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The extensive theory of the combinatorics of tableaux provides tools for giving
very precise information about

(i) the representations of symmetric groups, general linear groups, special linear
groups, unitary groups, . . . , and

(ii) the geometry of Grassmannians, flag varieties, and Schubert varieties.
This book is one of the very few which gives an introduction to this theory. Many
parts of theory which were previously available only in a scattered form in the
specialized literature are presented here in a coherent fashion.

The main players in the theory are partitions, tableaux and standard tableaux.
A partition of n is a collection of n boxes in a corner (gravity goes up and to the
left). A tableau of shape λ is a filling of the boxes of λ with positive integers such
that the rows are weakly increasing and the columns are strictly increasing. A
standard tableau of shape λ is a tableau of shape λ such that each of the numbers
1, 2, . . . , n occurs exactly once.
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The strong relationship between tableaux and representation theory is reflected
in the following facts:

(1) The irreducible representations Sλ of the symmetric Sn are indexed by par-
titions with n boxes,

(2) dim(Sλ) is the number of standard tableaux of shape λ,
(3) There is a unique partition with ≤ m rows corresponding to each irreducible

(holomorphic) representation of GLm(C),
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(4) If λ is the partition corresponding to an irreducible representation M of
GLm(C), then dim(M) is the number of tableaux of shape λ with entries
from the set {1, 2, . . . , m}.

One of the main theorems of representation theory, the Borel-Weil-Bott theo-
rem, says that the irreducible representations of GLm(C) can be constructed from
the geometry of flag varieties: the irreducible GLm(C)-modules are the spaces
H0(G/P, Lλ) of global sections of (appropriate) line bundles Lλ on the flag vari-
eties G/P . This indicates how (and why) there is a connection between tableaux
theory and the geometry of flag varieties (Grassmannians are special cases of general
flag varieties).

A summary of the contents of this book will provide a good survey of the field
and a description of many of the main results. As with all subjects, there are many
possible points of view, choices of material, and ways of presenting each topic; here
the effort has been to be brief and faithful to the presentation of the book under
review, and opinions are given following the summary.

Following the book, it is natural to divide the material into three (interrelated)
parts.

Part I: The calculus of tableaux

Row insertion is a specific combinatorial way of adding a “letter” i ∈ {1, 2, . . . , n}
to a tableau T to get a new tableau (T ← i) which has one more box than before.
By iterating this procedure one can row insert any “word” w = i1i2 · · · ir into the
Young tableau T to get a new tableau T ← w with r new boxes.

Jeu de taquin is a combinatorial game for sliding out a “hole” (unfilled box) in
a filling that is a tableau except for the unfilled box. By iterating the game, one
can remove several holes, and one of the magical things is that it does not matter
in which order the holes are removed. The rectification Rect(T ) of a filling is the
Young tableau obtained by sliding out all the holes of a partially filled tableau T .

The plactic algebra R[n] is the free associative algebra generated by the symbols
1, 2, . . . , n modulo the Knuth equivalence relations

yzx = yxz if x < y ≤ z, and xzy = zxy if x ≤ y < z.

The generators are ordered in the usual order 1 < 2 < · · · < n. The word w(T )
of a column strict tableau T is obtained by reading the entries of T from left to
right and bottom to top. Surprisingly, one can actually find a basis of this quotient
ring: the set {w(T ) | T column strict tableaux} is a basis of the plactic algebra. If
v = i1i2 · · · ir is a word, then v = w(∅ ← v) in the plactic algebra, where w(∅ ← v)
is the word of the tableau obtained by row inserting v into the empty tableau ∅.

One may define products of tableaux by jeu de taquin

T · U = Rect

 T

U

 , or by row insertion, T ? U = (T ←− w(U)).

Amazingly,

T · U = T ? U and w(T · U) = w(T )w(U) in the plactic algebra.
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The capstone of the proofs of these facts is to show that the tableau ∅ ← v of a
word v is completely determined by the increasing subsequences of v.

The Schur function is the polynomial sλ ∈ Z[x1, . . . , xn] defined by

sλ(x) =
∑
T

xT , where xT = x
(# of 1’s in T )
1 · · ·x(# of n’s in T )

n

and the sum is over all tableaux T of shape λ. The Schur function is a symmetric
polynomial, i.e. sλ(x) ∈ Z[x1, . . . , xn]Sn . There is an injective algebra homomor-
phism

Z[x1, . . . , xn]Sn −→ R[n]

sλ(x) 7−→
∑
T

w(T )

which means that computations with Schur functions can be done in the plactic
algebra with the use of jeu de taquin and row insertion.

Many identities in the theory of symmetric functions are amenable to proofs by
row insertion methods. In particular, row insertion can be used to give bijective
proofs of the following identities:

n! =
∑

λ

(fλ)2, (x1 + · · ·+ xn)n =
∑

λ

sλ(x)fλ,
∏
i,j

1
1− xiyj

=
∑

λ

sλ(x)sλ(y),

where fλ is the number of standard tableaux of shape λ. The resulting bijections
(and their immediate relatives) are the Robinson-Schensted-Knuth correspondences.

If the boxes of a partition λ are a subset of the boxes of ν, then ν/λ denotes the
boxes of ν which are not in λ. The Littlewood-Richardson rule says that

sµ(x)sλ(x) =
∑

λ

cν
µλsν(x),

where cν
µλ is the number of Littlewood-Richardson fillings of ν/λ which have content

µ. The classical Pieri formulas in the theory of the Grassmannian and the Clebsch-
Gordan formula from the theory of the unitary group are special cases of this
formula. The proof of the Littlewood-Richardson rule is a beautiful combination of
the tools developed thus far: row insertion, jeu de taquin, and the plactic algebra.
It proceeds by showing that if U◦ is any fixed tableau of shape µ and V◦ is any fixed
tableau of shape ν, then

{column strict fillings S of ν/λ such that Rect(S) = U◦} 1−1←→
{[T, U ] | T is a tableau of shape λ, U is a tableau of shape µ and T · U = V◦},

and

{Littlewood-Richardson fillings of ν/λ of content µ} =

{column strict fillings S of ν/λ such that Rect(S) = U(µ)},
where U(µ) is the tableau of shape µ obtained by filling the first row with 1’s, the
second row with 2’s, . . . .

Part II: Representation Theory

The symmetric group
Let λ be a partition of n. A tabloid of shape λ is an equivalence class of num-

berings of the boxes of λ (from 1 to n) where two numberings are equivalent if
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corresponding rows contain the same entries. Let Mλ be the span of all tabloids
{T } of shape λ with an action of Sn defined by

σ{T } = {σT }
(σ permutes the numbers of T ). For each numbering T of λ let

C(T ) =
{

σ ∈ Sn

∣∣∣ σ permutes the entries of each
column of T among themselves

}
and

vT =
∑

q∈C(T )

sgn(q){q · T }.

The Specht module Sλ is the submodule of Mλ spanned by the elements vT . The
Sλ form a complete set of irreducible Sn-modules, and the set

{vT | T is a standard tableau of shape λ} is a basis of Sλ.

There is a dual construction of the Specht modules. Let M̃λ be the span of all
column tabloids [T ] of shape λ (two numberings are equivalent if corresponding
columns contain the same entries) with an action of Sn defined by

σ[T ] = sgn(σ)[T ].

There is a canonical surjection

α : M̃λ −→ Sλ

[T ] 7−→ vT

with kernel Qλ generated by the “quadratic relations”. The kernel Qλ is also
generated by the (very similar) “Garnir relations”.

Let Rn be the Grothendieck group of representations of Sn. Define a product on

R =
∞⊕

n=0

Rn by [V ] ◦ [W ] = [IndSk+`

Sk×S`
(V ⊗W )],

for [V ] ∈ Rk, [W ] ∈ R`, an inner product by 〈[Sλ], [Sµ]〉 = δλµ, and an involution
by ω([V ]) = [V ⊗ S(1n)], for [V ] ∈ Rn. (S(1n) is the sign representation of Sn.)
Then the map

R −→ symmetric polynomials
[Sλ] 7−→ sλ(x)

is an isometric, involution preserving, ring isomorphism. Thus, computations with
representations of the symmetric group can be done with symmetric functions!

The general linear group
Let E be the standard GLn(C)-module of dimension n. Let λ be a partition

with ≤ m rows and let d1, d2, . . . , d` be the lengths of the columns of λ. The Schur
module is the quotient

Eλ =
(
∧d1 E)⊗ · · · ⊗ (

∧d` E)
Qλ(E)

,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BOOK REVIEWS 255

where Qλ(E) is the ideal of “quadratic relations”. Incredibly, the character of the
GLm(C)-module Eλ is the Schur function!

Char(Eλ) = sλ(x).

The Eλ are realizations of the irreducible polynomial representations of GLm(C).
If D : GLn(C) → C denotes the one dimensional representation of GLn(C) given
by D(g) = det(g), then each irreducible rational (holomorphic) representation of
GLn(C) is of the form Eλ ⊗D⊗r for unique λ and r ∈ Z.

The symmetric group Sn acts on E⊗n = E ⊗ · · · ⊗ E by permuting the tensor
factors, and the functor from Sn-modules to GLm(C)-modules defined by

E(M) = E⊗n ⊗CSn M

sets up a tight relationship between the representation theory of GLm(C) and Sn.
In particular, E(Sλ) = Eλ.

Suppose that the conjugate of λ is the partition (da1
1 · · · das

s ). Let P be the
subgroup of G = GLm(C) of block lower triangular matrices with block sizes ds,
ds−1 − ds, . . . , d1 − d2, and let χλ : P → C∗ be the one dimensional representation
of P given by χλ(p) = det(A1)a1 det(A2)a2 · · · det(As)as where Ai is the upper left
di × di submatrix of P . The Borel-Weil-Bott theorem says that, as G = GLm(C)-
modules,

Eλ ∼= Γ(G/P, Lλ),

where Γ(G/P, Lλ) is the space of global sections of the line bundle Lλ = G×P χλ

over G/P . This means that there is an intimate connection between the geometry
of the coset spaces G/P and the representations of GLm(C).

Part III: Geometry

Let m ≥ d1 > d2 > · · · > ds ≥ 0 and let P be the subgroup of G = GLm(C)
of block lower triangular matrices with block sizes ds, ds−1 − ds, . . . , d1 − d2. It is
natural to identify G/P and the (partial) flag variety

F`d1,... ,ds = {E1 ⊆ · · · ⊆ Es ⊆ E | codim(Ei) = di}.
If λ is a partition such that {d1, . . . , ds} is the set of lengths of columns of λ, then
there is an imbedding

F`d1,... ,ds = G/P ⊆ P∗(Eλ)
gP 7−→ [gϕ]

where ϕ is the lowest weight vector in Eλ and P∗(Eλ) is the dual projective space
of Eλ. The special cases λ = (1k) and λ = (a) give the Plücker imbedding of the
Grassmannian Grk(E) ⊆ P∗(

∧k
E) and the a-fold Veronese imbedding P∗(E) ⊆

P∗(SymaE), respectively.
A product of Plücker imbeddings gives F`d1,... ,ds ⊆ Grd1E × · · · × GrdsE ⊆

P∗(
∧d1 E) × · · · × P∗(

∧ds E), and only a little more argument is needed to show
that the multihomogeneous coordinate ring of F`d1,... ,ds is

S•(m; d1, . . . , ds) =
Sym•(

∧d1 E)⊗ · · · ⊗ Sym•(
∧ds E)

Q
,

where Q is the ideal generated by the “quadratic relations”. The algebra
S•(m; d1, . . . , ds) is a subalgebra and GLm(C)-submodule of the polynomial ring
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C[Zij | 1 ≤ i ≤ n, 1 ≤ j ≤ m] under the natural action of GLm(C). There is also
a (right) action of GLn(C) on C[Zij ], and the fundamental theorems of invariant
theory for SLn(C) can be encompassed in the statement

C[Zij ]SLn(C) = S•(m; n).

This fact is used to show that S•(m; d1, . . . , ds) is a unique factorization domain.
Let 0 = F0 ⊆ F1 ⊆ · · · ⊆ Fm = Cm be a fixed flag of subspaces of Cm such that

dim(Fi) = i. For each partition λ which has at most n −m rows and at most n
columns (i.e. λ ⊆ ((m− n)n)), the Schubert variety

Ωλ = {V ∈ Grn(Cm) | dim(V ∩ Fn+i−λi ) ≥ i, 1 ≤ i ≤ m− n}

is an irreducible closed subvariety of dimension |λ| in Grn(Cm). The classes [Ωλ],
λ ⊆ ((m− n)n), form a basis of H∗(Grn(Cm)), and there is a ring homomorphism

symmetric functions −→ H∗(Grn(Cm))

sλ(x) 7−→
{

[Ωλ], if λ ⊆ ((m− n)n),
0 otherwise.

This fact is proved by analyzing carefully the intersection of three (generically
placed) Schubert varieties Ωλ, Ω(k) and Ωµ and showing that this gives the same
multiplication rule for the classes [Ωλ] ∈ H∗(Grn(Cm)) as that satisfied by the
corresponding Schur functions.

Let F`(m) be the flag variety of complete flags in Cm, i.e. flags E1 ⊆ · · · ⊆
Em = Cm such that dim(Ei) = i. Let B be the subgroup of GLm(C) of upper
triangular matrices, and let χi : B → C∗ be the character of B such that χi(b) is
the ith diagonal entry of b. Then

H∗(F`(m)) =
Z[x1, . . . , xm]

〈e1(x), . . . , em(x)〉 ,

where xi = −c1(χi) is the first Chern class of the line bundle Li = G ×B χi on
G/B and 〈e1(x), . . . , em(x)〉 is the ideal generated by the elementary symmetric
functions ek(x) = s(1k)(x), 1 ≤ k ≤ m.

For each w ∈ Sm there is a Schubert variety Xw in F`(m), and the classes
[Xw] form a basis of H∗(F`(m)). The dimension of Xw is the length, `(w), of the
permutation w and Xv ⊆ Xw if and only if v ≤ w in Bruhat order.

The inclusion Cm ⊆ C(m+1) (as the first m coordinates) induces an imbedding
ι : F`(m)→ F`(m + 1) and, in cohomology,

ι∗ : H∗(F`(m + 1)) −→ H∗(F`(m))

xi 7−→
{

xi, if i ≤ m,

0, if i > m,

[Xw] 7−→ [Xw], for w ∈ Sm,

where Sm ⊆ Sm+1 as permutations which fix m + 1. Fix i, 1 ≤ i ≤ m, and let
Z = {(E•, E′

•) | E•, E′
• ∈ F`(m), Ej = E′

j for j 6= i}. The projections p1, p2 onto
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the first and second components, respectively,

Z
p2−→F`(m)yp1

F`(m)
give

H∗(F`(m))
(p1)∗(p∗2)−→ H∗(F`(m))

Q 7−→ ∂iQ =
Q− siQ

xi − xi+1
,

[Xw] 7−→
{

[Xwsi ], if w(i) > w(i + 1)
0, if w(i) < w(i + 1),

in cohomology. If w ∈ Sk then the Schubert polynomial Sw is the unique homo-
geneous polynomial in Z[x1, . . . , xk] such that Sw is a representative of [Xw] ∈
H∗(F`(m)) for all m ≥ k.

Appendix A contains some further combinatorial techniques: evacuation, column
insertion, dual Knuth equivalence, and the theory of keys and frank tableaux. Ap-
pendix B gives an efficient introduction to the basics of cohomology theory: defini-
tions of pullback and pushforward, fundamental classes, Chern classes, intersections
and Borel-Moore homology. Exercises for the reader are peppered throughout the
main text, and the book concludes with a section giving brief answers to these
exercises and some further notes and references.

Opinions
There has been a need for a book treating this material for some time, and the

author has done an excellent job in choosing what to say and providing a concise yet
thorough account of several “well known” topics for which it was hard to find a good
reference. The treatment of many of the ideas of Lascoux and Schutzenberger will
be very helpful to current and future researchers in this area. The brief introduction
to intersection theory is to the point and exactly what is needed for those who need
to study Schubert varieties and other similar algebraic varieties.

Although the style is very pleasant in its effort to make constructions natural and
to illustrate the connections between various aspects of the material, this style also
has its disadvantages. Sometimes one is not sure what has been actually proved
at a given point, what is still left to be proved, exactly what the ingredients of
the proof were, and exactly which parts of the proof were left to the reader or the
exercises.

Especially since more than half the book is concerned with the theory of row
insertion, it would be nice if there was more emphasis on the point that this is not
just a handy combinatorial game for making slick proofs of identities. Row insertion
and the Robinson-Schensted-Knuth (RSK) correspondence arise naturally in at least
three algebraic/geometric settings, and only one of these is very briefly mentioned
(Steinberg’s realization of the RSK correspondence in terms of the decomposition
of the unipotent variety). Two others are

(1) The fact that Knuth equivalence classes and Kazhdan-Lusztig cells are the
same,

(2) The occurrence of the RSK-correspondence in the theory of crystals, i.e.
canonical bases for quantum groups at q = 0.

Certainly it is not necessary for a book such as this one to treat all of these topics,
but the point should be made that these combinatorial constructions do come up
in several places and their study is beneficial to these other fields as well.
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The material in this book should be of great interest to researchers and students
interested in the representation theory and geometry of semisimple Lie groups.
In some cases the GL(n) focused presentation is very pleasantly indicative of the
general semisimple group situation, and in other places it is quite difficult to see
how these facts generalize, even in some of the cases where the generalization is
known. Some parts of the text could have been treated slightly differently in order
to make these connections and generalizations clearer, and the references could be
more thorough in this direction. In particular, the following points need to be
made:

(1) P. Littelmann [Li] has generalized the combinatorics of row insertion and the
plactic algebra to all symmetrizable Kac-Moody Lie algebras,

(2) The theory of representations of GLn as it is presented in this book can be
done for all semisimple groups as in Janzten’s book [Ja], and

(3) The theory of the cohomology of flag varieties for general Kac-Moody groups
can be found in the work of Kostant-Kumar [KK].

The given construction of the irreducible representations of the symmetric group
is one of the standard, but clumsy, ways of constructing these modules. There
is no attempt made to relate this construction to other standard versions of this
construction. These other versions and the relationships between them can be
found in [Mac] Chapt. I, §7, Ex. 15 (a complete treatment, with proofs, of the
representation theory of the symmetric group in 1 1

2 pages!).
There are two remarks to be made on notation.

(1) The term Young tableau is a bad one: it is overused and misused in the
literature, and thus there is a general confusion about what this word really
means. This book uses it to mean column strict tableau.

(2) It is very nice that most of the notations and definitions agree with that
used in Macdonald’s book on symmetric functions; it makes both books more
useful. However, there are two crucial places, the meanings of “Jacobi-Trudi
formula” and “Giambelli formula” [Mac, p. 61], where the terminology does
differ.

In conclusion, this book is a book that every student and researcher in algebraic
combinatorics, algebraic geometry, and/or representation theory should have on
their shelves. The author has organized a wealth of information that was previously
available only spread out in many parts of the literature. The book does not really
make an effort to indicate the directions in which this field is growing, but it will be
of great use to those who want a brief and well organized treatment of any of the
topics included. It will be particularly useful for graduate students: the author has
that magical ability for getting to the good stuff without getting the reader mired
in preliminary “basics”.
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