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Boolean Minimization of Projected Sums of
Products via Boolean Relations

Anna Bernasconi, Valentina Ciriani, Gabriella Trucco, and Tiziano Villa

Abstract—Projected Sums of Products (PSOPs) are a Generalized Shannon Decomposition (GSD) with remainder that restructures a

logic function into three logic blocks corresponding to a logic bi-decomposition plus a reminder generated by a cofactoring function. In

this paper we discuss a Boolean synthesis technique for PSOPs, which exploits the fact that the resulting logical structure induces don’t

care conditions that can be exploited to reduce the problem of area minimization to Boolean relation minimization, with the guarantee

that all valid realizations of the circuit are considered. This technique is more general than the algebraic methods investigated so far.

Moreover, we characterize the points that are in the remainder with a simple procedure that implies a fast construction of the Boolean

relation for important classes of cofactoring functions like the chain of XORs or ANDs. We report experiments confirming the

effectiveness in area of the proposed approach based on Boolean relations, with better run times for some cost functions.

Index Terms—Logic synthesis, Boolean decomposition, Boolean relations.

✦

1 INTRODUCTION

Two-level Sum of Products (SOP) minimization is the clas-
sical approach to logic synthesis [27], [35]. In general, this
approach guarantees a very low delay, due to the fixed
number of levels, and a reasonable synthesis time, at the
expense of a possibly high number of gates in the result-
ing circuit. In order to obtain networks with a smaller
area, multi-level network synthesis has been proposed and
widely studied, both in unbounded [3], [4], [23], [30], [37],
[39] and bounded [7], [28], [29], [31] models. While circuits
with an unbounded number of levels can be very compact,
the unrestricted approach can lead to longer delays. A good
trade-off between area and delay minimization is repre-
sented by the bounded multi-level minimization, where the
number of levels (typically, three or four) is fixed before the
synthesis step. Sasao statistically showed that three levels of
logic are enough to produce a minimal network for most of
the Boolean functions; and in many cases three-level logic is
a good compromise between circuit delay, circuit area, and
minimization time [38].

In this paper, we focus on a bounded-multilevel model
based on decomposition. Decomposition is a frequently
exploited technique for reducing circuit area while keeping
the number of gate levels bounded (see [2], [8], [9], [10], [11],
[12], [14], [15], [16], [17], [19], [23]).

The most widely used form of decomposition of a
Boolean function f : {0, 1}n → {0, 1} is bi-decomposition,
defined as f(X,Y, Z) = g(X,Z) op h(Y, Z), where op stands
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for any binary Boolean operation (see [24], [26], [33], [34],
[36], [41]). A classical well-known bi-decomposition is given
by the Shannon decomposition of a Boolean function with
respect to a Boolean variable xi: f = xif |xi=0 + xif |xi 6=0

(see [21]). Furthermore, generalizations of the classical Shan-
non decomposition (GSD) represent a Boolean function f as
GSD(f) = (xi ⊕ p)f |xi=p + (xi ⊕ p)f |xi 6=p, where xi is a
selected input variable and p is a function defined over all
variables except xi (e.g., when p is the constant 0 function
we obtain the standard Shannon decomposition), see [20]
and [32]. The cofactors f |xi=p and f |xi 6=p correspond to the
projections of f onto the two subsets with xi = p and xi 6= p,
whose characteristic functions are (xi ⊕ p) and (xi ⊕ p),
respectively.

We can observe that if we algebraically derive a GSD
expression from a SOP for f , each product is either en-
tirely included into one of the subspaces, or it intersects
them both. The products that intersect both subspaces are
called crossing products and are split into the two subspaces.
However, splitting a crossing product implies its insertion
in both cofactors of the algebraic form and could lead to a
waste of circuit area [6].

The Projected Sums of Products with remainder (PSOP) form
has been introduced in [13], and further discussed in [11] in
order to avoid the split of crossing products. This algebraic
decomposition introduces a remainder R given by the sum
of all crossing products, that are then not split and not
projected onto the two subspaces. For this reason, a PSOP
with remainder is, in general, smaller than a standard GSD.

In this paper we propose a new Boolean definition
for PSOPs that generalizes the algebraic one, where the
remainder R is not forced to contain all the possible crossing
products, but only a subset. Moreover, the PSOP definition
and the corresponding minimization technique proposed in
this paper are Boolean, i.e., they exploit all the properties
of Boolean algebra to simplify the Boolean function f ,
whereas the synthesis methods proposed in [11], [13] are
algebraic, i.e., they rewrite the expressions with the rules of
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polynomial algebra on the algebraic expressions of f (e.g.,
SOP forms). Furthermore, we present a new formulation of
the synthesis problem via Boolean relations, proving that
the minimal PSOP form is the solution of the corresponding
Boolean relation.

In general, while Boolean synthesis techniques yield
smaller implementations, algebraic synthesis methods are
often less time consuming. In the experimental results sec-
tion we show that we can find a good trade-off between
area reduction and computational time, by using a heuristic
method for solving the Boolean relation. We report an
average gain in area of the 28%, and an average gain in
delay of the 17% with respect to the algebraic method;
morever, we were even able to improve on synthesis time,
with an average gain of the 30%, by using a Boolean relation
minimizer (BREL [5]) in the heuristic mode.

For defining the synthesis problem through a Boolean
relation, it is fundamental to characterize and efficiently
compute the remainder set R. While in the algebraic context
the definition of R is straightforward and depends on the
products only, in the Boolean setting R must be defined and
built using the on- and dc-set of the function. Since on- and
dc-set of a function can have an exponential size, an efficient
algorithm for the construction of R is crucial. Moreover,
in the Boolean context, the remainder construction heavily
depends on the function p used to define the projection
subspaces. Therefore, the second main result described in
this paper is the characterization of the reminder R when p

is a linear function (i.e., an XOR of a subset of variables) or
a conjunctive function (an AND of some input variables).

In particular, this paper is an extended version of the
conference paper presented in [18] that considers only the
restricted case with p = xj (EP-SOP forms), where the
Boolean definition for the remainder set simply exploits the
Hamming distances between minterms. Unfortunately, that
approach cannot be directly generalized to other functions
p. In this work, we deal with this issue, and propose efficient
algorithms for the construction of R when p is a linear
function or a conjunction of literals.

Finally, in this extended version, the synthesis problem
via Boolean relations is formulated for a generic function p.

The paper is organized as follows : Section 2 is a brief
review on Boolean relations , Section 3 introduces the new
definition of PSOP forms, for a completely specified Boolean
function and for an incompletely specified Boolean function
, Section 4 describes the PSOP minimization strategy via
Boolean relations , in Section 5 the computation of the
remainder for p of type XORs or ANDs is discussed , and
Section 6 reports the experimental results. Finally, Section 7
concludes the work.

2 BOOLEAN RELATIONS: A BRIEF REVIEW

The concept of Boolean relation was introduced in [22] as
a more general specification of non-determinism in logic
networks, which cannot always be represented using don’t
cares.

Definition 1 ([22]). A Boolean relation is a one-to-many multi-
output Boolean mapping R : {0, 1}n → {0, 1}m. {0, 1}n

and {0, 1}m are called the input and output sets of R.

A Boolean relation R can be considered a generalization of a
Boolean function, where a point in the input set {0, 1}n can
be associated with several points in the output set {0, 1}m;
indeed, because of the one-to-many nature of Boolean rela-
tions, there may be several equivalent outputs for a given
input. A relation R is well-defined if for all x ∈ {0, 1}n, there
is y ∈ {0, 1}m such that (x, y) ∈ R. To any relation R we
can associate a set F(R) of compatible multi-output Boolean
functions, i.e. the set of all functions f such that, for all
inputs x ∈ {0, 1}n, f(x) is contained in the set R(x) of
the outputs related to x. In this case, we write f ⊆ R. The
problem of the optimal implementation of a Boolean relation
R is to select, among the possible functions compatible with
R, one of minimum cost according to a given metric. More
precisely, the solution of a Boolean relation R is a multi-
output Boolean function f ∈ F(R). The function f is an
optimal solution of R according to a given cost function c, if
for all f ′ ∈ F(R), c(f) ≤ c(f ′). Several exact and heuristic
algorithms have been proposed for solving Boolean rela-
tions (see [5] for an overview of these methods, and for
bibliographic references). For our minimization problem, we
use the algorithm proposed in [5], in both exact and heuristic
mode, because of its efficiency and ability to explore a wide
space of solutions.

3 PSOP EXPRESSIONS

In this section, we first recall the definition of PSOP forms,
introduced in [6], [13] and further discussed in [11]. We
then show how to change and rephrase the definition of
PSOP form, both for completely and incompletely specified
functions, in order to obtain a new general form, more
flexible and better suited to be described and minimized
via Boolean relations.

3.1 Completely specified Boolean functions

Generalizing the classical Shannon decomposition (see [20]
and [32]), any completely specified Boolean function f :
{0, 1}n → {0, 1} can be represented as follows

GSD(f) = (xi ⊕ p)f |xi=p + (xi ⊕ p)f |xi 6=p , (1)

where xi is a selected input variable and p is a function
possibly depending on all input variables except xi. This
decomposition partitions the Boolean space {0, 1}n into two
subsets each containing 2n−1 points: the subset of points
(x1, . . . , xi, . . . , xn) ∈ {0, 1}n where the function p and the
variable xi have the same value 0 or 1, i.e., xi = p, and the
subset of points where the value of p and the value of xi

are different, i.e., xi 6= p.
The characteristic functions of these two subsets are

(xi ⊕ p) and (xi ⊕ p), respectively. The cofactors f |xi=p

and f |xi 6=p correspond to the projections of f onto the
two subsets. Note that we can obtain the classical Shannon
decomposition when p = 0, i.e., when p is the constant 0
function.

The two cofactors (f |xi=p and f |xi 6=p) can be equiva-
lently defined as incompletely specified Boolean functions,
in the Boolean space Bn = {0, 1}n, in the following way:

1) fon|xi=p (fon|xi 6=p) is the on-set of the original function
f such that xi = p (resp. xi 6= p);
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Fig. 1. The projected functions f |x1=x2
, f |x1 6=x2

of the Boolean function f , together with the corresponding covers f |x1=x2
=

x3 + x1x4, f |x1 6=x2
= x3x4 + x1x4 + x1x3.

Fig. 2. On the left, a function f with the crossing products. On the right the functions f |x1=x2
\ R, f |x1 6=x2

\ R, and the remainder
R, together with the corresponding covers f |x1 6=x2

\R = x3x4, f |x1 6=x2
\R = x3x4, and fR = x1x3x4 + x1x3x4 + x2x3x4.

2) fdc|xi=p (fdc|xi 6=p) is the set of points such that xi 6=
p (resp. xi = p), i.e., fdc|xi=p = Bn|xi 6=p (resp.
fdc|xi 6=p = Bn|xi=p).

In the present paper, we adopt this alternative definition.
For example, consider the function f in Figure 1(a), with
i = 1 and p defined as the variable x2, i.e., p = x2. In
the figure, the subset of the Boolean space where x1 = x2

(x1 6= x2, resp.) is depicted in gray (white, resp.). The cor-
responding (non-projected) functions f |x1=x2

and f |x1 6=x2

are represented in Figures 1(b) and 1(c), respectively. Note
that f |x1=x2

corresponds to f for the points where x1 = x2

and contains don’t care conditions where x1 6= x2. These
don’t cares can be inserted in f |x1=x2

since, in Equation 1,
this function is multiplied by (x1⊕x2), which evaluates to 0
when x1 6= x2. A symmetric observation can be performed
for f |x1 6=x2

.
A clear advantage of this representation is that EXOR-

based decompositions insert don’t care points that help in
forming larger cubes. Consider, for instance, the function f

in Figure 1(a) and the two distinct cubes x1x2x3 and x1x2x3.
In the function f |x1=x2

, the corresponding cubes are merged
together in the larger cube x3 using don’t cares, as shown
in Figure 1(b). Therefore, while a minimal SOP form for the
function f is x1x2x3+x1x2x3x4+x1x2x3+x1x3x4+x1x2x4,
a minimal GSD form (i.e., Equation (1)) is GSD(f) = (x1 ⊕
x2)(x3 + x1x4) + (x1 ⊕ x2)(x3x4 + x1x4 + x1x3).

However, there may be a drawback: the cubes of f

intersecting both subsets xi = p and xi 6= p are split into two
subcubes when they are decomposed onto the two subsets.
For example, consider again the function f in Figure 1(a),
the cube x1x3x4 is split into two minterms: x1x2x3x4 in
Figure 1(b) and x1x2x3x4 in Figure 1(c) that are covered by
two different cubes (x1x4 and x1x3, resp.). Following the
terminology introduced in [6], we call these cubes crossing
cubes, since they cross the two subsets of the Boolean space
xi = p and xi 6= p.

In order to avoid the split of crossing cubes, a slightly
different decomposition called Projected Sums of Products
(PSOP) form, has been introduced in [6] (for a function
p consisting in a single variable) and in [13] (for a general
function p), and further discussed in [11]. This decompo-
sition allows the use of a non decomposed set R called
remainder, which contains all crossing cubes occurring in an
original SOP representation of the target function f . Indeed,
in these previous papers, PSOP forms are algebraically
defined starting from a SOP for f . The products of the SOP
are first classified into three subsets: 1) those that are entirely
included into the subspace xi = p, 2) those that are entirely
included into the subspace xi 6= p, and 3) those that intersect
both spaces, which are called crossing products and form the
remainder R. The overall PSOP with remainder form is the
sum of these three sets of cubes where the first two are
factorized with (xi ⊕ p) and (xi ⊕ p), respectively. Since R

contains the crossing products, PSOPs are in general smaller
than classical GSD.

In this paper, instead of considering an algebraic SOP
form for f , we start from the Boolean representation of the
function. Therefore, we have not a fixed SOP covering for f ,
but its Boolean description only. For this reason we have to
slightly redefine the notion of point belonging to a crossing
cube and the definition of remainder.

Definition 2. A point v ∈ {0, 1}n is a crossing point if

1) v belongs to the on-set of the function f ;
2) there exists another point u in the on-set of f such that

v and u are neighbors, i.e., their Hamming distance is
1;

3) v and u do not belong to the same projection subset.

In other words, a minterm v is a crossing point if and
only if we can find a point, in the other projection subset,
which can form a cube c with v. The cube c is called
crossing cube. Considering the same example of Figure 1, the
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Karnaugh map in Figure 2(a) shows the points belonging to
crossing cubes and the corresponding cubes.

Definition 3. The remainder R is the set of all on-set minterms
that are crossing points.

In the running example, the reminder R, with a minimal
cover, is depicted in Figure 2(d).

An operational definition and the related computational
procedure of R depend on the structure of the cofactoring
function p, as it will be discussed in more detail in Section 5.

From the previous discussion, the following Boolean
definition for a PSOP with remainder would follow:

(xi ⊕ p)(f |xi=p \R) + (xi ⊕ p)(f |xi 6=p \R) +R . (2)

The corresponding example is depicted on the right side
of Figure 2.

However, the previous Boolean definition in Equation (2)
does not account for the full power of Boolean minimiza-
tion. In fact, any point of f is covered in one and only
one subset: either in the remainder R or in one of the
two cofactors f |xi=xj

\ R or f |xi 6=xj
\ R, whereas to get

a minimal decomposition form it is better to allow the
flexibility to cover any point of the function by means of
at least one subset, or, more precisely, to cover any point x
of the remainder R: 1) only in the remainder, 2) only in the
corresponding cofactor (i.e., f |xi=p if xi = p, or f |xi 6=p if
xi 6= p), 3) both in the remainder and in the corresponding
cofactor. In fact, x may help to form larger cubes in the
remainder, in a cofactor, or in both in the remainder and
in the cofactors. For instance, in the running example, the
point 1100 can be used in f |x1=x2

to form the cube x3 and
in the remainder R to form the cube x1x3x4 with the point
1000.

Because of these observations, we sharpen the Boolean
definition of PSOP expressions as follows.

Definition 4. A PSOP decomposition of a completely specified
function f is the expression:

PSOP(f) = (xi ⊕ p) f= + (xi ⊕ p) f 6= + fR

where the sets of points f=, f 6=, fR, and f satisfy the
following conditions:

1) (fon|xi=p \R) ⊆ f= ⊆ fon|xi=p ∪ fdc|xi=p

2) (fon|xi 6=p \R) ⊆ f 6= ⊆ fon|xi 6=p ∪ fdc|xi 6=p

3) ∅ ⊆ fR ⊆ R

4) PSOP(f) = f .

This definition includes the flexibility to avoid the splitting
of the crossing cubes (covering them in the remainder) and
to reuse points, already covered in the remainder, to form
larger cubes for the cofactors.

The idea of PSOP synthesis is to construct a network
for f by choosing appropriately the sets f=, f 6=, and fR as
building blocks. If we focus on the standard SOP synthesis,
we get a PSOP circuit

PSOP(f) = (xi ⊕ p)S(f=) + (xi ⊕ p)S(f 6=) + S(fR) ,

where S(f=), S(f 6=), and S(fR) denote the SOP implemen-
tations of f=, f 6=, and fR, respectively.

Given the variable xi and the cofactoring function p, an
optimal PSOP circuit, PSOP∗

(i,p)(f), is a PSOP circuit with the

minimum cost that can be synthesized for f , decomposing
the function f with respect to the variable xi and the
function p; while an optimal PSOP circuit, PSOP∗(f), for f

is a PSOP circuit with the minimum cost among all possible
PSOP∗

(i,p)(f) circuits for f . For example, an optimal (1, x2)
PSOP form, minimal with respect to the number of literals,
for the function f in Figure 3(a) is

PSOP∗
(1,x2)

(f) = (x1⊕x2)(x3)+(x1⊕x2)(x3x4)+(x1x3x4+x1x3x4).

We note that we are using fewer and larger cubes than the
ones used in a standard minimal SOP cover f = x1x2x3 +
x1x2x3x4 + x1x2x3 + x1x3x4 + x1x2x4. Also note that any
point of the function is covered at least once, by f=, f 6=, or
fR. For example, 0000 is covered by f=, 1100 is covered by
both f= and fR, and 1000 is covered by fR (note that 1000
is also covered by f= but not by (x1 ⊕ x2)f

= in the final
form).

3.2 Incompletely specified Boolean functions

Let f = {fon, fdc} be an incompletely specified Boolean
function. For the sake of simplicity, suppose that fon∩fdc =
∅; otherwise, following the usual semantics, we consider
fon \ fdc as the on-set of f .

When f is an incompletely specified Boolean func-
tion, the definition of the projected don’t care set fdc|xi=p

(fdc|xi 6=p) changes as follows: fdc|xi=p (fdc|xi 6=p) contains
the points of fdc such that xi = p (resp. xi 6= p) together
with all points of {0, 1}n where xi 6= p (resp. xi = p), i.e.,
fdc|xi=p = Bn|xi 6=p ∪ fdc|xi=p (resp. fdc|xi 6=p = Bn|xi=p ∪
fdc|xi 6=p).

For incompletely specified Boolean functions, the defini-
tions of crossing points and R are extended as follows.

Definition 5. A point v ∈ {0, 1}n is a crossing point if

1) v belongs to the on-set or a dc-set of the function f ;
2) there exists another point u in the on-set or dc-set of f

whose Hamming distance from v is 1;
3) v and u do not belong to the same subset xi = p or

xi 6= p.

Definition 6. The remainder R (R ⊆ fon ∪ fdc) is the subset
of on-set and dc-set minterms that are crossing points.

The notions of PSOP decomposition and PSOP circuit
can be immediately generalized to incompletely specified
Boolean functions, noting that the remainder set R now
includes all points of fon and all points of fdc that could
form a crossing cube.

Definition 7. A PSOP decomposition of an incompletely spec-
ified function f = {fon, fdc} is the expression:

PSOP(f) = (xi ⊕ p) f= + (xi ⊕ p) f 6= + fR

where the sets of points f=, f 6=, fR, and f satisfy the
following conditions:

1) (fon|xi=p \R) ⊆ f= ⊆ fon|xi=p ∪ fdc|xi=p

2) (fon|xi 6=p \R) ⊆ f 6= ⊆ fon|xi 6=p ∪ fdc|xi 6=p

3) ∅ ⊆ fR ⊆ R

4) fon ⊆ PSOP(f) ⊆ fon ∪ fdc.

All the observations for completely specified functions
still hold in this context.
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Fig. 3. The functions f=, f 6=, and fR , together with the corresponding covers f= = x3, f 6= = x3x4, and fR = x1x3x4 + x1x3x4

used in a minimal PSOP expression for f .

We would like to point out that with the new Defini-
tions 4 and 7 we do not need to introduce the two notions
of PSOP expressions without and with remainder as done
in [6], [13]. Indeed, the synthesis procedure, by means of the
construction of the sets f=, f 6=, and fR, will determine the
most compact expression, which usually lies in between the
two forms, i.e., it singles out only a subset of minterms that
could form a crossing cube.

Finally, we observe that PSOP expressions share some
similarities with P-circuits, a circuit structure studied in [9],
[10], [12], [19]. P-circuits are decomposed Boolean expres-
sion where the intersection I between the cofactors, i.e.,
I = fxi=p ∩ fxi 6=p, is used instead of the remainder R.
The differences between the two expressions are due to the
fact that the intersection I does not depend on the variable
xi, while the remainder R may depend on all the n input
variables. Thus, PSOP circuits exhibit an higher level of
flexibility exploring a larger optimization space.

4 MINIMIZATION OF PSOP CIRCUITS

Before analyzing the details of the remainder computation,
we consider the problem of minimizing a Boolean function
in PSOP circuit form. We refer in the following only to the
minimization of incompletely specified Boolean functions,
as this case subsumes the problem of minimizing a com-
pletely specified function, whose don’t care set is just the
empty set.

Let f be an incompletely specified Boolean function
depending on n variables, xi a selected input variable and p

a function possibly depending on all input variables except
xi. Consider the two cofactors f |xi=p and f |xi 6=p, obtained
by decomposing f with respect to the two subsets xi = p

and xi 6= p, and the remainder R. Recall that these three sets
contain points in {0, 1}n. The final PSOP circuit for f is then
given by three minimal SOPs representing f=, f 6=, and fR

as described in Definition 7.
So, once the remainder set R has been computed for

the given cofactoring function p, as explained in the next
Section 5, the problem is to find the sets (f=, f 6=, fR) that
lead to a PSOP circuit of minimal cost, according to a given
cost metric.

We now show how this problem can be nicely formalized
and efficiently solved using Boolean relations. Our aim is
to define a relation Rf whose set of compatible functions
F(Rf ) corresponds exactly to the set of tuples f=, f 6=,

and fR occurring in all PSOP circuit implementations of f ,
with respect to a given variable xi and a given cofactoring

TABLE 1
Outputs (f=, f 6=, fR) for the relation Rf corresponding to a PSOP

circuit implementation

v ∈ {0, 1}n v 6∈ R v ∈ R

p = vi, f(v) = 1 1 – 0 1 – –, – – 1
p = vi, f(v) = – – – 0 – – –
p = vi, f(v) = 0 0 – 0
p 6= vi, f(v) = 1 – 1 0 – 1 –, – – 1
p 6= vi, f(v) = – – – 0 – – –
p 6= vi, f(v) = 0 – 0 0

function p, so that an optimal solution of Rf defines an
optimal (i, p) PSOP circuit, PSOP∗

(i,p)(f), for f .

We underline that the choice of the cofactoring function
p affects only the computation of the remainder R, but does
not appear in the definition of the Boolean relation whose
construction requires only the knowledge of R, indepen-
dently of the procedure by which R was obtained.

Let Rf : {0, 1}n → {0, 1}3 be a Boolean relation, whose
input set is the space spanned by the n input variables, while
the output set describes all possible tuples of functions f=,
f 6=, fR defining a PSOP circuit for f . To construct correctly
the relation Rf , we must consider different cases, for the
points in {0, 1}n where xi = p, and for the ones where
xi 6= p, i.e., for the points in {0, 1}n where the value of the
cofactoring function p is equal to the value of the i-th bit,
and the points where these two values differ, as shown in
Table 1.

Let us first consider the points with xi = p. Thus, let
v = (v1, . . . , vi, . . . ,vn) ∈ {0, 1}n be such that the value of
p(v1, . . . , vi−1, vi+1, . . . , vn) is equal to the i-th bit vi.

1) [f(v) = 1 and v 6∈ R] v is a point of the on-set of f

that belongs to the on-set of the cofactor f |xi=p. Then,
v must be necessarily inserted in f=. Moreover, since
in the PSOP expression, f 6= is multiplied by (xi ⊕ p)
and this factor evaluates to 0 on v, we can set v as a
don’t care point for f 6=, so that it could be exploited to
form larger cubes in that subset. Finally, observe that v
does not belong to the remainder R, thus we must have
fR(v) = 0. Therefore, we pose Rf (v) =1 – 0.

2) [f(v) = 1 and v ∈ R] v is a point of the on-set of f that
belongs to the on-set of the cofactor f |xi=p and that can
be part of a crossing cube. Thus, v could be covered
only by a cube entirely included in the subset where
xi = p, or it could be covered only by a crossing cube, or
it could be covered by both cubes. Taking into account
the fact that (xi ⊕ p) evaluates to 0 on v so that we can
set v as a don’t care point for f 6=, we then have these
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possible output values for the relation: Rf (v) = {1 – 0,
0 – 1, 1 – 1} = {1 – –, – – 1}.

3) [f(x) = – and v 6∈ R] Since v belongs to fdc|xi=p and
v 6∈ R, we have these possible values for f=, f 6= and
fR: f=(v) = –, f 6=(v) = – as (xi ⊕ p) evaluates to 0 on
v, and fR(v) = 0. Thus Rf (v) = – – 0.

4) [f(v) = – and v ∈ R] If v is a point of fdc|xi=p that
belongs to the remainder R, we have these possible
values for f=, f 6= and fR: f=(v) = –, f 6=(v) = – as
(xi ⊕ p) evaluates to 0 on v, and fR(v) = –. Thus
Rf (v) = – – –.

5) [f(v) = 0] Since v is a point of foff |xi=p, by construc-
tion v 6∈ R and cannot be covered neither in the subset
where xi = p, nor in R. Thus, we pose Rf (v) = 0 – 0,
as we can set v as a don’t care point for f 6=.

The cases v = (v1, . . . , vn) ∈ {0, 1}n when vi 6=
p(v1, . . . , vi−1, vi+1, . . . , vn) are symmetrical and omitted.

We refer the reader to the next section for some explicit
examples of Boolean relations Rf and of their solutions.

With this formalism, we can rephrase our PSOP mini-
mization problem as the problem of finding an optimal im-
plementation of Rf , that is, of selecting among all possible
three-output functions compatible with Rf , the one defining
a tuple f=, f 6=, and fR whose overall SOP representation is
minimal. In fact, recall that the three output variables of Rf

are used to describe the tuple of functions defining a PSOP
circuit for f : the first two outputs define f= and f 6=, and the
third defines fR. Thus, each function in F(Rf ) corresponds
to a possible tuple.

Theorem 1. The set F(Rf ) of all three-output functions
compatible with the relation Rf specifies exactly the set
of all tuples f=, f 6=, and fR occurring in all PSOP circuit
implementations of f , with respect to a given variable xi

and a given cofactoring function p.

Proof. First of all, observe that any PSOP circuit PSOP(f)
defines a three-output function compatible with Rf . The
three functions f=, f 6=, and fR represented by the three
SOPs in PSOP(f) define the three outputs, and for all
x ∈ {0, 1}n, (f=(x), f 6=(x), fR(x)) ∈ Rf (x). Indeed, let
x = (x1, . . . , xn) ∈ {0, 1}n, and suppose that xi = p (the
case xi 6= p is symmetrical and omitted). Recall that, by
construction, x is always a don’t care for f |xi 6=p. Then we
have

• if (f=(x), f 6=(x), fR(x)) ∈ {000, 010}, then
f |xi=p(x) ∈ {0,−}; if f |xi=p(x) = 0, then x does not
belong to the remainder set R, and Rf (x) = 0 − 0
contains both 000 and 010; on the other hand, if
f |xi=p(x) = −, we have Rf (x) = − − − if x ∈ R,
and Rf (x) = − − 0 if x 6∈ R, and in both cases, 000
and 010 belong to Rf (x);

• if (f=(x), f 6=(x), fR(x)) ∈ {100, 110}, then
f |xi=p(x) ∈ {1,−}, and the construction of Rf guar-
antees that (f=(x), f 6=(x), fR(x)) ∈ Rf (x), both for
x ∈ R and for x 6∈ R;

• if (f=(x), f 6=(x), fR(x)) ∈ {001, 011}, then x ∈ R

and f |xi=p(x) = −, thus (f=(x), f 6=(x), fR(x)) ∈
Rf (x), as Rf (x) = −−−;

• if (f=(x), f 6=(x), fR(x)) ∈ {101, 111}, then
f |xi=p(x) ∈ {1,−}, and x ∈ R. If f |xi=p(x) =

1, we have Rf (x) = {1 − −,− − 1}, while if
f |xi=p(x) = −, we have Rf (x) = − − −; in both
cases, (f=(x), f 6=(x), fR(x)) ∈ Rf (x).

We now prove that any three-output function compatible
with Rf defines a PSOP circuit for f . First of all, note
that the definition of Rf (see Table 1) guarantees that each
function in F(Rf ) assumes value 1 on its first output f= on
all points that belong to the on-set of f |xi=p but not to the
remainder R, and it assumes value 1 on its second output
f 6= on all points that belong to the on-set of f |xi 6=p but not
to R. Thus, f= contains the subset fon|xi=p \ R and f 6=

contains fon|xi 6=p \R, as required by Definition 7.
Now, observe that the definition of Rf also implies that

f= and f 6= could also assume value 1 on the points that
belong to the don’t care set of the corresponding cofactor
(fdc|xi=p for f= and fdc|xi 6=p for f 6=), and also on the points
of the remainder set R, which is a subset of fon ∪ fdc. On
the other hand, the relation always sets to 0 the values of
f= and f 6= on all points in the off-set of the corresponding
cofactor. Therefore, f= ⊆ fon|xi=p ∪ fdc|xi=p and f 6= ⊆
fon|xi 6=p ∪ fdc|xi 6=p, as required by Definition 7.

Consider now the third output, defining the set fR. From
the definition of Rf , it follows that for each function in
F(Rf ), f

R can get the value 1 or - only on the points of

R, while it is always 0 outside R. Thus, ∅ ⊆ fR ⊆ R.
To complete the proof we must show that for any

function compatible with Rf , the PSOP circuit PSOP(f)
constructed using the tuple (f=, f 6=, fR) is a PSOP circuit
for f , i.e., fon ⊆ PSOP(f) ⊆ fon ∪ fdc. This follows from
the way the relation is defined:

• Let v ∈ fon. In all possible outputs of Rf (v) we
have that either the third output fR is set to 1, thus
v is covered at least by the SOP for fR, or the third
output fR ∈ {0,−}, but the output f= is set to 1 (if
vi = p(v1, . . . , vi−1, vi+1, . . . , vn)) or the output f 6=

is set to 1 (if vi 6= p(v1, . . . , vi−1, vi+1, . . . , vn)), and v

is certainly covered by the SOP of its corresponding
cofactor. Thus fon ⊆ PSOP(f).

• Let v ∈ foff , and suppose that vi = p(v1, . . . ,
vi−1, vi+1, . . . , vn). In all possible outputs of Rf (v)
we have that both the first output f= and the third
output fR are set to 0. Thus, v could only be covered
by the SOP for f 6=, which is then multiplied by
the factor (xi ⊕ p) that is 0 on v. Thus, PSOP(f)
assumes value 0 on v. The case v ∈ foff , with
vi 6= p(v1, . . . , vi−1, vi+1, . . . , vn) is symmetrical and
omitted. This proves that PSOP(f) ∩ foff = ∅.

• Finally, if v ∈ fdc, then v might be covered by a
SOP for fR and/or by the SOP of the corresponding
cofactor, or by neither of them. Thus, PSOP(f) ⊆
fon ∪ fdc.

Corollary 1. An optimal solution of the Boolean relation
Rf , according to a given cost function µ chosen to
evaluate PSOP circuits, defines an optimal (i, p) PSOP
circuit, PSOP∗

(i,p)(f), for f with respect to the same cost
function µ.

Proof. The thesis immediately follows from Theorem 1,
as any three-output function compatible with Rf defines
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a possible PSOP circuit implementation for f whose cost,
under any given cost metric µ, is determined by the cost
under µ of the SOP representations of f=, f 6= and fR.

5 REMAINDER COMPUTATION

In the previous section we have described a Boolean
method, based on Boolean relations, for the synthesis of
general PSOP expressions decomposed with respect to any
cofactoring function p. Indeed, as shown in Table 1, the
high-level structure of the Boolean relation Rf is valid for
any p. However, to define explicitly and solve the relation
Rf , we must compute the remainder set R for the given
function p. To this aim, in this section, we first characterize
and then show how to compute the remainder set for
some cofactoring functions. In particular, we will derive an
algebraic formula for the remainder set, which can be used
directly to compute it.

Let f be an incompletely specified Boolean function, xi

a selected input variable, and p a function depending on a
subset of the input variables not including xi. Recall from
Section 3 that the remainder R contains all on-set and dc-
set minterms that could form a crossing cube, i.e., a cube
intersecting both subsets xi = p and xi 6= p. In general,
by Definition 5, a point v ∈ {0, 1}n belongs to R if and
only if there is another point u in the on-set or dc-set of f
with Hamming distance 1 such that v and u do not belong
to the same subset xi = p or xi 6= p. The last condition
is the one that strictly depends on the chosen function p.
We discuss three different cases: (i) the simple cofactoring
function p = xj ; (ii) its generalization consisting of a linear
combination (EXOR) of two or more distinct variables: p =
xj1⊕xj2⊕. . .⊕xjk ; and (iii) a non linear cofactoring function
defined as the AND of two or more distinct variables: p =
∧k

ℓ=1 xjℓ .

5.1 A simple cofactoring function p = xj

First of all we consider a cofactoring function consisting
in just one variable xj , with j 6= i. Thus, we consider the
decomposition of the form

PSOP(f) = (xi ⊕ xj) f
= + (xi ⊕ xj) f

6= + fR ,

where, according to Definition 7,

1) (fon|xi=xj \R) ⊆ f= ⊆ fon|xi=xj ∪ fdc|xi=xj

2) (fon|xi 6=xj
\R) ⊆ f 6= ⊆ fon|xi 6=xj

∪ fdc|xi 6=xj

3) ∅ ⊆ fR ⊆ R
4) fon ⊆ PSOP(f) ⊆ fon ∪ fdc.

As already observed, when a single variable xj (j 6= i)
is used as cofactoring function p, PSOP expressions can be
considered the Boolean version of the EXOR-Projected Sums
of Products (EP-SOPs) forms introduced in [6].

Let us suppose for the moment that f is completely
specified, i.e., fdc is empty.

For this particular decomposition, we can observe that
the remainder is composed by all points v ∈ fon that can
form a cube with the point u obtained complementing in
v the i-th or the j-th variable. Indeed, in this case, u and v

have Hamming distance 1, and belong to different subsets: if
v is such that vi ⊕ vj = 0 (i.e., v belongs to the subset where
xi = xj), then u will be such that ui ⊕ uj = vi ⊕ vj ⊕ 1 = 1

(i.e., u belongs to the subset where xi 6= xj). We pose the
following definition:

Definition 8. Given a point x ∈ {0, 1}n, the k-neighbor x(k) ∈
{0, 1}n of x is the point obtained complementing the k-
th bit of x, for 1 ≤ k ≤ n.

Thus, since a minterm of f can be part of a crossing cube if
and only if f takes the value 1 on at least one of its i and
j-neighbors, we can state the following definition.

Definition 9. The remainder R of a completely specified
function f with respect to the generalized decomposition
onto the subsets (xi ⊕ xj) and (xi ⊕ xj) is given by

R = {x ∈ {0, 1}n | f(x) = 1∧(f(x(i)) = 1∨f(x(j)) = 1)} .

Figure 3(d) shows the remainder for the function f of the
running example from Section 3, with i = 1 and p = x2,
i.e., the set of points of f that have at least a 1-neighbor or a
2-neighbor.

We now discuss a simple way to actually compute the
remainder. Let f i|xi=xj

be the function obtained from the
cofactor fon|xi=xj

by deleting all occurrences of xi in its
minterms and f i|xi 6=xj

be the function obtained deleting all
occurrences of xi from the minterms of fon|xi 6=xj

. Observe
that f i|xi=xj

and f i|xi 6=xj
are two degenerate functions as

they do not depend on xi. Therefore, each minterm of f

corresponds to two minterms in f i|xi=xj
or in f i|xi 6=xj

.

For example, consider the function f in Figure 4(a),
i = 1, and p = x2. f1|x1=x2

and f1|x1 6=x2
are shown in

Figures 4(b) and 4(c), respectively. The minterm 0000 of
f (in Figure 4(a)) corresponds to the minterms 0000 and
1000 in f1|x1=x2

(Figure 4(b)), while the minterm 1000 of
f corresponds to the minterms 0000 and 1000 in f1|x1 6=x2

(Figure 4(c)).

Analogously, let f j |xi=xj
and f j |xi 6=xj

denote the
two degenerate functions obtained from fon|xi=xj

and
fon|xi 6=xj

by eliminating all occurrences of xj , for instance
see Figures 4(e) and 4(f).

The remainder R can be computed using the algebraic
formula provided in the following proposition (see Figure 4
for the running example).

Proposition 1. The remainder R of the decomposition of a
completely specified Boolean function f with respect to
the two subsets where xi = xj and xi 6= xj is given by

R = (f i|xi=xj
∩ f i|xi 6=xj

) ∪ (f j |xi=xj
∩ f j |xi 6=xj

) .

Proof. The thesis immediately follows observing that the
set (f i|xi=xj

∩ f i|xi 6=xj
) identifies all pairs of minterms that

differ only on the i-th variable, while (f j |xi=xj
∩ f j |xi 6=xj

)
defines all pairs of minterms that differ only on the j-th
variable, as in Definition 9.

Once the set R has been computed, the Boolean relation
Rf can be constructed and minimized, in order to find an
optimal PSOP circuit PSOP∗

(i,xj)
(f) for the target function f .

For instance, for the running example in Figures 3 and 4,
the reminder is R = {0000, 1000, 1011, 1100, 1111}. The cor-
responding Boolean relation is shown in Table 2. A solution
of the Boolean relation, minimal with respect to the number
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Fig. 4. Construction of the remainder R for the function f of the running example.

TABLE 2
Boolean relation for the example in Figure 3

0000 1 – –, – – 1
0001 1–0
0010 0–0
0011 0–0
0100 –00
0101 –00
0110 –10
0111 –00
1000 – 1 –, – – 1
1001 –00
1010 –10
1011 – 1 –, – – 1
1100 1 – –, – – 1
1101 1–0
1110 0–0
1111 1 – –, – – 1

TABLE 3
A solution for the Boolean relation in Table 2

– – 0 – 100
– – 10 010
1 – 00 001
1 – 11 001

of products, is shown is Table 3, which corresponds to the
PSOP expression

PSOP∗
(1,x2)(f) = (x1 ⊕ x2)(x3) + (x1 ⊕ x2)(x3x4)

+(x1x3x4 + x1x3x4) .

Now, suppose that the target function f is incompletely
specified. Then, we have

R = {x ∈ fon∪fdc |(x(i) ∈ fon∪fdc)∨(x(j) ∈ fon∪fdc)} ,

and, as before, we can give a constructive definition for
R, that can be applied to compute this set. Let fon,i|xi=xj

and fdc,i|xi=xj
be the sets of points in {0, 1}n obtained

from fon|xi=xj
and fdc|xi=xj

by eliminating all occurrences
of xi, and let fon,i|xi 6=xj

and fdc,i|xi 6=xj
be the sets of

points obtained deleting all occurrences of xi from fon|xi 6=xj

and fdc|xi 6=xj
. Analogously, let fon,j |xi=xj

, fdc,j |xi=xj
,

fon,j |xi 6=xj
, and fdc,j |xi 6=xj

be the sets obtained eliminating
the variable xj from fon|xi=xj

, fdc|xi=xj
, fon|xi 6=xj

, and
fdc|xi 6=xj

. Then, we have

Proposition 2. The remainder R of the decomposition of an
incompletely specified Boolean function f with respect
to the two subsets where xi = xj and xi 6= xj is given
by
R = ((fon,i|xi=xj∪f

dc,i|xi=xj )∩(f
on,i|xi 6=xj

∪fdc,i|xi 6=xj
))∪

((fon,j |xi=xj ∪ fdc,j |xi=xj ) ∩ (fon,j |xi 6=xj
∪ fdc,j |xi 6=xj

)) .

5.2 Linear cofactoring functions

We now consider a generalization of the cofactoring func-
tion p = xj , that is, we define p as a linear combination
(EXOR) of two or more distinct variables: p = xj1 ⊕ xj2 ⊕
. . . ⊕ xjk . Thus, we consider the projection of a target func-
tion f onto the two subsets where xi = xj1 ⊕xj2 ⊕ . . .⊕xjk

and xi 6= xj1 ⊕ xj2 ⊕ . . . ⊕ xjk , respectively, with xi 6= xjℓ

for all 1 ≤ ℓ ≤ k, and k < n. As before, we first suppose
that f is a completely specified function.

To simplify the notation, let us denote the two projection
subsets (xi ⊕xj1 ⊕ . . .⊕xjk) and (xi ⊕xj1 ⊕ . . .⊕xjk) as S
and Sc, respectively. Moreover, let I = {i, j1, . . . , jk} be the
set of variable indices that define S and Sc.

In the following proposition, we characterize the remain-
der set R corresponding to this decomposition.

Proposition 3. The remainder R of a completely specified
function f with respect to the generalized decomposition
onto the subsets S and Sc is given by

R = {v ∈ fon |
∨

ℓ∈I

f(v(ℓ)) = 1} ,

where v(ℓ) is the ℓ-neighbor of v.

Proof. First of all, observe that for any v ∈ {0, 1}n and
any ℓ ∈ I , v ∈ S if and only if its ℓ-neighbor v(ℓ), i.e.,
the minterm obtained complementing the ℓ-th bit of v, does
not belong to the set S, that is v(ℓ) ∈ Sc. Indeed, if v ∈ S,
then vi ⊕ vj1 ⊕ . . .⊕ vjk = 1, and if we complement exactly
one of these variables, the EXOR-factor changes value from
1 to 0, so that v(ℓ) ∈ Sc, for any ℓ ∈ I . On the other hand,
the minterm derived complementing in v any other variable,
not occurring in the characteristic functions of S and Sc, still
belongs to the original subset, implying that for any t 6∈ I ,
v ∈ S if and only if v(t) ∈ S.

Now, let v ∈ fon. As previously recalled, v ∈ R if and
only if there exists a minterm u ∈ fon such that v and u
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are neighbors, and v and u are not both in S or both in Sc.
Thus, the previous observation implies that v ∈ R if and
only if there exists ℓ ∈ I such that v(ℓ) ∈ fon, and the thesis
immediately follows.

The actual computation of the remainder R can be per-
formed exploiting the characterization of Proposition 3 and
generalizing Proposition 1. For any ℓ ∈ I , let fon,ℓ|xi=p and
fon,ℓ|xi 6=p denote the two degenerate functions obtained
from fon|xi=p and fon|xi 6=p by eliminating all occurrences
of xℓ from their minterms.

Proposition 4. The remainder R of the decomposition of a
completely specified Boolean function f with respect to
the two subsets where xi = p and xi 6= p is given by

R =
⋃

ℓ∈I

(

fon,ℓ|xi=p ∩ fon,ℓ|xi 6=p

)

.

Proof. The thesis immediately follows from Proposition 3
observing that the sets (fon,ℓ|xi=p ∩ fon,ℓ|xi 6=p) identify all
pairs of on-set minterms that differ only on the ℓ-th variable,
for any ℓ ∈ I .

For an example, consider again the Boolean function in
Figure 3(a) and suppose that i = 1 and p = x2 ⊕ x3. In
this case we have that fon|x1=x2⊕x3

= {0000, 0001, 0110,
1010, 1011, 1100, 1101} and fon|x1 6=x2⊕x3

= {1000, 1111}.
Since I = {1, 2, 3}, we have

R =
⋃

ℓ∈{1,2,3}

(fon,ℓ|(x1⊕x2⊕x3) ∩ fon,ℓ|(x1⊕x2⊕x3),

where

fon,1|(x1⊕x2⊕x3) ∩ fon,1|(x1⊕x2⊕x3) = {−000, −001, −110,
−010, −011, −100, −101} ∩ {−000, −111} = {−000} =
{0000, 1000},

fon,2|(x1⊕x2⊕x3)∩fon,2|(x1⊕x2⊕x3) = {0−00, 0−01, 0−10,
1− 10, 1− 11, 1− 00, 1− 01} ∩ {1− 00, 1− 11} = {1− 00,
1− 11} = {1000, 1100, 1011, 1111},

fon,3|(x1⊕x2⊕x3)∩fon,3|(x1⊕x2⊕x3) = {00−0, 00−1, 01−0,
10− 0, 10− 1, 11− 0, 11− 1} ∩ {10− 0, 11− 1} = {10− 0,
11− 1} = {1000, 1010, 1101, 1111}.

Consequently, the reminder is

R = {0000, 1000, 1010, 1011, 1100, 1101, 1111} .

In this case the PSOP form, derived from the corresponding
Boolean relation, is:

PSOP∗
(1,x2⊕x3)(f) = (x1 ⊕ x2 ⊕ x3)(x3 + x4)

+(x1x3x4 + x1x3x4) .

We can give a constructive definition for the remainder
R, that can be applied to compute this set, even in the more
general case of an incompletely specified Boolean function
f = {fon, fdc}. Recall that the points potentially included in
a crossing cube can now be defined as the points v in fon or
in fdc, for which there exists ℓ ∈ I such that v(ℓ) ∈ fon∪fdc.

Proposition 5. The remainder R of the decomposition of an
incompletely specified Boolean function f with respect
to the two subsets where xi = p and xi 6= p is given by

R =
⋃

ℓ∈I

[(

fon,ℓ|xi=p ∪ fdc,ℓ|xi=p

)

∩
(

fon,ℓ|xi 6=p ∪ fdc,ℓ|xi 6=p

)]

,

where, for any ℓ ∈ I , fon,ℓ|xi=p, fdc,ℓ|xi=p, fon,ℓ|xi 6=p,
and fdc,ℓ|xi 6=p denote the sets obtained eliminating
the variable xℓ from fon|xi=p, fdc|xi=p, fon|xi 6=p, and
fdc|xi 6=p.

5.3 Cofactoring functions based on the AND operation

We now consider an example of non linear cofactoring
function, and in particular we study the cofactoring function
defined as the AND of two or more distinct variables:
p =

∧k
ℓ=1 xjℓ . Thus, we consider the projection of a func-

tion f onto the two subsets with characteristic functions
(xi ⊕

∧k
ℓ=1 xjℓ) and (xi ⊕

∧k
ℓ=1 xjℓ), respectively, where

xi 6= xjℓ for all 1 ≤ ℓ ≤ k and k < n.

Let S and Sc denote the two projection subsets, and
let J = {j1, . . . , jk} denote the set of variable indices that
define the cofactoring function p.

Proposition 6. The remainder R of a completely specified
function f with respect to the generalized decomposition
onto the subsets S and Sc is given by

R = {v ∈ fon | (v(i) ∈ fon) ∨ (∃ t ∈ J

s.t. f(v(t)) = 1 ∧
∧

j∈J\{t}

vj = 1)} .

Proof. To define the remainder set R we must characterize
all pairs of on-set minterms that differ for only one bit and
do not belong to the same projection subset, as these are the
minterms that can form a crossing cube. To this aim, we first
observe that for any minterm v, and for all t 6= i, t 6∈ J ,
v and its t-neighbor v(t) always belong to the same subset,
either S or Sc, since the characteristic functions of S and
Sc do not depend on the t-th input variable. Thus, these
minterms do not belong to R. On the other hand, v and
its i-neighbor v(i) belong to different subsets; indeed if we
complement the i-th variable in the expressions that define
the projection subsets S and Sc, their value always changes
from 1 to 0 or from 0 to 1. Thus, if both v and v(i) are in fon,
they can be part of a crossing cube, and must be inserted in
R.

Finally, if we consider any index t ∈ J , then v and v(t)

belong to different subsets if and only if all other variables
occurring in p are equal to 1. Indeed, whenever at least one
of these variables is equal to 0, the value of the expression

xi ⊕
∧k

ℓ=1 xjℓ evaluated on v becomes equal to vi, and does
not change complementing the t-th variable. Thus, v and
v(t) belong to the remainder set R if and only if (i) they are
both in fon; and (ii) for all j ∈ J \ {t}, vj = 1.

The remainder R can be computed exploiting this
characterization, as detailed in the following proposition.
Let fon,i|xi=p and fon,i|xi 6=p denote the two degener-
ate functions obtained from fon|xi=p and fon|xi 6=p by
eliminating all occurrences of xi from their minterms.
Moreover, for any t ∈ J , let fon,t|xi=p,(∀j∈J\{t},xj=1)

and fon,t|xi 6=p,(∀j∈J\{t},xj=1) denote the functions obtained
from fon|xi=p and fon|xi 6=p by eliminating all occurrences
of xt from the minterms where all other variables defining
p are equal to 1.
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Proposition 7. The remainder R of the decomposition of a
completely specified Boolean function f with respect to
the two subsets where xi = p and xi 6= p is given by

R = (fon,i|xi=p ∩ fon,i|xi 6=p)
⋃

t∈J

(

fon,t|xi=p,(∀j∈J\{t},xj=1) ∩ fon,t|xi 6=p,(∀j∈J\{t},xj=1)

)

.

Proof. The thesis immediately follows from Proposition 6.
For example, let us consider the Boolean function in

Figure 3(a), and suppose that i = 1 and p = x2 ∧ x3. In
this case, we have that fon|x1=x2∧x3

= {0000, 0001, 1111},
fon|x1 6=x2∧x3

= {0110, 1000, 1010, 1011, 1100, 1101}, and
R = {0000, 1000, 1011, 1101, 1111}. Since J = {2, 3}, we
have

R = (fon,1|x1⊕(x2∧x3) ∩ fon,1|x1⊕(x2∧x3))

∪
(

fon,2|x1⊕(x2∧x3),x3=1 ∩ fon,2|x1⊕(x2∧x3),x3=1

)

∪
(

fon,3|x1⊕(x2∧x3),x2=1 ∩ fon,3|x1⊕(x2∧x3),x2=1

)

.

where

fon,1|(x1⊕(x2∧x3)) ∩ fon,1|(x1⊕(x2∧x3)) = {−000,−001,
−111} ∩ {−110,−000,−010,−011,−100,−101}= {−000}
= {0000, 1000},

fon,2|x1⊕(x2∧x3),x3=1 ∩ fon,2|x1⊕(x2∧x3),x3=1 = {1− 11} ∩
{0− 10, 1− 10, 1− 11} = {1− 11} = {1011, 1111},

fon,3|x1⊕(x2∧x3),x2=1 ∩ fon,3|x1⊕(x2∧x3),x2=1 = {11− 1} ∩
{01− 0, 11− 0, 11− 1} = {11− 1} = {1101, 1111}.

Consequently, the reminder is

R = {0000, 1000, 1011, 1101, 1111} .

The PSOP form, computed by minimizing the correspond-
ing Boolean relation, is:

PSOP∗
(1,x2∧x3)(f) = (x1 ⊕ (x2 ∧ x3))(x2x3)

+(x1 ⊕ (x2 ∧ x3))(x4)

+(x1x2x4 + x1x3x4) .

Similarly to the previous case studies, the constructive
definition of the remainder can be generalized to incom-
pletely specified Boolean functions by including in the set R
the don’t-care minterms that can be part of a crossing cube
(details are omitted).

We finally observe that the case of cofactoring functions
based on the OR operation can be studied in a very similar
way, as the OR function is the dual of the AND function.

6 EXPERIMENTAL RESULTS

In this section we report the experimental results of the
minimization of PSOP circuits based on Boolean relations.

We conducted two different experimental evaluations.
The first one, discussed in Section 6.1, compares PSOP
circuits, with cofactoring function p = xj , vs. standard SOP
forms, and vs. EP-SOP forms with remainder [13]. Our aim
is to demonstrate that modeling the PSOP minimization
problem using Boolean relations yields significant gains in
area and delay, both with respect to classical forms, and
to similar bounded-level forms. Recall that the differences
between the new proposed PSOP forms and the EP-SOP
expressions lies basically in the definition and projection of
the remainder set: while in [6], [13], the remainder is defined

algebraically and left unprojected in the final form, here the
remainder is defined and built exploiting the flexibility of
Boolean relations, and can be partially projected in order to
derive a smaller expression.

The aim of the second experimental evaluation, dis-
cussed in Section 6.2, is to compare the effect of different
cofactoring functions, in order to understand what strategy
could lead to better results. In more details, we compare
area, delay and synthesis time of PSOP forms with the
simple cofactoring function p = xj (described in [18] and
in Section 5.1), vs. area, delay and synthesis time of PSOP
expressions with cofactoring functions p = xj ⊕ xk and
p = xj ∧ xk (defined in Sections 5.2 and 5.3, respectively).

The algorithms have been implemented in C, using the
CUDD library for OBDDs to represent Boolean functions,
and BREL [5] for the synthesis of Boolean relations since it
finds better solutions in shorter runtime than the previously
known methods. The experiments have been run on a Linux
Intel Core i7, 3.60 GHz CPU with 8 GB of main memory. The
benchmarks are taken from LGSynth93 [40], ITC99 [25], and
EPFL Benchmarks [1] . Multioutput benchmarks have been
synthesized minimizing each single output independently
from the others. We report in the following a significant
subset of the functions as representative indicators of our
experiments. To evaluate the obtained circuits in area and
delay, we ran them using the SIS system with the MCNC
library for technology mapping and the SIS command map

-W -f 3 -s.

6.1 Minimization of PSOP with Boolean relations

In the first experiment, we refer only to the simple cofactor-
ing function p = xj , in order to compare the new proposed
Boolean approach, vs. the previous algebraic methods dis-
cussed in [6], [13].

To determine the two variables xi and xj involved in
the decomposition, we search the most frequent pair of
variables present in an initial SOP representation of the
input function. This choice is based on the experimental
results previously obtained in [13]. As some benchmarks
have multiple outputs, we compute frequency over the
whole set of outputs (global frequency), thus employing the
same variables for all outputs.

To show the gain in area and delay of PSOP circuits
derived using Boolean relations, we compare them vs. plain
SOP forms, synthesized using ESPRESSO [35], and vs.
the EP-SOP with remainder forms discussed in [13]. These
results are summarized in Table 4. The first two columns
report the name of the benchmarks and the number of
their inputs and outputs. The following ones report, by
groups of three, mapped areas, delays and synthesis times
in seconds. The first two groups, labeled “PSOP - Exact
mode” and “PSOP - Heuristic mode”, refer to PSOP circuits
with cofactoring function p = xj synthesized with the new
algorithm based on Boolean relations; the first one has a cost
function that minimizes the number of literals in an exact
mode, and the second one has a cost function that minimizes
the number of literals in a heuristic mode. The third group
provides the results for plain SOP forms. The last group
provides the results for the EP-SOP with remainder forms
proposed in [13]. For each benchmark we underline in bold
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TABLE 4
Comparison of SOP, Algebraic EP-SOP [13], and the proposed Boolean approach (PSOP) in exact and heuristic mode, for the case p = xj

PSOP - Exact mode PSOP - Heuristic mode SOP - ESPRESSO EP-SOP - Alg [13]
Bench in/out Area Delay Time Area Delay Time Area Delay Time Area Delay Time
addm4 9/8 732 35.60 9.00 823 38.50 0.05 959 41.9 0.02 1806 65.50 0.96

alu1 12/8 64 8.60 0.15 64 8.60 0.01 53 6.8 0.01 60 8.80 0.01
amd 14/24 786 30.10 9.19 996 37.80 0.17 986 37.3 0.01 994 43.30 0.03
b12 15/9 155 15.80 1.35 187 20.20 0.01 166 16.4 0.01 220 22.50 0.09
co14 14/1 146 28.80 0.36 146 28.80 0.01 175 34.0 0.01 169 31.90 0.01
in0 15/11 956 38.20 12.46 1066 38.80 0.29 1032 54.2 0.01 1050 46.70 0.15
in2 19/10 967 38.90 32.27 1102 38.10 0.34 993 40.6 0.01 969 38.50 0.09
in5 24/14 856 32.20 7.04 940 35.70 0.06 865 38.5 0.01 935 38.60 0.09
in7 26/10 389 21.90 5.87 405 22.70 0.16 319 23.6 0.01 395 27.60 0.04

m181 15/9 156 15.80 1.38 197 21.00 0.01 174 16.4 0.01 221 22.50 0.01
m2 8/16 419 26.20 1.93 429 28.40 0.01 955 42.5 0.01 815 38.90 0.11
m3 8/16 543 29.80 4.75 535 29.00 0.01 1269 51.5 0.01 1148 48.70 0.07

mlp4 8/8 518 27.40 6.46 576 28.30 0.02 686 36.4 0.01 1180 50.60 0.18
mp2d 14/14 266 20.30 1.47 265 20.30 0.04 251 19.8 0.01 389 23.80 0.03

newtpla 15/5 117 18.50 0.84 117 18.50 0.01 104 19.7 0.01 122 18.20 0.01
rckl 32/7 352 49.80 1.72 352 49.80 0.04 489 72.3 0.01 494 51.50 0.01
t3 12/8 174 15.90 0.24 201 18.80 0.01 166 17.1 0.01 175 16.90 0.01

tms 8/16 459 30.30 2.30 473 29.40 0.01 647 37.4 0.01 657 38.80 0.05
vg2 25/8 468 22.50 4.78 517 22.80 0.12 341 18.6 0.01 633 26.70 0.03
vtx1 27/6 330 23.20 2.44 370 23.80 0.05 324 21.3 0.01 364 27.20 0.03
x6dn 39/5 246 25.30 2.54 250 20.10 0.02 762 31.2 0.01 851 36.60 0.03
x9dn 27/7 450 25.80 3.29 400 23.80 0.05 384 23.0 0.01 420 24.50 0.03

the circuit that exhibits the best area result. Note that the
areas reported in the last group of Table 4 (i.e, column 12)
refer to areas after the technology mapping evaluated with
SIS. On the other hand, the corresponding values reported
in [13] refer to areas before technology mapping.

TABLE 5
Gains vs. other minimization techniques

PSOP - Exact mode PSOP - Heuristic mode
Area Delay T ime Area Delay T ime

SOP 24% 15% -223786% 15% 9% -2643%
EP-SOP alg [13] 35% 23% -5578% 28% 17% 30%

The results show that modeling the PSOP circuit mini-
mization problem using Boolean relations pays significantly.
In fact, PSOP circuits synthesized with Boolean relations
turned out to be more compact than the corresponding
EP-SOP-circuits in [13] in about 90% of our experiments.
The area gain of PSOP circuits synthesized with Boolean
relations in exact (heuristic) mode is 35% (28%) on average
with respect to EP-SOP circuits in [13], and the gain in
the delay is of about 23% (17%). Finally, the PSOP circuits
synthesized with Boolean relations in exact (heuristic) mode
are smaller than the corresponding SOP forms in about 68%
of our experiments, with an average gain in area of 24%
(15%), and in delay of 15% (9%).

Comparing the performances of the two new algorithms
to the previous results, we notice how the cost function can
be critical: minimizing Boolean relations in the exact mode
can be very time-expensive (on average, 5578% penalty in
computational time with respect to [13]), while with the
heuristic mode we obtain the best-performing algorithm
(30% gain in computational time, on average, with respect
to [13]). For a complete comparison of average gains see
Table 5. The algorithm based on Boolean relations in the
heuristic mode exhibits a performing behavior with a good
trade-off between area and delay minimization and com-
putational time.

6.2 Comparison among different cofactoring functions

The aim of the second experimental evaluation is the com-
parison among three different cofactoring functions: p = xj ,
p = xj⊕xk and p = xj∧xk. To determine the three variables
xi, xj , and xk involved in the projections onto the subspaces
xi = xj ⊕ xk, xi 6= xj ⊕ xk, xi = xj ∧ xk and xi 6= xj ∧ xk,
we search the most frequent triplet of variables present in
the initial SOP representation of the input function.

In Table 6 we report mapped area and delay of PSOP
circuits implemented using the decomposition and the re-
mainder computation explained in Sections 5.1, 5.2, and 5.3.
As before, we have synthesized PSOP circuits using the
Boolean relation minimizer BREL both in the exact and
heuristic mode.

The first two columns of Table 6 report the name of
the benchmarks and the number of their inputs and out-
puts. The following three groups, of four columns each,
report areas and delays, of circuits obtained with exact and
heuristic mode, for the three cofactoring functions . For each
benchmark we underline in bold the circuit that exhibits the
best area result.

The results of this evaluation are summarized in Table 7.
As an outcome, the simplest cofactoring function p = xj

provides the best results in area for about 50% of the bench-
marks. For the remaining 50%, the cofactoring function
p = xj ⊕ xk provides the best results in area in the 27%
of the cases, and the cofactoring function p = xj ∧ xk in
the 22%. In the remaining 1% of benchmarks, two or all the
cofactoring functions yield the same final area.

For the delay, we have a different outcome: the func-
tion p = xj ∧ xk provides the best delay for 36% of the
benchmarks, while the other two functions p = xj and
p = xj ⊕ xk yield the best results in the 32% and 24% of
the cases, respectively; for the remaining 8% of benchmarks
none of the three cofactoring functions proved to be strictly
better than the others.

Finally, interesting enough, we observe that the compu-
tational times for the three different cofactoring fuctions, i.e.,
p = xj , p = xj ⊕ xk, and p = xj ∧ xk, are very similar.

Also in this case the results show that modeling the
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TABLE 6
Comparison of different cofactoring fuctions, i.e., p = xj , p = xj ⊕ xk, and p = xj ∧ xk

p = xj p = xj ⊕ xk p = xj ∧ xk

Exact mode Heuristic mode Exact mode Heuristic mode Exact mode Heuristic mode
Bench in/out Area Delay Area Delay Area Delay Area Delay Area Delay Area Delay

addm4 9/8 732 35.6 823 38.5 908 36.3 978 40.8 947 40.1 1040 43.9
alu1 12/8 64 8.6 64 8.6 53 6.8 53 6.8 76 9 80 11
amd 14/24 786 30.1 996 37.8 786 30.1 988 37.3 812 31.7 946 35.5
apla 10/12 211 19.6 254 22.2 178 17.2 216 23.1 161 18.6 182 20.4
b12 15/9 155 15.8 187 20.2 152 15.5 189 23.9 185 20.2 228 22.7

co14 14/1 146 28.8 146 28.8 136 27.9 136 27.9 164 30.4 164 30.4
in0 15/11 956 38.2 1066 38.8 1065 43.4 1252 46.9 1004 41.5 1135 42.8
in2 19/10 967 38.9 1102 38.1 978 41.5 1600 49.6 1490 48.5 1833 55.5
in5 24/14 856 32.2 940 35.7 790 32.6 951 35.8 855 32.3 895 34.7
in7 26/10 389 21.9 405 22.7 310 25.6 351 24.7 491 30.6 618 30.5

m181 15/9 156 15.8 197 21 153 15.5 199 24.9 184 20.1 226 22.2
m2 8/16 419 26.2 429 28.4 444 29.3 451 29.2 405 24.4 425 26.9
m3 8/16 543 29.8 535 29 543 30.4 568 30.9 550 29.4 571 28.8

mlp4 8/8 518 27.4 576 28.3 520 30.2 643 32 552 31 636 33.2
mp2d 14/14 266 20.3 265 20.3 277 28.1 278 28.5 253 22.7 238 16.3

newtpla 15/5 117 18.5 117 18.5 122 18.5 172 21 119 18.3 169 20.7
rckl 32/7 352 49.8 352 49.8 354 46.2 354 46.2 350 49.7 350 49.7

t3 12/8 174 15.9 201 18.8 178 15.9 198 18.5 173 18.7 189 19.1
tms 8/16 459 30.3 473 29.4 483 27.2 517 28.6 466 25.2 485 28.1
vg2 25/8 468 22.5 517 22.8 488 26 590 23.2 544 23.5 640 22.3

vtx1 27/6 330 23.2 370 23.8 345 22.1 381 23.6 382 24.9 471 25.9
x6dn 39/5 246 25.3 250 20.1 704 29.4 729 29.3 697 28.6 724 28.5
x9dn 27/7 450 25.8 400 23.8 422 24.1 435 24.5 452 25.8 480 23.7

arbiter 256/129 346 16 346 16 351 16 351 16 347 15.9 347 15.9
cavlc 10/11 1419 50.3 1545 53 1443 52.5 1608 60.4 1375 48 1494 54.4

ctrl 7/26 283 31.7 311 34.2 297 32.3 333 35.7 285 23.8 331 27.6
dec 8/256 2637 152.3 2637 152.3 2642 171.7 2642 171.7 2639 124.4 2639 124.4

int2float 11/7 399 29.4 780 34.8 397 28.3 919 40.9 405 28.2 813 38.8
b03 33/34 192 17.5 241 14.9 192 17.5 399 17.9 205 17.5 401 17.5
b06 10/15 58 13.5 71 15.5 59 12.7 74 19.4 56 10.4 65 12.4
b08 29/25 344 24.3 430 24.2 344 24.3 429 24 459 26.3 684 35.4
b09 28/29 132 9.1 186 17.4 132 9.1 192 21.8 148 10.4 201 18.9
b10 27/23 474 24.1 601 27.2 453 23.2 599 25 453 23.2 654 28.7
b11 37/37 2942 64.3 4419 80.8 2925 64 3875 76.5 2933 64 4620 82.4
b13 62/63 686 18.4 1066 28.4 686 18.4 1156 40.2 700 18.4 1146 35.7

TABLE 7
Comparison of different cofactoring functions

Best result in Area Best result in Delay
p = xj 50% 32%

p = xj ⊕ xk 27% 24%
p = xj ∧ xk 22% 36%

ties 1% 8%

PSOP circuit minimization problem using Boolean relations
pays significantly. In fact, the PSOP circuits synthesized with
Boolean relations in the exact mode are smaller than the
corresponding SOP forms in about 76% of our experiments,
with an average gain in area of 27% (that reduces to 14% if
the Boolean relation minimizer is run in the heuristic mode).

It is an open question how to characterize a-priori
Boolean functions in order to predict what cofactors work
better on a given input instance. For example, 2-input XOR
gates yield good results on logic that contains equality tests
and arithmetic patterns, since decomposition using XORs
exposes such underlying structures that are common in
benchmarks and are not understood by classic SOP mini-
mization. Other patterns (like 3-input XORs) may be less
present in the benchmarks used. Further progress on this
question is future work: an option is to extract information

on a given Boolean function by analyzing its discrete Fourier
spectrum.

7 CONCLUSION AND FUTURE WORK

In this paper we described a Boolean synthesis technique for
PSOPs, a three-level architecture which includes as special
cases EPSOPs and other logic forms that found attention
in the previous literature. We took advantage of the fact
that the structure of the implementation induces don’t care
conditions that can be exploited to reduce the problem of
area minimization to Boolean relation minimization, with
the guarantee that all valid realizations of the circuit are
considered. We studied the general case of incompletely
specified Boolean functions and characterized the remainder
of the decomposition with the notion of k-neighbors. We
also characterized the points that are in the remainder for
important cases of the cofactoring function p, namely linear
functions and AND functions

We report experiments showing significant gains in area
with respect to the algebraic method, with better run times
when we use the heuristic approach for the resolution of the
Boolean relation, as summarized in Table 5. More precisely,
we obtain an average gain in area of 28%, and an average
gain in delay of 17%, with an improvement of synthesis time
of about 30%.
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Since the problem of finding the best p for a given
function f is still open, future work includes a study of
the choice of the variables used to define the decomposi-
tion, namely the variable xi and the input variables of the
cofactoring function p. We observe that, even though in the
proposed model the projected functions and the remainder
are represented in SOP form. our approach can be general-
ized to any other representation, both in the bounded and
in the unbounded framework.

Moreover, it is interesting to investigate how to model
in our synthesis formulation the simultaneous minimization
of multi-output functions, instead of minimizing each single
output independently, as done right now.

As a general methodological closing remark, this contri-
bution is part of a systematic exploration of bounded multi-
level logic synthesis. Its aim is to investigate architectures
with a few levels of logic obtained by generalized Shannon
decompositions, enhanced by a variety of Boolean opera-
tions that bring out key features of the underlying logic
(like linearity by means of XORs). Once this optimization
potential will be well understood, it may be embedded
inside general tools that explore unbounded multi-level im-
plementations: for instance one could design a PSOP-aware
local restructuring procedure to be applied on a complex
network. It is a fact that there is a challenging quality vs.
scalability trade-off to establish, but this may direct with
more insight the optimizations to match logic expressions
made available by logic synthesis tools.
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