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Boolean algebras in which every chain
and antichain is countable

by

J. E. Baumgartner * (Hapover, N. H.) and P, Komjiath (Budapesi)

Abstract. Using the combipatorial axiom <», we deduce the existence of uncountable Bool-
ean algebras in which every chain and antichain is countable. We find examples of such al-
gebras for which the automorphism group has either 1 or 280 elements, and we apply a result
of Kunen and Tall to conclude that the existence of such algebras is relatively consistent with
the negation of the centinnum hypothesis.

We also prove that if B is a Boolean algebra in which every antichain is countable then
B has a countable dense subalgebra, and if B is atomless then the awtomorphism group of B
has cither 1 or 27 elements. >

0. Intreduction. A chain in a Boolean algébra is a set which is linearly ordered

by the canonical partial ordering associated with the algebra; an antichain is a set

of- pairwise incomparable elements of the algebra. Some authors use the word
“antichain” to denote a set of pairwise disfoinf elements; note that this is not the
case here. . ;
Using the combinatorial axiom <3, we deduce the existence of ancountable
Boolean algebras in which every chain and antichain is countable. We find examples

“of such algebras for which the automorphism group has either 1 or 2* elements,

and we apply 2 result of Kunen and Tall to conclude that the existence of such
algebras is relatively consistent with the negation of the continuum hypothesis.
We also prove that if B is a Boolean algebra in which every antichain is count-

.able then B has a countable dense subalgebra, and if B is atomless then the anto-

morphism group of B has cither 1 or 2% clements.

Our set-theoretic terminology is standard. If Ccw,, then C is ¢losed unbourtded
iff Va<o,3peCap and VYa<wsup(Cna)e C. If Sco,, §is stationary iff
§n C 0 for every closed unbounded set C. Fodor’s Theorem [4] asserts that

 if § is stationary, f S~ w;, and f(a)<a for all xe S, then there is stationary

$'= S such that f is constant on S’.
A set mapping on a set X is a function f such that for all x € X, f ()< X— {x].

A set YCX is free (with respect to f) iff Vy,ze ¥ z¢f(y). Hajnal (see [5] or
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[3, § 44]) has proved that if X has cardinality %, /(x) has cardinality <4 for all
xe X, and A<x, then there is a free set of cardinality ». We will need this result in
the next section for » = 8, and 1 = ;.

The proposition > asserts that there is a sequence {S,: a<w;) such that
S,=a and for any SSw,, {u: §noa = 5,} is stationary. We refer to {(S;: a<w;)
as a {>-sequence. Jensen has shown that <> is true in L, the universe of constructible
sets. See [2].

1. Statement of results. An element b of a Boolean algebra B will be called
uncountable iff {ae B: a<b} is uncountable; otherwise b is countable.

The main results of the paper are the following:

THEOREM 1. Assume <>. Then there is an atomless field of subsets of w sueh that
every nonzero element is uncountable and every chain and antichain is countable.

THEOREM 2. dssume {>. Then there is an uncountable atomless field of subsets
of w such that the countable elements form a maximal ideal and every antichain (and
hence every chain) is countable.

Theorems | and 2 are proved in Sections 2 and 3, respectively.

The next theorem shows that it is no accident that fields of subseis of w are
involved in Theorems 1 and 2.

A subalgebra .D of a Boolean algebra B is dense in B iff for every nonzero be B
there is nonzero de D such that d<b.

THEOREM 3. Let B be a Boolean algebra in which every antichain is countable.
Then B has a countable dense subalgebra, and hence B is represemiable as a field of
subsets of w.

Proof. Suppose not. Then it is easy to obtain a sequence (b,: a<w,» of non-
zero elements of B such that for each e, if B, is the subalgebra of B generated by
{by: fi<a}, then there is no nenzero de€ B, such that d<b,. Let

Z = {a<w;: 3be B, bab,b,—b # 0}.

Case 1. Z is stationary. Let {c,: a<w;} enumerate {J {B,: a<w,} and for
each aeZ let f(x) be the least ordinal § such that b aey, b,—cy #0. Let
C = {a: B; = {¢g: B<o}}. It is clear that C is closed unbounded, so Cn'Z is
stationary. Moreover, f(z)<a for every a e C n Z. By Fodor’s Theorem there is
stationary S€C n Z on which f is constant.

Let ¢ = ¢y, where « € ' is arbitrary. For each e S let d, = (c AbYV(EAE)
(& denotes the complement of ¢). Then we claim {d,: « € S} is an uncountable set
of pairwise incomparable elements, contradiction. Suppose «, fe 8 and a<p.
If dy<dy, then cnb,<b; and e b, e By, contradicting the choice of by. If dy<d,
then EAb,<Zab, so EAb,KEaby<b, and we reach a similar contradiction.

Case 2. Z is nonstationary. Then ¥ = o, —Z is uncountable, and if o, fe ¥
and o< f§ then either b,Aby = 0 or by<h,. .

Let W= {xeY: {fe ¥: by<b,} is uncountable}. If W is countable, then we
construct (b,,: E<w,) inductively so that o,e Y~ and b, %&b, for all n<&.
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But then {b,,: é<w,} is an uncountable pairwise disjoint set. Hence W is un-
countable.

If {b,: e W} 'is a chain then let {¢,: a<w,) enumerate {b,: xe W} in
decreasing order (i.e. a<f = ¢;<c,). Then {c,—c 411 @<y} is an uncountable
pairwise disjoint set, contradiction. Hence {f,: x & W} is not a chain.

Tt follows that there are o, Be W with b,Aby = 0. Now let

i oy—={ye ¥ b<h,}

and g: w, — {ye ¥: b,<b,} be one-to-one and such that if £<n then f(§), g(&)
< f(), g(n). For each & let dy = b g v{bg—byez)- Then if £ 5 # it is easy to check
that d; and d, are incomparable. This contradiction completes the proof that B has
a countable dense subalgebra.

Since any countable Boolean algebra is representable as a field of subsets of w,
the second assertion follows. B '

Tt should be remarked that this argument generalizes almost verbatim to larger
cardinals.

It follows from Theorem 3 that every Boolean algebra with no uncountable
antichains must have cardinality <2°. Must every uncountable such algebra have
cardinality %,? Without using the continuum hypothesis we have been unable to
settle this question, but we can say that the number of countable elements is not
too large.

TuroREM 4. Suppose B is a Boolean algebra in which every antichain has cardi-
nality <x;. Then B has ar most %, countable elements.

Proof. Suppose X were a set of &, countable elements of B. For each be X,
let £(b) = {ce X: c<b}. By Hajnal’s set-mapping theorem there is a free set Y= X
of cardinality w,. But the elements of Y are clearly pairwise incomparable, con-
tradiction. B

A Boolean algebra is rigid if it has no automorphisms except the identity,

TurOREM 5. Let B be a Boolean algebra in which every antichain is countable.

(8) If every nonzero element of B is uncountable, then B is rigid.

(b) If B is atomless and B contains a nonzero countable element, then B has
exactly 2% automorphisms.

Proof. (a) If B had a nentrivial automorphism f; then there would be nonzero
be B such that f(5)ab = 0. But then {cv(f(B)—f (6)): c<b} would be an un-
countable set of pairwise incomparable elements, contradiction.

(b) Any countable atomless Boolean algebra has 2% aqutomorphisms so if be B
is nonzero and countable, there are at least 2% automorphisms of B fixing 5. On
the other hand, by Theorem 3, B has a countable dense subalgebra D. Every auto-
morphism of B is completely determined by its values on D, and there are only 2%
possible functions mapping D into B. B

COROLLARY 6. Assuming <, there dre uncountable Boolean algebras with no

3 — Fundarenta Mathematicae CXI. 2-
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uncountable chains or antichains which are rigid, and there are such algebras wiil the!
property that every uncountable atomless subalgebra has exactly 2% automorphisms. .

Finally, we observe that by a result of Kunen and Tall [7, Theorem 11], if B s

a Boolean algebra with no uncountable chain or antichain then B remains such an

algebra in any extension of the universe via a property (K) notion of forcing. Since
the continuum hypothesis may be violated by a property {K) notion of forcing (by
adding many Cohen reals, for example), the conclusions of Theorems 1 and 2 and
Corollary 6 are relatively consistent with the negation of the continuum hypothesis.

Several problems remain, -

.PrROBLEM 1. Can our uses of <> be replaced by CH? Using CH, E. S. Berney [1}
has constructed an uncountable Boolean algebra with no uncountable antichains,
but his algebra has uncountable chains.

ProBLEM 2. Is it consistent that every uncountable Boolean algebra has an
uncountable antichain? It is conceivable that Martin’s Axiom implies that there
is no uncountable collection of subsets of g in which all chains and antichains

(with respect to inclusion) are countable. Kunen [6] (and the first author, indepen-.

dently) used CH to construct a sequence {A4,: «<w,)> of subsets of @ such that

if u< f then Ay A, is finite and {4,: &<} hasno uncountable chains or antichains,.

and Kunen proved that under Martin’s Axiom no such sequence exists, but that
is the best result to date.

PropLEM 3. Is it provable in ZFC that every uncountable Boolean algebra:
with no uncountable antichains has cardinality #,?

ProBreM 4. Can Theorems 1 and 2 be generalized to larger cardinals ?

2. Proof of Theorem 1. The Boolean algebra of Theorem 1 will be obtained as
the union of a sequence {B,: a<®,) of countable atomless fields of subscts of -
For each a, B,,, will be generated by B, together with a single subset x, of «, and
ifaisa limit ordinal then B, will be the union of the preceding By's. The prop-
osition '¢> will be used to ensure that every potential uncountable chain or antichain
is considered at some point. ‘ :

The only difficulty lies in showing that if a countable set M of maximal chains
and antichains in B, is specified, then x, ¢an be chosen 8o that every element of M
remains maximal in B,,,. This is done in Lemma 2.6. The sct x, is constructed
essentially by-a forcing argument, as the reader familiar with forcing will see, but no
knowledge of forcing is necessary to follow the proof.

Given a partial ordering (P, <), a set DgP is called dense in P if
YpePdge Dg<p. )

For the purpose of the following lemmas, B is always a countable atomless
field of subsets. of . We shall be interested in the pattial ordering ‘

P ={(a,b): a,beB, ach,b—a # 0},

where (24, by)<(ay; by) iff as<ay and by by

e ©
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Lemua 2.1. Let m be a maximal antichain in B, and let Dy(m) = {(a, b)e P Vx=w
if acxh then x is comparable with some element of m}. Then D,(m) is dense in P.

Proof. Let (2, b) € P. Since B is atomiess there are disjoint non-empty 4,, 42 € 8
such that g, U ¢, = b—a. Let cem be such that @ a, is comparable with <.’
If cca u ey, then (@au ay,b)e Dy(m). If @ ud;=c, then (a,ava))e Dy(m). B

TEMMA 2.2. Let m be a maximal chain in B, and let Dy(m) = {(2,b) e P: VxS w
if acx b then x is incomparable with some element of m}. Then Dy(m) is dense in P.

Proof. Let (a,B)eP. Since B is atomless, there are disjoint non-empty
4y, a3, a3 € B such that a; Ua, Uay =b—a. If aua,em then (@ v a, b—a))
g Dy(m). If a U ay ¢ m then there is ¢ € m such that c and a U a; are incomparable.
If ¢ (ay Uasy) =0 then (U ay,b)e Dyfm).  cna; # 0 then (avay,b—a)
€ D,(m), and if ¢~ ay # 0 then (av ay, b—ag)e Dy(m). B

" LEMMA 2.3. Let m be a maximal antichain in B; and let e, fe B. Let Dy(m, e, f}
= {{a,b)e P: ¥Vxcw if aSxCh then (e nx) v (f—x) is comparable with some
element of m}. Then Dy(m, e,f) is dense in P.

Proof. Let (2, b) € P. It is easy to see that there is (a', by<(a, b) such that one
of the following holds. ’

M V—adcw—-levf), b-dcenf,

3) b—d=e-f, @ b—-acsf—e.

If (1) or (2) holds, then clearly Vxcow if ¥ £xcb’ then (e nx) U (f-x)e B,
so (@, b) e Dy(m, e, 1)

If (3) or (4) holds, thealet ¢ = (e 7 @) U (f—b)and let d = (en B L (f—a).
Then d—c # 0 so (¢, d)eP. By Lemma 2.1 there is (¢, d%e Dy(m) such that
(¢, &Y< (e, d). I (3) holds, then (a'u (c'—0c), ¥ —(d~dD)e D,(m, e, f), while
if (4) holds, then (o’ L (d—d"), ¥—(c'—c))eDim,e.f). B '

LeMMA 2.4. Let m be a maximal chain in B, and lei e, fe B. Let D,(m, e, f}
= {(a, b)e P: Vxgo if a=xCSh then (¢ n X}y (f—x) either lies in m or else is
incomparable with some element of m}. Then D,(m, e,f) is dense in P. '

Proof. Like Lemma 2.3, but ‘using Lemma 2.2 instead of Lemma 2.1. B

Lavva 2.5. Let ceB, and let Dyc) = {(a, b) e P: Vxcw Iif asxch then
x # ¢}

Proof. By Lemma 2.2, letting m be a maximal ‘chain containing ¢. B

LaMMA 2.6. Let M be a countable collection of maximal chains and antichains-
in B. Then for any (a, b) & P there is x ¢ B such that acx=b and if B' is the field of
sets generated by B U {x}, then every element of M remains maximal in B'. ‘

Proof. Let Dy, Dy, ... emumerate all sets of the form-D, (1, e,f), Dy, &.f),
and D,(c) where m € M and ¢, e, f € B. Form a sequence {(ay, by): ne w) as follows:.
Let a, = a, by = b. Given (a,, b, let (441, By g) € Dy e such that (41, Byrrd
<(g,,b). Let x = U {a,: nca}. Note that ‘every element of b’ has the form
(e n x) v (f—x) for some e,feB. But now by Lemmas 2.3-2.5 it is clear that
-
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x ¢ B and every element of M remains maximal in B'. It is easy to see that B is
atomless.

Proof of Theorem 1. Let {S,: a<e,> be a {>-sequence. Since < implies
the contimmum hypothesis, there is an enumeration {a,: <, » of the power set
of @ in which each element occurs uncountably many times.

By induction, we construct a sequence {B,: a<w,;> of countable atomless
fields of subsets of o, and a sequence {M,: a<w,y where M, is a finite or countably
infinite set of maximal chains and antichains in B,.

Let B, be arbitrary, and let M, = 0. I o is a limit ordinal, let B, = ) {B,: fi<a}
and M, = |J {My: f<a}. Finally, suppose o = f+1. If {a;: e S;} is o maximal
chain or antichain in B, then let My, = My u {{x: e 8t} otherwise let
Myyq = M;. Choose xp ¢ By by Lemma 2.6 so that if By, is gencrated by By U {x;}
then every chain or antichain in M., ; remains maximalin By.. ;. Moreover, if a; By
then we may assume X, Sag.

Let B = {J {B,: a<,}. It is clear that every nonzero element of B is un-
countable. Suppose mS.B is a maximal chain. Let 8= {a: a,em}. Then it is casy to
see that {a: {@;: fe 8 na} is a2 maximal chain in B,} is closed and unbounded.
Since {a: §, = § ~ «} is stationary there is o such that S, = S~ « and {g;: fe S}
is a maximal chain in B,. But then {a,: g e §,} e M, for every y>a so {a;: fe S}
is maximal in B. Hence m = {a,: f&8,} and m is countable. Jt can be shown
similarly that all antichains are countable. This completes the proof. B

3. Proof of Theorem 2. We will obtain our Boolean algebra as the union of
a sequence (B, a<w,) as before, but in addition we will construct a sequence
{L,: a<w;), where I, is a maximal ideal in B, and I, 1, whenever a<f. It will
~ turn out that |} {I,; «<w,} is the maximal ideal of countable elements in the
Boolean algebra.
In Lemmas 3.1-3.7, B will always be a countable atomless field of subsets of w,
and 7 will be a maximal ideal in B. The partial ordering P to be used this time is
= {{a,b): ael, be B—1I, and ach}; ordered' as before, i.e., (a,, b,)<(as, by)
iff a;2a; and b,

Lemma 3.1. Let mcl, -and let Di(m) = {(z, b) & P: cither Yeem cgb or
deem csa}. Then Dy(m) is dense in P.

Proof. Let (a,b) e P. If (a, b) ¢ D(m), then Icem c<b, But then (a w ¢, b)
€ D,(m). &

Levma 3.2. Let ce B and let Dy(c) = {(a,b)eP: Vxso If agxsb then
x % c}. Then Dy(c) is dense in P.

LeMMa 3.3, Let ce X and let Dy(c) = {(a, b)eP cSaw (w—bY). Then Dy(c)
iy dense in P.

LemMa 3.4. Suppose D is dense i in P. Let (D) = {(a, b) & P: (@ ~b, co—-a) e DL
Then S(D) is dense in P.
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LemMA 3.5. Suppose D is dense in P and e, fe I Let
“T(D,e,f) =4{w.b)eP: ((a—e) uf,(b—e) ufye D}.

Then T(D,e,[) is dense in P.

Proof. Let (a,B)eP. By Lemma 3.3 there is («',b')<(a, b) such that
eufca u(w—b) let & =ane f =danf Find (x,y)e D such that
e —aufi—auf) Now lt o' =(x-lfeuf)ueof, and
b= (y—(e uf)) w ¢ U f'. Then it is easy to see (a”,b")eT(D,e.f). B

Now suppose M is a countable (or finite) collection of subsets of B, and let &
he the smallest collection of dense sets such that

(a) every st of the form D (), Dy(c), Dyfe), for me M, ce B, eI, liesin &,
and '

) if Ded and e, fel, then S(D), I(D,e.f)el.
Letus call xcw (M, I)-generic over B iff VD e Ha,bye D a=x<h. Since
% is countable it is clear that there exists xcw which is (M, I)-generic over B.

LEMMA 3.6. Let x be (M, I}-generic over B, and let B be the field of sets generated
by B {x}. Then every clement of B'—B is (M. I)-generic over B

Proof. It is evident from condition (b) above and Lemmas 3.4 and 3.5 that
if x is (M, I)- generic over B, then so are (x—¢) U fand o —x, ife, fe I To complete
the proof, it will suffice te show that any clement of B’ —B has the form (x—e) u f
or ((w~x)—e) v [ for some ¢,fel

First note that if x is' (M, J)-generic over B, then for any a €l both a N x
and a—x are in I. This follows immediately from Lemma 3.3.

We observed in the last section that every element of B'—B has the form
(e n x) U (f—x) for some e, fe B. But by genericity of x and w—x, the remark in
the preceding paragraph shows that we cannot have both e,fe ], or both e, f'¢ .
since otherwise (e mx) w (f—x)e B.

If fel and e¢ 7 then (¢ n x) U (f—%) = (x—{w=@&) L {f—x), where both
w—ecand f—xarein I. Ifee Tand f¢ Fthen (e n x) w (f—x) = ((w—x)—- (o=

u (e N x) where @ —f,.¢ n x€/, and we are done. &

LEMMA 3.7. Under the hypotheses of Lemma 3.6, IU {x} generates a muaximal
ideal 1' in B' und Yae I¥be B if bSa then be B.

Prool. We check the last assertion first. If b & B'— B, then b is (M, J)-generic
aver B, so as observed in the preceding proof, if ae I then d n e T, so we cannot
have bca.

For the rest, suppose x v o = o for some ael. Then x = w— (a-x), and
since a—x € I, we would have x & B, contradiction. Hence I is a proper ideal. Jt
remains only to check maximality. Let ye B'—B. Il y = {x—¢) wfforsomee,fef
then y € F. If not, then y = {(w—x)— ey uffor e, f€1 But then w—y = (x—F) U
ule—flel B
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Proof of Theorem 2. Let {S,: ¢ e &,> bea {-sequence, and let (d,: a<w >
enumerate the power set of w. For cach S<w, let my = {a,: a & 5}

We obtain sequences (B,: a<o ), {[,: ¢<wo> and {M,: a<w,> by induction
as follows: Let By be an arbitrary countable atomless field of subsets of w. and
let I, be a maximal ideal in B,. Given B, and [, a maximal ideal in B, let
M, = {mg: B<a and my= B} Let x, be (M, I)-generic over 8, and let B,
be generated by B, u {x,}, and let T, be generated by 7, U {x,}. If o is a limit
ordinal, let B, =) (By: f<a} and J, = U {I;: f<o}. Let B = U (B z<w )
and I= ) {I,: u<w,}.

It is easy to see that each B, is atomless so B is an atomless field of subsets of .

It follows from Lemma 3.7 that 7 is a maximal ideal of countable clements of B.

It remains only to show that B has no uncountable antichains.

Suppose m</] were an uncountable antichain. Let § = {m: a,em}. Let
Z={n:{ay: feSnal=mnB, and (VheB,—1) if 3cem cz=b then
(3 e Sna)ag=h}. It is easy to see that'Z is closed and unbounded. Hence there
is x €Z such that S, = S a. :

We assert that m = m,. This will show that there are no uncountable anti-
chains included in I, and hence that therc are no uncountable antichains in B (since
if mcB—7I were an autichain, so would be {w—a: aemicsi).

Clearly m,=m. For each ¢ e B— By, let p(c¢) be the least ordinal £ such that
c& By, —B;. Suppose there exists ¢ € m—m,. Choose such & ¢ with g(¢) minimal,
Let 9(c) = fzo. Then. c is (M, I;)-generic over B, so since my, & M, there exists
{a,b) e D (in,) (compated in By) such that a=c<h. Since ¢ is not comparable with
any element of m, it most be the case that Y¢' e m, ¢/ £b. We may assume that (b}
is minimal for b € B; such that asc<b and Vo' e m, -’ &b,

- ‘Now o(b)>u since otherwise z e Z implies that V¢' € m ¢' &b, contradiction,
Say :o(h) = p>m. Then b is (M,, I)-generic aver B,, and there must be (&, b')
€ D,(m,) (computed in B,) such that o'=b<b’. But then clearly we must have
Ye' em, ¢’ &b’ and g(b') <y, contradicting minimality of g(b). Hence B has no un-
countable’ antichains.

Tt follows that B has no uncountable chaing, for if m were an uncountable chain
we could, as above, assume that m< L. But since all the elements ol 7 are countable,
gn.must have a subset well-ordered in type w,, and this contradicts the fact that B
has no uncountable antichains. B

- Added in proof December 3, 1980. Most of the problems have been solved. Shelah Tound
an upcountable algebra with no uncountable chains or antichaing using only CH; the first
awthor showed it consistent that every uncountable algebra has an uncountable antichain: She-
lah and Van Wesep independently answered Problem 3 negatively: and Shelah has gencralized
the -style constrictions to larger cordinals.
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