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Boolean implication networks<p>A method for analysis of microarray data is presented that extracts statistically significant Boolean implication relationships between pairs of genes.</p>

Abstract

We describe a method for extracting Boolean implications (if-then relationships) in very large

amounts of gene expression microarray data. A meta-analysis of data from thousands of

microarrays for humans, mice, and fruit flies finds millions of implication relationships between

genes that would be missed by other methods. These relationships capture gender differences,

tissue differences, development, and differentiation. New relationships are discovered that are

preserved across all three species.

Background
A large and exponentially growing volume of gene expression

data from microarrays is now available publicly. Since the

quantity of data from around the world dwarfs the output of

any individual laboratory, there are opportunities for mining

these data that can yield insights that would not be apparent

from smaller, less diverse data sets. Consequently, numerous

approaches for extracting large networks of relationships

from large amounts of public-domain gene expression data

have been used. Almost all of this work constructs networks

of pairwise relationships between genes, indicating that the

genes are co-expressed [1-5]. Co-expression is a symmetric

relationship between a gene pair, because if A is related to B,

then B is related to A. Many of these methods are based on

showing that the expression of two genes has a coefficient of

correlation exceeding some threshold.

We propose a new approach to identify a larger set of relation-

ships between gene pairs across the whole genome using data

from thousands of microarray experiments. We first classify

the expression level of each gene on each array as 'low' or

'high' relative to an automatically determined threshold that

is derived individually for each gene. We then identify all

Boolean implications between pairs of genes. An implication

is an if-then rule, such as 'if gene A's expression level is high,

then gene B's expression level is almost always low', or more

concisely, 'A high implies B low', written 'A high ⇒ B low'.

In general, Boolean implications are asymmetric: 'A high ⇒ B

high' may hold for the data without 'B high ⇒ A high' holding.

However, it is also possible that both of these implications

hold, in which case A and B are said to be 'Boolean equiva-

lent'. Booleanequivalence is a symmetric relationship. Equiv-

alent genes are usually strongly correlated as well. A second

kind of symmetric relationship occurs when A high ⇒ B low

and B high ⇒ A low. In this case, the expression levels of A

and B are usually strongly negatively correlated, and genes A

and B are said to be 'opposite'. In total, six possible Boolean
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relationships are identified: two symmetric (equivalent and

opposite) and four asymmetric (A low ⇒ B low, A low ⇒ B

high, A high ⇒ B low, B high ⇒ A high). Below, 'symmetric

relationship' means a Boolean equivalence or opposite rela-

tionship; 'asymmetric relationship' means any of the four

kinds of implications, when the converse relationship does

not hold; and 'relationship' means any of the two symmetric

or four asymmetric relationships.

The set of Boolean implications is a labeled directed graph,

where the vertices are genes (more precisely, Affymetrix

probesets for genes, in our data) and the edges are implica-

tions, labeled with the implication type. We call this graph the

Boolean implication network. Networks based on symmetric

relationships are undirected graphs.

It is important to understand that a Boolean implication is an

empirically observed invariant on the expression levels of two

genes and does not necessarily imply any causality. One way

to understand the biological significance of a Boolean impli-

cation is to consider the sets of arrays where the two genes are

expressed at a high level. The asymmetric Boolean implica-

tion A high ⇒ B high means that 'the set of arrays where A is

high is a subset of the set of arrays where B is high'. For exam-

ple, this may occur when gene B is specific to a particular cell

type, and gene A is specific to a subclass of those cells. Alter-

natively, this implication can be the result of a regulatory rela-

tionship, so A high ⇒ B high could hold because A is one of

several transcription factors that increases expression of B, or

because B is a transcription factor that increases expression

of A only in the presence of one or more cofactors. On the

other hand, the asymmetric Boolean implication A high ⇒ B

low means that A and B are rarely high on the same array - the

genes are 'mutually exclusive'. A possible explanation for this

is that A and B are specific to distinct cell types (for example,

brain versus prostate), or it could be that A represses B or vice

versa.

Boolean implications capture many more relationships that

are overlooked by existing methods that scale to large

amounts of data, which generally find only symmetric rela-

tionships. There may be a highly significant Boolean implica-

tion between genes whose expression is only weakly

correlated. The relationships in the resulting network are

often biologically meaningful. The network identifies Boolean

implications that describe known biological phenomena, as

well as many new relationships that can serve to generate new

hypotheses. Moreover, many previously unidentified rela-

tionships are conserved between humans, mice, and fruit

flies.

A meta-analysis was performed on thousands of publicly

available microarray datasets on Affymetrix platforms for

humans, mice, and fruit flies. This is the first time Boolean

implication networks have been applied to the problem of

mining large quantities of microarray data. The remainder of

this manuscript explains how the networks are constructed

from gene-expression microarray datasets, and describes

selected Boolean implications that capture important biolog-

ical phenomena that would be overlooked in gene expression

networks based on co-expression. We also discuss related

work.

Results and discussion
Boolean implications are prevalent in gene expression 

microarray data

Boolean implication networks are constructed by finding

Boolean implications between pairs of probesets in hundreds

or thousands of microarrays belonging to the same platform.

The logarithm (base 2) of each expression level is used. To

find a Boolean implication between a pair of genes, each

probeset is assigned an expression threshold t (see Materials

and methods). A scatter plot where each point represents

gene A's expression versus gene B's expression for a single

sample is divided, based on the thresholds, into four quad-

rants: (A low, B low), (A low, B high), (A high, B low), and (A

high, B high). A Boolean implication exists when one or more

quadrants is sparsely populated according to a statistical test

and there are enough high and low values for each gene (to

prevent the discovery of implications that follow from an

extreme skew in the distribution of one of the genes). The test

produces a score, and a cutoff is chosen for the presence or

absence of an implication to obtain an acceptable false discov-

ery rate (FDR; see Materials and methods). To reduce sensi-

tivity to small errors in the choice of t and noise in the data,

points within an interval around the threshold are ignored

(see Materials and methods). A visual examination of the

scatter plots is a straightforward way to understand the impli-

cations and to check the quality of the results (Figure 1).

There are four possible asymmetric Boolean relationships,

each occurring when a particular quadrant is sparse. Figure

1a shows an example low ⇒ low implication; here the quad-

rant is sparse when PTPRC is low and CD19 high, so PTPRC

low ⇒ CD19 low. Figure 1b shows a high ⇒ low implication;

here XIST high ⇒ RPS4Y1 low; this relationship was recently

identified in a study of the CELSIUS microarray database [6],

which annotated microarrays by gender. Figure 1d shows a

low ⇒ high implication; here FAM60A low ⇒ NUAK1 high. In

this case, when FAM60A expression level is low, NUAK1

expression level is high, but when FAM60A expression level

is high, NUAK1 expression level is evenly distributed between

high and low. Finally, Figure 1e shows a high ⇒ high implica-

tion; here COL3A1 high ⇒ SPARC high. This particular rela-

tionship may be viewed as complex, since it involves a

combination of multiple types of relationships, including lin-

ear and constant. However, from a Boolean perspective, this

is a simple and clear logical implication, which is easily

detected.
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For each of the above asymmetric Boolean implications, there

is always a contrapositive Boolean relationship. (The contra-

positive is the implication that results from swapping the left-

hand and right-hand genes while simultaneously changing

low to high and vice versa.) For example, PTPRC low ⇒ CD19

low so CD19 high ⇒ PTPRC high. Similarly, XIST high ⇒
RPS4Y1 low, so RPS4Y1 high ⇒ XIST low; FAM60A low ⇒
NUAK1 high, so NUAK1 low ⇒ FAM60A high; and COL3A1

high ⇒ SPARC high, so SPARC low ⇒ COL3A1 low.

The two possible symmetric Boolean relationships corre-

spond to two sparse diagonally opposed quadrants in a scat-

ter plot. First, the low-high and high-low quadrant can be

sparse as shown in Figure 1c, which shows that CCNB2 and

BUB1B are equivalent in the human network. Strongly posi-

tively correlated genes are almost always equivalent. Alterna-

tively, the low-low and high-high quadrants can be sparse, as

shown in Figure 1f, which shows that EED and XTP7 are

opposite. Negatively correlated genes are often opposite. An

important reason for ignoring points that are close to the low/

high threshold is to enable discovery of equivalence and

opposite relationships. As is clear in Figure 1c, if points inside

the intermediate region were considered, there would be a

significant number of points in all four quadrants. Empiri-

cally, the interval width of 1 results in the discovery of many

equivalent genes. Notice that it is not possible to have both

the low-low and high-low quadrants be sparse because that

would require the second gene to be always low; similarly, it

is not possible for the low-high and low-low quadrants both to

be sparse.

We constructed Boolean implication networks for humans,

mice, and fruit flies in a meta-analysis of publicly available

microarray data. A very large number of Boolean implications

were found for each individual species. Approximately 3 bil-

lion probeset pairs were checked for possible Boolean impli-

cations in the human dataset, of which 208 million were

significant implications, even with a stringent requirement

for significance (a permutation test yields a FDR of 10-4). Sim-

ilarly, the mouse dataset has 336 million implications out of 2

billion probeset pairs (with an FDR of 6 × 10-5), and the fruit

fly dataset has 17 million implications out of 196 million

Boolean relationshipsFigure 1

Boolean relationships. Six different types of Boolean relationships between pairs of genes taken from the Affymetrix U133 Plus 2.0 human dataset. Each 
point in the scatter plot corresponds to a microarray experiment, where the two axes correspond to the expression levels of two genes. There are 4,787 
points in each scatter plot. (a) PTPRC low ⇒ CD19 low. (b) XIST high ⇒ RPS4Y1 low. (c) Equivalent relationship between CCNB2 and BUB1B. (d) 

FAM60A low ⇒ NUAK1 high. (e) COL3A1 high ⇒ SPARC high. (f) Opposite relationship between EED and XTP7.
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probeset pairs (with an FDR of 6 × 10-6). Of the 208 million

implications in the human dataset, 128 million are high ⇒
low, 38 million are low ⇒ low, 38 million are high ⇒ high, 2

million are low ⇒ high, 1.6 million relationships are equiva-

lences and 0.4 million are opposite.

Table 1 summarizes the number of Boolean relationships

found in each dataset. In all cases, Boolean implications of the

type high ⇒ low are most common, and opposite relation-

ships are rare. As can be seen from Table 1, in the human data

set, 1% of the total Boolean relationships are symmetric, while

the remaining 99% are asymmetric. Similarly, in the mouse

data set, 1.4% of the total Boolean relationships are symmet-

ric, and 98.6% are asymmetric. However, in the fruit fly data-

set 12% of the Boolean relationships are symmetric. The

number of low ⇒ low relationships is always the same as the

number of high ⇒ high relationships because of contraposi-

tives. One reason for the large number of high ⇒ low relation-

ships is that there are many genes that are specific to

particular cell and tissue types, and n mutually exclusively

expressed genes give rise to n(n - 1) high ⇒ low relationships.

An interesting fact about the array technology is that alterna-

tive probesets for the same gene are not always equivalent in

the network; instead, there is often a low ⇒ low relationship

between them. This is consistent with previous findings of

low average correlation among probesets for the same gene

[7]. Boolean implications might be helpful in pointing out

important differences among different probesets for the same

gene, although we have not explored this issue.

Boolean implications identify known biological 

properties and potentially new biological properties

Boolean implications capture a wide variety of currently

known biological phenomena. The generated networks con-

tain relationships that show gender differences, develop-

ment, differentiation, tissue differences and co-expression,

suggesting that the Boolean implication network can poten-

tially be used as a discovery tool to synthesize new biological

hypotheses. The scatter plot between XIST and RPS4Y1 in

Figure 2a is an example of an asymmetric Boolean relation-

ship that shows gender difference. RPS4Y1 is expressed only

in certain male tissues because it is present solely on the Y

chromosome [8], and XIST is normally expressed only in

female tissues [9,10], so RPS4Y1 and XIST are rarely

expressed together on the same array. Hence, there are impli-

cations RPS4Y1 high ⇒ XIST low and XIST high ⇒ RPS4Y1

low. Moreover, RPS4Y1 is Boolean equivalent to four other

genes, all of which are Y-linked. Also, RPS4Y1 low ⇒ ACPP

low (Figure 2b), KLK2 low, and KLK3 (PSA) low, and ACPP,

KLK2, and KLK3 are all prostate-specific [11].

Boolean implications capture hierarchical relationships

between tissue types. Figure 2c shows ACPP high ⇒ GABRB1

low. GABRB1 is specific to the central nervous system [12],

and ACPP is prostate-specific [11]; hence, ACPP high ⇒
GABRB1 low appears sensible because the prostate is distinct

from the central nervous system (CNS). On the other hand,

GABRA6 is primarily expressed in the cerebellum, and we

find that GABRB1 low ⇒ GABRA6 low, because the cerebel-

lum is part of the CNS. This can be taken more literally to

mean that if a sample is not part of the CNS, it is also not part

of the cerebellum.

To show an example of a Boolean implication between two

developmentally regulated genes, we identify HOXD3 and

HOXA13 as shown in Figure 2d. HOXD3 and HOXA13 have

their evolutionary origin from fruit fly antennapedia (Antp)

and ultrabithorax (UBX), respectively [13]. It was recently

discovered that HOXD3 and HOXA13 are expressed in

human proximal and distal sites, respectively [14], a pattern

of expression that is evolutionarily conserved from fruit flies.

The human Boolean implication network shows that high

expression of HOXD3 and HOXA13 are mutually exclusive

(HOXD3 high ⇒ HOXA13 low), which is consistent with the

above paper. (Unlike the findings of that paper, this relation-

ship is not highly conserved in our analysis because ortholo-

gous mouse and fruit fly probesets for the desired genes did

not have a good dynamic range in the data set.)

Implications between genes expressed during differentiation

of specific tissue types also appear in the network. For exam-

ple, a Boolean implication between two key marker genes

from B cell differentiation, KIT and CD19, is shown in Figure

2e. KIT is a hematopoietic stem cell marker [15], and CD19 is

a well-known B cell differentiation marker [16]. KIT and

Table 1

Number (in millions) of Boolean relationships in human, mouse and fruit fly datasets

Dataset Total Low implies high High implies how Low implies how High implies high Equivalent Opposite

Human 208 2 128 38 38 1.6 0.4

Mouse 336 8 208 57.6 57.6 4.1 0.7

Fruit fly 17 0.3 7.3 3.7 3.7 1.9 0.1

In the human dataset, 1% of all Boolean relationships are symmetric (equivalence + opposite) and 99% are asymmetric (low ⇒ low + low ⇒ high + 
high ⇒ low + high ⇒ high). The mouse dataset has 1.4% symmetric (equivalence + opposite) and 98.6% asymmetric (low ⇒ low + low ⇒ high + high 
⇒ low + high ⇒ high) relationships. The fruit fly dataset has 12% symmetric (equivalence + opposite) and 88% asymmetric (low ⇒ low + low ⇒ high 
+ high ⇒ low + high ⇒ high) relationships.
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CD19 are rarely expressed together, as reflected by the

Boolean implications CD19 high ⇒ KIT low and its contrap-

ositive KIT high ⇒ CD19 low.

From inspecting the human network, it is clear that hundreds

of genes are co-expressed that are related to the cell cycle.

Two such genes, CDC2 and CCNB2, are shown in Figure 2f.

Descriptions of data sources are consistent with the 

biology of the Boolean implications

We compared the Boolean implications discovered by the

algorithm with the documentation of the microarray data

supporting the implications. Since the hundreds of series in

the Gene Expression Omnibus (GEO) are not annotated con-

sistently, we used the descriptive web pages provided with

GEO to describe each array. We developed a web interface

that enabled highlighting the points in a scatter plot corre-

sponding to arrays whose descriptive pages include a particu-

lar search term. The description pages associated with

selected points in a scatter plot can be displayed. Text search

of the description pages captures partial and approximate

information about the microarray experiments, but it has

been effective for identifying arrays associated with some par-

ticular disease and tissue types.

Figure 3a,b show the same scatter plot of RPS4Y1 versus XIST

as above, but arrays are highlighted when their description

pages contain the terms 'prostate' and 'breast'. As expected,

all of the prostate arrays appear in the RPS4Y1 high/XIST low

quadrant, and all but 6 of the 531 breast arrays appear in the

RPS4Y1 low/XIST high quadrant. Inspection of the descrip-

tions of the six breast arrays where RPS4Y1 is high reveals

that four of those samples come from males, leaving only two

female arrays in which RPS4Y1 has a high level of expression,

possibly due to experimental error. The prostate samples

come from at least three different laboratories and the breast

cells come from several laboratories and include both tumor

cells and cell lines.

Prostate-specific genes tend to be expressed in arrays from

prostate cells. Figure 3c shows the scatter plot of ACPP ver-

sus, KLK3, highlighting the arrays whose description con-

Boolean relationships follow known biologyFigure 2

Boolean relationships follow known biology. (a) Gender difference, XIST high ⇒ RPS4Y1 low, male and female genes are not expressed in the same 
sample. (b) Gender tissue specific, RPS4Y1 low ⇒ ACPP low, prostate cells are from males. (c) Tissue difference, ACPP high ⇒ GABRB1 low, prostate 
and brain genes are not expressed in the same samples. (d) Development, HOXD3 high ⇒ HOXA13 low, anterior is different from posterior. (e) 

Differentiation, KIT high ⇒ CD19 low, differentiated B cell is different from hematopoietic stem cell. (f) Co-expression, CDC2 versus CCNB2.
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tains the term 'prostate'. Of 93 prostate arrays, only five have

low expression of ACPP and KLK3.

Figure 3d shows a scatter plot of GABRB1 versus GABRA6

low, where GABRA6 is cerebellum-specific and GABRB1 is

CNS-specific. The highlighted arrays are those whose descrip-

tions contain the word 'cerebellum'. In these log-reduced

data, the expression level of GABRA6 is 8-64 times higher in

cerebellar tissue than in other cells. The arrays come from two

series in GEO that contain large numbers of nervous system

Analysis of scatter plots with various experimental conditionsFigure 3

Analysis of scatter plots with various experimental conditions. Experimental conditions (highlighted as red) are determined through searching the text 
description of the microarray experiments. (a) XIST high ⇒ RPS4Y1 low, prostate microarrays are highlighted, most of them have high expression levels 
of RPS4Y1. (b) XIST high ⇒ RPS4Y1 low, breast microarrays are highlighted, most of them have high expression levels of XIST. (c) ACPP equivalent to 
KLK3, prostate microarrays are highlighted, both ACPP and KLK3 are highly expressed in prostate microarrays. (d) GABRA6 high ⇒ GABRB1 high, 
cerebellum microarrays are highlighted, GABRA6 is cerebellum-specific and GABRB1 is CNS-specific.
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tissues. All of the arrays whose description contains the term

'cerebellum' have high expression levels of GABRA6. A small

number of other arrays with other cell types have high expres-

sion of GABRA6, including a 'pons AB' sample, and two pilo-

cytic cytomas. If we select the points where GABRB1 is above

the threshold and examine them at random, they are almost

all tissues from various parts of the brain.

Many Boolean relationships are highly conserved 

across multiple species

We constructed a network consisting of the relationships that

hold between orthologous genes in multiple species. The net-

work of relationships that are conserved between the human

and mouse networks has a total of 3.2 million Boolean impli-

cations consisting of 8,000 low ⇒ high, 2 million high ⇒ low,

0.5 million low ⇒ low, 0.5 million high ⇒ high, 10,814 equiv-

alent and 94 opposite implications. Applying the same analy-

sis to randomized human and mouse datasets yielded no

conserved Boolean relationships, for an estimated FDR of less

than 3.1 × 10-7. An analogous network of implications con-

served across human, mouse and fruit fly has 41,260 Boolean

relationships: 24,544 high ⇒ low, 8,060 low ⇒ low, 8,060

high ⇒ high and 596 equivalent and 0 opposite. The FDR for

the conserved human, mouse and fruit fly Boolean implica-

tion network is less than 2.4 × 10-5. Figure 4 shows three

examples of Boolean relationships that are conserved in

humans, mice and fruit flies. The first row in Figure 4 is an

example of an equivalent relationship that is conserved in all

three species, and the middle and bottom rows show highly

conserved high ⇒ low and high ⇒ high relationships. In the

examples below, the human names are used for genes

involved in conserved relationships.

The top row in Figure 4 shows that CCNB2 orthologs and

BUB1B orthologs are equivalent in all three species. It is well

known that both CCNB2 and BUB1B are related to the cell

cycle [17,18]. The maximum connected components of the

network of equivalent relationships conserved in humans,

mice, and fruit flies were examined. (A maximum connected

component of an undirected graph is a set of vertices for

which there is a path from every vertex to every other vertex,

and there are no edges from a vertex in the connected compo-

nent to another connected component. In this case, the verti-

ces represent probesets and the edges represent Boolean

equivalence relationships.) The algorithm found 13 different

connected components, two of which are relatively large com-

ponents. The largest component has 178 genes, including

well-known cell-cycle genes such as BUB1B, EZH2, CCNA2,

CCNB2 and FEN1. The genes belonging to this component

were analyzed using DAVID functional annotation tools

[19,20] and were enriched for 'DNA replication' (2.03 × 10-14,

19 genes) and 'cell cycle process' (1.06 × 10-13, 30 genes) as

significant Gene Ontology annotations. The functional anno-

tation analysis also reported 'proteasome' and 'cell cycle' as

significant Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways for the largest component. The second

largest component has 32 genes, and seems to be related to

the nervous system with 'transport' (2.55 × 10-8, 16 genes) and

'synaptic transmission' (1.04 × 10-8, 8 genes) as significant

Gene Ontology annotations. This component is enriched for

calcium signaling pathway in the KEGG database. The list of

genes for the components and the DAVID functional annota-

tion results are included in Additional data files 2-6.

The connected components described above have biologically

meaningful relationships. CCNB2 and BUB1B play roles in

mitosis [18,21], EZH2 is a histone methyltransferase [22],

CCNA2 is required for G1/S transition [23] and FEN1 has

endonuclease activity during DNA repair [24]. Surprisingly,

all these genes are highly correlated in all three species. Inter-

estingly, of the two human homologs of Drosophila poly-

comb-group gene Enhancer-of-zeste (E(z)), EZH1 and EZH2,

only EZH2 maintains a functional association with other cell

cycle genes. EZH1 might have evolved to acquire a different

function than EZH2 in mammals. In addition, there are

highly conserved equivalent genes that are part of the same

protein complexes, such as CDC2-CCNB2, EED-EZH2,

RELB-NFKB2, RFC1-RFC2-RFC4, and MSH2-MSH6. There

is also a conserved cluster of four genes - NDUFV1, IDH3B,

CYC1 and UQCRC1 - that are all related to generation of

energy through oxidative phosphorylation and the electron

transport chain.

The middle row in Figure 4 shows an asymmetric relationship

that is conserved in all three species: BUB1B high ⇒ GABRB1

low. GABRB1 is a receptor for an inhibitory neurotransmitter

in vertebrate brains [25]. Inspection of the descriptions of

arrays in which orthologs of GABRB1 are expressed shows

that they are overwhelmingly from CNS tissue in humans and

mice and 'brain' or 'head' samples from fruit flies. It is sur-

prising to see that the Boolean implication between GABRB1

and BUB1B is conserved in vertebrates and fruit flies. This

relationship suggests that cells expressing the GABRB1 neu-

rotransmitter are less likely to be proliferating. The bottom

row in Figure 4 shows an asymmetric relationship between

two well-known cell cycle regulators, E2F2 and PCNA [26-

28].

Figure 5 shows the Boolean implications between MYC and

ribosomal genes in the network of relationships that are con-

served between humans and mice. The implication is MYC

high ⇒ ribosomal genes high for both large and small ribos-

omal subunits. This implication is consistently observed for

19 genes for large subunits of the ribosome (p-value <3 × 10-

26) and 15 genes for small subunits of the ribosome (p-value

<1 × 10-22). MYC has been shown to regulate ribosomal genes

in a recently comparative study between human and mouse

[29]. In this study, the high expression levels of MYC and

ribosomal genes in human lymphoma were compared with

the gene signature associated with MYC-induced tumorigen-

esis in mice.



http://genomebiology.com/2008/9/10/R157 Genome Biology 2008,     Volume 9, Issue 10, Article R157       Sahoo et al. R157.8

Genome Biology 2008, 9:R157

Boolean implication networks are more 

comprehensive than correlation-based networks

To compare the properties of Boolean implication networks

to correlation-based networks, both types of networks were

constructed based on human CD (Cluster of differentiation)

antigen genes. This set of genes was chosen because it is a rel-

atively small and coherent subset of biologically interesting

genes, and a correlation network can be constructed more

rapidly than if all the probesets on the arrays were used,

which would have taken an unreasonable amount of compu-

tation. The correlation-based network on human CD genes

was computed as described in Materials and methods.

Figure 6 shows histograms of the various kinds of Boolean

relationships with respect to the Pearson's correlation coeffi-

cients between expression levels of the same pairs of genes.

As expected, highly correlated genes generally correspond to

symmetric Boolean relationships; 80% of the symmetric

Boolean relationships have correlation coefficients more than

0.65. Figure 6 shows that the number of Boolean equivalent

pairs increases linearly with the correlation coefficient, sug-

gesting that most of the Boolean equivalence have good cor-

relation coefficients. Therefore, gene pairs with high

correlation coefficients are almost always Boolean equivalent.

Highly conserved Boolean relationshipsFigure 4

Highly conserved Boolean relationships. Orthologous CCNB2 and BUB1B equivalent relationships: (a) Bub1 versus CycB in fruit fly, (b) Bub1b versus 
Ccnb2 in mouse, (c) BUB1B versus CCNB2 in human. Orthologus BUB1B high ⇒ GABRB1 low: (d) Bub1 versus Lcch3 in fruit fly, (e) Bub1b versus 
Gabrb1 in mouse, (f) BUB1B versus GABRB1 in human. Orthologous E2F2 ⇒ PCNA high: (g) E2f versus mus209 in fruit fly, (h) E2f1 versus Pcna in 
mouse, (i) E2F2 versus PCNA in human.
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On the other hand, asymmetric Boolean relationships usually

display poor correlation; 98.8% of the asymmetric Boolean

relationships on the human CD genes have correlation coeffi-

cients ranging from -0.65 to 0.65 (correlation-based net-

works are often based on gene pairs having a threshold of 0.7

or greater for the correlation coefficient [3,4,30]). The histo-

grams in Figure 6 suggest that it would be very difficult to find

approximately the same asymmetric relationships using a fil-

ter based on correlation coefficients, because the number of

non-relationships in a given range of correlation coefficients

usually greatly exceeds the number of asymmetric relation-

ships.

Boolean implication networks are not scale free

It has often been observed that other biological networks are

scale-free [31-36]. To study the global properties of Boolean

implication networks, we plotted the frequency of the

probesets against their degree as shown in Figure 7. (The

degree of a probeset is the number of Boolean relationships

involving that probeset.) Each log-log plot shows the degree

on the horizontal axis and the number of probesets with that

Conserved Boolean relationships between MYC and ribosomal genesFigure 5

Conserved Boolean relationships between MYC and ribosomal genes. (a-h) The scatterplots show Boolean relationships between MYC and a few 
selected genes for large ribosomal subunits in both human and mouse datasets. (i-p) Boolean relationships between MYC and few selected ribosomal 
small subunit genes in both human and mouse datasets. (a-d, i-l) Human datasets. (e-h, m-p) Mouse datasets. (a) MYC high ⇒ RPL7a. (b) MYC high ⇒ 
RPL8 high. (c) MYC high ⇒ RPL9 high. (d) MYC high ⇒ RPL10 high. (e) Myc high ⇒ Rpl7a. (f) Myc high ⇒ Rpl8 high. (g) Myc high ⇒ Rpl9 high. (h) Myc 
high ⇒ Rpl10 high. (i) MYC high ⇒ RPS3. (j) MYC high ⇒ RPS4X high. (k) MYC high ⇒ RPS5 high. (l) MYC high ⇒ RPS6 high. (m) Myc high ⇒ Rps3. (n) 
Myc high ⇒ Rps4x high. (o) Myc high ⇒ Rps5 high. (p) Myc high ⇒ Rps6 high.



http://genomebiology.com/2008/9/10/R157 Genome Biology 2008,     Volume 9, Issue 10, Article R157       Sahoo et al. R157.10

Genome Biology 2008, 9:R157

degree on the vertical axis. The top row in Figure 7 corre-

sponds to the human Boolean implication network. From left

to right are shown the total Boolean relationships, symmetric

Boolean relationships alone, and asymmetric Boolean rela-

tionships alone. These plots are comparable to the Boolean

implication networks for mice and fruit flies (Figure S1 in

Additional data file 1). The middle row in Figure 7 corre-

sponds to the conserved Boolean implication network

between humans and mice. Finally, the bottom row in Figure

7 shows the conserved Boolean implication network between

humans, mice and fruit flies. As can be seen from the figures,

the plots for symmetric Boolean relationships (second and

third columns in Figure 7) are close to linear. However, the

plots for total Boolean relationships (first column in Figure 7)

are non-linear. Therefore, the overall Boolean implication

network is not scale free.

Computing the Boolean implication network is fast and 

the output is transparent

The total computation time to construct the network of impli-

cations for the human dataset was 2.5 hours on a 2.4 Ghz

computer with 8 GB of memory. The human dataset consisted

of 54,677 distinct probesets from 4,787 microarrays. The

computation time for the mouse dataset was 1.6 hours. This

data set has 45,101 probesets and 2,154 microarrays. Finally,

the computation time for the fruit fly dataset, consisting of

14,010 probesets and 450 microarrays, was 2 minutes.

Generating the Boolean implication network is conceptually a

simple process. The relationships are immediately evident

upon inspection of a scatter plot of the data points of expres-

sion levels for the two related genes, and are thus completely

transparent and intuitive to biologists, unlike some

approaches that find complex relationships that can be more

difficult for users to interpret.

Related work

There has been no previous published attempt to discover

Boolean implications for the full genome on large-scale gene

expression data. Most previous work on extracting networks

from large amounts of expression data has focused on finding

pairs of co-expressed genes, based on correlation or measures

of mutual information [1-6,37-41]. Our method generally

finds the same kinds of relationships by identifying Boolean

Comparison of Boolean implications with correlationFigure 6

Comparison of Boolean implications with correlation. On human CD (clusters of differentiation) genes, this plot shows the histogram of different types of 
Boolean relationships. Blue, no relationships; green, low ⇒ high; red, high ⇒ high; cyan, high ⇒ low; magenta, equivalent; yellow, opposite.
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equivalent or opposite gene pairs, which correspond well with

genes that are strongly positively or negatively correlated. If

we were to consider only the network of Boolean equivalent

and opposite relationships, it would still be one of the largest

co-expression networks constructed to date (and it would be

based on a larger quantity of data than other networks); how-

ever, the full network of asymmetric relationships is about

100 times larger than that.

Various methods for finding implications of various kinds

have been used for other types of data. In the field of psychol-

ogy, Boolean implications between answers to questions on

questionnaires have been proposed to capture structure in

knowledge and attitudes (for example, if a student can solve a

problem of type X, then he/she can solve a problem of type Y)

[42,43]. In the literature, these methods have been applied to

data with very small numbers of variables, so it is difficult to

understand they could work on a scale of tens of thousands of

genes. Some of the discovery methods are based on extremely

inefficient algorithms, such as enumerating all possible

quasi-orders over the variables to find the one that best fits

the data. These methods also assume that the data are already

binary, so it was not necessary to discover thresholds as we

have done or deal with data that are very close to the thresh-

olds.

Nested effects models, which look for subset relationships in

response to perturbations, have been applied to high-

throughput data, including gene expression data to infer the

structure of pathways [44,45]. For example, if the genes

Properties of Boolean implication networkFigure 7

Properties of Boolean implication network. Log-log plot of the histogram of the probesets with respect to their number of Boolean relationships. Human 
Boolean network: (a) total, (b) symmetric, and (c) asymmetric Boolean relationships. Conserved human and mouse Boolean network: (d) total, (e) 

symmetric, (f) asymmetric Boolean relationships. Conserved human, mouse and fruit fly Boolean network: (g) total, (h) symmetric, (i) asymmetric 
Boolean relationships.
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affected by interfering with gene A are a subset of the genes

affected by interfering with gene B, we might conclude that A

is downstream of B. This method could, in theory, be adapted

to our problem, since subset relationships are implications (S

⊆ T can be interpreted as 'x ∈ S ⇒ x ∈ T'). However, this work

goes to significant effort to ensure that the discovered rela-

tionships are (usually) transitive, requiring triples of genes to

be considered, so that it scales to 'dozens of genes'. Another

method for discovering Boolean implication networks some-

what similar to ours was described for probabilistic reasoning

[46], but it seems that particular method has not previously

been applied to microarray data - or indeed, to any aspect of

biology.

Several techniques have been proposed for building more

sophisticated and complex network models from high-

throughput data. The basic problem with these approaches is

that they need to consider an infeasible number of candidate

network models, so the methods cannot scale to thousands of

variables. Additionally, there are usually many models that fit

the data well, so it is difficult to know which model to choose.

On the other hand, Boolean implications report invariant

relationships in the data, which are limited in expressiveness

but relatively easy to confirm by inspection, and the methods

for computing them scale to the whole genome. More specifi-

cally, Bayesian networks are frequently constructed to find

relationships among variables in high-throughput data [47-

54]. This requires learning the structure of the networks,

which is a problem of super-exponential computational com-

plexity. Although heuristics and approximations are available

to improve the efficiency of these procedures, they cannot be

applied to systems of more than a few dozen variables. Gen-

eralizations of Bayesian networks, such as graphical Gaussian

models [55,56], have similar issues. The resulting Bayesian

networks associate a random variable X with a set of parent

variables, where the probability of X conditioned on its par-

ents is independent of the probabilities of all non-descendent

variables given the values of its parent variables. Although

Boolean implications could be inferred in some cases from

the joint probability distributions of each node and its par-

ents, the relationship between Bayesian networks and

Boolean implication networks is not obvious.

Boolean circuit models are another type of complex network

that has been extracted from high-throughput data [57-60]. A

Boolean circuit is a network of logic gates whose inputs and

outputs represent concentrations of proteins, up- or down-

regulation of genes, and so on (in some cases, the models have

more than two values, but the basic methods are similar). As

with Bayesian networks, the number of circuits explodes with

the number of variables, so these methods do not scale to the

full genome, and many different models may match the same

data. It might be possible to apply some of the same tech-

niques to find implication relationships, but there are no pub-

lished reports of that having been done.

Gene expression relationships that are conserved across mul-

tiple species have been used to infer likely regulatory relation-

ships [30,61-67]. This work has not examined conserved

asymmetric relationships. It is easy to perform conservation

analysis on Boolean implication networks, which involves

checking if the orthologous gene pairs have the same Boolean

relationships, while other approaches require non-trivial

probabilistic measures of conservation. Numerous studies

construct conserved gene-interaction networks across several

species using correlated genes. An early study of this type

improved the accuracy of predicting functional gene interac-

tions by using conserved co-expression between Saccharo-

myces cerevisiae and Caenorhabditis elegans [67]. They

used a correlation coefficient threshold of 0.6. Subsequently,

another study identified 22,163 gene pairs from 3,182 DNA

microarrays from humans, flies, worms and yeast [64]. This

study used a rank order statistic to compute a probabilistic

measure of the conserved co-expression in multiple species.

Further, Bayesian analysis was combined with conservation

to build gene networks for yeast and human using cell cycle

data [65]. Later studies focused on human and mouse to dis-

cover conserved gene expression in brain [63] and game-

togenesis [61].

Conclusion
Boolean implications provide a perspective on genome-scale

data that reveals biologically meaningful relationships that

are missed by other types of analysis, either because those

methods search for different types of relationships, or

because they do not scale to the whole genome level. A meta-

analysis of thousands of arrays for three different species

shows some of the potential of Boolean implications for

exposing biological information in data. The collection of all

implication relationships is a network. In the networks of

implications constructed in the meta-analysis, there are

almost 100 times as many implication relationships as equiv-

alences. Differences associated with gender and tissue-type

are readily apparent. Relationships between genes that are

active only during specific developmental or differentiation

stages are also evident. Many Boolean relationships are con-

served across humans, mice and fruit flies. There are highly

conserved relationships among clusters of genes that are

enriched with the cell cycle- and CNS-specific genes. The con-

served asymmetric Boolean implications between MYC and

ribosomal genes suggest the presence of biologically relevant

regulatory relationships in the implication network. The

Boolean implication network could conceivably offer a new

discovery platform, providing new biological hypotheses to be

further explored experimentally. The networks can be com-

puted rapidly even using massive amounts of gene expression

data, and the output is transparent and easy to navigate. The

Boolean network is available for exploration at the Boolean-

Net website [68].
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It is important to understand the limitations of Boolean

implications. Each implication is an empirically observed

relationship in the data, which may not hold for data gathered

for different tissue types or under different conditions. Like

correlation networks, Boolean implication networks do not

capture causality. Indeed, known regulatory relationships

between transcription factors and their targets often do not

have corresponding implications. This is to be expected, since

there are many other factors involved in gene regulation that

are not apparent in gene expression data, such as protein acti-

vation, participation in complexes involving several proteins,

and combinatorial regulation on promoters.

We believe the greatest potential of Boolean implications is in

combination with other types of data and other types of anal-

ysis. For example, in combination with data from particular

perturbations, such as gene silencing or drug treatment, and

in conjunction with transcription factor binding relation-

ships, some implications could be interpreted as causal rela-

tionships. Furthermore, implications can be used to constrain

the search for more complex models. For example, the

Boolean relationship 'C is high only when A is high and B is

low' can hold only if the implications 'A low ⇒ C low' and 'B

high ⇒ C low' hold.

Materials and methods
Data collection and preprocessing

CEL files for 4,787 Affymetrix U133Plus 2.0 human microar-

rays, 2,154 Affymetrix 430 2.0 mouse arrays, and 450

Affymetrix Genome 1.0 Drosophila arrays were downloaded

from NCBI's GEO [69]. These array types were chosen

because they are widely used, and because results from differ-

ent arrays can be compared more easily than results from

two-channel arrays. The datasets were normalized using the

standard Robust multi-chip analysis algorithm (RMA) [70];

however, the available version of RMA uses excessive

amounts of primary memory when normalizing thousands of

arrays, so the program was re-written to increase memory

efficiency. Boolean expression levels were assigned for each

gene in each array, using the log (base 2) of the expression

values (Figure 8 illustrates this process).

First, a threshold was assigned to each gene using the Step-

Miner algorithm [71], which was originally designed to fit step

functions to time-course data. For this application, the

expression values for each gene were ordered from low-to-

high, and StepMiner was used to fit a rising step function to

the data that minimizes the differences between the fitted and

measured values. This approach places the step at the largest

jump from low values to high values (but only if there are suf-

ficiently many expression values on each side of the jump to

provide evidence that the jump is not due to noise), and sets

the threshold at the point where the step crosses that original

data (as shown in Figure 8). In the case where the gene

expression levels are evenly distributed from low to high, the

threshold tends to be near the mean expression level.

If the assigned threshold for a gene is t, expression levels

above t + 0.5 are classified as 'high', expression levels below t

- 0.5 are classified as 'low', and values between t - 0.5 and t +

0.5 are classified as 'intermediate'. Points in the intermediate

region are ignored, because they are much more likely to

appear on the wrong side of the threshold due to noise. The

choice of the interval width is based on an estimate of the

minimum noise in the gene expression based on the gene

whose standard deviation is at the 5th percentile from the

bottom (that is, looking at the standard deviations of genes

that have nearly constant expression levels over all the

arrays). The standard deviation is a little less than 0.26, so ±

0.5 is almost exactly two standard deviations from the thresh-

old. This is consistent with our observation that the ratios of

the most tightly correlated genes still vary by a factor of two.

Finally, whenever more than two-thirds of the expression val-

ues of a gene were at an intermediate level of expression, the

gene was excluded from further analysis, due to insufficient

dynamic range in the expression values.

Discovery of Boolean relationships

All pairs of features with sufficient dynamic range were ana-

lyzed to discover potential Boolean relationships. There are

six possible Boolean relationships between genes A and B that

are constructed from four possible Boolean implications: A

low ⇒ B low, A low ⇒ B high, A high ⇒ B low, and A high ⇒
B high. Each of the above implications is detected by checking

whether one of the four quadrants in the scatter plot of Figure

8 is significantly sparsely populated with points compared

with the other quadrants (intermediate values for A and B are

ignored in this analysis). There are at most two possible

sparse quadrants because the thresholds always separate a

reasonable number of low and high expression levels for each

gene. Each sparse quadrant corresponds to an implication. If

A high ⇒ B high and A low ⇒ B low, A and B are considered

to have equivalent levels of Boolean expression. When A high

⇒ B low and A low ⇒ B high, A and B are considered to have

an opposite Boolean relationship. In both of these cases, two

diagonally opposite quadrants are significantly sparse. In

other cases, where there is only one sparse quadrant, the

Boolean relationships between A and B have the same name

as Boolean implications: A low ⇒ B low, A low ⇒ B high, A

high ⇒ B low, and A high ⇒ B high. There are two tests that

must succeed for the relationship between A and B to be con-

sidered an implication. For concreteness, let us consider

whether the low-low quadrant is sparse, yielding an implica-

tion A low ⇒ B high. First, the number of expression values in

the sparse quadrant must be significantly less than the

number that would be expected under an independence

model, given the relative distribution of low and high values

for A and B. Specifically, if a00, a01, a10, a11 are the number of

expression values where A and B are low and low, low and
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high, high and low, and high and high, respectively, a thresh-

old on the following statistic is performed to test whether the

low-low quadrant is sparse.

total = a00 + a01 + a10 + a11

number of A low expression values = nAlow = (a00 + a01)

number of B low expression values = nBlow = (a00 + a10)

expected = (nAlow/total * nBlow/total) * total = (a00 + a01) * 

(a00 + a10)/total

Boolean implication extraction processFigure 8

Boolean implication extraction process. The expression levels of each probeset are sorted and a step function fitted (using StepMiner) to the sorted 
expression level w minimizes the square error between the original and the fitted values. A threshold t is chosen, where the step crosses the original data. 
The region between t - 0.5 and t + 0.5 is classified as 'intermediate', the region below t - 0.5 is classified as 'low' and the region above t + 0.5 is classified as 
'high'. The examples show probesets for two genes, CDH1 and CDC2. As can be seen, CDH1 has a sharp rise between 6 and 9 and the StepMiner 
algorithm was able to assign a threshold in this region. CDC2, however, is very linear, and the StepMiner algorithm assigns the threshold approximately in 
the middle of the line. A scatter plot is shown to illustrate the analysis. Each point in the scatter plot corresponds to a microarray experiment, where the 
value for the x-axis is CDC2 expression and the value for the y-axis is CDH1 expression. Boolean implication discovery analysis is performed on a pair of 
probesets, which ignores all the points that lie in the intermediate region and analyzes the four quadrants of the scatter plot. Four asymmetric relationships 
(low ⇒ low, low ⇒ high, high ⇒ low, high ⇒ high) are discovered, each corresponding to exactly one sparse quadrant in the scatter plot; and two 
symmetric relationships (equivalent and opposite) are discovered, each corresponding to two diagonally opposite sparse quadrants.
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observed = a00

Second, the observed values in the sparse quadrant are con-

sidered erroneous points and a sparse quadrant must have a

small number of erroneous points. A maximum likelihood

estimate of the error rate is computed as follows:

A second threshold on this error rate is performed to ensure

that the quadrant is truly sparse. If the above tests succeed,

the low-low quadrant is considered sparse and, therefore, A

low ⇒ B high is inferred. An implication is considered signif-

icant if the first statistic is greater than 3.0 and the error rate

is less than 0.1.

Computation of false discovery rate

Given the large number of probesets and even larger number

of potential relationships, it is necessary to evaluate the sig-

nificance of the relationships discovered by the above algo-

rithm. To this end, we computed a FDR for each network by

randomly permuting the expression values for each gene

independently [72], and then extracting the Boolean implica-

tion network as above (using thresholds). This analysis was

repeated 20 times to compute the average number of Boolean

relationships in the randomized data. The FDR is the ratio of

the average number of Boolean relationships in the rand-

omized data to the original data.

Correlation network for human CD genes

Human CD genes were selected for comparison against a cor-

relation-based network. The set of genes includes 966

Affymetrix U133 Plus 2.0 human probesets. Pearson's corre-

lation coefficients for all 466,095 pairs of genes were com-

puted. Boolean implications were extracted from these data,

as above, to compare the Boolean implication network with

the correlation-based network.

Discovery of conserved Boolean relationships

Mouse and fruit fly orthologs for human genes were selected

from the EUGene database [73]. For each Boolean relation-

ship in the human dataset, a conserved relationship was

detected if any of the mouse orthologs of the first human gene

had a significant Boolean relationship with any other mouse

ortholog of the second human gene. To find conserved

Boolean relationships in all three species, we checked if any of

the fruit fly orthologs of the first mouse gene had a significant

Boolean relationship with any other fruit fly orthologs of the

second mouse gene for each conserved relationship in human

and mouse.

Connected component analysis

For the maximum connected component analysis, an undi-

rected graph was built with the gene names as nodes and the

edges from Boolean equivalent relationships. Initially, each

distinct node was considered to be a connected component,

and small connected components were merged repeatedly

using a standard union-find algorithm [74] until there were

no more edges connecting distinct components.
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