a natural connection between the module cat-
egories for Sq(n, r) and H. For example, when n ≥ r, V ⊗r ∼= Sq(n, r)e for an
idempotent e ∈ Sq(n, r). In this case, H ∼= eSq(n, r)e, and the Schur functor

F : Sq(n, r) − mod −→ H− mod, M 7→ eM,(4)

passes from Sq(n, r)-modules to H-modules. In the most classical case, when q = 1
and k = C, Schur used (4) to relate the representation theory of Sr with that of
GL(n, C) using the Schur algebras S(n, r) as intermediaries. For general q, we need
to introduce a new player—the quantum general linear groups—as a replacement
for GL(n, C). This object can be understood first in terms of quantum matrix
space Mq(n). The most familiar version [M] has as coordinate algebra k[Mq(n)]
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the algebra generated by n2-variables Xij satisfying the relations1







XriXrj = q−1XrjXri, i < j;

XriXsi = q−1XsiXri, r < s;

XriXsj = XsjXri, r < s, i > j;

XriXsj − XsjXri = (q−1 − q)XsiXrj , r < s, i < j.

(5)

Then k[Mq(n)] is a bialgebra with comultiplication defined by

∆(Xij) =
∑

l

Xil ⊗ Xlj .(6)

Further, the quantum determinant

detq =
∑

σ∈Sn

(−q)−ℓ(σ)X1σ(1) · · ·Xnσ(n)(7)

is a central group-like element in k[Mq(n)]. The bialgebra k[Mq(n)][1/ detq] then
becomes a Hopf algebra (with antipode defined by Cramer’s rule) which serves
as the coordinate algebra k[GLq(n)] of the (Manin) quantum group GLq(n) =
GLq(n, k). Again, when q = 1, GLq(n) identifies with the usual general linear group
GL(n, k), and k[GLq(n)] represents a deformed version of the usual coordinate
algebra of functions on GL(n, k).

As with quantum matrix space Mq(n), the idea is that GLq(n) and its repre-
sentation theory are completely determined by its coordinate algebra k[GLq(n)];
one should not think of GLq(n) as an actual group (which it is not). For example,
by analogy with affine algebraic groups, a rational GLq(n)-module consists of a
comodule for the Hopf algebra k[GLq(n)]; i. e., it is a vector space V together with
a linear map V → k[GLq(n)] ⊗ V satisfying certain natural properties. More for
our purposes, the representation theory of GLq(n) can be conveniently reduced to
the study of the representation theory for the q-Schur algebras Sq(n, r), r ≥ 1, over
k. To see why leads to another description of the q-Schur algebras.

Let Aq(n, r) be the subspace of k[Mq(n)] spanned by monomials in the Xij

(relative to some fixed ordering of these variables) of degree r. The form of the
comultiplication ∆ on k[Mq(n)] shows that Aq(n, r) is a subcoalgebra of k[Mq(n)].

It has finite dimension equal to ( n2+r−1
r ). Thus, the dual ∆∗ defines an algebra

structure on the dual space Aq(n, r)∗. In fact,

Sq(n, r) ∼= Aq(n, r)∗.(8)

Any Sq(n, r)-module M has a natural Aq(n, r)-comodule structure and hence is a
comodule for k[GLq(n)]. Thus, M is a rational GLq(n)-module—a so-called polyno-

mial representation. Conversely, any indecomposable rational GLq(n)-module can,
after twisting by some power of detq, be viewed as a polynomial representation.

When F is a finite field and q = |F|·1k, the q-Schur algebra Sq(n, n) over k has yet
a third interpretation in the spirit of (3), but this time involving an endomorphism

1Although we cannot go into it here, these strange-looking relations do have explanations,
e. g., one coming out a solution to the famous quantum Yang-Baxter equation R12R13R23 =
R23R13R12 : V ⊗3

→ V ⊗3; see [CP].
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algebra for the finite general linear group GL(n, F). Namely, we have

Sq(n, n) ∼= EndkGLn(F)(
⊕

P⊇B

kGL(n, F)/P ).(9)

The direct sum in (9) is over all parabolic subgroups P containing a fixed Borel
subgroup B of GLn(F), while kGL(n, F)/P is just the permutation module on the
cosets of P . Putting all the pieces together eventually leads to a connection between
the non-describing representation theory of the finite general linear groups GL(n, F)
over a field k and the representation theory of the quantum groups GLq(n, k) for
q = |F|·1k. Questions about decomposition numbers, cohomology, etc. for GL(n, F)
can be reformulated in terms of similar questions for GLq(n, k) and then sometimes
recast again “generically”, i. e., for large values of the parameters, into characteristic
zero problems; see, e. g., [DJ], [CPS]. For the other finite groups G of Lie type,
analogs of the q-Schur algebra have been investigated, but the connection with
quantum groups remains generally open.

As their titles suggest, both books under review concern the topics introduced
above, yet each takes a markedly different approach to the subject. Donkin’s tack
is “to first prove results about our quantum version of GLm, then to use this
knowledge to deduce results about the q-Schur algebras and finally, by a further
‘descent’ to obtain results on the Hecke algebra” (p. x). Mathas, on the other
hand, states that his “notes adopt the view that the Iwahori-Hecke algebras—
rather than the q-Schur algebras—are the objects of central importance. This is
partly a matter of personal taste and partly expedience; other authors . . . travel in
the reverse direction” (p. x).

The reader not already somewhat familiar with the theory of q-Schur algebras
should be forewarned that Donkin’s book is not an introduction to that theory.
In fact, the author views his book largely as a continuation of his research arti-
cle [D], which takes a decidedly homological view of the subject (as opposed to,
say, the combinatorial approach for Schur algebras laid down by Green [G]). But
to make the material accessible to a wider audience, Donkin has included a pre-
liminary chapter which collects together the necessary background material. The
exposition moves swiftly here. For example, the q-analog of Kempf’s vanishing
theorem receives a one-sentence treatment. The q-Schur algebras are defined from
the quantum group along the lines of (8). Later chapters treat a number of spe-
cific advanced topics, e. g., the bideterminant basis of Aq(n, r), the classification of
the irreducible H-modules using the Schur functor (4), the analog of the Steinberg
tensor product theorem, the theory of tilting modules for q-Schur algebras, the
determination of the precise global homological dimension of q-Schur algebras, etc.
The book contains an interesting section on the 0-Schur algebra, in which Donkin
completely determines its irreducible characters. A useful tool in some of this is the
quasi-heredity of the q-Schur algebras, and the book concludes with a brief appen-
dix outlining the elementary features of quasi-hereditary algebras. From different
points of view, most of the results in these notes already exist in the literature,
sometimes in more general (e. g., characteristic-free) form and with shorter proofs,
a fact the author does not always document carefully. It is, however, nice to have
things collected together and carefully proved from the author’s particular point of
view.

Despite the above strengths, Donkin’s book presents some obstacles to the
reader. First, it contains little motivation for the study of q-Schur algebras, apart
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from their application to Hecke algebras (which themselves are left unmotivated).
Perhaps this fact is in keeping with its “terse journal style” (p. x), but, in this sense,
the book does not compare favorably to Mathas’ book discussed below. Also, some
readers will be familiar with the quantum group defined by (8), while this book uses
another version introduced in [DD]. A brief mention, without details, of [AST] or
[DPW] would have been useful since these papers show how the various quantum
deformations of the general linear group lead to the same q-Schur algebras. With-
out this fact, the reader may rightly wonder how the theory in this book applies
to q-Schur algebras in the literature. Nor does the author hint at any connections
of q-Schur algebras with quantum enveloping algebras. Finally, the historical notes
on quasi-hereditary algebras skew that development by omitting mention of the
considerable influence of the geometric theory of perverse sheaves in their invention
and development.

In the second book under review, Mathas surveys a wide range of topics related
to the Hecke algebras H = H(Sr, k, q). The author develops and makes systematic
use of the theory of cellular algebras as defined in [GL]. Such algebras have a par-
ticularly nice basis—in fact, the theory might be thought of as a natural abstraction
of properties of the Kazhdan-Lusztig basis for H [KL] and the Robinson-Schensted
correspondence between elements of Sr and pairs (S, T ) of standard tableaux. The
present book, however, shows that H is cellular by means of the so-called Murphy
basis for H. This leads to a classification of the irreducible H-modules, and, defining
q-Schur algebras Sq(n, r) in the spirit of (3) above, a classification of the irreducible
modules for these algebras as well. (The approach contrasts with Donkin’s, who
first classifies the irreducible modules of Sq(n, r) using highest weight theory, then
gets the classification of the irreducible H-modules via the Schur functor.) Us-
ing the cellular property of the Murphy basis, Mathas also proves that Sq(n, r) is
quasi-hereditary. Next, utilizing “algebraic group methods”, the author determines
the blocks for Sq(n, r), n ≥ r, and, by means of (4), obtains the blocks for H, the
q-analog of the Nakayama conjecture for Sr. The final, longest, and most interest-
ing chapter surveys, usually without proofs, a number of more recent results. For
example, the chapter discusses in some detail the LLT algorithm (after Lascoux,
Leclerc and Thibon [LLT] and its proof by Ariki [A]) for calculating the decompo-
sition matrix of the complex Hecke algebra H(Sr, C, q) for q a root of unity. Other
topics include: the modular branching work of Kleshchev and Brundan for deter-
mining the socle of the restrictions of irreducible H-modules to Hecke subalgebras,
a sketch of the theory of Ariki-Koike algebras in which Sr is replaced by a certain
complex reflection group, and a short (and not too enlightening) introduction to the
non-describing representation theory. The book concludes with some useful tables.

Mathas’ book contains many exercises which introduce the reader to a number
of further interesting topics (e. g., the Robinson-Schnested correspondence). Thus,
students will find it useful. Historical notes at the end of each chapter provide
some context for the discussion. Written with considerable enthusiasm, the book
contains occasional slips. For example, the assertion on p. 9 that the function field
C(t) is algebraically closed does not inspire much confidence. Nor does the claim on
p. 17 (repeated in Exercise 2.7) that the left cell module C∗λ is isomorphic to the
linear dual HomR(Cλ, R) of the right cell module Cλ in a cellular algebra A over
a commutative ring R. As these concepts are defined here, this claim already fails
for the Specht module C(2,1) of symmetric group S3 when R is a field of character-
istic 3. Also, parts of the book unfortunately have the feel of something quickly put
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together. For example, in the context of discussing the Grothendieck group of Hecke
algebras, what should one make of muddled statements such as the definition of
the complexified Grothendieck group “as the additive abelian group (with complex
coefficients) generated by the symbols . . . ” on p. 97, and the resulting confusion in
Corollaries (6.4) and (6.5) which, as stated, have little substance? (Perhaps these
corollaries should be definitions?)

Taken together these two books cover some of the same topics, but from different
perspectives. Both books adopt a strictly algebraic/combinatorial point of view,
although Mathas at least mentions that geometry does come into the picture. The
beginner will find the Mathas book helpful, while those who already know something
about q-Schur algebras will appreciate Donkin’s approach.
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