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Abstract. We show how to attack the problem of model checking a
C program with recursive procedures using an abstraction that we for-
mally define as the composition of the Boolean and the Cartesian ab-
stractions. It is implemented through a source-to-source transformation
into a ‘Boolean’ C program; we give an algorithm to compute the trans-
formation with a cost that is exponential in its theoretical worst-case
complexity but feasible in practice.

1 Introduction

Abstraction is a key issue in model checking. Much attention has been given to
Boolean abstraction (a.k.a. existential abstraction or predicate abstraction); see
e.g. [10,15,6,16,13,11]. The idea of Boolean abstraction is to map states to ‘ab-
stract’ states according their evaluation under a finite set of predicates (boolean
expression over program variables) on states. The predicates induce an ‘abstract’
system with a transition relation over the abstract states. An approximation of
the set of reachable concrete states (in fact, an inductive invariant) is obtained
through a fixpoint of the ‘abstract’ post operator.

Motivated by the fact that computing the Boolean abstraction (i.e. comput-
ing the transition relation between ‘abstract’ states) is prohibitively costly, we
propose a new abstraction, obtained by adding the Cartesian abstraction on top
of the Boolean abstraction. The Cartesian abstraction underlies the attribute
independence in certain kinds of program analysis (see [9]). It is used to approx-
imate a set of tuples by the smallest Cartesian product containing this set. The
new abstraction is induced by predicates over states, but it cannot be defined by
a mapping over states (i.e., a state cannot be assigned a unique abstract value).
We use the framework of abstract interpretation [8] and Galois connections to
specify our abstraction as the formal composition of two abstractions.

We present an algorithm for computing the ‘ideal’ abstract post operator
(“post#b·c”) wrt. the new abstraction (defined through a Galois connection). The
algorithm is exponential in its worst-case complexity, but it is feasible in practice;
it is the first algorithm in this context of abstract model checking that does not
compute the value explicitly for each ‘abstract’ state. This gain in efficiency
must, in theory, be traded with a loss of precision. We identify the single causes
of loss of precision under the Cartesian abstraction. To eliminate most of these,
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we introduce three refinements of post#b·c that are based on standard concepts
from program analysis. We have an implementation that combines all three
refinements and that makes the loss of precision practically negligible.

The use of Cartesian abstraction allows us to represent the abstract post
operator of a C program in form of a Boolean program [2]. Boolean program
are C programs where all expressions and all variables range over the three
truth values 1, 0 and ∗ (for ‘unknown’). As C programs, Boolean programs have
the usual update statements, and they may have procedures with call-by-value
parameter passing, local variables, and recursion.

We next explain the specific context of our work. The SLAM project1 at Mi-
crosoft Research is building processes and tools for checking temporal properties
of system software written in common programming languages, such as C.

The existence of both infinite control and infinite data in (even sequential)
software makes model checking of software difficult. Infinite control comes from
procedural abstraction and recursion. Infinite data comes from the existence of
unbounded data types such as integers and pointer-based data structures. Infi-
nite control and unbounded arithmetic data has been studied in model checking
in isolation, namely for pushdown systems resp. protocols, parameterized sys-
tems or timed and hybrid systems (see e.g. [17]). However, the combination
of unbounded stack-based control and unbounded data has not been handled
before.2

The SLAM project addresses this fundamental problem through a separation
of concerns that abstracts infinite data domains through Cartesian and Boolean
abstractions, and then uses well-known techniques [22,19] to analyze the resul-
tant Boolean program, which has infinite control (but ‘finite data’). The data
are abstracted according to their evaluation under a given a set P of predicates
on states of the C program.

Our working hypothesis is that for many interesting temporal properties of
real-life system software, we can find suitable predicates such that the abstraction
is precise enough to prove the desired invariant. Refinement can be accomplished
by the addition of new predicates.

Given an invariant Inv to check on a C program, the SLAM process has three
phases, starting with an initial set of predicates P and repeating the phases
iteratively, halting if the invariant Inv is either proved or disproved (but possibly
non-terminating):
1. construct an abstract post operator under the abstraction induced by P ;
2. model check the Boolean program that represents the abstract post operator;
3. discover new predicates and add them to the set P in order to refine the

abstraction.

In this paper, we address the issue of abstraction in Phase (1). In principle,
Phases (2) and (3) will follow the lines of other work on interprocedural program

1 http://research.microsoft.com/slam/
2 There are other promising attempts at model checking for software, of course, such
as the Bandera project, for example, where non-recursive procedures are handled
through inlining [7].
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analysis [22,19], and abstraction refinement [4,15]). For more detail on Phase (2),
see [2].

We note that the specific context of the SLAM project has the following
consequences for the abstraction of the post operator and its computation in
Phase (1):

– It is important to give a concise definition of the abstract post operator, not
only to guide its implementation but also to guide the refinement process
(i.e. to help identify the cause of imprecision in a given abstraction).

– The abstract post operator must be computed for its entire domain. That is,
it cannot be restricted a priori to a subset of its domain. At the moment when
the abstract post operator for a statement within a procedure is computed, it
is generally impossible to foresee which values the statement will be applied
to.

In the work on Boolean abstraction that is most closely related to ours, Graf
and Säıdi [13] define an approximation of the Boolean abstraction of the post
operator; our abstraction can be used to formalize that approximation in terms
of a Galois connection, using a new abstract domain.

The procedure of [13] computes the image of their abstract post operator for
each ‘abstract state’ with a linear number of calls to a theorem prover (in the
number n of predicates inducing the Boolean abstraction). This is better than
computing the image of the standard Boolean abstraction of the post operator,
which requires exponentially many calls to a theorem prover; but still, it is only
feasible if done ‘on demand’, i.e. for each reachable ‘abstract’ state (and if the
number of those remains small).

In our setting, the procedure of [13] would require a fixed number 2n · 2 ·n of
calls to a theorem prover. In this paper, we give a procedure with O(2n) · 2 · n
calls; i.e., in comparison with [13], we replace the fixed (or best-case) factor 2n by
a worst-case factor O(2n), which makes all the difference for practical concerns.

2 Example C Program

In this paper, we are concerned with two SLAM tools: (1) c2bp, which takes a
C program and a set of predicates, and produces an abstract post operator rep-
resented by a Boolean program [1], and (2) bebop, a model checker for Boolean
programs. [2] We illustrate c2bp and bebop using a simple C program P shown
in the left-hand-side of Figure 1. The property we want to check is that the
assertion in line 9 is never reached, regardless of the context in which foo is
called. The right-hand-side of Figure 1 shows the Boolean program B that c2bp
produces from P , given the set of predicates { (z==0) , (x==y) }. The Boolean
variables b1 and b2 represent the predicates (z==0) and (x==y), respectively.
Each statement of the C program is translated into a corresponding statement
of the Boolean program. For example, the statement, z = 0; in line 2 is trans-
lated to b1 := 1;. The translation of the statement x++; in line 5 states that
if b2 is 1 before the statement, then it guaranteed to be 0 after the statement,
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int x, y, z, w;

void foo()

{

[1] do {

[2] z = 0;

[3] x = y;

[4] if (w){

[5] x++;

[6] z = 1;

}

[7] } while(x!=y)

[8] if(z){

[9] assert(0);

}

}

decl b1, b2;

/* b1 stands for predicate (z==0) and

b2 stands for predicate (x==y) */

void foo()

begin

[1] do

[2] b1 := 1;

[3] b2 := 1;

[4] if (*) then

[5] b2 := choose(0,b2);

[6] b1 := 0;

fi

[7] while( b2 )

[8] if (!b1) then

[9] assert(0);

fi

end

bool choose(e1,e2)

begin

[10] if (e1) then

[11] return(1);

[12] elsif (e2) then

[13] return(0);

[14] else

[15] return(*);

fi

end

Fig. 1. An example C program, and the Boolean program produced by c2bp
using predicates (z==0) and (x==y)

otherwise the value of b2 after the statement is unknown, represented by * in
line 15. The Boolean program B can be now fed to bebop, with the question: “is
line 9 reachable in B?”, and bebop answers “no”. We thus conclude that line 9
is not reachable in the C program P as well.

3 Correctness

We fix a program (e.g. a C program) generating a transition system with a
set States of states s1, s2, . . . and a transition relation s −→ s′. The operator post
on sets of states is defined as usual: post(S) = {s′ | exists s ∈ S : s −→ s′}.

In Section 7 we will use the ‘weakest precondition’ operator p̃re on sets of
states: p̃re(S′) = {s | for all s′ such that s −→ s′ : s′ ∈ S′}.

In order to define correctness, we fix a subset init of initial states and a
subset unsafe of unsafe states (its complement safe = States−unsafe is the set of



272 Thomas Ball, Andreas Podelski, and Sriram K. Rajamani

safe states). The set of reachable states (reachable from an initial state) is the
least fixpoint of post that contains init, also called the closure of init under post,
post�(init) = init ∪ post(init) ∪ . . ..

The given program is correct if no unsafe state is reachable; i.e., if
post�(init) ⊆ safe. A safe (inductive) invariant is a set of states S that contains
the set of initial states, is a closure under the operator post and is contained in
the set of all safe states, formally: S ⊆ safe, S ⊇ post(S), and S ⊇ init.

Correctness is established by computing a safe invariant. One way to do so
is to find an ’abstraction’ post# of the operator post and compute the closure
of post# on init (and check that it is a subset of safe). In the next section, we
will make the idea of abstraction formally precise.

4 Boolean Abstraction

For the purpose of this paper, we fix a finite set P of state predicates P =
{p1, . . . , pn}. A predicate pi denotes the subset of states that satisfy the pred-
icate, {s ∈ States | s |= pi}. The predicate is usually defined by a Boolean
expression over program variables.

We distinguish the terms approximation and abstraction. The set P of state
predicates defines the Boolean approximation of a set of states S as Boolean(S),
the smallest set containing S that can be denoted by a Boolean expression over
predicates in P (formed as usual with the Boolean operators ∧,∨,¬); this set is
sometimes referred as the Boolean covering of the set. This approximation can
be defined through an abstract domain and two functions αbool and γbool that
we define below (following the abstract interpretation framework [8]); namely,
the Boolean approximation of a set of states S is the set of states Boolean(S) =
γbool(αbool(S)). The two functions are used to directly define the operator post#bool

on the abstract domain as an abstraction of the fixpoint operator post over sets
of states.

Having fixed P , we define the abstract domain AbsDombool as the set of all
sets V of bitvectors v of length n (one bit per predicate pi ∈ P , for i = 1, . . . , n),
AbsDombool = 2{0,1}n

, together with subset inclusion as the partial ordering.
The abstraction function is the mapping from the concrete domain 2States, the
set of sets of states (again with subset inclusion as the partial ordering), to the
abstract domain, assigning a set of states S the set of bitvectors representing
the Boolean covering of S,

αbool : 2States → AbsDombool

S �→ {〈v1, . . . , vn〉 | S ∩ {s | s |= v1 · p1 ∧ . . . ∧ vn · pn} �= ∅}

where 0 · pi = ¬pi and 1 · pi = pi. The meaning function is the mapping

γbool : AbsDom → 2States,

V �→ {s | exists 〈v1, . . . , vn〉 ∈ V : s |= v1 · p1 ∧ . . . ∧ vn · pn}.
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Given AbsDombool and the function αbool (which forms a Galois connection to-
gether with the function γbool), the ‘best’ abstraction of the operator post is the
operator post#bool on sets of bitvectors defined by

post#bool = αbool ◦ post ◦ γbool

where the functional composition f ◦ g of two functions f and g is defined from
right to left; i.e., f ◦ g(x) = f(g(x)).

5 Cartesian Abstraction

Given the vector domainD1×. . .×Dn, the Cartesian approximation Cartesian(V )
of a set of vectors V is the smallest Cartesian product of subsets of D1, . . . ,
Dn that contains the set. It can be defined by the Cartesian product of the
projections Πi(V ), Cartesian(V ) = Π1(V ) × . . . × Πn(V ), where Π1(V ) =
{v1 | 〈v1, . . . , vn〉 ∈ V } etc.. In order formalize the Cartesian approximation
of a fixpoint operator, one uses the abstraction function from the concrete do-
main of sets of tuples to the abstract domain of tuples of sets (with pointwise
subset inclusion as the partial ordering),

αcartesian : 2D1×...×Dn → 2D1 × . . . × 2Dn

V �→ 〈Π1(V ), . . . , Πn(V )〉
and the meaning function γcartesian mapping a tuple of sets 〈M1, . . . , Mn〉 to
their Cartesian product M1 × . . . × Mn. I.e., we have Cartesian(V ) = γcartesian ◦
αcartesian(V ).

In general, one has to account formally for the empty set (i.e., introduce a
special bottom element ⊥ and identify each tuple of sets that has at least one
empty component); in the context of the fixpoints considered here (we look at
the smallest fixpoint that is greater than a given element, e.g. αbool(init)), we
can gloss over this issue.

We next formalize the Cartesian approximation for sets of bitvectors. The
nonempty sets of Boolean values are of one of three forms: {0}, {1} or {0, 1}.
It is convenient to write 0 for {0}, 1 for {1} and ∗ for {0, 1}, and thus repre-
sent a tuple of sets of Boolean values by what we call a trivector, which is an
element of {1, 0, ∗}n. We therefore introduce the abstract domain of trivectors,
AbsDomcartesian = {0, 1, ∗}n (again, we gloss over the issue of a special trivec-
tor ⊥). The partial ordering < is the pointwise extension of the partial order
given by 0 < ∗ and 1 < ∗; i.e., for two trivectors 〈v1, . . . , vn〉 and 〈v′1, . . . , v′n〉,
〈v1, . . . , vn〉 < 〈v′1, . . . , v′n〉 if v1 < v′1, . . . , vn < v′n. The Cartesian abstrac-
tion αcartesian maps a set of bitvectors V to a trivector,

αcartesian : AbsDombool → AbsDomcartesian, V �→ 〈v1, . . . , vn〉
where, for i = 1, . . . , n, (a) vi = 0 if Πi(V ) = {0}; (b) vi = 1 if Πi(V ) = {1}; (c)
vi = ∗ if Πi(V ) = {0, 1}.
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The meaning γcartesian(v) of a trivector v is the set of bitvectors that are
smaller than v (wrt. the partial ordering giving on trivectors given above); i.e.,
it is the Cartesian product of the n sets of bit values denoted by the components
of v. The meaning function γcartesian : AbsDomcartesian → AbsDombool forms a
Galois connection with αcartesian.

6 The Abstract Post Operator post#b�c over Trivectors

We define a new Galois connection by composing the ones considered in the
previous two sections,

αb·c : 2States → AbsDomcartesian, αb·c = αcartesian ◦ αbool

γb·c : AbsDomcartesian → 2States, γb·c = γbool ◦ γcartesian

and the abstract post operator over trivectors, post#b·c : AbsDomcartesian →
AbsDomcartesian, defined by post#b·c = αb·c ◦ post ◦ γb·c.

We have thus given a formalization of the fixpoint operator that implicitly
defines the invariant Inv1 given by I1 in [13]; i.e., the invariant is the meaning
(under γb·c) of the least fixpoint of post#b·c that is not smaller than the abstraction
of init (under αb·c), or Inv1 = γb·c(post#b·c

�
(αb·c(init))). The invariant Inv1 is

represented abstractly by one trivector, i.e. it is the Cartesian product of sets
each described by p, ¬p or p ∨ ¬p (i.e. true) where p is a predicate of the set P .

7 The c2bp Algorithm to Compute post#b�c

The algorithm takes as input the transition system (defining the operators
post and p̃re) and the set of n predicates P ; as output it produces the repre-
sentation of post#b·c in the form of a Boolean program over n ‘Boolean’ vari-
ables v1, . . . , vn (whose values range over the domain {0, 1, ∗}). Each state-
ment of the Boolean program is a multiple assignment statement of the form
〈v1, . . . , vn〉 := 〈e1, . . . , en〉, where e1, . . . , en are expressions over v1, . . . , vn that
are evaluated to a value in {0, 1, ∗}. We write e[v1, . . . , vn] for e if we want to
stress that e is an expression over v1, . . . , vn. The Boolean program represents
the operator post#c2bp over trivectors by

post#c2bp(〈v1, . . . , vn〉) = 〈v′
1, . . . , v

′
n〉 if v′

1 = e1[v1, . . . , vn], . . . , v
′
n = en[v1, . . . , vn].

We will now explain how the algorithm computes the expressions ei[v1, . . . , vn],
for each i = 1, . . . , n. We first define the Boolean under-approximation of a set S
wrt. P as the greatest Boolean expression over predicates in P whose denotation
is contained in S; formally, F(S) = νE ∈ BoolExpr(P). {s | s |= E} ⊆ S. That
is, the set of states denoted by F(S) is States − (γbool ◦ αbool)(States − S). For
the purpose of defining the algorithm, the set BoolExpr(P) consists of Boolean
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expressions in the form of disjunctions of conjunctions of possibly negated pred-
icates from P . The ordering e < e′ is such that each disjunct of e implies some
disjunct of e′ (e.g., p1 is greater than p1 ∧ p2 ∨ p1 ∧ ¬p2).

By repeated calls to a theorem prover,3 the algorithm computes the two
Boolean expressions Ei(0) and Ei(1) over the predicates p1, . . . , pn

Ei(0) = F(p̃re({s | s |= ¬pi})),
Ei(1) = F(p̃re({s | s |= pi})).

We define the two Boolean expressions ei(1) and ei(0) over the variables
v1, . . . , vn by direct correspondence from the two Boolean expressions Ei(0)
and Ei(1) over the predicates p1, . . . , pn.

The expression ei over the variables v1, . . . , vn that defines the i-th value
of the successor trivector of the Boolean program is ei = choose(ei(1), ei(0)),
where the symbol choose stands for an if-then–elseif-then–else combinator on
two Boolean expressions; i.e., the expression choose(e, e′) applied to two Boolean
expressions e and e′, each over the variables v1, . . . , vn, evaluates as follows:

choose(e[v1, . . . , vn], e′[v1, . . . , vn]) = if 〈v1, . . . , vn〉 |= e then 1
elseif 〈v1, . . . , vn〉 |= e′then 0

else ∗
The satisfaction of a Boolean expression e by a trivector 〈v1, . . . , vn〉 is defined
as one expects, namely 〈v1, . . . , vn〉 |= e if all bitvectors in γbool(〈v1, . . . , vn〉)
satisfy e. Thus, for example, 〈0, 1, ∗〉 |= ¬v1∧v2 but 〈0, 1, ∗〉 �|= v3 and 〈0, 1, ∗〉 �|=
¬v3. (The extension of the Boolean operators to the domain {0, 1, ∗} is defined
accordingly.)

Proposition 1 (Correctness). The result of the c2bp algorithm is a Boolean
program representing the Boolean and Cartesian abstraction of the operator post,
i.e. post#c2bp = post#b·c.

Proof. We define the n abstraction functions α
(i)
b·c by

α
(i)
b·c(M) =



1 if M ⊆ {s | s |= pi}
0 if M ⊆ {s | s |= ¬pi}
∗ if neither

and the i-th abstract post function post#b·c
(i)

by post#b·c
(i)

= α
(i)
b·c ◦ post ◦ γb·c.

Since the value of any nonempty set of states S under the abstraction αb·c is
the trivector

αb·c(S) = 〈α(1)
b·c (S), . . . , α

(n)
b·c (S)〉,

3 We consider the theorem prover as an oracle, which does exist for most practical
concerns. It is easy to see that theoretically such an oracle does not exist and that
post#b·c (or post#bool) cannot be computed; i.e., the problem of deciding whether an

operator is equal to post#b·c (or post#bool) is undecidable.
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we can express the abstract post operator post#b·c over trivectors as the tuple of
the abstract post functions, each mapping trivectors to values in {0, 1, ∗},

post#b·c(〈v1, . . . , vn〉) = 〈post#b·c
(1)
(〈v1, . . . , vn〉), . . . , post#b·c

(n)
(〈v1, . . . , vn〉)〉.

Now, we can represent the abstract post operator post#b·c in terms of the sets
Vi(0), Vi(1) and Vi(∗), defined as the inverse images of the values 0, 1 or ∗,
respectively, under the i-th abstract post functions post#b·c

(i)
.

Vi(0) = {〈v1, . . . , vn〉 | post#b·c
(i)
(〈v1, . . . , vn〉) = 0}

Vi(1) = {〈v1, . . . , vn〉 | post#b·c
(i)
(〈v1, . . . , vn〉) = 1}

Vi(∗)= {〈v1, . . . , vn〉 | post#b·c
(i)
(〈v1, . . . , vn〉) = ∗}

= AbsDomcartesian − (Vi(0) ∪ Vi(1))

The statement of the proposition can now be expressed by the fact that the sets
Vi(0), Vi(1) and Vi(∗) are exactly the sets of trivectors that satisfy the Boolean
expressions ei(0), ei(1) or neither.

Vi(0) = {〈v1, . . . , vn〉 | 〈v1, . . . , vn〉 |= ei(0)}
Vi(1) = {〈v1, . . . , vn〉 | 〈v1, . . . , vn〉 |= ei(1)}
Vi(∗) = {〈v1, . . . , vn〉 | 〈v1, . . . , vn〉 �|= ei(0), 〈v1, . . . , vn〉 �|= ei(1)}

(1)

That is, in order to prove the proposition we need to prove (1).
Since AbsDombool is a complete distributive lattice, the membership

of a trivector 〈v1, . . . , vn〉 in Vi(0) is equivalent to the condition that
γcartesian(〈v1, . . . , vn〉) is contained in Bi(0), the largest set of bitvectors that
is mapped to the value 0 by the function α

(i)
b·c ◦ postγbool. That is, if we define

Bi(0) = νB ∈ AbsDombool. α
(i)
b·c ◦ post ◦ γbool(B) = 0

then

Vi(0) = {〈v1, . . . , vn〉 ∈ AbsDomcartesian | γbool(〈v1, . . . , vn〉) ⊆ Bi(0)}. (2)

By definition of α
(i)
b·c, we can express the set of bitvectors Bi(0) as

Bi(0) = νB ∈ AbsDombool. post ◦ γbool(B) ⊆ {s | s |= ¬pi}.
The operators post and p̃re form a Galois connection, i.e. post(S) ⊆ S′ if and
only if S ⊆ p̃re(S′). Therefore, we can write Bi(0) equivalently as

Bi(0) = νB ∈ AbsDombool. γbool(B) ⊆ p̃re({s | s |= ¬pi}).
Thus, Bi(0) is exactly the set of all bitvectors that satisfy the Boolean expres-
sion ei(0).

Bi(0) = {〈v1, . . . , vn〉 ∈ {0, 1}n | 〈v1, . . . , vn〉 |= ei(0)}
This fact, together with (2), yields directly the characterization of Vi(0) in (1).
The other two statements in (1) follow in the similar way. 2
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Complexity. We need to compute F(S) for 2n sets S that are either of the form
S = p̃re({s ∈ States | s |= pi} or of the form S = p̃re({s ∈ States | s |= ¬pi}.

In order to compute each F(S), we need to find all minimal implicants of S in
the form of a cube, i.e. a conjunction C =

∧
i∈I �i of possibly negated predicates

(i.e., �i is pi or ¬pi) such that {s | s |= C} ⊆ S. We use some quick syntactic
checks to find which of the predicates pi can possibly influence S (i.e. such pi

or ¬pi can appear in a minimal implicant); usually, there are only few of those.
‘Minimal’ here means: if an implicant C is found, no larger conjunction C ∧ pj

needs to be considered. Also, if C is incompatible with S (i.e., {s | s |= C}∩S = ∅),
no larger conjunction needs to be considered (since no conjunction C ∧pj can be
an implicant).

8 Loss of Precision under Cartesian Abstraction

We will next analyze in what way precision may get lost through the Cartesian
abstraction. It is important to distinguish that loss from the one that incurs
from the Boolean abstraction. The latter is addressed by adding new predicates
in the refinement phase.

‘Loss of precision’ is made formally precise in the following way (see [8,12]).
Given a concrete and an abstract domain, an abstraction α and a meaning γ,
we say that the operator F does not lose precision under the abstraction to
F# if γ ◦ F# = F ◦ γ (i.e., does not lose precision on the abstract value a if
γ ◦ F#(a) = F ◦ γ(a)).

In our setting, F will always be instantiated by post#bool. In this section, the
phrase ‘the Cartesian abstraction does not lose precision’ is short for ‘post#bool

does not lose precision under the abstraction to post#b·c’, i.e. γcartesian ◦ post#b·c =
post#bool◦γcartesian. We define an operator F on sets to be deterministic if it maps a
singleton set to the empty set or another singleton set. The following observation
will be used in Section 9.3:

Proposition 2. If the operator post#bool is deterministic, then the Cartesian ab-
straction does not lose precision on trivectors 〈v1, . . . , vn〉 such that vi �= ∗, for
1 ≤ i ≤ n.

Example 1. We take the (simple and somewhat contrived) example of the C
program with one statement x = y updating x by y and the set of predicates
P = {p1, p2, p2} where p1 expresses “x > 5”, p2 expresses “x < 5” and p3

expresses “y = 5”. Note that the conjunction of ¬p1 and ¬p2 expresses x = 5.
The image of the trivector 〈0, 0, 0〉 under the abstract post operator post#b·c is
the trivector 〈∗, ∗, 0〉. Therefore, post#b·c(〈0, 0, 0〉) = 〈∗, ∗, 0〉 because post#b·c =
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αcartesian ◦ αbool ◦ post ◦ γbool ◦ γcartesian and by the following equalities.

γcartesian(〈0, 0, 0〉) = {〈0, 0, 0〉} ∈ AbsDombool

γbool({〈0, 0, 0〉}) = {〈x, y〉 | x = 5, y �= 5} ∈ 2States

post({〈x, y〉 | x = 5, y �= 5}) = {〈x, y〉 | x = y, y �= 5} ∈ 2States

αbool({〈x, y〉 | x = y, y �= 5}) = {〈1, 0, 0〉, 〈0, 1, 0〉} ∈ AbsDombool

αcartesian({〈1, 0, 0〉, 〈0, 1, 0〉}) = 〈∗, ∗, 0〉 ∈ AbsDomcartesian

The meaning of the trivector 〈∗, ∗, 0〉 is a set of four bitvectors that properly con-
tains the image of the Boolean abstraction of the post operator post#bool applied
to the meaning of the trivector 〈0, 0, 0〉.

γcartesian(post#b·c(〈0, 0, 0〉))= {〈0, 0, 0〉, 〈1, 0, 0〉, 〈0, 1, 0〉, 〈1, 1, 0〉}
⊃ {〈1, 0, 0〉, 〈0, 1, 0〉}
= post#bool(γcartesian(〈0, 0, 0〉))

That is, the Cartesian abstraction loses precision by adding the bitvector 〈0, 0, 0〉
(expressing x = 5 through the negation of both, x < 5 and x > 5) to
the two bitvectors 〈1, 0, 0〉 and 〈0, 1, 0〉 that form the image of the Boolean
abstract post operator. (The added bitvector 〈1, 1, 0〉 is semantically incon-
sistent and will be eliminated by standard methods in Boolean abstraction;
see [13].) Note that the concrete operator post is deterministic; the loss of pre-
cision in the Cartesian abstraction occurs because post#bool is not deterministic
(post#bool(〈0, 0, 0〉) = {〈1, 0, 0〉, 〈0, 1, 0〉}; as an aside, post does not lose precision
under the Boolean abstraction).

Example 2. The next example is simpler than the previous one but it is not
relevant in the context of C programs where the transition relation is determin-
istic. Nondeterminism arises in the interleaving semantics of concurrent systems.
Take a program with Boolean variables x and y (standing e.g. for ‘critical’) and
the transition relation specified by the assertion x′ = ¬y′ (as usual, a primed
variable stands for the variable’s value after the transition). For simplicity of pre-
sentation, we here identify states and bitvectors. The image of every nonempty
set of bitvectors under post#bool is the set of bitvectors {〈0, 1〉, 〈1, 0〉}. The image
of every trivector under post#b·c is the trivector 〈∗, ∗〉 whose meaning is the set
of all bitvectors. Here again, post#bool is not deterministic. Unlike the previous
example, the concrete operator post is not deterministic as well.

Example 3. The next example shows, in the setting of a deterministic transi-
tion relation, that precision can get lost if post#b·c is applied to a trivector with
components having value ∗. Take a program with 2 Boolean variables x1, x2

and the transition relation specified by the statement “assume(x1 = x2)”; its
post operator, defined by post(V ) = {〈v1, v2〉 ∈ V | v1 = v2}, is equal to its
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Boolean abstraction. The image of the trivector 〈∗, ∗〉 under post#b·c is the trivec-
tor 〈∗, ∗〉. The image of its meaning γcartesian(〈∗, ∗〉) under post#bool is the set of
bitvectors {〈0, 0〉, 〈1, 1〉}.

We will come back to this example in Section 9.3; there, we will also consider
the general version of the same program with n ≥ 2 Boolean variables x1, . . . , xn

and the transition relation specified by the assertion x1 = x2∧x′
1 = x1∧. . .∧x′

n =
xn. The image of the trivector 〈∗, . . . , ∗〉 under post#b·c is the trivector 〈∗, . . . , ∗〉.
The image of its meaning under post#bool is the set of all bitvectors whose first
two components are equal.

9 Refinement for post#b�c

In this section, we apply standard methods from program analysis and propose
refinements of the Cartesian abstraction; these are orthogonal to the refinement
of the Boolean abstraction by iteratively adding new predicates.

9.1 Control Points

We now assume a preprocessing step on the program to be checked which in-
troduces new control points (locations). Each conditional statement (with, say,
condition φ) is replaced by a nondeterministic branching (each nondeterministic
edge going to a different location), followed by a (deterministic) edge enforcing
the condition φ or its negation (“assume(φ)” or “assume(¬φ)”) as a blocking in-
variant, followed by a (deterministic) edge with the update statement, followed
by “joining” edges to the location after the original conditional statement.

Until now, we implicitly assumed predicates p	 for every control point � of the
program (expressing that a state is at location �). This would lead to a great loss
of precision under the abstraction considered above. Instead, one formalizes the
concrete domain as the sequence (2States)Loc of state spaces indexed by program
locations � ∈ Loc. Its elements are vectors S = 〈S[�]〉	∈Loc of sets of states, i.e.
S[�] ∈ 2States. From now on, a state s ∈ States consists only of the environment
of the data variables of the program. Accordingly, the abstract domain is the
sequence (AbsDomcartesian)Loc.4

The post operator is now a tuple of post operators post	, one for each loca-
tion � of the control flow graph, post = 〈post[�]〉	∈Loc, where post[�] is defined in
the standard way. We define the abstract post operator accordingly as the tuple
post#b·c = 〈post#b·c[�]〉	∈Loc.

If � is the “join” location after a conditional statement and its two predeces-
sors are �1 and �2, then post[�](S) = S[�1] ∪ S[�2]. We define the �-th abstract

4 Note that we don’t need to model the procedure stack associated with the state. This
is because the stack is implicitly present in the semantics of the Boolean program,
and hence does not need to be abstracted by c2bp. Procedure call and return are
handled essentially in the same way as assignment statements. See [1] for details.
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post operator, post#b·c[�](〈. . . , v[�1], . . . , v[�2], . . .〉) = v[�1] � v[�2] where v � v′ is
the least upper bound of the two trivectors v and v′ in AbsDomcartesian.

In all other cases, there is a unique predecessor location for �, and post[�]
is defined by the transition relation for the unique edge leading into �. The �-
th abstract post operator is then defined (and computed) as described in the
preceding sections, post#b·c[�] = αb·c ◦ post[�] ◦ γb·c.

Specializing the observations in Section 8, we now study the loss of precision
of post#bool[�] under the Cartesian abstraction specifically for each kind of loca-
tion �. There is no loss of precision if the edge leading into � is one of the two
nondeterministic branches corresponding to a conditional since all data values
are unchanged.

If the edge corresponds to an “assume(φ)” statement (its post operator is
defined by post(S) = {s ∈ S | s |= φ} for S ⊆ States), then there is a loss of pre-
cision exactly if φ expresses a dependence between variables (such as x = y as in
Example 3); Proposition 2 applies, since the operator post#bool[�] is deterministic;
we have post#bool(V ) = V ∩ αbool({s ∈ States | s |= φ}.

If the edge corresponds to an update statement, then (and only then) the op-
erator post#bool[�] may not be deterministic (even if the concrete operator post[�]
is deterministic; see Example 1). If � is a “join” location, then the loss of pre-
cision is apparent: the union of two Cartesian products gets approximated by
a Cartesian product. This loss of precision gets eliminated by the refinement of
the next section.

9.2 Disjunctive Completion

Following standard methods from program analysis [8], we go from the abstract
domain of trivectors AbsDomcartesian to its disjunctive completion, which we may
model as the abstract domain of sets of trivectors, AbsDomb·c·∨ = 2{0,1,∗}n

with
the partial ordering < obtained by extending the ordering < on trivectors, i.e.,
for two sets V and V ′ of trivectors, we have V < V ′ if for all trivectors v ∈ V
there exists a trivector v′ ∈ V ′ such that v < v′. For our purposes, the least
element of the abstract domain AbsDomb·c·∨ is the set {αcartesian ◦ αbool(init)}.

Note that the two domains AbsDombool and AbsDomb·c·∨ are not isomorphic;
we have that V1 = {〈0, ∗〉, 〈1, ∗〉} is strictly smaller than V2 = {〈∗, ∗〉}. The
reduced quotient of AbsDomb·c·∨ (obtained by identifying sets with the same
meaning, such as V1 and V2) is isomorphic to AbsDombool; there, the fixpoint
test is exponentially more expensive than in AbsDomb·c·∨ (but may be practically
feasible if symbolic representations are used).

The abstract post operator post#b·c·∨ over sets of trivectors V ∈ AbsDomb·c·∨ is
the canonical extension of the abstract post operator over trivectors to a function
over sets of trivectors, i.e., for V ∈ 2{0,1,∗}n

, post#b·c·∨(V ) = {post#b·c(v) | v ∈ V }.

9.3 The Focus Operation

Assuming the refinement to the disjunctive completion, we now introduce the
focus operation (the terminology stems from an—as it seems to us, related—
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operation in shape analysis via 3-valued logic [20]). This operation can be used
to eliminate all loss of precision under Cartesian abstraction unless the Boolean
abstraction of the post operator post[�] at location � is nondeterministic (as in
Examples 1 and 2).

The idea of the focus operator can be explained at hand of Example 3. Here,
the assertion defining the operator post associated with the “assume(x1 = x2)”
statement (which corresponds to the assertion “x1 = x2 ∧ x′

1 = x1 ∧ x′
2 = x2”)

expresses a dependence between the variables x1 and x2. Therefore, one defines
the focus operation focus[1, 2] that, if applied to a trivector of length n ≥ 2,
replaces the value ∗ in its first and second components; i.e.,

focus[1, 2](〈v1, v2, v3, . . . , vn〉) =
{〈v′1, v′2, v3, . . . , vn〉 | v′1, v′2 ∈ {0, 1}, v′1 ≤ v1, v′2 ≤ v2}.

We extend the operation from trivectors v to sets of trivectors V in the canonical
way. We are now able to define the ‘focussed’ abstract post operator post#b·c·∨·[1,2]

as follows (refining the operator post#b·c given in the previous section).

post#b·c·∨·[1,2](V ) = {post#b·c(v) | v ∈ focus[1, 2](V )}
Continuing Example 3, we have that post#b·c·∨·[1,2]({〈∗, ∗〉}) = {〈0, 0〉, 〈1, 1〉},
which means that the operator post does not lose precision under the ‘focussed’
abstraction (i.e., the meaning function composed with post#b·c·∨·[1,2] equals post

composed with the meaning function). Note that in general, the focus op-
eration may yield trivectors with components ∗. Continuing Example 3 for
the general version of the program with n ≥ 2 Boolean variables, we have
post#b·c·∨·[1,2]({〈∗, ∗, ∗, . . . , ∗〉}) = {〈0, 0, ∗, . . . , ∗〉, 〈1, 1, ∗, . . . , ∗〉}.

The definitions above generalize directly to focus operations in other than
the first two and more than two components. The following observation follows
directly from Proposition 2.

Proposition 3. For every deterministic operator post, there exists a focus op-
eration such that post does not lose precision under the ‘focussed’ Cartesian
abstraction.

The abstract post operator post#slam used in SLAM results from combining the
three refinements presented in Sections 9.1, 9.2 and 9.3, with the total focus
operation focus[1, 2, . . . , n]. I.e., for each each control point � in the program, we
have: post#slam[�] = post#b·c·∨·[1,...,n][�].

By Proposition 3, for every � such that post#bool[�] is deterministic, the ab-
straction to post#slam[�] does not lose precision. A symbolic model checker such
as bebop can realize the disjunctive completion and the total focus operation
by representing and manipulating a set of trivectors V always in its ‘focussed’
version, i.e. the set of bitvectors focus[1, 2, . . . , n](V ). In a symbolic representa-
tion, the gain of precision obtained by using the disjunctive completion and the
total focus operation comes at no cost. More precisely, the two Boolean formu-
las representing V and focus[1, 2, . . . , n](V ) simplify to the same form (e.g., true
represents {〈∗, . . . , ∗〉} as well as {0, 1}n).
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10 Conclusion

Abstraction is probably the single most important issue in model checking soft-
ware. Our work goes beyond the standard abstraction used in model checking,
the so-called Boolean abstraction. We use the abstract domain of trivectors (with
a third truth value ∗) in order to define a new abstraction function αb·c in terms
of Boolean and Cartesian abstraction, and an abstract post operator post#b·c
in terms of a Galois connection. We present a practically feasible algorithm to
compute the new abstraction, represented as a Boolean program. Previous al-
gorithms on related Boolean abstractions were practical only when restricted to
a small subset of states; that restriction is not possible in our setting, which
addresses programs with recursive procedures.

We have implemented both the tools c2bp and bebop. We have used c2bp
and bebop to successfully check properties of a Windows NT device driver for
the serial port. The driver has a few thousand lines of C code. More details and
a case study on using SLAM tools to check properties of Windows NT device
drivers will appear in a forthcoming paper.

The new abstraction trades a crucial gain of efficiency with a loss of precision
(by ignoring dependencies between the Boolean variables). We single out the
different causes of a proper loss of precision and are able to eliminate all but
one. It may be interesting to determine general conditions ensuring that no
proper loss of precision can ever occur, phrased e.g. in terms of separability [18].

The formal machinery developed here has potentially other applications in
designing new abstractions for model checking software, in explaining existing
approaches to pointer analysis based on 3-valued logic [20], and in classifying
data-flow analysis problems modeled as model checking problems [23,21]. Previ-
ous work relating the Boolean abstraction to bisimulation and temporal proper-
ties (e.g. [5,10,6,16]) should be re-examined in the light of the new abstraction,
perhaps in terms of 3-valued transition systems [14].

Acknowledgements. We thank Todd Millstein and Rupak Majumdar for their
work on c2bp, and Bertrand Jeannet and Laurent Mauborgne for their helpful
comments.
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