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Abstract 

T cell lineage differentiation of hematopoietic progenitors is controlled via gene 

regulatory networks. We apply computational Boolean network (BN) modeling to 

simulate systems-level dynamics of this developmental program. Asynchronous Boolean 

simulations mapped the transcriptional space that is accessible to T cell progenitors under 

combinations of Notch, interleukin-7 and pre-T cell receptor signaling. Simulations also 

predict steady states that correspond to known T cell progenitor types and multiple 

distinct trajectories that can lead to these steady states. Heterogeneous transcriptional 

dynamics and trajectories were explored further by single-cell transcriptomics to 

elucidate differences between in vivo thymopoiesis and novel in vitro differentiation 

platforms. Finally, our BN modeling framework was integrated into a systems biology 

software platform to facilitate future extensions to the model. Overall, BN modeling 

presents a powerful advancement over existing static models for predicting 

heterogeneous transcriptional responses of T cell progenitors to extrinsic signals during 

development and in vitro differentiation. 
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1.1 Using computation to understand cell fate decisions 

Biological complexity and specialization are achieved through the coordinated activity of 

many individual biological components. At the level of individual cell types, specialized 

transcriptional states and phenotypic functions are achieved by large sets of genes and the 

proteins they encode. These components interact with each other to form gene regulatory 

networks (GRNs). Cell fate decisions—in which a cell transitions from one cell fate to 

another— require a transition between different GRN states. In these cases, the activity of 

any one gene within the network provides insufficient insight into the cell fate decision 

process; rather, it is crucial to consider the interactions between all members of the 

complete network.  

Our ability to identify the GRNs underlying cell fate decisions has greatly increased in 

recent years with the advent of new experimental technologies. For example, biologists 

can now apply microarrays, RNA sequencing, single-cell transcriptomics, chromatin 

profiling, knockout models, RNA interference, and CRISPR to elucidate GRNs. 

However, despite this vast amount of data, understanding cell fate decision making 

through systems-level analysis of GRNs continues to be challenging due to the 

complexity of these networks. Given that GRNs are typically large and frequently 

comprise interdependent and non-additive regulatory interactions, it can be difficult to 

develop an intuitive sense of how any given GRN functions from only a static description 

of its component interactions. Computational modeling is uniquely well-positioned to 

enable biologists to simultaneously consider the actions of all genes within a particular 

network and map how specialized cell types and functions emerge from their combined 

activity. 

Herein we examine the challenges of modeling cell fate decisions in the context of one 

complex yet important biological system: mouse T cell development. We identify open 

questions pertaining to T cell lineage specification that are amenable to computational 

investigation and outline how GRN simulations—in particular, Boolean network 

modeling—can address these questions. 
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1.2 Gene regulatory networks (GRNs) 

Cells make fate decisions by interpreting signals from their environment and activating 

specific transcriptional programs in response. Gene regulatory networks (GRNs) act as 

the molecular circuitry that enables this computation inside single cells. Therefore, 

understanding how cell fate decisions are made first requires knowledge of the genes 

involved in these circuits, how the genes within these circuits regulate one another, and 

how input signals from the environment are connected to these circuits. 

GRNs are collections of genes and their products which interact with each other to 

regulate gene expression and, by extension, control cell fate and function. GRNs operate 

within single cells and define the set of potential transcriptional states that the cell can 

access. Indeed, by steering gene expression toward a small subset of states within the 

potential global transcriptional state space, GRNs naturally give rise to distinct cell types 

that correspond to attractors in this space (Dealy et al., 2005; Huang et al., 2005). 

Specific environmental and developmental contexts provide additional layers of 

regulatory control such as biochemical signals, biomechanical forces, and epigenetic 

modifications. These factors converge onto the GRN to further constrain the subset of 

transcriptional states that are realized by the cell. The state of a cell’s GRN dictates its 

cellular identity and determines its phenotypic behaviour by driving the expression or 

repression of function-associated genes and proteins. For example, the GRN state of a 

stem cell determines whether it will differentiate or not; the GRN state of a developing 

lymphocyte determines whether it will begin gene rearrangement of its T cell receptor; 

and the GRN state of a mature immune cell determines whether it will expand to combat 

an immune challenge. 

By studying cell fate decisions from the perspective of GRNs, we can uncover systems-

level properties of these decisions that are not apparent at the level of individual genes. 

This knowledge can then be harnessed to serve many research purposes. For example, 

GRN models can be used to create a causal map of molecular interactions and predict the 

phenotypic effect of signaling changes and genetic perturbations (Emmert-Streib et al., 

2014; Xiao, 2009). They can also be used to identify biomarkers of cell types and 
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diseases (Marbach et al., 2016; Ng et al., 2016). GRN models can also be harnessed to 

improve in vitro differentiation and reprogramming protocols, thereby enabling us to 

produce therapeutically-relevant cell types at large scales and accelerate efforts in 

regenerative medicine (Cahan et al., 2014; McNamara et al., 2015). Moreover, since 

disruption of normal GRN function can lead to disease states such as cancer, a deeper 

understanding of these regulatory mechanisms can enable new therapeutic interventions 

to rescue perturbed networks in vivo to a healthy state (Karlebach and Shamir, 2008; 

Mohanty et al., 2014). In particular, GRN control of stem cell fate has been extensively 

studied in recent years (Dunn et al., 2014; Morris et al., 2014; Yachie-Kinoshita et al., 

2018). However, our collective understanding of how GRNs integrate multiple dynamic 

inputs to make cell fate decisions remains incomplete. 

1.2.1 GRN inference methods 

Mathematically, a GRN can be conceptualized as a directed graph in which nodes 

represent individual genes and edges represent the regulatory interactions between genes. 

It is possible to infer such graphical models of GRNs from gene expression data, direct 

evidence of molecular binding, knockout and overexpression experiments, and many 

other experimental modalities (Emmert-Streib et al., 2014). 

In some cases, it is possible to construct an accurate GRN model solely through a 

systematic search of previously published literature for evidence of relevant gene 

regulatory interactions. Literature evidence may be in the form of binding evidence, such 

as chromatin immunoprecipitation sequencing (ChIP-seq) analysis of cis-regulatory 

elements; perturbation evidence, such as genetic knockout models followed by 

transcriptional profiling; or more likely, a combination of both. Literature-based GRN 

models have previously been reported in the contexts of myeloid differentiation 

(Krumsiek et al., 2011), hematopoietic stem and progenitor cell heterogeneity (Bonzanni 

et al., 2013), myeloid versus lymphoid fate choice (Collombet et al., 2017), heart field 

specification (Herrmann et al., 2012), and many others. 
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Literature-based GRN models perform well when the vast majority of important 

regulatory interactions are believed to have already been reported, which may well be the 

case for mouse T cell development (Kueh and Rothenberg, 2012; Longabaugh et al., 

2017; Rothenberg et al., 2016). However, there is a risk of biasing the resulting 

computational model toward subnetworks of the complete GRN that happen to be well-

studied. In such cases where a literature-based GRN model fails to recapitulate some 

experimental observations (and assuming the underlying assumptions of the simulation 

framework are valid), it is often possible to identify genes whose regulatory inputs were 

underspecified through simulation, and even predict which transcription factors may act 

as inputs but which remain unreported. Thus, even an incomplete GRN model 

constructed from available literature evidence may be useful for generating new 

hypotheses about missing regulatory interactions and guiding further experiments to 

characterize the true network. 

A variety of bioinformatics approaches can be used to either supplement literature-based 

GRN models or infer GRN models without any direct literature input. Indeed, a 

burgeoning number of computational algorithms for inference of GRNs from 

experimental data have been developed in parallel to the increase in available 

experimental technologies for generating data about GRNs. Efforts such as the Dialogue 

on Reverse Engineering Assessment and Methods (DREAM) project have benchmarked 

the performance of many published algorithms against synthetic and high-confidence 

control GRNs (Marbach et al., 2010). However, it is widely accepted that no single 

algorithm or paradigm consistently performs best across all test datasets; rather, certain 

algorithm types perform better on certain classes of datasets and experimental systems 

(Emmert-Streib et al., 2014). Furthermore, there is increasing evidence that GRN 

inference accuracy can be improved by applying multiple algorithm types and finding 

consensus (Marbach et al., 2012). 

GRN inference algorithms can typically be classified into a small set of paradigms 

(Huynh-Thu and Sanguinetti, 2018), which are summarized below. In correlation-based 

GRN inference methods, regulatory edges are ranked by variants of correlation. In 

regression-based GRN inference methods, regulatory edges are typically selected by 
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target gene-specific linear regression, often accompanied by some form of data 

resampling. In mutual information-based GRN inference methods, regulatory edges are 

ranked by variants of mutual information and subsequently filtered for causal 

relationships. Bayesian network methods have also been developed that infer GRNs by 

heuristically optimizing posterior probabilities of regulatory interactions. Finally, 

machine learning-enabled GRN inference approaches have also been used; for example, 

the GENIE3 algorithm employs random forests to predict target gene expression and 

selects transcription factors as nodes if they reduce the variance of the target gene 

(Huynh-Thu et al., 2010). 

One interesting alternative to the aforementioned statistical GRN inference approaches is 

satisfiability modulo theory (SMT). An SMT problem involves determining if a logical 

formula can be satisfied given a set of prior constraints. In the case of biological GRNs, 

one can formulate an SMT problem as follows: given a set of experimental constraints 

and a set of possible gene regulatory interactions, what is the full set of logical networks 

that are able to satisfy the experimental constraints? In this manner, SMT-based 

approaches are unique in that they do not seek to produce a single logical model of a 

GRN that best fits an experimental dataset; rather, they identify sets of possible logical 

models that (mathematically) satisfy all of the provided experimental observations. Two 

SMT-based methods that employ the Microsoft Z3 solver have been published: 

Reasoning Engine for Interaction Networks (RE:IN), which integrates user-defined 

experimental constraints and was used to build a Boolean network (BN) model of naïve 

mouse embryonic stem cells  (Dunn et al., 2014; Yordanov et al., 2016); and Single Cell 

Network Synthesis (SCNS), which treats single-cell transcriptomics datasets as state 

transition graphs that must be satisfied and was used to build a BN model of embryonic 

hematopoiesis (Moignard et al., 2015). However, RE:IN and SCNS are computationally 

expensive for large networks and can perform poorly if the supplied experimental 

constraints are insufficient (i.e. if only a few experimental conditions are tested or if not 

enough single cells are captured to produce a fully connected state transition graph, 

respectively). 
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1.2.2 Computational simulation of GRNs 

Static network topologies provide only limited insight into the dynamic behaviour of 

GRNs and their response to various biological conditions. It is possible to gain deeper 

insights to these aspects of GRN function by converting these topologies into a 

computable form; that is, by assigning mathematical functions to each edge in the 

network such that its dynamic behaviour can be simulated computationally. 

Computational modeling can extend the utility of GRNs over static descriptions by (1) 

enabling artificial simulation of network behaviour, (2) predicting unknown regulatory 

relationships between genes, (3) predicting novel phenotypic states or transitions between 

states, and (4) identifying methods to manipulate the network’s behaviour (Xiao, 2009). 

Since computation is relatively fast and inexpensive compared to cell culture or in vivo 

experiments, simulations can more efficiently screen large combinatorial spaces of 

perturbations and experimental conditions to narrow down the set of experiments that 

need to be performed. Computational simulations have been used to identify mechanisms 

that direct stem cells toward specific differentiated lineages, explore genetic conditions 

that lead to abnormal development, and discover new ways of accessing 

developmentally-important and clinically-relevant cell states (Collombet et al., 2017; 

Herrmann et al., 2012; Krumsiek et al., 2011; Yachie-Kinoshita et al., 2018). Finally, in 

cases were a computational model of a GRN fails to recapitulate observed biological 

behaviour despite including as complete a representation of existing literature and data as 

possible, they can allow us to systematically identify gaps in current knowledge or faulty 

modeling assumptions (Bonzanni et al., 2013; Collombet et al., 2017). 

Many methods have been used for computational simulation of GRNs (summarized in 

Table 1) (Karlebach and Shamir, 2008; Le Novère, 2015; Schlitt and Brazma, 2007). 

Despite the nuances of individual methods, these can be broadly characterized into two 

types: logical and quantitative. Logical models typically represent gene expression values 

using discrete levels and describe regulatory interactions between genes using logic 

functions. Conversely, quantitative models represent gene expression values using 

continuous variables and describe regulatory interactions between genes using real-
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valued functions, most commonly differential equations. In general, logical models are 

more amenable to inference from experimental data, avoid the need for estimation of 

biochemical rate parameters, and facilitate the simulation of larger networks due to their 

relative computational simplicity. 

Table 1: Comparison of GRN simulation methods 

Method Description Strengths Weaknesses 

Logical models    

Boolean networks Expression values are 

restricted to 0 or 1, and 

interactions between 

genes are represented 

using Boolean logic 

operators (AND, OR, 

NOT). Binary state of 

network is updated at 

discrete time steps 

(Markov process) 

Does not require fitting of 

biochemical rate parameters 

Computational simplicity 

permits simulation of large 

networks 

Relatively easy to infer from 

literature evidence and 

experimental data by 

satisfiability methods 

Identifies steady states and 

models network robustness 

without continuous values  

Poorly models negative 

autoregulation 

Binary expression assumption 

not valid for some systems 

(ex. multiple thresholds) 

Discrete time steps have 

unclear physical 

interpretation 

Multi-level logic 

models (generalized 

logical networks) 

Generalized form of 

Boolean network in 

which variables can take 

on more than two discrete 

levels 

Allows for recapitulation of 

dose-dependent gene 

regulation 

Can demonstrate non-linear 

regulatory interactions 

Not always clear a priori how 

many levels should be 

assigned for each gene 

Probabilistic Boolean 

networks 

Considers multiple 

candidate regulatory 

functions for model 

components 

Explicitly captures 

uncertainty about regulatory 

logic 

Can be unclear how to best 

weight probabilities 

Sensitivity to probability 

values 

Dynamic Bayesian 

networks 

Probabilistic model that 

represents dependencies 

among genes across a 

time step 

Permits efficient inference 

and learning from data 

Requires a large amount of 

time series data to learn 

probability dependencies 

Petri nets Non-deterministic models 

consisting of ‘places’ 
(genes) and ‘tokens’ 
(units of expression). 

Places are connected by 

transition functions, 

which adjust number of 

tokens at input and output 

place when fired 

Does not require fitting of 

biochemical parameters 

Permit automatic checking 

for boundedness and 

deadlocks 

Computational simplicity 

enables simulation of large 

networks 

Can be difficult to determine 

appropriate transition 

functions for the model 

Underlying resource sharing 

concept is more suited to 

metabolic networks than gene 

regulation 

Quantitative models    

Continuous ordinary 

differential equations 

of chemical kinetics 

Describes instantaneous 

changes in each gene as a 

function of the 

concentration of its 

regulatory inputs, for 

example using Michaelis-

Uses real-valued parameters 

with clear physical 

interpretation 

Produces continuous output 

trajectories that can be 

easily compared against 

experimentally-observed 

Requires adequate 

experimental data to 

accurately estimate 

parameters, which is not 

available for many biological 

systems 
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Menten kinetics or Hill 

functions 

timecourse expression 

dynamics. 

Large networks are difficult 

to fit and computationally 

expensive 

Mass action kinetics do not 

account for stochastic effects 

present in gene regulatory 

systems 

Piecewise linear 

differential equations 

Uses Heaviside step 

functions (limit of Hill 

function) leading to 

discrete gene response to 

input regulators (i.e. 0 

below threshold, maximal 

above threshold) 

Enables efficient numeric 

computation of network 

behaviour while still using 

real- and continuously-

valued variables 

Sharp threshold boundaries 

are not appropriate in cases 

where genes respond to a 

gradient of input signal 

Stochastic simulation 

algorithms 

Simulates individual 

reactions given an initial 

number of molecules per 

molecular species and 

relevant reaction-

probability rates 

Accounts for stochastic 

effects that are prevalent 

when number of regulatory 

molecules is low 

Does not account for 

diffusive or transportation 

effects 

Computationally expensive to 

simulate every reaction 

individually, therefore only 

tractable for small networks 

1.2.3 Boolean networks 

The most basic commonly-employed GRN simulation approach is Boolean networks 

(BNs), which makes two key simplifying assumptions: 

1. Each gene in the network can take on only binary values, i.e. 1=ON or 0=OFF. 

2. Regulatory interactions between genes are abstracted using Boolean logic, i.e. 

AND, OR, NOT. 

Each gene in the network is assigned a Boolean logic function over its inputs, and this 

function is used to update the gene’s binary state in the next discrete simulation step. In a 

synchronous simulation, all genes in the network are updated at each simulation step. 

Conversely, in an asynchronous simulation, only a random subset of genes in the network 

are updated at each simulation step. Thus, asynchronous simulations allow for each 

network state to lead to multiple possible next states. Asynchronous simulations are also 

more representative of the variable timing of gene regulation in living systems, where 

there is no universal “clock” to synchronize changes in transcription (Garg et al., 2008). 

Together, these Boolean update functions define a state transition graph, in which each 

state corresponds to a possible transcriptional profile and edges correspond to transitions 
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between states that are permitted by the GRN. In principle, such state transition graphs 

can be considered analogous to a single-cell level transcriptional space (Lim et al., 2016; 

Moignard et al., 2015). Attractors (steady states or strongly connected components) 

within the state transition graph can be compared to experimentally-observed phenotypes. 

Boolean representations are particularly appealing for GRN modeling because they can 

recapitulate the behaviour of biological systems without requiring biochemical rate 

parameters, which are difficult and time-consuming to experimentally validate. 

BN modeling has been employed to accurately recapitulate segment polarity patterning in 

Drosophila (Sánchez and Thieffry, 2003), the cell cycle sequence in yeast (Davidich and 

Bornholdt, 2008), heterogeneity in murine hematopoiesis (Bonzanni et al., 2013), 

hierarchical differentiation of murine myeloid progenitors (Krumsiek et al., 2011), 

myeloid versus lymphoid lineage choice (Collombet et al., 2017), embryonic stem cell 

(ESC) states (Dunn et al., 2014; Xu et al., 2014), and many other biological gene 

regulation systems. In our own lab, this approach was successfully used to develop a BN 

model of the endogenous mouse pluripotency network consisting of 30 nodes and 7 

signaling pathway inputs (BMP4, Activin, FGF, ERK, Wnt, LIF, PI3K) (Yachie-

Kinoshita et al., 2018). The model accurately predicts the extent of transcriptional 

heterogeneity in various ESC culture conditions, captures the population-level effects of 

small molecule inhibitors and genetic perturbations, and identifies cellular transitions 

between distinct pluripotent states (Yachie-Kinoshita et al., 2018). 

Although Boolean networks have a demonstrated ability to produce simulation results 

that are very similar to experimental observations, BN modeling also presents some 

limitations. One limitation is the need to discretize input data to the model into binary 

levels. Typically, biological experiments produce real-valued (as opposed to discrete-

valued) results, and thus there is some loss of information when these results are 

discretized into binary ON and OFF values. However, recent single-cell transcriptomics 

studies suggest that gene expression levels are clearly bimodal at the single-cell level in 

at least some biological systems such as embryonic blood development (Moignard et al., 

2015). These results suggest that binarization can be applied without significant 

information loss in such systems. 
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1.3 T cell lineage 

In this section, we present T cell development as an interesting model system that would 

benefit from systematic computational exploration using a Boolean network (BN) 

approach.  

T cells are a type of lymphocyte that develop in the thymus. They play a key role in 

adaptive immunity by specifically recognizing infected or malignant cells via their T cell 

receptor (TCR). The T cell lineage is a subject of intense research and clinical interest. 

Clinically, mature T cells can potentially serve as immunotherapy agents; for example, 

they can be programmed to recognize and kill specific cancer cell types using chimeric 

antigen receptors (Fesnak et al., 2016). There is also interest in transplanting T cell 

progenitors to help reconstitute the thymus in cases of immune deficiency arising from 

diseases such as primary immunodeficiency or as a result of radiation therapy (Brauer et 

al., 2016; Dolens and Taghon, 2017). However, at a more basic level, our understanding 

of the developmental program that drives uncommitted hematopoietic progenitors toward 

the T cell fate remains incomplete. Applying a BN modeling approach to T cell 

development would allow us to systematically explore the mechanisms underlying T 

lineage specification and commitment, predict the dynamic response of T cell progenitors 

to various environmental contexts and GRN perturbations, and eventually harness the 

findings to support robust scale-up of T cell-based clinical therapies.  

The mouse T cell development program encompasses multiple cellular decision events 

coordinated by complex interplays between environmental signals and downstream 

GRNs (Rothenberg et al., 2016; Yui and Rothenberg, 2014). It is commonly described as 

occurring in 3 phases: 

 Specification, in which uncommitted blood progenitors undergo Notch-dependent 

proliferation and begin to upregulate T cell lineage-associated genes 

 Post commitment, in which progenitors commit to the T cell lineage, proliferation 

slows, and TCRβ-chain gene rearrangement commences 
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 Post β-selection, in which cells switch from Notch-dependence to pre-TCR signal 

dependence and are either proliferate following selection for functional TCRβ-

chain rearrangements or die 

In vivo, T cells develop both during fetal development and throughout adulthood from 

blood progenitors that home to the thymus. Efforts to recapitulate aspects of the thymic 

niche (such as Notch signaling) in vitro have yielded multiple methods to effectively 

differentiate T cells from hematopoietic stem and progenitor cells (Schmitt et al., 2002; 

Shukla et al., 2017). This section explores these in vivo and in vitro systems with special 

emphasis on the GRNs that underlie T cell emergence in each context. 

1.3.1 Stages of in vivo thymopoiesis 

In vivo, T cells differentiate from lymphoid-primed progenitors that settle in the thymus. 

Upon thymic entry, these progenitors are exposed to multiple niche signals. Chief among 

these is Notch signaling, mediated by Delta-like ligand (DL4) presentation by the thymic 

stroma, which is essential for thymic specification of the T cell lineage. Other signals 

such as interleukin-7 (IL-7) additionally support cell proliferation and survival, though 

their role in lineage specification, if any, is unclear. Early T cell progenitors (ETPs) in 

mice proliferate over approximately 10 cell cycles and begin to downregulate “legacy” 

gene networks associated with the stem cell fate and alternate blood lineages. Sustained 

exposure to Notch drives progenitors to the CD4/CD8 double negative (DN)2 stages, 

marked by upregulation of T cell lineage-specific genes (Tcf7, Gata3, Bcl11b, etc.). 

Whereas B cell lineage potential is lost earlier on, potential for other blood fates such as 

the myeloid and natural killer (NK) lineages are lost at this stage. Now committed to the 

T cell fate, DN3 T cell progenitors begin rearranging the β-chain of the T cell receptor 

(TCR) are selected for functional pre-TCR rearrangements. Selected cells become double 

positive (DP) for the mature T cell markers CD4 and CD8, and must undergo additional 

rounds of selection to become either single-positive CD4+ helper T cells or CD8+ 

cytotoxic T cells (beyond the scope of this thesis). Additional details on the various 

stages and types of T cells are listed in Table 2.  
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Figure 1: Overview of mouse T cell development program 

Top left: Schematic of gene regulatory networks that underlie T cell lineage fate 

determination, including transcription factors (Tcf7, Gata3, Bcl11b, etc.) downstream of 

environmental signals (Notch signaling, etc.). Top right: Surface markers used to define 

various T cell progenitor stages and isolate progenitor populations via flow cytometry. 

Bottom: Current understanding of mouse thymopoiesis, in which blood progenitors 

progress through a linear series of surface marker-defined stages in response to 

environmental signals, thereby losing their potential for other blood lineages and 

eventually committing to the T cell fate. CD = cluster of differentiation, CLP = common 

lymphoid progenitor, LMPP = lymphoid-primed multipotent progenitors, ETP = early T 

cell progenitor, DN = CD4- CD8- double negative, DP = CD4+ CD8+ double positive, 

IL-7 = interleukin-7, pre-TCR = pre-T cell receptor 
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Table 2: Description of T cell progenitor stages and mature T cell types 

Stage/Type Surface Markers Description 

ETP CD4- CD8- KIT-hi CD44+ 

CD25- 

Early T cell progenitor. Retains potential 

for non-T blood lineages, as well as 

expression of some hematopoietic stem 

cell-associated genes 

DN1 CD4- CD8- CD44+ CD25- Superset of ETP. Heterogeneous subset of 

blood progenitors with diverse T cell 

lineage potential (Porritt et al., 2004) 

DN2A CD4- CD8- KIT-hi CD44+ 

CD25+ 

Start to express T cell lineage gene 

markers 

DN2B CD4- CD8- KIT+ CD44+ 

CD25+ 

Committed to the T cell lineage 

DN3A CD4- CD8- KIT- CD44- 

CD25+ CD28- 

TCRβ gene rearrangement begins 

DN3B CD4- CD8- KIT- CD44- 

CD25+ CD28+ 

β-selection, cells with successful TCRβ 

rearrangements receive pre-TCR signaling 

that rescues survival 

ISP CD4- CD8+ TCR-/lo 

CD24hi 

Intermediate single positive transition 

state between DN and DP stages 

DP CD4+ CD8+ TCR-/lo TCRα gene rearrangement occurs, 

followed by expression of a fully 

assembled αβ-TCR. Positive selection 

occurs, in which cells with functional 

ligand specificities are selected for 

CD4+ 

helper (Th) 

CD4+ CD8- TCRhi Release T cell cytokines to regulate 

immune response, including B cell class 

switching, cytotoxic T cell activation, and 

enhancement of macrophage activity 
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Stage/Type Surface Markers Description 

CD8+ 

cytotoxic 

(Tc) 

CD4- CD8+ TCRhi Kills cancer cells, virus-infected cells, or 

other damaged body cells via cytotoxin 

release 

γδ-T TCRd+ Low abundance T cells that express a T 

cell receptor (TCR) comprised of one 

gamma chain and one delta chain; 

involved in immune response initiation 

and propagation 

Natural 

killer T 

(NKT) 

CD1d+, mix of other 

markers 

Heterogeneous class of CD1d-restricted T 

cells that express some NK cells markers 

and semi-invariant TCRs; respond to 

activation by rapidly releasing a large 

amount of cytokines 

Regulatory 

T (Treg) 

CD3+ CD4+ CD25hi 

FOXP3+ CD127lo 

Immunosuppressive T cells that maintain 

self-tolerance and prevent autoimmune 

disease 

1.3.2 Environmental signals in the thymic niche 

The thymus provides a uniquely supportive niche for T cell development, largely due to 

the presence of many crucial environmental signals. Foremost among these signals is 

Notch, mediated primarily by presentation of Delta-like ligand 4 (DL4) by thymic 

stromal cells and expression of the NOTCH1 receptor by blood progenitors (Love and 

Bhandoola, 2011). When NOTCH1 binds to DL4 molecules on the thymic stroma, a 

mechanical force is generated that permits proteolytic release of the intracellular 

component of the NOTCH1 molecule, which in turn localizes to the nucleus and 

functions as a transcription factor in complex with RBPJ (recombining binding protein 

suppressor of hairless). Force generation via a tethered ligand is essential for Notch 

signaling activation; indeed, our lab has demonstrated that soluble DL4 inhibits both 
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Notch pathway activation and T cell differentiation during in vitro culture (Shukla et al., 

2017). Of potential interest, multiple labs have demonstrated that the extracellular and 

intracellular domains of Notch receptors can be swapped for other protein subunits to 

synthetically reprogram the receptors’ signal-receiving or downstream effector function. 

The modularity and juxtacrine nature of the Notch pathway makes it an attractive tool for 

synthetic biology applications (Morsut et al., 2016; Nandagopal et al., 2018; Roybal et 

al., 2016). 

In the specific context of T cell development, Notch signaling promotes growth and 

survival of thymocytes up to the DN3B stage, at which point their survival is primarily 

determined by selective pre-TCR signaling. Importantly, Notch signaling also activates a 

set of downstream transcription factors that are critical for T lineage differentiation, such 

as Gata3, Tcf7, and Bcl11b. Notch signaling is also primarily responsible for 

antagonizing the differentiation potential of T cell progenitors toward other blood 

lineages, especially the B cell lineage (Rothenberg et al., 2016). 

Another key element of the thymic signaling niche is interleukin-7 (IL-7). IL-7 supports 

early thymocyte survival; in particular, cells at the DN2A stage strongly upregulate IL-7 

receptor (IL-7R) and are especially sensitive to extracellular IL-7 levels (Wang et al., 

2006). Mice that lack IL-7 or IL-7R exhibit strongly impaired T cell development, and 

IL-7R deficient progenitors cannot fully seed the thymic niche (Prockop and Petrie, 2004; 

Ziętara et al., 2015). Although it is known that IL-7 signaling plays a critical role in γδ-T 

cell development and CD8 lineage choice via activation of Runx3, the extent of its role in 

αβ-T lineage progression remains somewhat unclear. There is evidence that T cell 

progenitors can sense relative changes in IL-7 levels and that a drop in IL-7 signaling is 

required to proceed to the DN2B stage and commit to the T lineage (Ikawa et al., 2010). 

Kit (stem cell factor) is also present in the thymic niche, where it supports survival and 

proliferation of ETP cells. However, these is currently no evidence indicating a role for 

Kit-mediated signaling in T lineage progression. 

Although Flt-3 ligand is not found in the thymic niche, it is important for maintaining 

blood progenitors pre-thymically and is a common media component for in vitro culture 
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of hematopoietic stem and progenitor cells (HSPCs). The Flt-3 receptor itself is 

expressed on thymic seeding progenitors, but becomes downregulated during the ETP 

stage. 

1.3.3 In vitro methods for T cell lineage differentiation 

The ability to differentiate HPSCs toward the T cell lineage in vitro has been of prime 

importance to the T cell field, both in terms of informing our understanding of T cell 

developmental biology as well as opening new opportunities for cell therapy. However, 

recapitulating the complex in vivo signaling niche provided by the thymus in an in vitro 

setting is particularly challenging compared to other blood cell differentiation protocols. 

One of the critical challenges is presentation of Notch ligands in a manner that permits 

mechanical force generation and subsequent cleavage of the Notch receptor to trigger 

downstream signaling. In fact, it has been shown that soluble presentation of Notch 

ligands (which does not allow for mechanical force generation) inhibits T lineage 

differentiation rather than enhancing it (Shukla et al., 2017). Yet despite this and other 

challenges, multiple methods have been developed that enable successful T lineage 

differentiation outside the body (Brauer et al., 2016). 

The first of these methods is fetal thymic organ culture (FTOC), which originally came 

into widespread use during the early 1990s (Jenkinson and Anderson, 1994). This method 

involves dissection of thymic lobes from E14-15 fetal mice and treating them with 2-

deoxyguanosine to remove the resident thymocytes. Treated lobes are then reconstituted 

together with HSPCs by the hanging drop method and subsequently cultured in the 

presence of supportive cytokines. Because FTOCs are derived directly from dissected 

thymi, they provide a relatively faithful 3-dimensional recapitulation of the in vivo 

thymic niche. However, preparation of FTOCs is time consuming and limited by 

availability of fetal mice, and thymocytes must be extracted from the FTOC to perform 

endpoint analysis, thus limiting the experimental accessibility of this system. 



18 

 

The OP9-DL1 (and later OP9-DL4) co-culture system was first developed in the early 

2000s in the lab of Juan-Carlos Zúñiga-Pflücker, and has proven particularly instrumental 

during the intervening years for enhancing our understanding of T cell development 

(Mohtashami et al., 2010; Motte-Mohs et al., 2005; Schmitt et al., 2002). In this platform, 

OP9 bone marrow stromal cells are transduced to ectopically express either the Notch 

ligand Delta-like ligand 1 (DL1) or DL4 and are co-cultured with HSPCs in the presence 

of serum and supportive cytokines. Because the OP9-DL system provides an accessible 

2-dimensional culture platform, it facilitated novel studies into the T lineage potential of 

various progenitors that were impossible using FTOCs. With this platform, HSPCs could 

be isolated from donors, sorted by flow cytometry to isolate specific populations of 

interest, seeded on OP9-DL culture, and either harvested for timepoint analysis or 

observed in situ using immunofluorescence and live imaging techniques. However, OP9-

DL1 and OP9-DL4 necessitate the use of stromal feeder cells and serum-containing 

media which limit technical reproducibility and present a significant obstacle to clinical 

translation in the human system. 

Because of these limitations, there has been significant recent research interest in 

developing stromal feeder-free and serum-free platforms for in vitro T cell 

differentiation. Recently, our lab has developed a novel serum-free and stroma-free in 

vitro platform for mouse and human T cell differentiation that utilizes adsorbed DL4 and 

vascular cell adhesion molecule-1 (VCAM) (Shukla et al., 2017). After optimization of 

media conditions, seeding density, and extracellular matrix components, DL4+VCAM 

was able to produce late-stage T cell progenitors capable of in vivo thymus engraftment 

and immune function at comparable efficiency to OP9-DL4, while also demonstrating 

faster differentiation kinetics. Furthermore, because the DL4+VCAM platform omits 

uncharacterized serum and xenogeneic co-culture, it is more readily translatable to 

clinical applications. These advancements are especially timely given recently increased 

interest in engineered chimeric antigen receptor T (CAR-T) cells for cancer 

immunotherapy (Dai et al., 2016). 
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1.3.4 Gene regulatory networks for T cell development 

Specification and commitment to the T cell lineage are driven by the combined activity of 

many transcription factors (TFs) that together form a gene regulatory network (GRN). 

There is no single “master regulator” for the T cell lineage; rather, a set of at least 10 

distinct regulatory inputs appear essential for T cell development, as listed in Table 3 and 

reviewed in Rothenberg et al, 2016. Notably, most of these regulatory inputs are not 

unique to the T cell lineage, but are shared developmentally by at least one other blood 

lineage (David-Fung et al., 2006). As a result, tight control over these inputs is especially 

critical for proper T cell development to occur. 

Table 3: Key regulatory inputs to the T cell development program 

Regulatory Input Specific Genes Description 

E proteins Tcf3 (E2A) 
Tcf12 (HEB) 

Basic helix-loop-helix (bHLH) TFs 

Runx family Runx1 

Runx3 

TFs 

GATA-3 Gata3 TF 

c-MYB Myb TF 

Ikaros-type zinc 
fingers 

Ikzf1 (Ikaros) 
Aiolos 

Helios 

Zinc finger TF 

TCF-1/LEF-1 Tcf7 (TCF-1) 
Lef1 

HMG box TF 

PU.1 Spi1 TF; early “hit-and-run” role 

GFI-1 Gfi1 Zinc finger repressor TF 

BCL11B Bcl11b TF 

Notch signaling Notch1 

Dll4 (DL4, 
expressed by 
thymic stroma) 

Signaling pathway 

 

These regulatory inputs interact with one another to form network motifs. Network 

motifs are sub-circuits of gene regulatory networks that are overrepresented in nature 

compared to random chance and perform characteristic modes of information processing 
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(Alon, 2007). Feedforward loops (coherent or incoherent) and feedforward loops 

(positive or negative) are common examples of network motifs and feature prominently 

within the T cell development GRN. For example, Notch signaling and its target genes 

Tcf7, Gata3, and Bcl11b form a coherent feedforward loop, in which Notch directly 

upregulates Tcf7, which in turn cooperates with Notch signaling to subsequently activate 

Gata3 and Bcl11b (Figure 2). This motif is hypothesized to serve as persistence detector 

for Notch signaling, such that T lineage commitment (marked by upregulation of Bcl11b 

activity) only occurs when Notch signaling levels remain elevated long enough for its 

primary transcription factor targets to become active (Kueh and Rothenberg, 2012). Other 

previously studied network motifs within the T cell development GRN include incoherent 

feedforward loops downstream of IL-7 signaling that are hypothesized to enable T cell 

progenitors to sense and respond to changes in IL-7 levels (Ikawa et al., 2010); and 

mutual repression between the T lineage antagonist transcription factor Spi1 (PU.1) and T 

lineage promoting transcription factors Tcf7 (TCF-1), Gata3, and Bcl11b which 

reinforces the exclusion of alternate myeloid cell fates during T lineage specification (Del 

Real and Rothenberg, 2013). 

 

 

Figure 2: Notch-driven coherent feedforward loop forms a network motif within T 

cell development GRN 
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1.3.5 Plasticity and potential shortcuts in T cell development program 

Despite the need for tight control over its regulatory inputs, previous evidence suggests 

there is significant intrinsic plasticity to the T cell development program. For example, 

DN2 stage progenitors are much more abundant in OP9-DL1 in vitro co-culture than they 

are in the thymus (Balciunaite et al., 2005; Kawazu et al., 2005). Moreover, it remains 

unclear whether DN2 cells cultured on OP9-DL1 are fully transcriptionally equivalent to 

primary DN2 thymocytes, underscoring the notion that classic surface marking for 

defining T cell development stages (CD25, CD44, c-KIT, etc.) may mask 

developmentally important transcriptional heterogeneity. 

Furthermore, many instances of shortcuts or detours from the “canonical” series of events 

in T cell development have been reported in various contexts. For example, multiple 

groups have reported that the dwell time spent by T cell progenitors in the DN2 and DN3 

stages is greatly reduced in certain contexts. In one instance, the thymi of Foxn1 splice 

mutant mice were reported to contain DP cells despite a near complete lack of DN3 cells, 

suggesting the existence of a shortcut that bypasses the DN3 state (Su et al., 2003). In 

another case, certain Kitlo HSA+ subsets of the DN1 compartment were reported to give 

rise to DP cells at low efficiencies but without generating any detectable DN2 or DN3-

like intermediates (Porritt et al., 2004). Finally, mouse and human models of Gata3 

overexpression contain a fraction of cells that successfully transit to the DP stage despite 

significant depletion of DN3 intermediates, suggesting it may be possible for DN1 or 

DN2 stage progenitors to proceed immediately to β-selection (Anderson et al., 2002; 

Taghon et al., 2001). Taken together, these observations suggest that the classic view of T 

lineage differentiation as a cleanly linear stage-wise progression may omit alternative 

routes to the T cell fate which are more readily observed in vitro or under perturbed in 

vivo conditions (David-Fung et al., 2006). However, it remains to be understood what 

physiological role this potential variation might serve. 

Another set of particularly striking examples of plasticity in the T cell development 

program comes through comparing the kinetics and genetic requirements of fetal 

thymopoiesis versus adult thymopoiesis. In mouse development, hematopoietic 
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progenitors settle the thymus at approximately E13.5, and the first DP thymocytes 

emerge at approximately E16.5 (David-Fung et al., 2006), a total period of 3 days. 

Conversely, in adult thymi it can take up to 10 days for progenitors to reach the DN2 

stage and 2 weeks for them to reach the DP stage (David-Fung et al., 2006). In terms of 

genetic requirements, Ikaros-null mutant mice produce no fetal thymocytes, but exhibit 

normal T cell development and a fully-populated thymus into adulthood (Wang et al., 

1996). Similarly, severely hypomorphic PU.1 mutants exhibit completely arrested fetal 

thymopoiesis, yet begin to produce T cells following birth for as long the mice can 

survive (Back et al., 2004; Dakic et al., 2005; Scott et al., 1994). There is evidence to 

suggest fetal thymopoiesis is also more robust to decreased IL-7 signaling and Tcf7 

(TCF-1) expression levels than adult thymopoiesis, possibly due to a compensatory effect 

mediated by related cytokines and transcription factors (Crompton et al., 1998; Okamura 

et al., 1998; Schilham et al., 1998; Verbeek et al., 1995). Finally, many important T cell 

development genes exhibit highly disparate stage-wise dynamics in fetal versus adult 

thymopoiesis, including Id1, Id2, Runx1, Runx3, Spi1 (PU.1), Spib, Cd3e, and Deltex 

(David-Fung et al., 2006). Thus, although both the adult and fetal thymus support T cell 

production, the pathways employed in each context differ in important ways. In more 

general terms, it appears likely that while some aspects of the T cell development 

program must be conserved across all contexts, other aspects permit greater flexibility 

(David-Fung et al., 2006). 

1.3.6 Alternative strategies for computational modeling of T cell 
development GRNs 

In this study, we present Boolean networks (BNs) as an informative framework for 

modeling the mouse T cell development program. Although Boolean networks are 

commonly used to model other developmental systems, other groups have employed 

alternative strategies to model the GRN dynamics of related systems. 

For example, continuous modeling with ordinary differential equations avoids the 

need to discretize data, instead producing real-valued outputs that are more reflective of 
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experimental data. Initial efforts have been made recently by other groups to create 

differential equation-based models of T cell specification dynamics (Manesso et al., 

2016). However, these models are limited to sub-network motifs rather than the complete 

T cell development GRN and do not generate new predictions about T cell 

differentiation. As such, there remains a clear research need for network-scale 

computational models of the T cell development program. 

Another class of computable GRN models are multi-level logical models. Although 

regulatory interactions are abstracted as logical functions in these models (similar to BN 

modeling), multi-level models permit more than 2 discrete activity levels for each 

variable. This approach was recently employed in the myeloid versus lymphoid lineage 

choice model published by Collombet et al, in which most genes are constrained to 

binary values (0 or 1), except for Spi1 which the authors chose to model with 3 discrete 

levels (0, 1, or 2) (Collombet et al., 2017). 

1.3.7 Open questions in T cell development field 

Overall, despite many advances, the field still lacks a complete understanding of the 

transcriptional dynamics of the T cell development program, and specifically how GRNs 

encode these dynamics. It is unclear whether transcriptional heterogeneity among 

progenitor stages is functionally important for T cell development (as observed in 

pluripotency, for example) (Porritt et al., 2004). Relatedly, it is also unknown whether 

there are multiple transcriptional trajectories which can lead toward T cell lineage 

commitment, or only one (Bhandoola and Sambandam, 2006), and whether certain 

trajectories are more commonly employed in certain differentiation contexts (ex. fetal 

versus adult thymopoiesis, or in vivo thymopoiesis versus in vitro differentiation). 

Finally, the field would benefit from additional insight into key control points within 

GRNs for T cell differentiation. Characterization of these control points would enable 

targeted improvements to in vitro differentiation protocols; for instance, by enriching for 

the T cell lineage over alternate fates or reducing dependence on DL4-mediated Notch 

signals – a key limiting factor for large-scale T cell manufacturing toward therapies. 
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Boolean network (BN) modeling presents an as-of-yet unexplored opportunity to harness 

the field’s existing knowledge of the T cell development GRN into a computable 

framework that examines these questions in a relatively rapid and unrestricted manner. 

Therefore, in this thesis we construct a BN model of the T cell development program and 

demonstrate its utility over existing static GRN models for predicting heterogeneity and 

transcriptional dynamics among T cell progenitors in response to extrinsic differentiation 

signals. 

 

 



25 

 

 Objectives & Aims 
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2.1 Hypothesis 

The gene regulatory networks (GRNs) that comprise the mouse T cell development 

program support heterogeneous and context-dependent transcriptional responses to 

extrinsic signals, and these transcriptional responses can be accurately predicted by 

Boolean network modeling. 

2.2 Specific Aims 

Aim 1: Construct a computational model of the mouse T cell development program 

that accurately recapitulates experimental observations 

Toward this aim, I developed the first-reported Boolean network (BN) model of the 

mouse T cell development program based on published high-confidence regulatory 

interactions and supplemented with a small number of additional interactions derived 

through partial correlation analysis and iterative refinement through simulation. 

Asynchronous simulations of the BN model produce steady states that closely resemble 

known T cell progenitor cell types. Furthermore, simulations also accurately recapitulated 

the response of T cell progenitors to various combinations of exogenous signals and 

genetic perturbations. Finally, the model predicts the T cell development GRN supports 

multiple possible transcriptional trajectories leading toward T cell lineage commitment. 

While genes that antagonize the T cell lineage are predicted to be downregulated quickly 

regardless of trajectory, genes that promote T cell lineage choice are predicted to exhibit 

more flexibility between trajectories. 

Aim 2: Support application and extension of Boolean network modeling by the 

broader biological community 

Toward this aim, I developed a set of software ‘gadgets’ for the Garuda systems biology 

platform. These gadgets enable the broader research community to easily perform gene 

expression discretization, Boolean network simulation, and state transition graph analysis 

(including steady states and strongly connected components) without any computer 
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programming requirements. The gadgets interface with other systems biology software 

tools via Garuda to enable larger data analysis pipelines. Finally, the gadgets were used 

to simulate a BN model of mouse embryonic stem cells developed in our lab and were 

publicly released to encourage further expansion of said model by the community 

(Yachie-Kinoshita et al., 2018). 

Aim 3: Compare transcriptional dynamics and heterogeneity of T cell progenitors 

across various differentiation contexts 

Toward this aim, I first assisted in characterizing a novel serum- and stroma-free platform 

for mouse and human T cell differentiation that utilizes adsorbed Delta-like ligand 4 

(DL4) and vascular cell adhesion molecule 1 (VCAM) to create an artificial thymus-like 

niche. Specifically, it was demonstrated that mouse fetal liver and human umbilical cord 

blood hematopoietic progenitors upregulate T cell lineage-specific Notch target genes 

higher when seeded on DL4+VCAM versus DL4 alone. I also demonstrated that T cell 

progenitors exhibit higher motility during DL4+VCAM culture versus DL4 alone, 

providing a potential physical explanation for increased activation of the Notch pathway 

in this novel platform (Shukla et al., 2017). 

Separately, single-cell qRT-PCR analysis of sorted primary adult thymocytes was used to 

demonstrate that surface marker-defined stages of early T cell development mask 

comprise overlapping and transcriptionally heterogeneous cell populations. Finally, 

single-cell RNA sequencing (scRNA-seq) was used to examine transcriptional 

differences and trajectories of differentiating T cell progenitors in fetal thymopoiesis and 

the aforementioned DL4+VCAM in vitro differentiation platform. 
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 Construction of a Boolean network model of 
T cell development 
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3.1 Introduction 

The T cell lineage is a subject of great clinical and research interest. Clinically, T cells 

hold great potential as cellular therapy agents, especially given recent successes in 

chimeric antigen receptor (CAR) technology and adoptive cancer immunotherapies (Dai 

et al., 2016). To support these efforts, more efficient in vitro differentiation protocols for 

the T cell lineage must be developed by harnessing our understanding of how T cells 

normally develop in vivo. Recent studies have identified the genetic players and 

regulatory interactions that are critical for T cell development from mouse hematopoietic 

progenitors (detailed in Chapter 1.3). However, integrating these findings into a 

comprehensive and predictive computable model of T cell lineage specification remains 

an open challenge. 

Boolean network (BN) modeling is a commonly-employed approach for functionalizing 

qualitative observations about gene regulatory networks (GRNs) into a computable and 

predictive form (detailed in Chapter 1.2.3). In a BN model, gene expression levels are 

described with binary variables. Boolean logic functions are used to calculate the binary 

state of each gene based on the complete network state, thereby enabling simulation of 

the network’s dynamics over many discrete steps. Attractors within the resulting state 

transition graph often recapitulate experimentally observable cell types (Huang et al., 

2005). When applied to biological networks responsible for cell fate decisions, BN 

models can accurately recapitulate observable cell states. In general, BN modeling and 

simulation can be used to make informative predictions about the dynamic response of 

GRNs to different input conditions and genetic perturbations (Albert and Thakar, 2014). 

Herein we report the construction and simulation of a Boolean network (BN) model that 

describes the transcriptional control of single progenitor cells by the T cell development 

GRN. The model encompasses 34 genes and 3 external signaling pathway inputs that are 

implicated in mouse T cell development. Asynchronous simulation of the BN model 

accurately captures known T cell phenotypes under normal and abnormal development 

conditions, as well as the combinatorial effect of environmental signals on access to 

transcriptional space. The BN model also predicts that there are multiple possible 
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transcriptional trajectories leading toward T lineage commitment. Overall, the BN model 

developed here establishes both a promising framework for exploring the T cell 

development program in silico and a mechanistic basis for designing future 

improvements to T cell differentiation protocols. 

3.2 Methods 

3.2.1 Literature curation process 

The majority of edges in our Boolean network (BN) model were curated from previous 

literature. We focused on genes downstream of Notch, interleukin-7 (IL-7), and pre-T 

cell receptor (pre-TCR) signaling since these inputs are reported to drive progression 

through the T cell lineage, as opposed to only providing survival support (see Chapter 

1.3.2). First, known genes and interactions of interest downstream of Notch, IL-7, and 

pre-TCR signaling were collected from previous static descriptions of the T cell 

development GRN (Georgescu et al., 2008; Kueh and Rothenberg, 2012; Longabaugh et 

al., 2017). Unlike continuous mathematical models that employ ordinary differential 

equations, BN models do not require quantitative information about binding rates, 

transcriptional rates, or other biochemical processes. Indeed, such biochemical 

information remains unknown for most of the studied interactions comprising the mouse 

T cell development program. 

In a BN model, a regulatory interaction is sufficiently well-described if it is known that 

(1) a gene product X targets another gene Y, and (2) whether X promotes or represses 

expression of gene Y. Therefore, evidence supporting these two claims were the primary 

focus of our literature search. Literature evidence for the existence, direction, and sign 

(activation or repression) of regulatory edges comprised: genetic overexpression or 

knockout followed by mRNA expression analysis, changes in media-supplemented ligand 

levels followed by mRNA expression analysis, or overexpression of the intracellular 

domain of Notch. Evidence of direct binding of transcription factors to downstream 
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enhancer targets was taken from published chromatin immunoprecipitation (ChIP) 

studies. A full list of the literature evidence used to inform edges in our BN model is 

provided in Supplementary Table 1. 

3.2.2 Partial correlation analysis 

To infer potential gene regulatory interactions that may remain unreported, we employed 

a partial correlation-based approach to identify pairs of highly-correlated genes. A similar 

approach had previously been employed in our lab to infer regulatory edges comprising a 

GRN for mouse embryonic stem cells (Yachie-Kinoshita et al., 2018). A set of 138 bulk 

microarray profiles of flow-sorted T cell progenitors was downloaded from Gene 

Expression Omnibus and the Immunological Genome Consortium (Mingueneau et al., 

2013). A full list of the microarray datasets employed in this analysis is provided in 

Supplementary Table 2. Data from all probe sets were quantile normalized by RMA 

using the ‘oligo’ Bioconductor package for R. Probe sets were then collapsed into unique 

genes by taking the mean values of probes annotated to the same gene. Batch effect 

correction was performed using COMBAT. Only those genes that exhibited a range of >2 

between the maximum and minimum across all datasets were used for downstream 

correlation analysis. For each of 10,000 iterations, 100 genes were randomly sampled for 

pairwise partial correlation analysis with the ‘ppcor’ package in R. Each gene pair was 

assigned a score, defined as the highest Pearson partial correlation for the pair over all 

iterations where p < 0.05. 

3.2.3 Iterative refinement of Boolean update functions 

Experimental evidence (overexpression, knockdowns, ChIP-seq, etc.) for each interaction 

was verified against previous reports. Then, candidate Boolean update functions 

describing the regulatory inputs to each gene in the network were chosen; for example: 

Bcl11b’ = Notch signaling and Gata3 and Tcf7 and Runx1. In cases where evidence of 

specific cis-regulatory logic was previously reported in literature, this logic was used to 
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define the gene’s update function. For example, the cis-regulatory element of Bcl11b is 

exceptionally well-characterized and only accurately represented by AND logic (Kueh et 

al., 2016). For genes with unknown or underspecified cis-regulatory logic, update 

functions were refined iteratively by asynchronously simulating the BN and comparing 

the resulting steady states and strongly connected components (SCCs) against biological 

reference states gathered from microarray data. Specifically, in cases where a variable’s 

state consistently disagreed with experimental expectations, the corresponding update 

function was modified such that the truth table yielded the expected result, and the 

modified model was simulated to test for improved accuracy. 

3.2.4 Asynchronous Boolean simulation 

Under the model’s Boolean assumptions, each variable has two possible states: 0 

(“OFF”) and 1 (“ON”). Biologically, we interpret these values as the minimum and 

maximum expression values, respectively, observed experimentally across all reference 

cell types for each gene. In asynchronous simulation of a BN consisting of N variables, n 

variables (1 ≤ n ≤ N) are selected at each simulation step and updated according to their 

associated Boolean update function. The number of variables updated with each time step 

is random, and each variable has an equal chance of being selected. This asynchronous 

behaviour mimics the stochastic nature of gene expression frequency in organisms (Garg 

et al., 2008). 

A BN model with N variables has 2N possible states, where each state is a N-length vector 

of “0” or “1” values representing the ON/OFF profile of all model variables (Figure 3). 

Since the described T cell development GRN model has 37 model variables, there are 

1.37 × 1011 possible expression states. 

Furthermore, under an asynchronous update schema, each state has 2N possible successor 

states. Therefore, the state transition graph for our reported T cell development GRN 

model is a directed weighted graph that can contain a maximum of 1.89 × 1022 edges. 

However, the successors of most states are limited by the model’s update rules and 
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resulting stable limit cycles or steady states. Because of this, outer states are generally 

negligible in terms of frequency of appearance. Asynchronous Boolean simulation from a 

limited set of random initial states can be performed to make simulations more 

computationally tractable. For all simulations, >2000 runs were performed from either a 

randomly-initialized set of states or a single pre-defined initial state, and each run was 

simulated for >250 consecutive simulation steps. Random simulations under these 

conditions produced repeatable outputs. Edge weights were assigned based on how 

frequently each edge was traversed over all simulation runs. Random asynchronous 

Boolean simulation was performed in Python 2.7 using the BooleanNet package (version 

1.2.8). 

 

 

Figure 3: Overview of dynamic Boolean network modeling approach 

Interaction networks defined by logic functions are simulated by asynchronously 

updating individual genes to produce a transcriptional state space (directed weighted 

graph) containing two types of attractors—steady states (SSs) and strongly connected 

components (SCCs) 
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3.2.5 Identification of steady states and strongly connected 
components 

In our BN modeling framework, we investigated two types of attractors: steady states and 

strongly connected components (Figure 3). Steady states (SSs) are single states at dead 

ends in the state transition graph, and we assume these reflect relatively homogeneous 

cell populations, such as differentiated cell states. Conversely, a strongly connected 

component (SCC) is defined as a set of states wherein each state is reachable from every 

other state in the set. This is reminiscent of observations of dynamic heterogeneity within 

pluripotent stem cell (PSC) populations, in which individual cells can transition among 

numerous states that are high or low in their expression of specific pluripotency genes 

(Filipczyk et al., 2015; Singer et al., 2014). Note that SCCs are not necessarily closed 

systems, and SCCs with outgoing transitions were also considered in our analysis. SCCs 

in a state transition graph were identified by Tarjan’s algorithm, which operates by 

iteratively removing disconnected states and steady state attractors that lack either an 

incoming or outgoing transition edge. State transition graph analysis and attractor state 

identification was performed in Python 2.7 using the networkx package (version 1.2.6). 

3.2.6 In silico genetic knockouts and forced expression 

In silico loss- and gain-of-function assays were performed by fixing each gene in the 

GRN to either 0 or 1 and simulating the dynamic behaviour of the perturbed network as 

described above. 

3.2.7 Comparison of BN simulations and binarized experimental data 

Agreement between steady states of the BN model and known T cell development stages 

was quantified using the Hamming distance metric, which measures the number of bits 

that are different between two binary vectors of length L. Briefly, stage-specific 

transcriptional profiles for all model genes as measured by bulk microarray were 



35 

 

downloaded from the Immunological Genome Consortium (Mingueneau et al., 2013) and 

binarized by k-means (k=2). The percent agreement score was calculated as: 

% Agreement = 1 − ∑ [𝑥𝑖 ≠ 𝑦𝑖]𝐿𝑖=0 𝐿  

where 𝑥 is the binary state vector for the computed steady state, 𝑦 is the binarized 

experimentally-observed transcriptional profile, and each index 𝑖 corresponds to a gene 

included in the BN model. 

The state space of each simulation was visualized by projecting each state along the 

principal components of a reference set of k-means binarized bulk microarray data from 

the Immunological Genome Consortium (ImmGen) for each stage of T cell development 

and alternative blood lineages (including natural killer, natural killer T, macrophages, 

granulocytes, pre-pro B, and dendritic cells). 

3.2.8 Trajectory identification and clustering from asynchronous 
Boolean simulations 

In graph theory, a path from one node to another in a directed graph without repeated 

states is called a “trajectory”. We used the networkx package for Python to identify 

trajectories from early to late T cell progenitor states via depth-first search. To determine 

common patterns among these trajectories, we used UPGMA to cluster the trajectories in 

principal component space based on the Fréchet distance metric. Formally, the Fréchet 

distance between two curves A and B is defined as: 

𝐹(𝐴, 𝐵) = infα,𝛽  max𝑡∈[0,1] {𝑑 (𝐴(𝛼(𝑡)), 𝐵(𝛽(𝑡)))} 

where d denotes Euclidean distance. Common transcriptional patterns were analyzed 

among the top 6 clusters of trajectories by taking the average expression value at each 

time step for all trajectories in the cluster. 
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3.3 Results 

3.3.1 Construction of BN model of mouse T cell development 

We defined the scope of our Boolean network (BN) model as the differentiation of pre-

thymic lymphoid progenitors (such as common lymphoid progenitors, CLPs) into CD4+ 

CD8+ double positive (DP) T cells. Intermediates in this process include the surface 

marker-defined CD4- CD8- double negative (DN)-1, DN2, and DN3 stages, as defined in 

Chapter 1.3.1. More specifically, we set out to create a Boolean logic representation of 

the gene regulatory networks (GRNs) that drive progression through these stages of the T 

cell lineage. 

To construct the model (Figure 4a), known genes and interactions of interest downstream 

of Notch, IL-7, and pre-TCR signaling were collected from a previous static description 

of the T cell development GRN (Kueh and Rothenberg, 2012; Longabaugh et al., 2017) 

and recent T cell literature (Supplementary Table 1). Furthermore, we attempted a partial 

correlation-based approach to predict additional interactions of interest from 138 

published bulk microarray profiles of flow-sorted T cell progenitors (Supplementary 

Table 2). However, this approach yielded a high false negative rate, with 37.9% of 

reported high-confidence regulatory interactions being identified as uncorrelated (Figure 

4b). 

Experimental evidence (including overexpression, knockdowns, ChIP, etc.) for each 

interaction was verified against previous reports. Then, candidate Boolean update 

functions of the regulatory inputs to each gene in the network were chosen; for example: 

Bcl11b’ = Notch signaling and Gata3 and Tcf7 and Runx1. These update functions were 

iteratively refined by comparing the steady states and strongly connected components 

(SCCs) resulting from asynchronous simulation against biological reference states 

gathered from microarray data. The finalized BN model of the T cell development GRN 

(Figure 4c) consists of 37 nodes (3 signaling inputs + 34 genes) and 103 edges. The 

Boolean update functions for all nodes are provided in Table 4. 
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Figure 4: Construction of BN model of mouse T cell development 

(a) Iterative method used to construct the BN model of T cell development 

(b) Partial correlation analysis of T cell progenitor microarray datasets yields a trimodal 

distribution with high false negative rate (37.9%). Rugs indicate gene pairs with reported 

high-confidence regulatory interactions; green = true positive, red = false negative 

(c) BN model of T cell development GRN. Green edge = activation, red edge = 

repression. Node colours indicate groups of functionally-related genes. AND/OR logic 

not shown.  
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Table 4: Boolean logic functions for BN model of T cell development program 

Node Update function 

NOTCH_SIGNALING INPUT_DL4 and Notch1 

IL7_SIGNALING INPUT_IL7 and Il7ra 

TCR_SIGNALING INPUT_TCR and Cd3e and Cd3g and Ptcra and Tcrb and Lck and Zap70 

E_PROTEIN E2a and HEB and not Id3 

Bcl11b NOTCH_SIGNALING and Gata3 and Tcf7 and Runx1 

Cd3e 
(NOTCH_SIGNALING and Bcl11b and (Gata3 or Ikaros or Tcf7)) and not 

Pu1 

Cd3g 
(NOTCH_SIGNALING and Bcl11b and (Gata3 or Ikaros or Tcf7)) and not 

Pu1 

Cebpa 
IL7_SIGNALING and not NOTCH_SIGNALING and not Bcl11b and not 

Gata3 and not Hes1 

Deltex NOTCH_SIGNALING and Gata3 

E2a E2a 

Ebf1 (IL7_SIGNALING and E2a) and not NOTCH_SIGNALING 

Ets1 (TCR_SIGNALING or (Runx1 and Scl)) and not Pu1 

Gata3 
(((NOTCH_SIGNALING or IL7_SIGNALING) and E_PROTEIN and Myb) 

or Tcf7 or Runx1) and not (Pu1 and not (NOTCH_SIGNALING or Myb)) 

Gfi1 E_PROTEIN and Lyl1 and (not Pu1 or not Gfi1b) 

Gfi1b (NOTCH_SIGNALING or E_PROTEIN) and not Bcl11b 

HEB HEB or Scl 

Hes1 
(NOTCH_SIGNALING or (E_PROTEIN and not Pu1)) and not (Ikaros and 

TCR_SIGNALING) 

Hhex Scl and Lmo2 

Id3 
TCR_SIGNALING or (Scl and Lyl1 and not NOTCH_SIGNALING and not 

Bcl11b and not Gata3 and not Ebf1 and not Pu1) 

Ikaros Ikaros or not Pu1 

Il7ra NOTCH_SIGNALING or E_PROTEIN or (Pu1 and not Gata3) 

Kit (IL7_SIGNALING and (Scl or Lmo2)) and not Bcl11b 

Lat (NOTCH_SIGNALING and E_PROTEIN) and not Pu1 

Lck NOTCH_SIGNALING and (not IL7_SIGNALING or not Pu1) 

Lef1 NOTCH_SIGNALING and Tcf7 

Lmo2 Pu1 

Lyl1 Lmo2 and Pu1 

Myb Scl or not Pu1 or TCR_SIGNALING 

Notch1 E_PROTEIN 

Ptcra 

(E_PROTEIN and NOTCH_SIGNALING and Bcl11b and Myb) and (not 

IL7_SIGNALING or not (Scl and Lyl1) or not Gata3) and not (Ikaros and 

TCR_SIGNALING) 

Pu1 
IL7_SIGNALING and not Gata3 and not Gfi1 and not Runx1 and not Tcf7 

and not Bcl11b 

Rag1 (E_PROTEIN and NOTCH_SIGNALING and Gfi1) and not Pu1 

Runx1 NOTCH_SIGNALING and not (Ikaros and TCR_SIGNALING) 

Scl E2a or Gata3 or Gfi1 or Pu1 

Tcf7 NOTCH_SIGNALING or (Tcf7 and not Gata3) or TCR_SIGNALING 

Tcrb  Ets1 and Gata3 and Runx1 and NOTCH_SIGNALING 

Zap70 TCR_SIGNALING or not Pu1 
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3.3.2 Steady states of BN correspond to known T cell progenitor 
states 

Previous applications of BN modeling to biological network simulation commonly find 

that the steady states of the model bear high similarity to experimentally-observed cell 

types (Bonzanni et al., 2013; Collombet et al., 2017; Krumsiek et al., 2011). To 

determine whether this property was also true of our constructed BN model of T cell 

development, asynchronous simulations were performed for all combinations of Notch, 

IL-7, and pre-TCR signaling inputs. As an example, under +Notch +IL-7 input 

conditions, a state transition map with 10 526 states (unique single-cell expression 

profiles) and 12 885 possible transitions between these states was generated (Figure 5a). 

The state transition map contains five steady states and one SCC. Generally, many steady 

states of the BN model exhibited high agreement with bulk microarray profiles for known 

T cell progenitor stages. For example, one steady state found in the absence of input 

signals exhibits 78% agreement (by Hamming distance) with the binarized microarray 

profile of a CLP, and another steady state found under +Notch +IL-7 conditions exhibits 

94% agreement with the T lineage-committed DN3 stage (Figure 5b). Thus, the 

constructed BN model can recapitulate the transcriptional phenotypes of known T cell 

progenitor cell types. 
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Figure 5: Known T cell progenitor cell types are captured by BN modeling 

(a) State transition map produced through asynchronous simulation of T cell development 

BN model with Notch and IL-7 signaling inputs present. Data represents 4000 random 

initial conditions and 250 simulation steps per condition. Colours indicate attractors. 

(b) Computationally-predicted binary transcriptional profiles for two example steady 

states agree well with binarized experimentally-measured microarray profiles for 

common lymphoid progenitors (CLPs) and T lineage-committed DN3 primary cells. 

Microarray data from ImmGen (Mingueneau et al., 2013) normalized between 0 and 1 

across all development stages and alternate fates by k-means clustering. Agreement 

scored using Hamming distance metric. 
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3.3.3 BN simulation captures control of developmental progression 
by environmental signals 

To determine whether our BN model captures environmental signal-mediated control of 

progression through the T cell development program, we assessed the transcriptional 

space that is accessible from a CLP-like initial state given different combinations of 

Notch, IL-7, and pre-TCR inputs (Fig. 8). Simulated CLP-like cells were unable to access 

states beyond DN2, consistent with experimental observations that IL-7 alone is 

insufficient to specify the T cell lineage (Schmitt et al., 2004). Conversely, in silico 

inclusion of both Notch and IL-7 inputs enabled transcriptional access up to DN3, 

recapitulating the critical role of Notch signaling in T linage specification and 

commitment (Schmitt et al., 2004; Yui and Rothenberg, 2014). Addition of pre-TCR 

signaling inputs is needed for simulated cells to progress past DN3 to later stages of T 

cell development. This observation is again consistent with expectations since T cell 

progenitors must undergo TCR-β selection at the DN3 stage (Yui and Rothenberg, 2014). 
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Figure 6: Density plots of predicted transcriptional state space that is accessible to 

CLPs when stimulated with various combinations of environmental signals 

Produced through asynchronous simulation over 2000 initial conditions and 500 

simulation steps. Density contours are weighted by the observed frequency of each state 

over all simulations. Black dots correspond to reference profiles for T cell progenitor 

stages and alternate lineages, determined as above. Simulation results are projected onto 

principal components of reference profiles. 
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3.3.4 BN modeling predicts developmental effect of knockouts 

In addition to simulating different combinations of Notch, IL-7, and pre-TCR signaling 

inputs, the BN model of T cell development can simulate the knockout or forced 

expression of specific genes. In this manner, we can predict genes that are necessary for 

T cell commitment or whose enforced expression leads to arrested T cell development. 

For example, simulation results for the knockout of Bcl11b (Bcl11b-/-) given +Notch +IL-

7 signaling inputs agree with previous reports of developmental arrest prior to T lineage 

commitment in Bcl11b-/- thymocytes (Ikawa et al., 2010). In particular, asynchronous 

simulations predict that Bcl11b-/- CLPs converge toward an early steady state and cannot 

progress past the DN2b stage (Figure 7). By contrast, simulated wildtype CLPs are able 

to reach a DN3b-like steady state. 

 

Figure 7: In silico knockout of Bcl11b recapitulates experimentally observed 

developmental arrest at DN2 stage 

(Left) Genetic knockout of Bcl11b has been shown to arrest mouse T cell 

development at the DN2 stage. (Right) Predicted steady state trajectories from Bcl11b-/- 

CLPs given +Notch +IL-7. Determined by forcing Bcl11b = 0 throughout BN 

simulation over 2000 runs and 500 steps per run. As shown via projection onto principal 

components, Bcl11b-/- CLPs are predicted to arrest prior to the DN2B stage, consistent 

with previous in vitro and in vivo observations. 
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3.3.5 BN modeling predicts multiple transcriptional trajectories toward 
T cell commitments 

In addition to analyzing the steady states and developmental extent of these 

transcriptional state spaces, we investigated the different paths through these spaces that 

were observed in individual simulation runs. In graph theory, a path from one node to 

another in a directed graph without repeated states is a “trajectory”. Using our BN model, 

we identified 1063 unique trajectories leading from the same CLP-like initial state to the 

same DN3b-like steady state within the simulated +Notch +IL-7 state transition graph 

(Figure 8a). This result suggests that there are many transcriptional trajectories that can 

lead uncommitted blood progenitors toward T cell commitment. 

To determine common patterns among these trajectories, we clustered the trajectories in 

principal component space based on the Fréchet distance metric. Common transcriptional 

patterns over the simulation were analyzed among the top 6 clusters of trajectories 

(Figure 8b). In all clusters, genes associated with alternate or stem cell fates (Pu.1, Hhex, 

Lmo2, etc.) were downregulated early along each trajectory. However, expression of 

important T cell genes (Gata3, Deltex, Cd3e, etc.) was delayed in some clusters of 

predicted trajectories but not others. Furthermore, other genes (Bcl11b, Tcf7, etc.) 

appeared to fluctuate in their expression before stabilizing to an “ON” level. These 

patterns suggest that differences among possible trajectories for T lineage specification 

primarily involve T lineage-promoting genes, whereas rapid silencing of T lineage-

antagonizing genes may be a conserved feature of all T cell differentiation trajectories. 
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Figure 8: BN modeling predicts multiple transcriptional trajectories toward T cell 

lineage commitment 
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(a) Predicted trajectories from CLP to DN3b-like steady state given +Notch +IL-7 

signaling, determined using depth-first search on the simulated state transition map. 

Colours correspond to top-6 clusters of similar trajectories, determined by Fréchet 

distance and average linkage. (b) Average expression state for a subset of genes in each 

cluster of similar trajectories shown in (a) over multiple simulation steps. 

3.4 Discussion 

In this chapter we present a Boolean network (BN) model of the gene regulatory network 

(GRN) responsible for specifying the T cell lineage in mice. Previous work in the field 

has focused on static descriptions of the T cell development GRN (Kueh and Rothenberg, 

2012) or simulation of small decision-making modules using continuous ordinary 

differential equations (ODEs) (Manesso et al., 2016). However, the BN model described 

herein represents the first computable model of the regulatory logic underlying T cell 

development program in its entirety. 

In practice, the assumptions of BN modeling are what facilitated computational modeling 

of the full T cell development GRN rather than only sub-motifs of the network. Although 

the source, target, and sign (activation or repression) are known for edges of the T cell 

development GRN, biochemical rates of binding or transcription remain uncharacterized 

for most of these edges. The BN modeling framework is well-suited to this level of prior 

knowledge, since it does not require specification or estimation of rate parameters like a 

continuous ODE model would. Furthermore, the logical computations inherent to BN 

simulation are less computationally expensive than the numerical computations 

demanded by ODE models; thus, simulation of our 37-node BN model is significantly 

more tractable than an equivalently-sized ODE model would be. 

The BN modeling framework facilitates qualitative assessment of the behaviour of 

complex GRNs consisting of dozens of players and unknown kinetic parameters. This 

system-level simulation approach represents a key advantage over the static descriptions 

of GRNs that currently pervade the T cell development field. Specifically, our BN 
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simulation demonstrates that observed T cell progenitor cell types such as DN3 do in fact 

correspond to steady state attractors of the underlying GRN  (Huang et al., 2005). BN 

simulation also permitted explicit mapping of the transcriptional space that is accessible 

to T lineage progenitors given different combinations of IL-7, Notch, and pre-TCR 

signaling. 

A longstanding question within the T cell development field is whether progenitors 

differentiate from each surface-marker defined stage of T cell development to the next 

via homogeneous or heterogeneous transcriptional trajectories (Bhandoola and 

Sambandam, 2006; Yui and Rothenberg, 2014). There has been speculation for over a 

decade that there may be different or atypical pathways for T cell lineage specification 

(Bhandoola and Sambandam, 2006). However, it is only recently that computational tools 

such as BN modeling and experimental techniques such as single-cell transcriptomics 

have permitted comprehensive investigation of this question. Others within the field have 

speculated that atypical pathways for T lineage specification arose due to different pre-

thymic progenitor cell types that seed the thymus and have dissimilar lineage restriction 

properties (Petrie and Kincade, 2005). However, our BN model predicts that this 

heterogeneity extends to the single-cell level, such that even a single progenitor cell state 

can potentially follow multiple distinct transcriptional trajectories during T lineage 

specification. 

Our prediction of multiple trajectories leading from the same initial progenitor state to the 

same final cell type has precedence in other cellular differentiation systems. Theoretical 

biologists commonly conceptualize differentiation as a process that takes a biological 

system from one high-dimensional transcriptional attractor to another and predict that 

many transient pathways leading from the source attractor to the target must be possible  

(Dealy et al., 2005). Prior to the availability single-cell transcriptomics, Huang et al used 

timecourse microarray analysis to demonstrate that two chemical signals (all-trans 

retinoic acid [aTRA] and dimethyl sulfoxide [DMSO]) cause human promyelocytic cells 

to differentiate via initially divergent transcriptional trajectories that would eventually 

converge toward the same stable neutrophil attractor state (Huang et al., 2005). Research 

interest in similar diverging and converging transcriptional trajectories has been 
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reinvigorated in recent years as single-cell RNA sequencing (scRNA-seq) techniques 

have matured. For example, Briggs et al employed droplet-based scRNA-seq to 

demonstrate that mouse embryonic stem cells differentiate into motor neurons via 

different transcriptional routes in a direct programming protocol (overexpression of 3 

TFs; Ngn2, Isl1, Lhx3) than they do in a developmentally-motivated differentiation 

protocol (timed addition of fibroblast growth factors, retinoic acid, and Sonic hedgehog) 

(Briggs et al., 2017). Indeed, the fact that certain developmental intermediates can be 

short-circuited during direct programming protocols is reminiscent of observations of 

atypical T cell development; Foxn1 deficient mutants, Gata3 overexpressing mutants, 

and a Kitlo HSA+ subset of DN1 progenitors have each been reported to seemingly bypass 

the DN3 stage of T cell development while still giving rise to DP T cells at reduced 

efficiencies (Anderson et al., 2002; Porritt et al., 2004; Su et al., 2003; Taghon et al., 

2001). 

Despite the power of our BN model to predict heterogeneous transcriptional trajectories 

and accurately recapitulate the transcriptional response of T cell progenitors to extrinsic 

signals and genetic perturbations, there are limitations to the Boolean network approach 

when modeling T cell progenitors that merit attention. First, the assumption that all genes 

can only be fully “ON” or “OFF” poses some challenges when applied the T cell 

progenitor system. Gradients of signals (such as IL-7) and gene expression levels are 

reported to be important for in vivo T cell development (Ikawa et al., 2010). These 

gradual changes in expression levels are also common in qRT-PCR and microarray 

analysis of T cell development genes in different stages of T cell progenitors, with some 

genes such as Tcf7 constantly increasing through to T cell maturation (Mingueneau et al., 

2013; Yui et al., 2010). Thus, unlike some earlier differentiation decision points which 

can be accurately described using binary values, binarization of T cell development genes 

may be too coarse to permit perfect computational versus experimental correlation. 

Second, in vivo T cell development also relies on checkpoints external to the T cell 

development GRN for full commitment and maturation to occur. For example, two T cell 

receptor-related checkpoints (positive and negative selection) must be passed by DP cells 

if they are to become mature T cells. Since our model only comprises the transcriptional-



49 

 

level intracellular decision machinery and excludes physical interactions with the thymic 

epithelium, this behaviour cannot be accurately captured. In future work, alterations to 

the Boolean modeling approach or hybrid modeling techniques could be employed to 

recapitulate these facets of biological T cell development. 

Alternatively, one could envision integrating the BN model described here into an agent-

based framework, in which each agent corresponds to a cell and incorporates the BN 

model within it to determine the cell’s transcriptional response. By simulating these 

cellular agents within a spatially-defined thymic niche in which stromal cells provide 

external cues to the agents depending on their position, one would be able to capture the 

physical interactions with the thymic niche that mediate selection checkpoints. For 

example, it would be particularly interesting to computationally examine the dwell time 

of thymic progenitors in different developmental stages (DN1, DN2, DN3, etc.) for 

different niche signaling combinations and stroma compositions using such an agent-

based modeling approach. We anticipate that multi-scale, multi-framework hybrid 

models which span all levels of cell fate decision making will facilitate the testing of 

more complex biological hypotheses. The BN model presented here is a first step towards 

empowering such efforts. 
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 Community software for Boolean network 
modeling 
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4.1 Introduction 

Previous chapters have outlined how increased experimental throughput and greater 

availability of computational tools for network inference have expanded our ability to 

construct predictive systems-level models of gene regulatory networks (GRNs). 

However, these tools are too often inaccessible to the large fraction of the biological 

community that lacks computer programming expertise. Additionally, since systems 

biology research questions typically span multiple experimental modalities and data 

types, data analysis and modeling must be performed using multiple specialized software 

packages. Unfortunately, integration of these software packages into complete systems 

biology pipelines presents a significant user challenge due to inconsistent data interfaces 

or incompatible computing environment requirements. Altogether, these complications 

create a barrier to adoption of new systems biology software tools and ultimately slow the 

progress of biological discovery. 

To maximize their utility to the broad research community, new biological datasets and 

software should be findable, accessible, interoperable, and reusable (Wilkinson et al., 

2016). The Systems Biology Institute (SBI) in Tokyo, Japan, is leading development of a 

systems biology software platform based on these principles called Garuda (Ghosh et al., 

2011). Garuda (http:/garuda-alliance.org) enables easy linkage of many computation 

biology ‘gadgets’ (modules) into novel data analysis pipelines through a shared interface 

schema. Garuda gadgets can be coded in a large variety of programming languages and 

are accessible through a common repository—the Garuda Gateway 

(http://gateway.garuda-alliance.org). Importantly, Garuda is designed for use by the 

broad community of biological researchers, regardless of software programming 

capability. The advantages of Garuda to systems biologists are: 

- Ease of discovery of appropriate software tools for their research questions 

- Ease of software setup with minimal overhead and no programming requirements 

- Ease of data input-output flow from one software tool to the next 
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As part of my Master’s studies, I undertook a 2-month research internship at SBI under 

the supervision of Dr. Hiroaki Kitano and Dr. Ayako Yachie-Kinoshita. The goal of this 

internship was to develop a pipeline of Garuda gadgets to facilitate simulation and 

analysis of Boolean network (BN) GRN models (akin to the analyses discussed in 

previous chapters) and allow their incorporation into larger data analysis pipelines. This 

chapter describes the Garuda gadgets that were developed, as well as how they were 

applied as part of a computational study of mouse embryonic stem cell (mESC) 

heterogeneity and fate response. 

4.2 Software 

Toward our goal of developing a Boolean network modeling and analysis pipeline within 

Garuda, I developed 3 gadgets: “Discretize”, “Boolean Simulation”, and “Boolean SCC 

Analysis”. To make our pipeline accessible to non-coders, we used the AlgoBuilder 

graphical user interface framework developed by SBI to wrap our Python scripts into a 

simple point-and-click interface. These gadgets and associated help documentation were 

made publicly available for download from the Garuda Gateway via the links below. The 

source code is also available at https://gitlab.com/stemcellbioengineering/garuda-boolean. 

A summary of the completed gadgets in the pipeline is provided in Table 5, and a full 

description of their features and usage is provided in Appendix A. 
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Table 5: Summary of Garuda gadgets for Boolean network analysis 

Gadget  Description Input Output 

 

Discretize Converts matrices of 
continuous gene 
expression data into 
discrete levels (ex. 
binary ON/OFF) using 
k-means 

1. Continuous-
valued gene 
expression 
matrix 

1. Discrete-
valued 
gene 
expression 
matrix 

 

Boolean 
Simulation 

Simulates Boolean 
network models of 
GRNs. Starting from 
user-specified or 
random initial states, 
the Boolean logic 
functions encoded by 
the model are 
repeatedly applied 
(either synchronously 
or asynchronously) over 
discrete time steps to 
produce trajectories of 
network states. 

1. Boolean 
network rules 

2. Initial 
conditions 

3. Configuration 
parameters 

1. State 
transition 
graph 

2. State 
dictionary 

3. Edge 
dictionary 

 

Boolean 
SCC 
Analysis 

Analyzes Boolean state 
transition graphs to 
identify attractors 
(including steady states 
and strongly connected 
components, SCCs) and 
their expression 
profiles. For SCCs, the 
gadget also calculates a 
“sustainability” score 
reflecting the 
probability of 
remaining within the 
SCC over time versus 
escaping it. 

1. State 
transition 
graph 

2. Configuration 
parameters 

1. Attractor-
annotated 
state 
transition 
graph 

2. Expression 
profiles 

3. SCC 
metrics  
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4.3 Applications 

In addition to being publicly released through Garuda Gateway, the aforementioned 3 

Garuda gadgets were included as part of our recent publication: 

Yachie-Kinoshita, A., Onishi, K., Ostblom, J., Langley, M.A., Posfai, E., 

Rossant, J., and Zandstra, P.W. (2018). Modeling signaling-dependent pluripotent 

cell states with Boolean logic can predict cell fate transitions. Molecular Systems 

Biology 14, e7952. 

This publication reported a Boolean network (BN) model of the mouse embryonic stem 

cell (mESC) GRN (Figure 9), proposed new metrics for quantifying the stability of 

heterogeneous attractors of BNs, and facilitated the identification of a novel exogenous 

signaling combination that robustly generates Cdx2+ Oct4- populations from naïve 

mESCs. The Garuda gadgets described above were used to analyze the state transition 

graph of this BN model following random asynchronous Boolean simulation of 3 

commonly-used mESC culture conditions: LIF+serum (LS), 2i+LIF (2iL), and 

bFGF+Activin (bF+A) (Figure 10). Releasing our model and simulation analysis 

software through Garuda will enable the stem cell research community to explore and 

extend our modeling framework without any software programming requirements. 

Extensibility of our proposed BN model of mESC populations is especially valuable 

given the large amount of interest in applying logical modeling to embryonic stem cell 

biology (Dunn et al., 2014; Okawa and del Sol, 2015; Xu et al., 2014). 

Importantly, both the mESC model and the mouse T cell development model presented in 

Chapter 3 are formulated and simulated using the same BN modeling framework. The 

compatibility of these two models enables a possible future research direction in which 

the models are combined via Garuda to create a BN model of cross-GRN interactions 

during reprogramming of mouse T cell progenitors to induced pluripotent stem cells 

(iPSCs). The experimental motivation for modeling T cell progenitor-derived iPSCs and 

a preliminary framework for integrating the mESC and T cell development BN models 

are discussed in Chapter 6.2. 
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Figure 9: A schematic of the defined PSC gene/signal regulatory network model 

Reprinted from Yachie-Kinoshita, A., Onishi, K., Ostblom, J., Langley, M.A., Posfai, E., 

Rossant, J., and Zandstra, P.W. (2018). Modeling signaling-dependent pluripotent cell 

states with Boolean logic can predict cell fate transitions. Molecular Systems Biology 14, 

e7952. 
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Figure 10: Transcriptional state spaces of mouse ESC network resulting from 

random asynchronous Boolean simulation 

Condition-dependent pluripotent cell populations correspond to strongly connected 

components (SCCs) in the state transition graphs of asynchronously updated Boolean 

models. Gray dots represent unique profiles, and edges represent state transitions among 

the profiles. Coloured edges indicate the transitions within population-specific SCCs. The 

number of simulations and the number of steps in each simulation were 300-100, 300-

100, 300-300 for LS, 2iL, and bF+A condition, respectively. State transition graphs for 

each condition were calculated using the “Boolean Simulation” gadget, and SCCs were 

identified using the “Boolean SCC Analysis” gadget. 

Reprinted from Yachie-Kinoshita, A., Onishi, K., Ostblom, J., Langley, M.A., Posfai, E., 

Rossant, J., and Zandstra, P.W. (2018). Modeling signaling-dependent pluripotent cell 

states with Boolean logic can predict cell fate transitions. Molecular Systems Biology 14, 

e7952. 
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 Differentiation context-dependent comparison of 
T cell progenitor transcriptional patterns   
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5.1 Introduction 

T cells develop in the thymus throughout an organism’s life. In mice, thymopoiesis 

begins at approximately E13.5 and continues through to adulthood (David-Fung et al., 

2006). However, there is amounting evidence that T cell development exhibits different 

stage-wise kinetics and genetic requirements in fetal mice compared to adults (as 

discussed in Chapter 1.3.4). Of particular interest are reports of shortcuts and detours 

from the canonical series of T cell progenitor stages (Anderson, 2006; Porritt et al., 2004; 

Su et al., 2003; Taghon et al., 2001). These reports suggest that certain aspects of the T 

cell development program are inherently plastic and permit multiple pathways for T 

lineage specification. However, these differences across developmental contexts have not 

yet been examined at the level of single-cell gene expression. 

Meanwhile, characterization of the thymic niche has informed development of new in 

vitro platforms for T cell differentiation from hematopoietic stem and progenitor cells 

(HSPCs). The OP9-DL4 (or OP9-DL1) system has had a large impact on enabling in-

depth observation of hematopoietic progenitors as they proceed toward the T cell fate 

(Brauer et al., 2016). However, OP9-DL4 requires the use of both serum and stromal 

cells, and thus it is difficult to reproducibly control the environmental signals the cells 

observe and define the specific cues that enable robust T lineage progression. A serum- 

and stroma-free platform for T lineage differentiation would provide a powerful advance 

for controlled characterization of the effect of various niche molecules and supplemented 

cytokines on T cell differentiation. A platform that meets these criteria would enable 

future engineering studies of the isolated effects of individual cytokines, small molecules, 

and matrix components on the T lineage differentiation, and specifically how these 

factors lead to increased or partial activation of the T cell development GRN. 

Furthermore, in line with previous studies of T cell developmental plasticity across 

different in vivo contexts, it would be interesting to investigate whether T cell progenitors 

grown in vitro follow the same series of transcriptional and developmental events of in 

vivo thymopoiesis, or instead follow pathways unique to the in vitro setting. 
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In this chapter, I outline my contributions toward development of the DL4+VCAM 

differentiation platform, which facilitates mouse and human T cell progenitor 

differentiation without serum or stromal feeder cells. Next, I highlight the importance of 

studying T cell differentiation pathways at a single-cell transcriptional level by 

demonstrating that sorted surface marker-defined stages of early T cell progenitors that 

are widely approached as homogeneous populations actually comprise heterogeneous and 

overlapping transcriptional states as measured by single-cell qRT-PCR. Finally, I 

compare single-cell transcriptional patterns of developing T cell progenitors across the 

contexts of fetal thymopoiesis, adult thymopoiesis, and DL4+VCAM in vitro 

differentiation using single-cell RNA sequencing. These results provide preliminary 

support of the BN model prediction of multiple distinct transcriptional trajectories for T 

lineage specification, and will enable further refinements to the BN model itself to better 

capture these heterogeneous and context-dependent observations. Overall, the 

DL4+VCAM platform and single-cell transcriptomics represent potentially powerful and 

complementary tools for investigating additional factors that influence T cell 

differentiation and increasing the resolution at which we understand the T cell 

development program. 

5.2 Methods 

5.2.1 Primary tissue dissection 

Primary adult thymocytes were obtained from 8-week old adult male CD1 mice. 

Following CO2 asphyxiation, thymi were removed and placed in Hank's Balanced Salt 

Solution (HBSS; Invitrogen) containing 2% fetal bovine serum (FBS; Invitrogen) 

(abbreviated as ‘HF’). Extracted thymi were then pushed through a 40 μm filter to obtain 

single-cell thymocyte suspensions. To reduce the frequency of erythrocytes and mature T 

cell populations, cells were subjected to depletion for TER-119, CD4, and CD8 using the 

EasySep magnetic depletion system (STEMCELL Technologies) and biotin-conjugated 

antibodies (Biolegend) according to the manufacturer’s instructions. 
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Fetal livers and fetal thymi were isolated from decapitated E13.5 CD1 mouse embryos 

using surgical forceps and placed in HF. Fetal thymi were processed using a 40 μm filter 

and magnetically depleted for TER-119, CD4, and CD8 and described above. Fetal livers 

were disrupted into a single cell suspension by gentle passing through a 21-gauge needle. 

Subsequently, fetal liver cells were subjected to TER-119 depletion by EasySep magnetic 

sorting (STEMCELL Technologies) according to the manufacturer's instructions and 

subsequently cryopreserved in 50% Iscove’s Modified DMEM (IMDM; Invitrogen), 40% 

fetal bovine serum (FBS), and 10% dimethyl sulfoxide (DMSO). 

5.2.2 In vitro differentiation of fetal liver HSPCs toward T cell lineage 

Cryopreserved TER-119-depleted fetal liver cells were thawed and stained for HSPC 

sorting in HF at 1 × 107 cells/mL. Cells were blocked against non-specific binding with 

1% anti-Fc receptor antibody (Fc-block, BD Biosciences) and stained with PE anti-mouse 

Sca-1 and APC anti-mouse c-Kit antibodies (BD Biosciences) for 20 minutes on ice. 

Dead cells were excluded using 7-aminoactinomycin D (7-AAD; Life Technologies). 

Cells were sorted using the BD Influx cell sorter. 

Sorted Sca-1+ cKit+ murine HSPCs were cultured at 3.1 x103 HSPCs/cm2 (corresponding 

to 1000 cells/well) in DL4 (10 μg/mL) and VCAM-1 (2.32 μg/mL) coated 96-well plates 

in serum-free Iscove modified Dulbecco medium (Gibco) with 20% bovine serum 

albumin, insulin, and transferrin serum substitute (BIT; STEMCELLTechnologies), 1% 

Glutamax (Gibco), and 1 μg/mL low-density lipoproteins (Calbiochem). IMDM+BIT 

serum-free medium was supplemented with 50 ng/mL Stem Cell Factor (SCF; R&D 

Systems), 10 ng/mL FMS-like Tryosine Kinase 3 Ligand (Flt3L; R&D Systems) and 10 

ng/mL Interleukin-7 (IL-7; R&D Systems). 
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5.2.3 Live imaging of differentiating T cell progenitors 

Sorted Sca-1+cKit+ HSPCs were seeded at low density (200 cells/well) into triplicate 

wells of 96-well plates coated with different substrates. After 6 days of culture, cells were 

stained with conjugated antibodies for CD25-APC and CD44-PE (1:500 dilution) at 37°C 

for 1 hour. Live cell imaging was then performed without washing on the AxioObserver 

Z1 (Zeiss) platform in 5% CO2 and 37°C controlled conditions. Brightfield images were 

captured at 5-minute intervals over 24 hours using a 10x 0.3 NA air objective. To 

minimize phototoxicity and photobleaching, images in the fluorescent APC and PE 

channels were acquired at longer 30-minute (or 60-minute) intervals. Image acquisition 

and processing was performed using ZEN 2012 blue edition software (Zeiss). Manual 

tracking was performed using Image-J software. Cells were tracked within 3 unique DL4 

only wells and 3 unique DL4+VCAM wells. Manual tracking was performed on 43 cells 

in the DL4 only condition (15, 10 and 18 cells per well) and 69 cells in DL4+VCAM 

condition (30, 14 and 25 cells per well). 

5.2.4 Bulk quantitative real-time PCR 

Sorted Sca-1+cKit+ murine HSPCs were seeded on no coating, 10 µg/mL DL4, 2.32 

µg/mL VCAM-1, and DL4+VCAM-1 at 20,000 cells/well in 96-well plates and were 

collected at 24 and 48 hours of culture using multiple PBS rinses. CD34+ human 

umbilical blood cells were seeded in the same conditions but using 10 µg/mL DL4 and 

2.32 µg/mL VCAM-1. Human cells were collected at 24, 48, and 96 hours of culture. 

Cells were lysed and RNA was isolated using the PureLink RNA Micro Kit (Invitrogen) 

according to the manufacturer’s protocol. RNA was converted to cDNA using 

SuperScript III Reverse Transcriptase (Invitrogen) according to the manufacturer’s 

protocol, and amplified together with respective primers in FastStart SYBR Green Master 

Mix (Roche). Thermocycling and quantification was performed using the QuantStudio 6 

Flex (Applied Biosystems). Relative expression of individual genes was calculated by the 

delta cycle threshold (Δ-Ct) method with the expression of β-actin as an internal 

reference. PCR primer sequences are available in Supplementary Table 3. Nonparametric 
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Kruskal–Wallis tests with post hoc Dunn’s analysis were performed in R (version 3.2.5) 

to determine significant differences between multiple groups. 

5.2.5 Single-cell qRT-PCR 

Primary ETP, DN2A, and DN2B thymocytes from 6- to 8-week-old CD1 mice were 

analyzed using single-cell qRT-PCR. Thymocytes were pooled and magnetically depleted 

for Lin markers (CD4, CD8a, TCRβ, TCRγδ, CD11b, CD11c, CD19, NK1.1, GR-1, 

TER-119). Cells were then stained for CD25 (PE-Cy7), CD44 (PE), c-KIT (APC), and 

the aforementioned Lin markers (APC-Cy7) and sorted by FACS. Following sorting, 

cells from each population were suspended in HF and C1 Loading Reagent according to 

the manufacturer’s instructions, then captured on a Fluidigm C1 Single-Cell Auto Prep 

IFC for Preamp (5-10 um). We were able to achieve a high capture efficiency, such that 

75-95% of the capture sites on each C1 IFC contained a single live cell. Following lysis, 

reverse transcription, and pre-amplification with pooled primers on the C1 IFC, cDNA 

was harvested in 7 uL total volume to maximize concentration and qRT-PCR sensitivity. 

qRT-PCR was then performed on the Fluidigm Biomark for 30 cycles in technical 

duplicate. 48 primer pairs were used (Supplementary Table 3), targeting genes included 

in our BN model as well as additional T lineage genes, alternate blood lineage genes, 

surface marker genes, and housekeeping genes. 

5.2.6 Single-cell RNA-sequencing 

Single-cell cDNA libraries were prepared using the 10X Chromium controller (10X 

Genomics) and Chromium Single Cell 3’ reagents according to the manufacturer’s 

instructions. Input cells for each sample were pooled from at least 3 independent 

biological replicates (adult thymocytes—3 adult 8-week-old male CD1 mice, fetal 

thymocytes—E13.5 embryos from 3 pregnant CD1 mothers, DL4+VCAM—input fetal 

liver HSPCs from E13.5 embryos from 3 different mother mice and cultured separately). 

Immediately prior to microfluidic capture on the 10X Chromium, cells were sorted by 
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FACS for CD45+ 7-AAD- live blood cells and suspended in HF at a concentration of 

2.37 × 105 cells/mL (~8.3 × 103 cells in 35 μL volume) per manufacturer’s guidelines for 

our intended single-cell capture rate. Following single-cell cDNA library generation, 

samples were 3’ sequenced together on an Illumina Nextseq. Samples were combined in 

multiplex on each sequencing run to mitigate potential batch effects. Raw sequence data 

was processed to form gene-barcode expression matrices using the CellRanger pipeline 

(10X Genomics). Expression matrix processing was performed using the “Seurat” 

package for R Bioconductor (version 2.3.2)  (Butler et al., 2018), including manual 

filtering of low-quality cells by UMI count and mitochondrial gene presence, log-

normalization and scaling of the raw count values, and correction for confounding effects 

of UMI count differences via regression. Dimensionality reduction was performed using 

diffusion maps, as implemented in the “destiny” package for R Bioconductor (version 

2.10.2)  (Angerer et al., 2016). 

5.2.7 Flow cytometry 

Surface marker staining for mouse experiments was performed with conjugated rat anti-

mouse antibodies (BD Biosciences) at 1:400 dilution. All samples were analyzed on 

FACS LSR Fortessa flow cytometer (BD Biosciences). Cells were washed twice with HF 

prior to analysis and dead cells were excluded using 7-AAD (Life Technologies) at 

1:1000 dilution. 
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5.3 Results 

5.3.1 Characterization of T cell development gene expression 
dynamics and cell motility during DL4+VCAM differentiation 

Future validation of the transcriptional trajectories predicted by the BN model and 

identification of the key niche factors that promote specific trajectories would benefit 

from a fully-defined minimal platform for differentiating T cell progenitors. In support of 

this goal, I assisted in characterizing a novel serum- and stromal cell-free in vitro 

platform for differentiation of mouse and human T cell progenitors that was developed by 

our lab, referred to here as DL4+VCAM (Shukla et al., 2017) (Figure 11a). The platform 

represents a minimal engineered thymic niche, including: 

- Provision of plate-bound DL4-Fc protein in place of DL4 expression by the 

thymic epithelium (or by OP9 bone marrow stromal cells, as previously reported) 

- Addition of vascular cell adhesion molecule-1 (VCAM), which is abundant in the 

thymic niche and has been implicated as a stromal matrix for thymic migration of 

T cell progenitors (Petrie and Zúñiga-Pflücker, 2007) 

- Media supplementation of interleukin-7 (IL-7), stem cell factor (SCF, Kit ligand), 

and FMS-like tyrosine kinase 3 (Flt-3) which play critical roles in maintaining 

thymocyte viability and expansion (Hosokawa and Rothenberg, 2018) 

The DL4+VCAM platform enabled high-yield production of mouse T cell progenitors 

from mouse fetal liver-derived Sca1+ Kit+ HSPCs (~60% CD25+ CD90+ proT cell 

frequency after 7 days of differentiation, versus ~40% on DL4 alone) (Figure 11b). T 

lineage differentiation occurred exceptionally quickly using DL4+VCAM, with ~5% of 

cells reaching the CD25+ CD44- DN3 stage after just 48 h of culture (versus ~2% on 

DL4 alone) (Figure 11c-e). The platform also enabled high-yield production of human T 

cell progenitors from CD34+ human umbilical cord blood (~25% CD7+ CD34- cell 

frequency after 14 days of differentiation, versus ~5% on DL4 alone). Importantly, these 

differentiated human T cell progenitors successfully engraft the thymi of humanized mice 

and mature into cytokine-producing CD3+ T cells. Since the DL4+VCAM platform is a 
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fully-defined system without serum or stromal cells, it is more amenable to clinical 

application than other existing T cell differentiation protocols. Overall, the DL4+VCAM 

platform represents a novel context for T cell progenitor differentiation and can help 

support translation of T cell-based therapies to the clinic (Shukla et al., 2017). 

My specific contributions to this publication were to characterize the mechanism of 

action of DL4+VCAM, and particularly how VCAM might synergize with DL4 to 

enhance T cell progenitor yields. Examination of key nodes in the T cell-development 

gene regulatory network (GRN) in sorted HSPCs within the first 48 h of interaction with 

DL4 and VCAM revealed rapid upregulation of downstream targets (including Hes1, 

Deltex, Gata3, and Tcf7) of the activated Notch1 intracellular domain (NICD) in the 

presence of DL4 and VCAM, compared with DL4 alone (Figure 12). In contrast, the 

myeloid transcription factor PU.1 (encoded by Spi1) was more rapidly downregulated 

within 48 h on DL4+VCAM than on DL4 alone, while the HSPC-associated gene E2a (or 

Tcf3) remained unaffected (Figure 12). Thus, VCAM synergistically interacted with DL4 

to increase T cell progenitor yields and purity by inducing stronger activation of 

downstream Notch pathway genes associated with the T cell development GRN. 

We next sought to confirm that DL4+VCAM had similar effects on the expression of key 

nodes in the T cell development GRN in human HSPCs, as we had seen with mouse 

HSPCs. DL4 and VCAM synergistically enhanced Notch target gene expression 

compared with DL4 alone (Figure 13). Interestingly, however, the upregulation dynamics 

observed in human cells were different from those observed in mouse cells. DELTEX and 

GATA3 were rapidly upregulated within 48 h and showed sustained increases up to 96 h 

(Figure 13). In contrast, BCL11B required 96 h of stimulation before significant 

enhancement relative to DL4 alone was observed (Figure 13). Thus, synergistic 

interactions of VCAM with DL4 increased Notch signaling activity in human HSPCs and 

led to stronger transcriptional activation of downstream T cell development genes, similar 

to our observations in the mouse system. 

We next sought to identify potential biophysical causes that led to increased Notch 

signaling activity and T cell GRN activation. Toward this, I demonstrated that VCAM 
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affects DN T cell motility using live-cell imaging. Manual tracking of single cells from 

day 6 to day 7 with concomitant discrimination of DN1, DN2, and DN3 phenotypes by 

fluorescent staining revealed that VCAM significantly increased the velocity of DN1 (P = 

0.00001) and DN3 cells (P = 0.0006) compared with DL4 alone (Figure 14a). DN2 

single-cell velocities could not be quantified as they typically grew as small aggregates in 

the engineered thymic-like niche (Figure 14b). We propose that this increased motility 

may lead to greater Notch signaling activity, either due to enhanced generation of the 

mechanical force needed to trigger catalytic release of the intracellular domain of Notch, 

or by increasing the amount of Notch ligand that cells are exposed to per unit time 

(Figure 14c). 
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Figure 11: DL4+VCAM yields robust mouse T cell progenitor differentiation with 

accelerated kinetics 

(a) Schematic for 2D coated DL4 (+VCAM) assay. Re-feeding by 50% media exchange 

was eliminated through assay optimization to enable 7 days of uninterrupted culture 
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(b) Frequencies of the T cell progenitor types, B cells, and myeloid cells after 7 days of 

culture of sorted Sca-1+cKit+ mouse HSPCs on DL4-Fc alone or DL4-Fc with increasing 

concentrations of VCAM (n = 3). 

(c) Rapid DN2 and DN3 proT cell differentiation within first two days of culture on 

DL4+VCAM than DL4 alone. Flow plots are representative of an HSPC sample after 24 

and 48 hours after culture on DL4 vs. DL4+VCAM (n = 4). 

(d, e) Frequency of DN2 (d) and DN3 (e) cells over 24 h and 48 h of culture time after 

sorted Sca-1+cKit+ HSPCs were seeded on no coating, 2.32 µg/mL VCAM, 10 µg/mL 

DL4, or DL4 + VCAM (n = 4). 

Data generated and analyzed by S. Shukla. Reprinted from: Shukla, S., Langley, M.A., 

Singh, J., Edgar, J.M., Mohtashami, M., Zúñiga-Pflücker, J.C., and Zandstra, P.W. 

(2017). Progenitor T-cell differentiation from hematopoietic stem cells using Delta-like 4 

and VCAM-1. Nature Methods 14, 531–538. 
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Figure 12: DL4+VCAM differentiated mouse T cell progenitors express Notch 

target genes at higher levels than DL4-only 

qRT-PCR gene expression analysis of downstream Notch pathway genes, an HSPC gene 

(E2a), and a myeloid lineage gene (Pu.1) after sorted mouse fetal liver HSPCs were 

cultured for 24 h or 48 h on each of 4 conditions: no coating, 2.32 μg/mL VCAM, 10 

μg/mL DL4, and DL4+VCAM. Data represent mean ± s.e.m. *, P < 0.05; **, P < 0.01. 

Reprinted from: Shukla, S., Langley, M.A., Singh, J., Edgar, J.M., Mohtashami, M., 

Zúñiga-Pflücker, J.C., and Zandstra, P.W. (2017). Progenitor T-cell differentiation from 

hematopoietic stem cells using Delta-like 4 and VCAM-1. Nature Methods 14, 531–538. 
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Figure 13: DL4+VCAM differentiated human T cell progenitors express Notch 

target genes at higher levels than DL4-only 

qRT-PCR gene expression analysis of downstream Notch pathway genes, an HSPC gene 

(E2A), and a myeloid lineage gene (PU.1) after sorted CD34+ human cord blood cells 

were cultured for 48 h or 96 h on each of 4 conditions: no coating, 2.32 μg/mL VCAM, 

10 μg/mL DL4, and DL4+VCAM. Data represent mean ± s.e.m. *, P < 0.05; **, P < 

0.01. Reprinted from: Shukla, S., Langley, M.A., Singh, J., Edgar, J.M., Mohtashami, 

M., Zúñiga-Pflücker, J.C., and Zandstra, P.W. (2017). Progenitor T-cell differentiation 

from hematopoietic stem cells using Delta-like 4 and VCAM-1. Nature Methods 14, 531–

538. 
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Figure 14: T cell progenitors exhibit greater motility on DL4+VCAM vs. DL4 only 

(a) Averaged cell velocity of DN1 and DN3 cells on DL4 alone or DL4+VCAM from 

days 6 to 7 of culture (n = 3). 

(b) Representative still image from live imaging of differentiating day 7 progenitor T 

cells in the DL4+VCAM engineered thymic niche. Cells were stained for CD25 

(magenta) and CD44 (green) and merged with bright-field. Scale bar, 100μm. 

(c) Schematic of proposed mechanism. DL4 (orange) activates Notch1 receptor (green) 

on HSPCs, causing translocation of Notch intracellular domain (NICD) to the nucleus 

and activation of the Notch GRN (left). When DL4 is co-presented with VCAM (right), 

α4 integrin receptors (light blue) expressed on HSPCs engage with VCAM (dark blue), 

leading to higher activation of downstream Notch target genes, increased motility, and 

accelerated commitment to the T cell fate. 

Panel (c) illustrated by J. Ma. Reprinted from: Shukla, S., Langley, M.A., Singh, J., 

Edgar, J.M., Mohtashami, M., Zúñiga-Pflücker, J.C., and Zandstra, P.W. (2017). 

Progenitor T-cell differentiation from hematopoietic stem cells using Delta-like 4 and 

VCAM-1. Nature Methods 14, 531–538.  
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5.3.2 Surface marker-defined stages obscure transcriptional 
heterogeneity among primary thymocytes 

Previous studies have demonstrated that certain surface marker-defined stages of the 

mouse T cell development program (such as DN1) comprise a heterogeneous mix of 

subpopulations that exhibit functional differences in their differentiation potential (Porritt 

et al., 2004). These subpopulations have typically been discriminated by flow cytometry. 

More recently, however, single-cell qRT-PCR has emerged as a powerful tool for 

identifying heterogeneity among known cell types (Hamey et al., 2016). We applied 

single-cell qRT-PCR to test for transcriptional heterogeneity among the earliest surface-

marker defined stages of the mouse T cell development program: ETP, DN2A, and 

DN2B (Figure 15a). Primary thymocytes from adult mice were sorted by FACS and 

subsequently captured as single cells using the Fluidigm C1. Single-cell qRT-PCR was 

performed for a panel of 48 genes, including those present in our BN model of T cell 

development, genes that encode stage-specific surface markers, additional genes 

corresponding to alternative blood lineages, and housekeeping genes (Supplementary 

Table 3). 

The expression of each gene relative to Bactin was calculated using the delta-Ct method 

for each single cell sample (Figure 15b). The expression patterns of many genes agree 

with expectations from previous bulk transcriptional experiments. For example, Il2ra 

(codes for CD25) expression levels are significantly increased in the DN2A and DN2B 

populations, consistent with the surface marker definitions of these populations. 

Similarly, Kit decreases significantly from DN2A to DN2B, mimicking the drop in c-KIT 

surface protein levels used to separate these populations in FACS. Important T cell 

lineage transcription factors including Gata3, Tcf7, and Bcl11b, as well as the T cell co-

receptor genes Cd3e/Cd3g are detected in the DN2A and DN2B populations, but not in 

ETP. This is consistent with increased specification to the T cell lineage at the DN2 

stage. Notch1 levels begin to decrease in the DN2B population, which coincides with 

reports that Notch signal dependence is lost as cells progress to the DN3 stage 

(Hosokawa and Rothenberg, 2018). Finally, expression levels of alternate blood lineage 
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genes such as Pu.1 and Hhex are detected at lower frequency in the DN2B population, 

supporting loss of potential for other blood lineages at this stage. 

Plotting the single cell gene expression data on principal components (Figure 15c) 

produces a pattern analogous to that of bulk microarray profiles. The ETP and DN2B 

populations are clearly separable by principal components, supporting the notion that 

these are highly distinct T cell progenitor states. Interestingly, however, the DN2A 

population interleaves with both ETP and DN2B regions (Figure 15c), even though these 

populations do not overlap in terms of their FACS gates (Figure 15a). This provides 

evidence of significant transcriptional heterogeneity within the DN2A surface marker-

defined population. 
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Figure 15: Single-cell qRT-PCR analysis of transcriptional heterogeneity in ETP, 

DN2A, and DN2B T cell progenitors 

(a) Summary of experimental plan for single-cell qRT-PCR gene expression analysis 

(Fluidigm C1 and Biomark) 

(b) Single cell gene expression levels (relative to Bactin) for sorted primary thymocytes 

(c) Principal component plot of single cell gene expression profiles for sorted primary 

thymocytes. The DN2A population interleaves the ETP and DN2B populations. 

Red=ETP, yellow=DN2A, green=DN2B. 

  



76 

 

5.3.3 Single-cell RNA sequencing reveals transcriptional differences 
between primary and in vitro differentiated T cell progenitors 

As discussed in Chapter 3.3.5, the BN model of T cell development we developed 

predicts that there are multiple distinct transcriptional trajectories that uncommitted 

hematopoietic progenitors could follow toward T lineage commitment. This prediction 

raised the following questions: 

 Can all of the predicted trajectory patterns be observed experimentally, or are 

some false artefacts of our BN modeling approach? 

 If multiple trajectories toward T cell lineage commitment are possible, are certain 

subsets of trajectories favoured in different in vivo or in vitro contexts? 

 Do different sets of trajectories correspond to the differences in differentiation 

kinetics, gene expression dynamics, or genetic requirements that have been 

reported in various experimental contexts? 

To answer these questions and gain further insights into differences between in vivo T 

cell development and in vitro T cell differentiation that manifest at the single-cell level, 

single-cell RNA sequencing (scRNA-seq) was performed. These experiments compared 

mouse T cell progenitor populations from three distinct contexts: primary adult 

thymocytes, primary E13.5 fetal thymocytes, and E13.5 fetal liver (FL) hematopoietic 

stem and progenitor cells (HSPCs) differentiated in vitro using the DL4+VCAM platform 

(Figure 16a). Immediately following dissection, primary adult and fetal thymocytes were 

magnetically depleted to reduce erythrocyte contamination, sorted for live CD45+ cells, 

and captured as single cells in droplets. In parallel, FL HSPCs were seeded on 

DL4+VCAM coated plates and cultured for 4 or 7 days prior to analysis, or immediately 

sorted and captured for library preparation. Pooling cells from multiple differentiation 

timepoints enabled sampling of cells from the entire T cell lineage progression, rather 

than just endpoint transcriptional states. Single cells from each context were captured and 

cDNA libraries were generated using the 10X Chromium microfluidic controller. The 

libraries were then sequenced together using an Illumina NextSeq. Two separate samples 

were prepared for each of the three experimental conditions, for a total of 6 single-cell 

cDNA library samples. 
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Although roughly equivalent cell concentrations (approximately 8.3 × 103 cells in 35 μL 

volume) of each sample were provided as input to the 10X Chromium controller, 

downstream library sequencing revealed that different numbers of cells were captured in 

each condition, with Fetal Thymocytes Rep. 1 (FTh1) and DL4+VCAM Differentiated 

FL001 (DVFL1) sample libraries containing roughly half the number of cells compared 

to the other conditions (Figure 16b, Table 6). We also noted that both Adult Thymocyte 

samples (ATh1 and ATh2) had much fewer median genes detected per cell and median 

UMI counts per cell when compared to other conditions (Figure 16cd, Table 6). Because 

of their low unique molecular identifier (UMI) and detected genes count, the adult 

thymocyte populations consistently clustered apart from the other four samples despite 

normalizing for numbers of UMIs. Thus, we decided to exclude ATh1 and ATh2 from 

our preliminary analysis pending deeper sequencing of these libraries. 

After filtering for high-quality cells and normalizing expression values, single-cell 

transcriptional states for primary fetal thymocytes and DL4+VCAM differentiated FL 

HSPCs were visualized in reduced dimensional space using diffusion maps (Figure 17a). 

Diffusion maps employ a non-linear diffusion-based distance metric that emphasizes 

discovery of the underlying structure, or ‘manifold’, of the dataset (Haghverdi et al., 

2015). Although the first diffusion component separates early and late stages of mouse T 

cell progenitors (marked by genes such as Spi1 and Bcl11b, respectively) (Figure 17b), 

the second diffusion component separates fetal thymocytes from DL4+VCAM 

differentiated FL HSPCs. Interestingly, the primary branch of the diffusion map 

projection that connects early-stage fetal thymocytes to later-stage fetal thymocytes 

appears completely separate from the primary branch connecting undifferentiated 

DL4+VCAM FL cells to late-stage DL4+VCAM differentiated T lineage cells (Figure 

17a, arrows). This suggests that, in addition to occupying distinct regions of 

transcriptional space, fetal thymocytes and DL4+VCAM differentiated FL HSPCs may 

indeed follow different trajectories during T lineage specification. However, pseudotime 

trajectory inference must be performed on the scRNA-seq data to confirm whether the 

observed trajectories in fetal thymocytes or DL4+VCAM differentiated FL HSPCs align 

with the trajectories predicted by our BN model of the T cell development program. 
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Table 6: Single-cell RNA-sequencing sample metrics 

Sample Source Replicate Num. 
Cells 

Median 
Genes per 
Cell 

Median 
UMI 
Counts per 
Cell 

Sequencing 
Saturation 

Adult thymocytes 8 wks. CD1, 
3 males 

Rep 1 3,694 1,316 2,794 70% 

Adult thymocytes 8 wks. CD1, 
3 males 

Rep 2 3,177 1,435 2,874 74% 

Fetal thymocytes E13.5 CD1, 2 
litters 

Rep 1 1,416 5,078 30,618 61% 

Fetal thymocytes E13.5 CD1, 2 
litters 

Rep 2 3,236 3,973 16,511 59% 

DL4+VCAM 
differentiated FL 
HSPCs 

E13.5 CD1, 1 
litter, 3 wells, 
Sca1+ Kit+ 

FL001 1,821 4,011 16,397 64% 

DL4+VCAM 
differentiated FL 
HSPCs 

E13.5 CD1, 1 
litter, 3 wells, 
Sca1+ Kit+ 

FL002 4,169 3,767 14,775 59% 

FL = fetal liver, HSPCs = hematopoietic stem and progenitor cells 
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Figure 16: Summary of single-cell RNA-sequencing experiment design 

(a) Primary thymocytes were isolated from adult and fetal mice and magnetically 

depleted to reduce the frequency of erythrocytes and mature T cell populations. Sca1+ 

Kit+ fetal liver HSPCs were also isolated and differentiated for 4 and 7 days on 
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DL4+VCAM. Single-cell cDNA libraries were subsequently prepared from each group of 

cells and sequenced to enable comparison of the transcriptional trajectories that are 

followed in each of the three experimental contexts. 

(b) Estimated number of cells per sample 

(c) Median genes detected per cell by sample 

(d) Median UMI counts per cell by sample 

(e) Sequencing saturation per sample 
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Figure 17: DL4+VCAM differentiated FL HSPCs and primary fetal thymocytes 

occupy distinct transcriptional spaces 

(a) Diffusion map of scRNA-seq measured-transcriptional states in DL4+VCAM 

differentiated E13.5 FL HSPCs and E13.5 primary fetal thymocytes 

(b) Gene expression overlays for select signaling receptors (Notch1, Il7r, Kit), cell 

surface markers (Cd44 [CD44], Il2ra [CD25], Thy1 [CD90]), T lineage-antagonizing TFs 

(Spi1 [PU.1], Lmo2), T lineage-promoting TFs (Bcl11b, Gata3, Tcf7 (TCF-1), Dtx1), and 

pre-TCR components (Cd3e, Cd3g). Early-stage T cell progenitors localize to higher 

values of DC1, and later-stage T cell progenitors localize to lower values of DC1. DC2 

separates DL4+VCAM differentiated FL HSPCs from primary fetal thymocytes, 

although some overlap between these conditions is observed in reduced dimensional 

space. 
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5.4 Discussion 

In this chapter, we present multiple complementary experimental platforms that are used 

to explore heterogeneity and transcriptional response patterns of T cell progenitors, and 

which can ultimately be harnessed to further refine the BN model presented in Chapter 3. 

Overall, the experimental data presented in this chapter supports the hypothesis that the T 

cell development GRN facilitates heterogeneous and context-dependent transcriptional 

responses among T cell progenitors. Cellular heterogeneity is observed at the single-cell 

transcriptional level by qRT-PCR, even within surface marker-defined stages of early T 

cell development that were previously thought to be largely homogeneous. Context-

dependent differences are observed in term of both differentiation kinetics and T cell 

GRN activation when compared between DL4+VCAM in vitro culture and DL4 alone, 

and are even more discernible between primary fetal thymocytes and DL4+VCAM 

differentiated FL HSPCs at the level of single-cell transcriptomes. 

The proposed effect of VCAM-enhanced cell motility on Notch signaling activity and 

downstream T cell GRN activation raises an interesting future modeling direction. As 

currently implemented, the BN model we have developed cannot explicitly account for 

the effect of biophysical inputs to the GRN. However, it is well-evidenced through this 

study and others that biophysical cues can serve as an additional layer of regulatory 

control that converges onto the cellular GRN to influence cell fate decisions (Discher et 

al., 2009). The cell motility effects we observed on DL4+VCAM suggest that modeling 

the biophysical factors that influence T lineage differentiation in our engineered thymic-

like niche may be as important as investigating direct biochemical inputs to the GRN, 

such as cytokines. To computationally support such investigations, one could consider 

extending the BN model presented here into a multi-scale agent-based model that 

explicitly considers spatial, physical, and intercellular layers of regulatory control in 

addition to the GRN itself. This future direction is explored in greater detail in Chapter 

6.3. 
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The single-cell RNA sequencing (scRNA-seq) data presented in this chapter form a 

highly complementary dataset to the single-cell level predictions of our BN model, and 

therefore open up a number of new opportunities for further analysis. First, pseudotime 

trajectory inference algorithms can be applied to extract the transcriptional dynamics of 

individual cells as they differentiate toward the T cell lineage in either fetal thymopoiesis 

or on DL4+VCAM. Numerous pseudotime trajectory inference algorithms have been 

developed over recent years (Cannoodt et al., 2016), and are summarized in Chapter 

6.1.1. However, none of the well-established trajectory inference algorithms support 

reconstruction of branched-yet-converging trajectories such as those predicted by the BN 

model. CellRouter is a recently published trajectory inference algorithm that theoretically 

supports inference of convergent trajectories (Lummertz et al., 2018); however, we are 

not able to implement this algorithm presently due to technical issues with the software. 

Once implemented, pseudotime trajectory inference will allow us to directly compare the 

trajectories taken by differentiating T cell progenitors in vivo and in vitro to the 

trajectories predicted by the BN model. This analysis can also be used to confirm a 

qualitative prediction of the BN model; specifically, that T cell progenitors rapidly 

downregulate T lineage antagonist transcription factors regardless of the trajectory taken, 

whereas T lineage promoting genes are expressed in a trajectory-dependent manner. 

Moreover, the scRNA-seq data we have assembled provides an opportunity to further 

refine the topology and logic functions of our proposed BN model. The literature 

evidence and microarray data used to construct our present BN model of T cell 

development were derived from bulk population experiments. By comparison, single-cell 

transcriptomic data offers greater resolution to examine rare or heterogeneous features of 

the T cell development GRN, as well as more statistical power due to the increased 

number of data points (one full transcriptome per single cell) (Fiers et al., 2018). 

Standard co-expression metrics such as partial correlation could be employed to identify 

new genes that are significantly correlated to core genes already in the model, such as 

Tcf7, Gata3, Bcl11b, and Spi1. This approach would allow us to mitigate potential bias 

toward well-studied transcription factor interactions and discover additional genes that 

influence the T lineage decision. Furthermore, single-cell GRN inference tools that 

directly infer BN models from scRNA-seq datasets have recently been developed, 
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including BoolTraineR (Lim et al., 2016) and Single Cell Network Synthesis (Moignard 

et al., 2015). These algorithms can be applied to our dataset to either retrain or fully 

recreate the BN model using single-cell data, thereby improving agreement with our 

experimental datasets. By virtue of inferring interactions from single-cell data, it would 

also be interesting to examine whether these algorithms reveal GRN interactions that are 

only present in rare T cell progenitor subsets or specific T cell differentiation contexts. 

New edges or regulatory logic in the revised T cell development BN model could 

subsequently be validated by ChIP-seq or genetic knockouts. Single-cell enabled 

refinement of our BN model is discussed in further detail in Chapter 6.1.2. 

Overall, the experimental platforms and data presented in this section shed new light on 

heterogeneity and context-dependent transcriptional patterns within the mouse T cell 

development program. Looking forward, these platforms and datasets also provide an 

excellent foundation for making improvements to our BN model (using scRNA-seq) and 

testing any new predictions that arise from the refined model using our fully-defined 

engineered thymic niche (DL4+VCAM).  

  



86 

 



87 

 

 Future Work 
  



88 

 

6.1 Single-cell transcriptomics analysis of T cell progenitor 
differentiation 

6.1.1 Trajectory inference from single-cell transcriptomics data 

The BN model of mouse T cell development developed through this project predicts that 

multiple distinct transcriptional trajectories leading to T lineage commitment are 

available to hematopoietic progenitors. We hypothesize that certain classes of trajectories 

are more frequently chosen in different T cell differentiation contexts as a result of 

external constraints on the GRN, including epigenetic state and environmental signals. 

Context-dependent enrichment for different transcriptional trajectories could provide a 

mechanistic explanation for why T lineage differentiation proceeds with such widely 

varying kinetics and genetic requirements when comparing fetal thymopoiesis, adult 

thymopoiesis, and various in vitro differentiation protocols. 

Testing this hypothesis experimentally necessitates the ability to follow transcriptional 

changes within single cells as they progress down the T lineage. However, timecourse 

studies of T cell development have previously been limited by multiple factors. Bulk 

population experiments measure only the average response of cells, even though 

individual cells may either be following different transcriptional trajectories or 

progressing along the same trajectory asynchronously. In the T cell field, different stages 

of T cell progenitors can be isolated by cell surface markers (such as CD25, CD44, and c-

KIT) and assessed independently to more finely resolve transcriptional dynamics; 

however, both we and other groups have demonstrated that these surface marker-defined 

stages still comprise transcriptionally and functionally heterogeneous subpopulations 

(Porritt et al., 2004). Furthermore, at least in some developmental contexts, it appears that 

hematopoietic progenitors can reach the latter stages of T cell development without ever 

expressing surface markers profiles associated with intermediate states (like DN3). 

Therefore, bulk analysis of sorted T cell progenitor populations is likely insufficient to 

experimentally resolve differences in transcriptional trajectories between various T cell 

differentiation contexts. 
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Single-cell experimental techniques such as single-cell RNA sequencing (scRNA-seq) 

have matured over recent years and represent a new opportunity to probe transcriptional 

dynamics and heterogeneity during T lineage differentiation with single-cell resolution 

(Fiers et al., 2018). Furthermore, multiple statistical methods have recently been 

developed to order scRNA-seq profiles in “pseudotime” and place cells along one or 

more trajectories that approximate the underlying differentiation process (Cannoodt et al., 

2016). In this context, pseudotime is an inferred metric that approximates the extent to 

which a cell has proceeded through a dynamic biological process. Given the potential 

benefits of these algorithms, we pursued scRNA-seq with the intent to perform 

computational inference of the pseudotime trajectories followed by differentiating T cell 

progenitors in various contexts. 

Although there are multiple methods available for pseudotime trajectory inference from 

single-cell transcriptomics data (summarized in Table 7), none of the well-established 

methods currently support reconstructing trajectories that feature both diverging and 

converging branches. This is an important current limitation for our application, since the 

BN model predicts that a single progenitor cell state can follow multiple possible 

trajectory branches (diverging) before eventually reaching a steady state shared by all 

trajectories (converging). New trajectory inference methods such as CellRouter 

(Lummertz et al., 2018) claim to support inference of convergent trajectories; however, 

we encountered issues getting CellRouter to run without errors in our existing 

computational environment. Additional troubleshooting and collaboration will be 

required to pursue this branch of single-cell analysis. 
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Table 7: Methods for trajectory inference from single-cell transcriptomics data 

Method Trajectory 
structure 

Dimension-
ality 
reduction 

Trajectory 
modeling 

Other features Language Reference 

Wanderlust* Linear N/A kNN 

Euclidean or 
cosine 
distance 

Shortest path 

Ensemble method, 
bootstrapping 

MATLAB  (Bendall et 
al., 2014) 

Wishbone Single 
bifurcation 

PCA, 
diffusion 
maps 

kNN 

Similarity 
weighting 

Shortest path 

Bootstrapping Python  (Setty et 
al., 2016) 

SLICER Branching Locally linear 
embedding 

kNN 

Extreme cell 
detection 

Shortest path 

Geodesic entropy 
used to find branch 
points 

R  (Welch et 
al., 2016) 

Monocle Branching ICA (1.0) 

PCA, t-SNE 
(2.0) 

Reverse graph 
embedding  

MST Longest 
connected 
path 

Monocle 2 uses 
DDRTree for non-
reconstruction with 
less sensitivity to 
outliers and cell 
quality 

R  (Trapnell et 
al., 2014) 

Waterfall Linear PCA 

k-means cell 
clustering 

MST 
(between 
cluster 
centers) 

Cluster with lowest 
PC1 value selected 
as start node 

R  (Shin et al., 
2015) 

SCUBA Branching PCA 

k-means cell 
clustering 

Map cells to 
clusters in 
previous time 
point 

Bifurcation 
detection by 
k-means + gap 
statistic 

Infers from time 
series or principal 
curve-based 
pseudotime ordering 

MATLAB  (Marco et 
al., 2014) 

SCOUP** Branching PCA MST 

Shortest path 

Expectation-
maximization to 
refine cell ordering 
with respect to 
expression 

C++  (Arsenio et 
al., 2014) 

Mpath Branching Hierarchical 
clustering of 
cells 

Waypoint 
finding 

MST 

Nodes of graph 
represent 
“waypoints”, and 
cells are assigned to 
edges between their 
closest waypoints 

R  (Chen et 
al., 2016) 
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Method Trajectory 
structure 

Dimension-
ality 
reduction 

Trajectory 
modeling 

Other features Language Reference 

TSCAN Linear PCA 

Cell clustering 
by Gaussian 
mixture model 

MST 
(between 
cluster 
centers) 

Longest 
connected 
path 

Number of cell 
clusters 
automatically 
determined by 
Bayesian 
information criteria 

R  (Ji and Ji, 
2016) 

CellRouter Branching / 
Converging 

t-SNE, PCA, 
diffusion 
maps, etc. 

kNN 

Edge 
weighting by 
Jaccard 
similarity 

Community 
detection by 
Louvain 
method 

Minimum cost 
flow network 

User chooses their 
own reduced 
dimension space 

Trajectories are 
identified between 
any two user-
specified clusters 

R ***  (Lummertz 
et al., 2018) 

PCA = principal component analysis, ICA = independent component analysis, MST = 

minimal spanning tree, kNN = k-nearest neighbours 

* Wanderlust was originally developed for mass cytometry data (~10 to 50 

dimensions), thus dimensionality reduction methods were unnecessary in this 

context 

** Due to the computational complexity of its expectation-maximization algorithm, 

SCOUP is limited to relatively few cells and genes (i.e. single-cell qRT-PCR data) 

*** CellRouter includes an embedded Java library in addition to R pipeline. Limited OS 

and Java version support 
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6.1.2 Boolean network refinement using single-cell transcriptomics 

The mouse T cell development program serves as an excellent case study in the strengths 

and limitations of literature-based computational models of gene regulatory networks 

(GRNs). GRNs such as those involved in mouse T cell development have well-defined 

biophysical interpretations: transcription factors bind to the cis-regulatory elements of 

their target gene (often in a combinatorial, cooperative, or competitive manner) to 

produce either an active transcriptional complex or a repressive one. Therefore, an 

idealized computational model of a GRN would be fully evidenced by physical 

characterization of binding events at the cis-regulatory element (using chromatin 

immunoprecipitation, for example), protein-protein interactions between TF complex 

members and RNA polymerase, knockout experiments coupled with transcriptional 

profiling that confirm the effect of losing any of these regulatory inputs, and epigenetic 

assays to assess the open chromatin status of the gene and its enhancer elements. 

Obtaining this level of detail for each element of a GRN remains intractable in all but the 

most simple of model systems (such as sea urchin development) (Peter and Davidson, 

2010). Furthermore, most of the associated experimental methods require large numbers 

of cells to achieve sufficient signal-to-noise ratios. Since GRNs inferred from population-

level data rely on average measurements across thousands to millions of single cells, they 

are prone to underperform when applied to heterogeneous cellular systems. Given that 

transcriptional heterogeneity is critically important for many stem cell systems, 

computational GRN inference methods that account for this heterogeneity are needed. 

Single-cell transcriptomics presents a promising alternative for GRN inference at high 

resolution and in a manner that captures transcriptional heterogeneity. Single-cell 

transcriptomics enables analysis of rare cell populations and can be useful for dissecting 

heterogeneity within seemingly homogenous populations. Additionally, single-cell 

transcriptomics studies yield large datasets, with up to tens of thousands of single cells 

captured in a single run and transcript counts for tens of thousands of genes. As with bulk 

population data, genes that are important to the underlying cellular process of interest can 

also be inferred from single-cell transcriptomics data through co-expression statistics. 

However, the statistical power of methods such as correlation, regression, covariance, 
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and mutual information are increased when applied to single-cell datasets since the 

number of samples is greater and since heterogeneous features are preserved in the 

dataset rather than averaged out. 

Furthermore, whereas most network inference algorithms rely on static (single timepoint) 

measurements of gene interactions, single-cell expression profiles can be ordered in 

pseudotime (most often using neighbour similarity metrics, like k-nearest neighbour 

networks). Because of these advantages, the regulatory genomics field is shifting toward 

single-cell methods (Fiers et al., 2018). 

An important caveat to single-cell transcriptomics analyses is that they are noisier than 

conventional bulk transcriptomic analyses. Some noise is expected as a result of true 

biological variation within cells due to stochastic gene expression or transcriptional 

bursting. However, this is often confounded with technical noise arises to low amount of 

input mRNA. Technical noise is further compounded through PCR amplification bias and 

dropout effects (false negatives where a gene is called as not-expressed due to poor 

mRNA capture efficiency). The effects of noise and dropouts must be considered when 

constructing dynamic GRN models from single-cell data (Fiers et al., 2018). 

Boolean network (BN) models are particularly robust to dropout effects since gene 

expression values are binarized. Therefore, it is perhaps unsurprising that multiple tools 

for inferring BN models from single-cell transcriptomics data have been developed in 

recent years. Two of these tools are Single Cell Network Synthesis (SCNS) and 

BoolTraineR (BTR), and both are potentially suitable options for harnessing the scRNA-

seq data generated in this project to improve the BN model of T cell development 

reported here (Lim et al., 2016; Moignard et al., 2015). 

SCNS is a satisfiability modulo theory (SMT)-based tool for inferring BN models de 

novo from single-cell qRT-PCR or single-cell RNA-seq data (Moignard et al., 2015). It 

approaches the experimentally-measured single-cell transcriptional space as if it were the 

output of an asynchronous simulation of a BN model—that is, a state transition graph. 

Because raw single-cell transcriptomics data consists of nodes representing single-cell 

profiles, but not edges that connect temporally-related single-cell profiles to each other, 
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these edges must be constructed computationally. SCNS accomplishes this by drawing 

edges between single-cell states that differ in the expression of only one gene. An 

important caveat of this approach is that the experimentally-derived graph must be fully 

connected. This can be difficult to achieve for networks including many genes, since an 

exponentially greater number of cell states are needed to yield a fully connected graph 

over more variables. Alternatively, if a k-Nearest Neighbour approach were to be used, 

one would need to balance increased k values (leading to more densely connected graphs) 

against increased false positive rates, since a transition between two single-cell states that 

differ by multiple genes is likely to correspond to a single gene regulatory event. Once a 

state transition graph has been created from the experimental dataset, SCNS searches for 

a set of Boolean logic functions that are able to satisfy all transitions within the graph. 

The Boolean logic functions identified through this process constitute the inferred BN 

model and, given sufficient data to yield a fully connected graph, are guaranteed to 

satisfy the experimental observations because of the SMT approach. 

BTR differs from SCNS in that it can be used to improve upon an existing BN model 

using newly-acquired single-cell transcriptomics data rather than constructing a new 

model ab initio (Lim et al., 2016). BTR infers both network topology and Boolean update 

functions without prior information on cell state trajectories. It accomplishes this through 

a swarming hill climbing optimization process that iteratively reduces the distance 

between the model state space (obtained by asynchronous simulation of BN) and the data 

state space (obtained by single-cell transcriptomics). The output of this iterative 

optimization is an asynchronous BN model that best represents the input single-cell 

expression dataset. However, even with sufficient data, BTR does not guarantee perfect 

agreement between the trained BN model and the single-cell expression dataset. 

Importantly, both SCNS and BTR emphasize cellular transitions through intermediate 

expression states, which is particularly relevant to studies of developmental processes 

such as T cell development. This constitutes a significant advantage over existing GRN 

inference tools that assume that the experimentally-measured data must represent stable 

attractors of the system, akin to a cell population after extended culture in maintained 

conditions (Yordanov et al., 2016). 
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Both of these single-cell data-driven approaches are potentially complementary to the 

network inference method employed in this project. In our approach, we produced a GRN 

based on literature evidence and bulk population measurements, then asynchronously 

simulated this network to predict the set of transcriptional trajectories that are possible 

given the topology and logic of that GRN. This approach is well-suited for cell fate 

decision systems in which the key players and their input cis-regulatory logic have 

already been well-characterized through previous reports and are supported by multiple 

modalities of experimental evidence (i.e. both chromatin immunoprecipitation evidence 

of binding and genetic knockout evidence of a cause-effect relationship). However, this 

approach risks biasing toward elements of the underlying GRN that have received greater 

focus from the research community and thus have more literature evidence. Relatedly, the 

approach risks underrepresenting or misrepresenting those genes whose roles have not 

yet been well characterized. Furthermore, GRN models produced through a literature-

focused approach may produce artefactual cell trajectories that, while theoretically 

permissible given the logic and topology of the network, are either impractical or not 

observed biologically due to constraining factors such as epigenetic state. 

Conversely, the approach put forth by SCNS and BTR—and enabled by the availability 

of single-cell transcriptomics data—starts with a set of observed trajectories and reverse 

engineers a GRN (in this case, a BN) model that is capable of explaining those 

trajectories. GRNs inferred via this second approach are thus fully descriptive of the 

experimental observations when supplied with adequate data. However, it remains 

unclear whether such models are truly reflective of the underlying biophysical 

mechanisms and cis-regulatory logic of the actual GRN at work in the cells since no 

physical binding data or perturbation experiments are considered during the inference 

process. Furthermore, given that the GRN models are identified or trained to maximally 

satisfy only the given set of single-cell experimental constraints, it remains unclear 

whether the models are vulnerable to overfitting. For example, could such a model 

accurately predict how T cell progenitors would respond transcriptionally to a new 

environmental signaling condition or genetic perturbation that was not included in the 

original training (constraint) set? 
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Nevertheless, we anticipate that using the single-cell RNA-seq data gathered through this 

project to refine the original BN topology and logic functions would ultimately improve 

its accuracy when compared to experimental data and potentially capture new aspects of 

the T cell development program which have not yet been well-studied in our field. If 

executed carefully, this combined approach would potentially combine the benefits of 

both literature-focused and single-cell data-driven inference methods. 
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6.2 Transcriptional memory in T cell progenitor-derived 
induced pluripotent stem cells 

 

Figure 18: Donor cell memory in induced pluripotent stem cells and proposed role 

of GRN feedback 

In addition to differentiation of T cells, there is also interest in reprogramming T cells 

into induced pluripotent stem cells (iPSCs). For example, by reprogramming antigen-

specific T cells from human immunodeficiency virus (HIV)-positive patients into iPSCs 

and re-differentiating the cells into CD8+ cytotoxic T cells, “rejuvenated” T cells with 

elongated telomeres but preserved antigen specificity can been created (Nishimura et al., 

2013). In another case, significant inhibition of tumor growth was achieved in a xenograft 

model using T cells that were captured from peripheral blood, reprogrammed into iPSCs, 

genetically engineered to express a CD19-specific CAR, and re-differentiated into T cells 

(Themeli et al., 2013). 

In our lab, we have observed that iPSC lines derived from different stages of mouse T 

cell progenitors exhibit biased differentiation potential toward the mesoderm lineage 

(Shukla et al, unpublished data). This is consistent with previous reports of “donor cell 

memory” – a property of iPSCs to retain genetic and epigenetic features of their cell type 

of origin and a consequent bias in differentiation potential over early passages (Kim et 

al., 2010; Polo et al., 2010). Because reprogramming demands that cells transition from 

their original GRN state to a pluripotent GRN state, one might expect that feedback 
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between these GRNs could modulate gene expression levels and potentially establish 

these memory effects. Yet although donor cell memory has been observed in many iPSC 

systems, no study has investigated the role of somatic GRNs in donor cell memory. The 

T cell progenitor-derived iPSC system developed in our lab presents a unique opportunity 

to investigate this through the lens of the well-studied T cell development GRN. Such 

investigation would enable identification of a potential role for developmental GRNs in 

induced pluripotency and guide efforts to stabilize donor cell memory states that enhance 

differentiation potential toward target lineages, such as T cells. 

6.2.1 T cell progenitor-derived iPSCs exhibit molecular and functional 
pluripotency 

T cell progenitors were previously isolated in our lab from secondary chimeric adult 1B 

mice containing a doxycycline (dox)-inducible reverse tetracycline transactivator (rtTA) 

(Rosa26 rtTA-IRES-GFP knock-in) and reprogrammed via addition of 1 mg/mL 

doxycycline (dox) to culture media (Fluri et al., 2012). Our lab has previously 

demonstrated that these T cell progenitor-derived iPSC lines exhibit increased 

differentiation potential and kinetics toward the mesoderm lineage compared to 

genetically-matched embryonic stem cells (ESCs). We hypothesized that this 

differentiation potential was accompanied, and perhaps caused, by partially-retained 

expression of T lineage genes. 

To ensure that any gene expression anomalies characterized in the T cell progenitor-

derived iPSCs were not an artefact of incomplete reprogramming (Figure 19a), we 

assessed all iPSC clones for pluripotency at the molecular and functional level. All T cell 

progenitor-derived iPSC clonal lines expressed the core pluripotency genes Oct4, Sox2, 

and Nanog at levels comparable to ESCs (Figure 19b) and presented the canonical 

pluripotency surface markers OCT-4, NANOG, SSEA-1, and TBX-3 (Figure 19c). 

Furthermore, DN1-derived iPSCs were able to successfully form chimeric mice and 

contribute to all three germ layers (Figure 19d). Together, these results suggest that all 
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clonal lines of T cell progenitor-derived iPSCs were successfully reprogrammed to 

pluripotency, as defined molecularly and functionally. 

6.2.2 T cell development genes are expressed atypically in T cell 
progenitor-derived iPSCs 

Although all T cell progenitor-derived iPSCs achieved pluripotency, qRT-PCR analysis 

shows that genes associated with T cell development were frequently expressed in 

medium passage (p7) iPSCs at levels atypical of a “memoryless” pluripotent stem cells, 

such as ESCs. Some genes (Bcl2, Myb, Gata3, etc.) were consistently expressed at 

higher-than-ESC levels, whereas others (Lat, Bcl11b, Cd3e, etc.) were consistently 

expressed at lower-than ESC levels (Figure 20a). Furthermore, these genes exhibited 

different memory patterns depending on their donor cell stage, such that at least DN1-

iPSCs and DN3-iPSCs were fully distinguishable by clustering. 

Atypically expressed genes corresponded to a variety of different functions in T cells, 

including signaling receptors, pre-T cell receptor (TCR) components, and promoters of 

the T cell and alternative lineages (Figure 20b). These differences were particularly 

pronounced for Il7ra and Rag1, which both serve critical roles in developing T cells as a 

receptor for IL-7 signaling and an activator of T cell receptor chain recombination, 

respectively. Both Il7ra and Rag1 were expressed up to 100-fold higher in some iPSC 

clones than in ESCs. Interestingly, genes that share a common function or timecourse 

progression in primary T cell progenitors do not all exhibit the same donor cell memory 

trends. 
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Figure 19: T cell progenitor-derived iPSCs exhibit molecular and functional 

pluripotency 

(a) Overview of secondary dox-inducible mouse iPSC system and T cell progenitor 

isolation. 

(b) qRT-PCR-assessed expression levels of core pluripotency genes in all iPSC groups 

(mean ± SD of 3 independent clonal lines) are similar to levels in R1 ESC controls. 

(c) Representative flow cytometry plots demonstrate the pluripotency protein markers 

OCT-4, NANOG, SSEA-1, and TBX-3 are present in each iPSC line at levels similar to R1 

ESC controls. 

(d) E10.5 chimeric mouse embryos produced from aggregated clonal DN1-iPSCs, 

showing iPSC contribution to endoderm, mesoderm, and ectoderm germ layers (middle, 
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focus on midsection at right) versus control embryo (left). All tissue stained with 

hematoxylin and eosin, iPSC contribution visualized by LacZ-mediated staining. 

Chimera experiment performed by P. Tonge. 

 

 

Figure 20: iPSCs derived from different T cell progenitor stages express T cell 

development genes at atypical levels and are transcriptionally distinguishable 

(a) Heatmap of qRT-PCR-assessed gene expression for each T cell progenitor-derived 

iPSC clonal line and their donor cell types, relative to ESC control. DN1-iPSC and DN3-

iPSC lines each clustered fully together (Complete clustering and Euclidean distance 

algorithms). Purple indicates pluripotency genes. 

(b) qRT-PCR-assessed expression levels are shown relative to ESC control for different 

functional groups of T cell development genes, including signal receptors, T cell lineage 

promoters, pre-TCR, and alternate lineage promoters. Transcriptional patterns within 

each group of genes are dissimilar, suggesting T cell development genes with similar 

functions do not exhibit similar donor cell memory patterns. 
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6.2.3 Toward integration of BN models of T cell development and 
pluripotent fate transitions 

As discussed in Chapter 4.3, our lab has previously developed and validated a BN model 

of the endogenous mouse pluripotency network that predicts how cells transition between 

distinct pluripotent states (Yachie-Kinoshita et al., 2018). By integrating our BN model 

of the T cell development GRN with this BN of pluripotent stem cell fate transitions, we 

may potentially capture the reprogramming process from a T cell progenitor to an iPSC. 

Using Metacore (a curated databased of transcription factor binding, receptor-ligand 

interactions, kinase activity, and metabolic processes; https://portal.genego.com/), we 

queried all known interactions between genes included in the T cell development BN 

model and those included in the pluripotency BN model. 80 directed interactions from 

PSC-related gene sources to T cell-related targets and 73 directed interactions from T 

cell-related gene sources to PSC-related targets were reported (Figure 21). These 153 

interactions could serve as the initial basis for new Boolean update functions that link the 

two BN models. A satisfiability modulo theory (SMT) tool such as RE:IN can be used to 

generate candidate BNs, with topologies of the T cell development and pluripotency BN 

models set as “definite” and our aforementioned qRT-PCR results as constraints. Once 

the integrated BN model is constructed, reprogramming could be simulated by forcing 

expression of the dox-inducible factors in our secondary reprogramming system (Oct4, 

Sox2, Klf4, c-Myc) to “ON”. By simulating all possible combinations of the input signals, 

the model could predict methods to control donor cell memory by identifying 

combinations that result in strongly connected components (SCCs) with previously-

unreported expression patterns or higher sustainability scores (Yachie-Kinoshita et al., 

2018). 
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Figure 21: Summary of reported interactions between T cell development and 

pluripotency GRNs 
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(a) Reported regulatory interactions within and between each GRN. Top interaction hits 

in the consolidated dataset can be identified by (b) in degree, (c) out-degree, and (d) 

network motif contribution and serve as promising starting points for an integrated 

Boolean model of the T cell-to-iPSC reprogramming process. 
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6.3 Toward multi-scale models of T cell development 

Although the BN model of mouse T cell development presented here constitutes an 

important advancement toward dynamic and computable models of T lineage 

specification, its scope comprises the T cell fate decision at only one scale—gene 

regulatory networks (GRNs) and associated transcriptional events. However, it is well-

understood that biological decisions and fate specification processes span multiple scales 

and types of factors (Discher et al., 2009; Yu and Bagheri, 2016). At the intracellular 

level, epigenetic regulation of chromatin accessibility, metabolic state, and noise arising 

through signal transduction exert critical effects on many cell fate decisions. 

Intracellularly, cells receive biochemical signals from their environment through 

receptor-ligand interactions and secrete their own ligands that exert feedback effects on 

neighbouring cells and other cell types (Qiao et al., 2014). Mechanically, physical forces 

such as shear stress and substrate stiffness are also known to affect cell fate choice 

(Discher et al., 2009). Spatially, cells migrate between different niches under the control 

of various developmental signals and chemokines; for example, hematopoietic stem cells 

home from the aorta-gonad-mesonephros (AGM) to the fetal liver and eventually to the 

bone marrow during embryonic development, and lymphoid progenitors continuously 

migrate from the bone marrow to the thymus to initiate T cell development throughout an 

organism’s life. Spatial positioning and self-organization are also hallmark features of 

many developing tissues, both during in vivo organismal development (such as 

gastrulation) and well as in various in vitro organoid and micropattern confinement 

platforms (Rahman et al., 2017; Simunovic and Brivanlou, 2017; Tewary et al., 2017). In 

the context of development, the influence of each of these factors ultimately leads to the 

emergence of distinct and specialized cell types, tissues, and organs. 

Eventually, all the aforementioned effectors of cell fate must converge upon a GRN that 

resolves the inputs into transcriptional changes, lineage choices, and phenotypic 

behaviours at the single-cell level. It is for this reason that we focused our initial efforts 

toward modeling T lineage fate choice on GRNs. However, one could anticipate that a 

comprehensive model spanning multiple scales of biological regulation would enable 
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more accurate recapitulation of observed biological behaviour and facilitate testing of 

more complex biological hypotheses in silico. 

Agent-based modeling provides one potential framework for achieving comprehensive 

multi-scale models of cell fate decisions (Kaul and Ventikos, 2015). An agent-based 

model (ABM) consists of many individual Turing-complete finite-state machines (termed 

“agents”) which interact with each other based on pre-defined rule sets to simulate 

emergent properties of a system. Because each agent acts independently based on its own 

rule set and its perceived environment, ABMs are typically able to capture the behaviour 

of heterogeneous systems better than continuum mathematical models can. Furthermore, 

the internal computations performed by each agent are not inherently restricted to any 

particular class of algorithm, and thus ABMs are amenable to integration with other low-

level modeling frameworks, including Boolean networks (BNs). ABMs have been 

successfully applied to model a variety of cellular systems (Kaul and Ventikos, 2015), 

and there is specific interest in using ABMs to model self-organization and specialization 

within stem cell systems. 

As an example of one potential future direction within the T cell development field, we 

can consider an agent-based model of cells within the thymic niche. Agents within the 

model would represent single cells and could be assigned to different cell type classes, 

such as hematopoietic progenitors or thymic epithelial cells. Agents would occupy a 3-

dimensional physical space that is initialized to mimic the cortical-medullary architecture 

of the thymus. Agents would also be free to move in 3D space either randomly or in 

response to chemotactic cues. Each agent could perceive physical and biochemical cues 

from its environment as a function of its position in space and its neighbours. Agents 

could also present membrane-bound ligands (such as DL4) or receptors (such as 

NOTCH1 or CCR7) and secrete cytokines (such as IL-7) or chemokines (such as CCL21) 

to the extracellular space. The interactions of cellular agents with the extracellular 

environment would constitute a reaction-diffusion system that can be modeled 

mathematically using differential equations (Tewary et al., 2017). Finally, at the 

intracellular level, the BN model presented here could be embedded within each agent to 

process the environmental signals seen by the agent and decide its transcriptional 
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response through logical simulation. The effects of this transcriptional response would 

then be used to adjust the agent’s properties, such as its levels of surface-bound 

molecules and its cytokine secretion profile. 

An agent-based model as proposed would enable computational study of interactions 

between thymocytes and the thymic epithelium, which has previously been difficult to 

accomplish experimentally due to tissue opacity and imaging limitations. Furthermore, 

the agent-based model would allow for computational study of anatomical diseases such 

as DiGeorge syndrome (in which the thymus is smaller than normal) and the effect of 

radiation therapies employed in cancer treatment and HSC transplant scenarios (which 

are known to disrupt the architecture and cellular composition of the thymus) (Awong et 

al., 2013). In the context of normal development, the model could be used to investigate 

the dwell time of T cells in different regions of the thymus and explore how thymic DN1 

cells may function as a thymocyte stem cell-like population. Finally, extending the agent-

based model to synthetic in vitro T cell development niches such as DL4+VCAM would 

enable us to explore the mechanism by which increased cell motility in the presence of 

VCAM gives rise to greater Notch signaling activation and greater T cell yields (Shukla 

et al., 2017). In this case, we could also proactively screen additional matrix components, 

cytokines, or small molecules in silico for their effect on T cell yields as a means to guide 

further improvements to the DL4+VCAM T cell differentiation platform. Thus, a multi-

scale ABM approach would enable us to investigate new classes of questions regarding 

the T cell development program and help increase our understanding of the complex 

regulatory controls that underlie cell fate decision making. 
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 Conclusions 
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7.1 Thesis novelty and impact 

In this thesis, I demonstrate the value of a Boolean network (BN) approach to exploring 

the mouse T cell development program. The dynamic BN model of the T cell 

development gene regulatory network (GRN) that was constructed represents a 

significant advancement beyond previous static network topologies and smaller 

continuous models of sub-motifs of the T cell development program. Simulations of the 

BN model accurately recapitulate the transcriptional profiles of known T cell progenitor 

types as well as the response of T cell progenitors to various combinations of 

environmental signals and genetic perturbations. The BN model also makes the testable 

prediction that there are multiple possible transcriptional trajectories for T lineage 

specification, which suggests a potential explanation for the wide variance in 

differentiation efficiency, kinetics, and genetic requirements that have been observed in 

different T cell progenitor differentiation contexts. 

With respect to experimental novelties, we developed a serum- and stromal cell-free 

platform for T lineage differentiation that facilitates the study of additional factors that 

influence the T cell fate within a fully-defined thymic-like niche. We also demonstrated 

transcriptional heterogeneity within seemingly homogeneous surface marker-defined 

stages of T cell development using single-cell qRT-PCR. To our knowledge, we 

generated the first single-cell RNA sequencing dataset that enables comparison of the 

transcriptional patterns and trajectories taken by differentiating T cell progenitors during 

in vivo thymopoiesis and in vitro differentiation. These platforms and datasets form a 

strong foundation for refining future computational models of the T cell development 

program. 

Finally, through the development of 3 software ‘gadgets’ for the Garuda systems biology 

software platform, our BN simulation and analysis framework are now easily accessible 

and implementable by the broad biology research community. This effort will enable the 

integration of BN approaches into larger data analysis pipelines and ultimately extend the 

impact of our simulation framework beyond the T cell development community. 
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Appendix A: Software Resources 

 

Python code developed for Boolean network simulation and state transition graph 

analysis are available at: https://gitlab.com/stemcellbioengineering/garuda-boolean 

Garuda gadgets are available at the following links: 

Discretize, http://gateway.garuda-alliance.org/node/86 

Boolean Simulation, http://gateway.garuda-alliance.org/node/88 

Boolean SCC Analysis, http://gateway.garuda-alliance.org/node/87 

 

 

The following section describes the features and usage pattern for the three publicly-

available Garuda gadgets that were developed for Boolean network analysis: Discretize, 

Boolean Simulation, and Boolean SCC Analysis. 

 

https://gitlab.com/stemcellbioengineering/garuda-boolean
http://gateway.garuda-alliance.org/node/86
http://gateway.garuda-alliance.org/node/88
http://gateway.garuda-alliance.org/node/87
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Gadget 1: Discretize 

 

Figure 22: "Discretize" gadget for Garuda pipeline 

http://gateway.garuda-alliance.org/node/86 

This gadget converts matrices of continuous gene expression data into discrete levels (ex. 

binary ON/OFF). Discretization is performed using the k-means algorithm, where the 

parameter k specifies how many levels the samples will be grouped into. 

Input 

 Gene Expression Data 

csv format; one sample per row, one gene per column 

Output 

 Discretized Expression Profiles 

csv format; same layout as input file, but values now set to discrete levels (ex. 0 

or 1), where smaller values correspond to lower expression levels 
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Options 

invertOrder If true, treat large values as lowly-expressed and small values as 
highly-expressed. This can be useful for working with raw Ct or 
delta-Ct values from qRT-PCR experiments. 

perGene If true (default), the gadget considers each gene in isolation, 
such that unique discretization thresholds are chosen for each 
gene in the dataset. If false, genes are discretized together using 
a single common threshold. 

k The default value of k is 2 (i.e. binarization, “on” / “off”). 
However, the gadget can be used to discretize values to more 
than 2 levels by manually setting this value. For example, “--k 
3” will discretize to the levels 0 (low), 1 (medium), and 2 (high). 
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Gadget 2: Boolean Simulation 

 

Figure 23: "Boolean Simulation" gadget for Garuda pipeline 

http://gateway.garuda-alliance.org/node/88 

This gadget simulates Boolean network models of gene regulatory networks. As input, 

the simulation takes the initial state of each element (i.e. gene) of the network and a list 

of Boolean logic functions describing the regulatory control of each element by the rest 

of the network. The simulation repeatedly applies these functions (either synchronously 

or asynchronously) over discrete time steps to produce a trajectory of network states. This 

process is repeated multiple times to generate many trajectories, which are collected into 

a state transition graph and dictionary files. 

Input 

 Boolean Network Rules 

txt format; lines beginning with “#” treated as comments 

Each line defines a Boolean update function for one element (gene) in the 

network; ex. Il7ra *= NOTCH_SIGNALING or E_PROTEIN or (Pu1 and not Gata3)  

 Initial Conditions 

txt format; lines beginning with “#” treated as comments 
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Each line specifies the initial state of an element (gene); ex. Il7ra = False 

Can be initialized to “True”, “False”, or “Random” 

 Configuration Parameters 

txt format; lines beginning with “#” treated as comments 

Parameters are specified as “<parameter> = <value>”; ex. runs = 250 

Output 

 State Transition Graph 

Graph Markup Language (gml) format; defines a directed graph where each node 

corresponds to a network state observed in the simulation (annotated by its gene 

expression), and each edge corresponds to an observed transition from one 

network state to another. Edge weights equal the frequency at which the edge was 

traversed over all simulation runs. 

 State Dictionary 

csv format; one network state per row, first column contains state IDs, other 

columns contain expression level of all elements (genes) in that state 

 Edge Dictionary 

csv format; one edge per row. First column = source state. Second column = target 

state. Third column = number of times that edge was traversed in all simulations 

(weight). 

Options 

runs Any whole number 
(default = 1000) 

Number of independent simulations runs to 
perform 

steps Any whole number 
(default = 100) 

Number of updates (iterations) per simulation 
trajectory 

mode async (default), 
sync 

Synchronous: Update all elements at each 
iteration, such that each network state has only 
one possible following state 

Asynchronous: Update a random subset of 
elements at each iteration, such that each network 
state can lead to many possible following states 
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Gadget 3: Boolean SCC Analysis 

 

Figure 24: "Boolean SCC Analysis" gadget for Garuda pipeline 

http://gateway.garuda-alliance.org/node/87 

This gadget analyzes state transition graphs from Boolean network simulations to identify 

steady states and strongly connected components. A steady state is a terminal state within 

the graph that loops back on to itself. Conversely, a strongly connected component (SCC) 

is a set of mutually reachable states, which can be considered as a “dynamic steady state” 

of the network. In the case of SCCs, the internal edge weights (frequencies) of the SCC 

subgraph are used to define a Markov chain. The average gene expression profile for the 

SCC is calculated as average expression profile is calculated by multiplying the gene 

expression profile of each state in the SCC against the stationary distribution this Markov 

chain. A “sustainability” score is also calculated for each SCC based on the probability of 

any outgoing edges. If no steady states or strongly connected components are identified 

within the state transition graph, the unmodified state transition graph file and empty csv 

files with the text “No SCCs or steady states matching criteria were found” will be 

returned. 
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Input 

 State Transition Graph 

Graph Markup Language (gml) format; defines a directed graph where each node 

corresponds to a network state observed in the simulation (annotated by its gene 

expression), and each edge corresponds to an observed transition from one 

network state to another. Edge weights equal the frequency at which the edge was 

traversed over all simulation runs. 

 Configuration Parameters 

txt format; lines beginning with “#” treated as comments 

Parameters are specified as “<parameter> = <value>”; ex. minSize = 10 

Output 

 State Transition Graph (annotated) 

Same format as input, but states which belong to steady states or SCCs are 

annotated 

 Expression Profiles 

csv format; summarizes the probability-weighted average expression profile of 

each identified steady state and SCC, as well as the weighted average over all 

SCCs of the model 

 SCC Metrics 

csv format; summarizes the number of profiles, number of edges, and 

sustainability score of each identified SCC 

Options 

minSize Any whole number 
(default = 0) 

Minimum size of SCCs to be considered, 
in terms of numbers of profiles. All 
returned SCCs will have size > minSize 

minSustainability Any whole number 
(default = 0.0) 

Minimum sustainability score of SCCs to 
be considered. All returned SCCs will 
have sustainability > minSustainability 

writeSubgraphs False (default), 
True 

Write GML representations of identified 
SCCs and SSs to file 

annotateGraph False (default), 
True 

Annotate nodes in input graph with 
SCC/SS membership 
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Appendix B: Supplementary Tables 

Supplementary Table 1: Literature evidence for edges in Boolean network (BN) model of mouse T cell development 

Source Sign Target Reference Experiment Cell Type 

Bcl11b Positive Cd3e Ikawa (Science, 2010) Bcl11b overexpression + in vitro T 
cell culture + mRNA analysis 

FL Lin-Sca1+Kit+ (LSK) 

Bcl11b Positive Cd3e Longabaugh (PNAS, 2017) Bcl11b KO + RNA-seq + ChIP with 
Bcl11b antibody 

Bcl11b KO DN2 thymocytes (OP9-
DL4 from E13.5 FL) 

Bcl11b Positive Cd3g Longabaugh (PNAS, 2017) Bcl11b KO + RNA-seq + ChIP with 
Bcl11b antibody 

Bcl11b KO DN2 thymocytes (OP9-
DL4 from E13.5 FL) 

Bcl11b Negative Cebpa Ikawa (Science, 2010) Bcl11b overexpression + in vitro T 
cell culture + mRNA analysis 

Bcl11b−/− FL Lin-Sca1+Kit+ (LSK) 

Bcl11b Negative Id3 Longabaugh (PNAS, 2017) Bcl11b KO + RNA-seq Bcl11b KO DN2 thymocytes (OP9-
DL4 from E13.5 FL) 

Bcl11b Negative Kit Ikawa (Science, 2010) Bcl11b overexpression + in vitro T 
cell culture + surface expression 
analysis using FACS 

Bcl11b−/− FL Lin-Sca1+Kit+ (LSK) 

Bcl11b Negative Kit Longabaugh (PNAS, 2017) Bcl11b KO + RNA-seq + ChIP with 
Bcl11b antibody 

Bcl11b KO DN2 thymocytes (OP9-
DL4 from E13.5 FL) 

Bcl11b Positive Ptcra Ikawa (Science, 2010) Bcl11b overexpression + in vitro T 
cell culture + mRNA analysis 

Bcl11b−/− FL Lin-Sca1+Kit+ (LSK) 

Bcl11b Negative Pu1 Ikawa (Science, 2010) Bcl11b overexpression + in vitro T 
cell culture + mRNA analysis 

Bcl11b−/− FL Lin-Sca1+Kit+ (LSK) 

Cd3e Positive TCR_SIGNALING By definition (receptor complex) - - 
Cd3g Positive TCR_SIGNALING By definition (receptor complex) - - 
E_PROTEIN Positive Gata3 Gregoire (J Biol Chem, 1999) Analysis of Gata3 cis-regulatory 

element (wild-type/mutated E-protein 
binding site) 

Jurkat T cell line 

E_PROTEIN Positive Gata3 Jones-Mason (Immunity, 2012) Tcf12/Tcfe2a KO or Id2/Id3 KO + 
intracellular staining 

Tcf12f/fTcfE2f/fCd4cre+ and 
Id2f/fId3f/fCd4cre+ thymocytes 

E_PROTEIN Positive Gfi1 Schwartz (PNAS, 2006) E47 overexpression + mRNA 
expression analysis 

1F9 E2A−/− T cell lymphoma line 

E_PROTEIN Positive Gfi1 Xu (Blood, 2007) Ectopic E2A expression + mRNA 
expression analysis + ChIP with E47 
antibody 

0531 and 1F9 E2A−/− T cell 
lymphoma line 
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Source Sign Target Reference Experiment Cell Type 

E_PROTEIN Positive Hes1 Ikawa (J Exp Med, 2006) E47 overexpression + mRNA 
expression analysis 

E2A−/− Lin- BM cells (cultured) 

E_PROTEIN Positive Il7ra Dias (Immunity, 2008) mRNA expression profiling E2A−/− Lin-Sca1+Kit+ Flt3-hi 
(LMPP) 

E_PROTEIN Positive Il7ra Ikawa (J Exp Med, 2006) E47 overexpression + mRNA 
expression analysis 

E2A−/− Lin- BM cells (cultured) 

E_PROTEIN Positive Il7ra Welinder (PNAS, 2011) mRNA expression analysis of HEB 
KO, E2A KO and WT 

E2A−/−, HEBf/fTie2Cre, and WT 
LY6D- CLPs 

E_PROTEIN Positive Lat Ikawa (J Exp Med, 2006) E47 overexpression + mRNA 
expression analysis 

E2A−/− Lin- BM cells (cultured) 

E_PROTEIN Positive Notch1 Dias (Immunity, 2008) mRNA expression profiling E2A−/− Lin-Sca1+Kit+ Flt3-hi 
(LMPP) 

E_PROTEIN Positive Notch1 Yashiro-Ohtani (Genes Dev, 2009) ChIP analysis using E2A antibody 
E47 overexpression + Notch1 
promoter activity measurements 

Rag2−/− DN3 thymocytes NIH-3T3 
cell line 

E_PROTEIN Positive Notch1 Del Real (Development, 2013) Ectopic ID2 overexpression + mRNA 
expression analysis 

Scid.adh.2C2 cells 

E_PROTEIN Positive Ptcra Ikawa (J Exp Med, 2006) E47 overexpression + mRNA 
expression analysis 

E2A−/− Lin- BM cells (cultured) 

E_PROTEIN Positive Rag1 Dias (Immunity, 2008) mRNA expression profiling E2A−/− Lin-Sca1+Kit+ Flt3-hi 
(LMPP) 

E_PROTEIN Positive Rag1 Schwartz (PNAS, 2006) E47 overexpression + mRNA 
expression analysis 

1F9 E2A−/− T cell lymphoma line 

E2a Positive E_PROTEIN By definition  - - 
E2a Positive E2a Absence of other reported positive 

inputs 

- - 

E2a Positive Ebf1 Ikawa (Immunity, 2004) Ectopic E47 expression + mRNA 
expression analysis 

E2A-deficient BM progenitors 

E2a Positive Ebf1 Greenbaum (PNAS, 2002) E2AFH + ChIP with anti-FLAG 
antibody 

Abelson pre-B E2AFH line 

Ebf1 Negative Id3 Thal (PNAS, 2009) EMSA of Ebf1 binding to Id3 
promoter + mRNA expression + id3-
luciferase reporter following Ebf1 
expression plasmid 

Sorted primary pre-pro-B cells 

Ets1 Positive Tcrb Kim (EMBO J, 1999) Ets1 overexpression + analysis of 
TCRβenhancer activity 

p19 cell line 

Gata3 Positive Bcl11b Kueh (Nat Immunol, 2016) Gata3 KO + Bcl11b-YFP reporter 
analysis 

Bcl11b-YFP ETP thymocytes 
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Source Sign Target Reference Experiment Cell Type 

Gata3 Positive Bcl11b Garcia-Ojeda (Blood, 2013) Gata3 KO + mRNA expression 
analysis  

Gata3−/− DN2 thymocytes 

Gata3 Positive Bcl11b Scripture-Adams (J Immunol, 2014) Gata3 shRNA-knockdown or flox-
knockout + mRNA expression 
analysis 

WT and Gata3fl/fl DN thymocytes 

Gata3 Positive Bcl11b Zhang (Cell, 2012) ChIP analysis using GATA-3 
antibody 

Fetal liver derived thymocytes 

Gata3 Positive Cd3e Zhang (Cell, 2012) ChIP analysis using GATA-3 
antibody 

Fetal liver derived thymocytes 

Gata3 Positive Cd3g Zhang (Cell, 2012) ChIP analysis using GATA-3 
antibody 

Fetal liver derived thymocytes 

Gata3 Negative Cebpa Taghon (Nat Immunol, 2007) Gata3 overexpression + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

Gata3 Positive Deltex Wang (Mol Cell Biol, 2009) Gata3 overexpression + mRNA 
expression analysis 

Adult DN1 thymocytes 

Gata3 Negative Id3 Taghon (Nat Immunol, 2007) Gata3 overexpression + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

Gata3 Negative Il7ra Anderson (Devel Bio, 2002) Gata3 ectopic expression + mRNA 
expression analysis 

Fetal liver derived thymocytes 

Gata3 Negative Il7ra Taghon (Nat Immunol, 2007) Gata3 overexpression + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

Gata3 Negative Ptcra Anderson (Devel Bio, 2002) Gata3 ectopic expression + mRNA 
expression analysis 

Fetal liver derived thymocytes 

Gata3 Negative Ptcra Taghon (Nat Immunol, 2007) Gata3 overexpression + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

Gata3 Negative Pu1 Taghon (Nat Immunol, 2007) Gata3 overexpression + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

Gata3 Negative Pu1 Anderson (Devel Bio, 2002) Gata3 ectopic expression + mRNA 
expression analysis 

Fetal liver derived thymocytes 

Gata3 Positive Scl Anderson (Devel Bio, 2002) Gata3 ectopic expression + mRNA 
expression analysis 

Fetal liver derived thymocytes 

Gata3 Positive Scl Taghon (Nat Immunol, 2007) Gata3 overexpression + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

Gata3 Negative Tcf7 Taghon (Nat Immunol, 2007) Gata3 overexpression + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

Gata3 Positive Tcrb Yang (Blood, 2003) Measurement of TCRβ enhancer 
activity (wild-type/mutated GATA 
binding site) 

p5424 T cell line 



134 

 

Source Sign Target Reference Experiment Cell Type 

Gfi1 Negative Pu1 Spooner (Immunity, 2009) mRNA expression analysis; ChIP 
analysis using Gfi1 antibody 

Gf1−/− Lin-Sca1+Kit+ (LSK) cells 

Gfi1 Negative Pu1 Wei (Cell Res, 2008) Gfi1 overexpression/ knockdown + in 
situ RNA hybridization 

Zebrafish embryos 

Gfi1 Positive Rag1 Wei (Cell Res, 2008) Gfi1 knockdown + in situ RNA 
hybridization 

Zebrafish embryos 

Gfi1 Positive Scl Wei (Cell Res, 2008) Gfi1 knockdown + in situ RNA 
hybridization 

Zebrafish embryos 

Gfi1b Negative Gfi1 Doan (Nucleic Acids Res, 2004) mRNA expression analysis Gfi1b transgenic thymocytes 

Gfi1b Negative Gfi1 Xu (Blood, 2007) Gfi1b overexpression + mRNA 
expression analysis 

E2A−/− T cell lymphoma 

HEB Positive E_PROTEIN By definition - - 
HEB Positive E_PROTEIN Welinder (PNAS, 2011) mRNA expression analysis of HEB 

KO, E2A KO and WT 

E2A−/−, HEBf/fTie2Cre, and WT 
LY6D- CLPs 

HEB Positive HEB Absence of other reported positive 
inputs 

- - 

Id3 Negative E_PROTEIN By definition  - - 
Ikaros Negative Hes1 Kathrein (J Biol Chem, 2008) Retroviral reintroduction of Ikaros + 

mRNA expression analysis 

Ikaros−/− JE131 cell line 

Ikaros Negative Runx1 Chari (J Immunol, 2008) mRNA expression analysis Ikaros−/− adult DN thymocytes 

IL7_SIGNALING Positive Cebpa Ikawa (Science, 2010) In vitro T cell culture + IL7 drop + 
mRNA expression analysis 

FL Lin-Sca1+Kit+ (LSK) cells 

IL7_SIGNALING Positive Ebf1 Kikuchi (J Exp Med, 2005) Constitutive IL7 signaling activation 
+ mRNA expression analysis 

IL-7Rα−/− pre-pro B-cells 

IL7_SIGNALING Positive Ebf1 Roessler (Mol Cell Biol, 2007) STAT5 transfection + mRNA 
expression analysis 

Ba/F3 pro-B line 

IL7_SIGNALING Positive Gata3 Guo (PNAS, 2009) Flow cytometry with intracellular 
staining using GATA3 antibody + 
ChIP with Stat5 antibody 

Stat5−/− Th2 cells (n.b. cells were 
stimulated with IL-2 and IL-33) 

IL7_SIGNALING Positive Kit Ikawa (Science, 2010) In vitro T cell culture + IL7 drop + 
surface expression analysis using 
FACS 

FL Lin-Sca1+Kit+ (LSK) cells 

IL7_SIGNALING Negative Lck Ikawa (Science, 2010) In vitro T cell culture + IL7 drop + 
plck-GFP reporter + mRNA 
expression analysis 

FL Lin-Sca1+Kit+ (LSK) cells 

IL7_SIGNALING Negative Ptcra Ikawa (Science, 2010) In vitro T cell culture + IL7 drop + 
mRNA expression analysis 

FL Lin-Sca1+Kit+ (LSK) cells 
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Source Sign Target Reference Experiment Cell Type 

IL7_SIGNALING Positive Pu1 Ikawa (Science, 2010) In vitro T cell culture + IL7 drop + 
mRNA expression analysis 

FL Lin-Sca1+Kit+ (LSK) cells 

Il7ra Positive IL7_SIGNALING By definition (receptor) - - 
INPUT_DL4 Positive NOTCH_SIGNALING By definition (ligand) - - 
INPUT_IL7 Positive IL7_SIGNALING By definition (ligand) - - 
INPUT_TCR Positive TCR_SIGNALING By definition (ligand) - - 
Lck Positive TCR_SIGNALING By definition (receptor complex) - - 
Lmo2 Positive Hhex McCormack (Science, 2010) mRNA expression analysis Lmo transgenic DN3 leukemic cells 

Lmo2 Positive Hhex Smith (PLOS One, 2014) ChIP using LMO2 antibody + LMO2 
knockdown + mRNA expression 
analysis 

Human T-ALL line 

Lmo2 Positive Kit McCormack (Science, 2010) mRNA expression analysis Lmo transgenic DN3 leukemic cells 

Lmo2 Positive Lyl1 McCormack (Science, 2010) mRNA expression analysis Lmo transgenic DN3 leukemic cells 

Lyl1 Positive Id3 San-Marina (Biochim Biophys Acta, 
2008) 

Lyl1 overexpression + mRNA 
expression analysis 

Human AML cells 

Lyl1 Negative Ptcra Herblot (Nat Immunol, 2000) mRNA expression analysis Scl-Lmo1 transgenic mice 

Lyl1 Negative Ptcra Herblot (Nat Immunol, 2000) Scl overexpression + pTα enhancer 
activity analysis 

AD10.1 immature T cell line 

Myb Positive Gata3 Del Real (Development, 2013) Ectopic expression of Myb + 
intracellular staining of GATA3 

Scid.adh.2C2 cells 

Myb Positive Gata3 Gimferrer (J Immunol, 2011) Myb KO + intracellular staining of 
GATA3 

c-Mybf/fcd4Cre and WT DP 
thymocytes 

Myb Positive Gata3 Maurice (EMBO J, 2007) Dominant negative Myb 
overexpression + mRNA expression 
analysis 

E16 cell line 

NOTCH_SIGNALING Positive Bcl11b Franco (PNAS, 2006) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

NOTCH_SIGNALING Positive Bcl11b Li (Science, 2010) ChIP analysis using CSL antibody Adult thymocytes 

NOTCH_SIGNALING Positive Bcl11b Tydell (J Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

FL Lin-Kit+CD27+ progenitors 

NOTCH_SIGNALING Positive Cd3e Taghon (Nat Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

NOTCH_SIGNALING Positive Cd3g Taghon (Nat Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 
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Source Sign Target Reference Experiment Cell Type 

NOTCH_SIGNALING Negative Cebpa Franco (PNAS, 2006) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

NOTCH_SIGNALING Positive Deltex Franco (PNAS, 2006) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

NOTCH_SIGNALING Positive Deltex Taghon (Genes Dev, 2005) In vitro culture (+/−DL1) + mRNA 
expression analysis 

FL Lin-Kit+ cells 

NOTCH_SIGNALING Positive Deltex Taghon (Nat Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

NOTCH_SIGNALING Negative Ebf1 Taghon (Genes Dev, 2005) In vitro culture (+/−DL1) + mRNA 
expression analysis 

FL Lin-Kit+ cells 

NOTCH_SIGNALING Positive Gata3 Taghon (Genes Dev, 2005) In vitro culture (+/−DL1) + mRNA 
expression analysis 

FL Lin-Kit+ cells 

NOTCH_SIGNALING Positive Gata3 Van de Walle (Blood, 2009) In vitro culture (+/−DL1) + mRNA 
expression analysis 

FL Lin-Kit+ cells 

NOTCH_SIGNALING Positive Gata3 Weerkamp (Leukemia, 2006) In vitro culture (+/−DL1) + mRNA 
expression analysis 

FL Lin-Kit+ cells 

NOTCH_SIGNALING Positive Gata3 Tydell (J Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

FL Lin-Kit+ cells 

NOTCH_SIGNALING Positive Hes1 Taghon (Genes Dev, 2005) In vitro culture (+/−DL1) + mRNA 
expression analysis 

FL Lin-Kit+ cells 

NOTCH_SIGNALING Positive Hes1 Franco (PNAS, 2006) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

NOTCH_SIGNALING Negative Id3 Franco (PNAS, 2006) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

NOTCH_SIGNALING Negative Id3 Taghon (Nat Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

NOTCH_SIGNALING Positive Il7ra Gonzalez-Garcia (J Exp Med, 2009) Notch ICN overexpression + analysis 
of IL-7Rα promoter activity 

293T and Jurkat cell lines 

NOTCH_SIGNALING Positive Il7ra Gonzalez-Garcia (J Exp Med, 2009) Notch ICN overexpression 
+ in vitroculture + surface expression 
analysis by flow 

DN1 thymocytes 

NOTCH_SIGNALING Positive Lat Taghon (Nat Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

NOTCH_SIGNALING Positive Lck Taghon (Nat Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

NOTCH_SIGNALING Positive Lef1 Taghon (Nat Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

NOTCH_SIGNALING Positive Ptcra Franco (PNAS, 2006) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Thy1+ fetal thymocytes 
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Source Sign Target Reference Experiment Cell Type 

NOTCH_SIGNALING Positive Ptcra Reizis (Genes Dev, 2002) Notch ICD overexpression + analysis 
of pTα enhancer activity 

293 cell line 

NOTCH_SIGNALING Positive Ptcra Taghon (Nat Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

NOTCH_SIGNALING Positive Rag1 Taghon (Nat Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

NOTCH_SIGNALING Positive Runx1 Franco (PNAS, 2006) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

NOTCH_SIGNALING Positive Runx1 Nakagawa (Blood, 2006) Notch1 overexpression + mRNA 
expression analysis 

NIH-3T3 cell line 

NOTCH_SIGNALING Positive Runx1 Taghon (Nat Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Bcl2-transgenic thymocytes 

NOTCH_SIGNALING Positive Runx1 Del Real (Development, 2013) In vitro culture (+/−DL1) + mRNA 
expression analysis 

DN2 and DN3 fetal thymocytes 

NOTCH_SIGNALING Positive Tcf7 Germar (PNAS, 2011) ChIP using antibodies for activated 
Notch-1 and CSL 

T6E mouse T cell lymphoma line 

NOTCH_SIGNALING Positive Tcf7 Tydell (J Immunol, 2007) In vitro culture (+/−DL1) + mRNA 
expression analysis 

FL Lin-Kit+CD27+ progenitors 

NOTCH_SIGNALING Positive Tcf7 Weber (Nature, 2011) In vitro culture (+/−DL1) + mRNA 
expression analysis 

Lin-cKit+Sca1+ (LSK) cells 

Notch1 Positive NOTCH_SIGNALING By definition (receptor) - - 
Ptcra Positive TCR_SIGNALING By definition (receptor complex) - - 
Pu1 Negative Cd3e Franco (PNAS, 2006) PU.1 overexpression + mRNA 

expression analysis 

Thy1+ fetal thymocytes 

Pu1 Negative Cd3g Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

Pu1 Negative Ets1 Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

Pu1 Negative Ets1 Del Real (Development, 2013) Ectopic PU.1 expression + mRNA 
expression analysis 

DN2 and DN3 fetal thymocytes 

Pu1 Negative Ets1 Champhekar (Genes Dev, 2015) PU.1 or PU.1-Engrailed fusion 
protein expression + mRNA 
expression analysis 

DN1, DN2A, and DN2B thymocytes 

Pu1 Negative Gata3 Chang (J Immunol, 2009) ChIP using Gata3 antibody PU.1−/− CD4+ T cells 

Pu1 Negative Gata3 Del Real (Development, 2013) Ectopic PU.1 expression + mRNA 
expression analysis 

DN2 and DN3 fetal thymocytes 

Pu1 Negative Gfi1 Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 
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Source Sign Target Reference Experiment Cell Type 

Pu1 Negative Gfi1 Del Real (Development, 2013) Ectopic PU.1 expression + mRNA 
expression analysis 

DN2 and DN3 fetal thymocytes 

Pu1 Negative Gfi1 Champhekar (Genes Dev, 2015) PU.1 or PU.1-Engrailed fusion 
protein expression + mRNA 
expression analysis 

DN1, DN2A, and DN2B thymocytes 

Pu1 Negative Hes1 Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

Pu1 Negative Hes1 Del Real (Development, 2013) Ectopic PU.1 expression + mRNA 
expression analysis 

DN2 and DN3 fetal thymocytes 

Pu1 Negative Id3 Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

Pu1 Negative Ikaros Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

Pu1 Positive Il7ra DeKoter (Immunity, 2002) ChIP using PU.1 antibody FL-derived pro-B cells 

Pu1 Positive Il7ra DeKoter (Immunity, 2002) mRNA expression analysis FL-derived pro-B cells 

Pu1 Negative Lat Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

Pu1 Negative Lck Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

Pu1 Positive Lmo2 Landry (Blood, 2009) ChIP using PU.1 antibody 416B myeloid cell line 

Pu1 Positive Lmo2 Landry (Blood, 2009) PU.1 overexpression + Lmo2 
promoter activity measurements 

293T cell line 

Pu1 Positive Lmo2 Del Real (Development, 2013) Ectopic PU.1 expression + mRNA 
expression analysis 

DN2 and DN3 fetal thymocytes 

Pu1 Positive Lmo2 Champhekar (Genes Dev, 2015) PU.1 or PU.1-Engrailed fusion 
protein expression + mRNA 
expression analysis 

DN1, DN2A, and DN2B thymocytes 

Pu1 Positive Lyl1 Chan (Blood, 2007) ChIP using PU.1 antibody 416B myeloid cell line 

Pu1 Positive Lyl1 Chan (Blood, 2007) Lyl1 promoter activity measurements 
(wild-type/mutated PU.1 site) 

416B myeloid cell line 

Pu1 Positive Lyl1 Del Real (Development, 2013) Ectopic PU.1 expression + mRNA 
expression analysis 

DN2 and DN3 fetal thymocytes 

Pu1 Negative Myb Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

Pu1 Negative Myb Del Real (Development, 2013) Ectopic PU.1 expression + mRNA 
expression analysis 

DN2 and DN3 fetal thymocytes 
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Source Sign Target Reference Experiment Cell Type 

Pu1 Negative Myb Champhekar (Genes Dev, 2015) PU.1 or PU.1-Engrailed fusion 
protein expression + mRNA 
expression analysis 

DN1, DN2A, and DN2B thymocytes 

Pu1 Negative Rag1 Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

Pu1 Negative Zap70 Franco (PNAS, 2006) PU.1 overexpression + mRNA 
expression analysis 

Thy1+ fetal thymocytes 

Runx1 Positive Bcl11b Kueh (Nat Immunol, 2016) shRunx1, pan-Runx dominant 
negative, Runx1 cDNA 

Bcl11b-YFP DN2 thymocytes 

Runx1 Negative Pu1 Huang (Nat Genet, 2008) mRNA expression analysis Runx1−/− DN2, DN3 thymocytes 

Runx1 Negative Pu1 Zarnegar (Mol Cell Biol, 2010) Runx1/Runx1 dominant negative 
overexpression + analysis of 
PU.1 cis-regulatory element 

P2C2 immature T cell line and 
Raw264 myeloid cell line 

Runx1 Positive Tcrb Kim (EMBO J, 1999) Runx1 overexpression + analysis of 
TCRβ enhancer activity 

p19 cell line 

Scl Positive Hhex Donaldson (Hum Mol Genet, 2005) Analysis of Hhex enhancer 
containing Scl sites 

416B progenitor cell line 

Scl Positive Hhex Wilson (Blood, 2009) Chip-Seq using Scl antibody on 
putative enhancer 

HPC-7 progenitor cell line 

Scl Positive Id3 San-Marina (Biochim Biophys Acta, 
2008) 

Lyl1 overexpression + mRNA 
expression analysis 

Human AML cells 

Scl Positive Kit Lecuyer (Blood, 2002) mRNA expression analysis Immature B cells (B220+) from wild-
type/SCL transgenic mice 

Scl Negative Ptcra Herblot (Nat Immunol, 2000) mRNA expression analysis Scl-Lmo1 transgenic mice 

Scl Negative Ptcra Herblot (Nat Immunol, 2000) Scl overexpression + pTα enhancer 
activity analysis 

AD10.1 immature T cell line 

Tcf7 Positive Bcl11b Weber (Nature, 2011) TCF-1 overexpression + mRNA 
expression analysis + ChIP analysis 
using TCF-1 antibody 

Lin-cKit+Sca1+(LSK) cells 

Tcf7 Positive Cd3e Germar (PNAS, 2011) Tcf7-/- followed by RNA expression 
microarray 

Tcf7-/- thymocytes 

Tcf7 Positive Gata3 Weber (Nature, 2011) TCF-1 overexpression + mRNA 
expression analysis 

Lin-cKit+Sca1+(LSK) cells 

Tcf7 Positive Gata3 Yu (Nat Immunol, 2009) ChIP using TCF-1 antibody TCF−/− Th2 cells 

Tcf7 Positive Lef1 Li (Mol Cell Biol, 2006) Wnt pathway activation, ChiP using 
TCF antibody 

DLD1 cancer cell line 

Tcf7 Positive Lef1 Weber (Nature, 2011) TCF-1 overexpression + mRNA 
expression analysis 

Lin-cKit+Sca1+(LSK) cells 
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Source Sign Target Reference Experiment Cell Type 

Tcf7 Negative Pu1 Rosenbauer (Nat Genet, 2006) Analysis of PU.1 cis-regulatory 
element (wild-type/mutated Tcf site) 

EL4 T cell line 

Tcf7 Positive Tcf7 Weber (Nature, 2011) TCF-1 overexpression + mRNA 
expression analysis + ChIP analysis 
using TCF-1 antibody 

Lin-cKit+Sca1+(LSK) cells 

TCR_SIGNALING Negative Hes1 Taghon (Immunity, 2006) TCRβ KO + mRNA expression 
analysis 

TCRβ−/− and WT adult DN 
thymocytes 

TCR_SIGNALING Positive Id3 Taghon (Immunity, 2006) TCRβ KO + mRNA expression 
analysis 

TCRβ−/− and WT adult DN 
thymocytes 

TCR_SIGNALING Negative Ptcra Taghon (Immunity, 2006) TCRβ KO + mRNA expression 
analysis 

TCRβ−/− and WT adult DN 
thymocytes 

TCR_SIGNALING Negative Runx1 Taghon (Immunity, 2006) TCRβ KO + mRNA expression 
analysis 

TCRβ−/− and WT adult DN 
thymocytes 

Tcrb Positive TCR_SIGNALING By definition (receptor complex) - - 
Zap70 Positive TCR_SIGNALING By definition (receptor complex) - - 
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Supplementary Table 2: Microarray datasets used for partial correlation analysis 

ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM1058959 DN2 wt DN2 replicate 1 Dec 31 2012 Barbara Kee GPL1261 GSE43224 

GSM1058960 DN2 wt DN2 replicate 2 Dec 31 2012 Barbara Kee GPL1261 GSE43224 

GSM1058961 DN2 wt DN2 replicate 3 Dec 31 2012 Barbara Kee GPL1261 GSE43224 

GSM1058962 DN2 E2A KO E2A-deficient DN2 replicate 1 Dec 31 2012 Barbara Kee GPL1261 GSE43224 

GSM1058963 DN2 E2A KO E2A-deficient DN2 replicate 2 Dec 31 2012 Barbara Kee GPL1261 GSE43224 

GSM1058964 DN2 E2A KO E2A-deficient DN2 replicate 3 Dec 31 2012 Barbara Kee GPL1261 GSE43224 

GSM1123162 DN3 wt WT DN3 cells rep 1 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123163 DN3 wt WT DN3 cells rep 2 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123164 DN4 wt WT DN4 cells rep 1 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123165 DN4 wt WT DN4 cells rep 2 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123166 DP wt WT DP cells rep 1 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123167 DP wt WT DP cells rep 2 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123168 DN3 Ikaros KO DN3 cells rep 1 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123169 DN3 Ikaros KO DN3 cells rep 2 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123170 DN4 Ikaros KO DN4 cells rep 1 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123171 DN4 Ikaros KO DN4 cells rep 2 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123172 DP Ikaros KO DP cells rep 1 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 

GSM1123173 DP Ikaros KO DP cells rep 2 sorted cells from 

mouse thymus 

Apr 16 2013 Susan Chan GPL1261 GSE46090 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM1149208 DN1 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#19_Thymocytes DN1, 

biological  rep1 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 negative 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149209 DN2 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#19_Thymocytes DN2, 

biological  rep1 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149210 DN3 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#19_Thymocytes DN3, 

biological  rep1 

Gene expression 

from CD4& CD8 

double negative; 

CD44 negative; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149211 DN1 Prkdc-Scid SCID_#687_Thymocytes DN1, 

biological rep1 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 negative 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149212 DN2 Prkdc-Scid SCID_#687_Thymocytes DN2, 

biological rep1 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149213 DN3 Prkdc-Scid SCID_#687_Thymocytes DN3, 

biological rep1 

Gene expression 

from CD4& CD8 

double negative; 

CD44 negative; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM1149214 DN1 Prkdc-Scid SCID_#50_Thymocytes DN1, 

biological rep2 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 negative 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149215 DN2 Prkdc-Scid SCID_#50_Thymocytes DN2, 

biological rep2 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149216 DN3 Prkdc-Scid SCID_#50_Thymocytes DN3, 

biological  rep2 

Gene expression 

from CD4& CD8 

double negative; 

CD44 negative; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149217 DN1 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#20_Thymocytes DN1, 

biological rep2 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 negative 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149218 DN2 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#20_Thymocytes DN2, 

biological rep2 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149219 DN3 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#20_Thymocytes DN3, 

biological rep2 

Gene expression 

from CD4& CD8 

double negative; 

CD44 negative; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM1149220 DN1 Prkdc-Scid SCID_#686_Thymocytes DN1, 

biological rep3 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 negative 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149221 DN2 Prkdc-Scid SCID_#686_Thymocytes DN2,  

biological rep3 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149222 DN3 Prkdc-Scid SCID_#686_Thymocytes DN3, 

biological rep3 

Gene expression 

from CD4& CD8 

double negative; 

CD44 negative; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149223 DN1 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#999_Thymocytes DN1, 

biological rep3 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 negative 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149224 DN2 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#999_Thymocytes DN2, 

biological rep3 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149225 DN3 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#999_Thymocytes DN3, 

biological rep3 

Gene expression 

from CD4& CD8 

double negative; 

CD44 negative; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM1149226 DN1 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#535_Thymocytes DN1, 

biological rep4 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 negative 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149227 DN2 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#535_Thymocytes DN2, 

biological rep4 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149228 DN3 Tlx1 OE, 

Prkdc-Scid 

HOXSCID_#535_Thymocytes DN3, 

biological rep4 

Gene expression 

from CD4& CD8 

double negative; 

CD44 negative; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149229 DN1 Prkdc-Scid SCID_#525_Thymocytes DN1, 

biological rep4 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 negative 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149230 DN2 Prkdc-Scid SCID_#525_Thymocytes DN2, 

biological rep4 

Gene expression 

from CD4& CD8 

double negative; 

CD44 positive; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 

GSM1149231 DN3 Prkdc-Scid SCID_#525_Thymocytes DN3, 

biological rep4 

Gene expression 

from CD4& CD8 

double negative; 

CD44 negative; 

CD25 positive 

thymocytes 

May 28 

2013 

Yan Zhen 

Zheng 

GPL1261 GSE47421 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM1162789 HSC wt HSC rep1 Gene expression 

data from 

hematopoietic stem 

cells 

Jun 13 2013 Maria 

Alessandra 

Vigano 

GPL6246 GSE47940 

GSM1162790 HSC wt HSC rep2 Gene expression 

data from 

hematopoietic stem 

cells 

Jun 13 2013 Maria 

Alessandra 

Vigano 

GPL6246 GSE47940 

GSM1162791 DN2 wt ProT rep1 Gene expression 

data from committed 

T cells 

Jun 13 2013 Maria 

Alessandra 

Vigano 

GPL6246 GSE47940 

GSM1162792 DN2 wt ProT rep2 Gene expression 

data from committed 

T cells 

Jun 13 2013 Maria 

Alessandra 

Vigano 

GPL6246 GSE47940 

GSM1162793 DP wt DP rep1 Gene expression 

data from double 

positive T cells 

Jun 13 2013 Maria 

Alessandra 

Vigano 

GPL6246 GSE47940 

GSM1162794 DP wt DP rep2 Gene expression 

data from double 

positive T cells 

Jun 13 2013 Maria 

Alessandra 

Vigano 

GPL6246 GSE47940 

GSM399391 DP wt T.DP.Th#1 T.DP.Th#1, Double-

Positive, All 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399392 DP wt T.DP.Th#2 T.DP.Th#2, Double-

Positive, All 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399393 DP wt T.DP.Th#3 T.DP.Th#3, Double-

Positive, All 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399394 DP69+ wt T.DP69+.Th#1 T.DP69+.Th#1, 

Double-Positive, 

Early Positive 

Selection 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399395 DP69+ wt T.DP69+.Th#2 T.DP69+.Th#2, 

Double-Positive, 

Early Positive 

Selection 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399396 DP69+ wt T.DP69+.Th#3 T.DP69+.Th#3, 

Double-Positive, 

Early Positive 

Selection 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM399397 DPbl wt T.DPbl.Th#1 T.DPbl.Th#1, 

Double-Positive, 

Blasts 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399398 DPbl wt T.DPbl.Th#2 T.DPbl.Th#2, 

Double-Positive, 

Blasts 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399399 DPbl wt T.DPbl.Th#3 T.DPbl.Th#3, 

Double-Positive, 

Blasts 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399400 DPsm wt T.DPsm.Th#1 T.DPsm.Th#1, 

Double-Positive, 

Small Resting 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399401 DPsm wt T.DPsm.Th#2 T.DPsm.Th#2, 

Double-Positive, 

Small Resting 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399402 DPsm wt T.DPsm.Th#3 T.DPsm.Th#3, 

Double-Positive, 

Small Resting 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399403 ISP wt T.ISP.Th#1 T.ISP.Th#1, 

Immature Single-

Positive 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399404 ISP wt T.ISP.Th#2 T.ISP.Th#2, 

Immature Single-

Positive 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM399405 ISP wt T.ISP.Th#3 T.ISP.Th#3, 

Immature Single-

Positive 

Apr 30 2009 Richard Cruse GPL6246 GSE15907 

GSM594227 DN1 wt Adult ETP biological rep. 1 Gene expression 

data from the most 

immature stage of T-

cell differentiation 

in the adult thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594228 DN1 wt Adult ETP biological rep. 2 Gene expression 

data from the most 

immature stage of T-

cell differentiation 

in the adult thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM594229 DN1 wt Adult ETP biological rep. 3 Gene expression 

data from the most 

immature stage of T-

cell differentiation 

in the adult thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594230 DN2 wt Adult DN2 biological rep. 1 Gene expression 

data from an 

intermediate 

progenitor stage 

during T-cell 

differentiation in the 

adult thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594231 DN2 wt Adult DN2 biological rep. 2 Gene expression 

data from an 

intermediate 

progenitor stage 

during T-cell 

differentiation in the 

adult thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594232 DN2 wt Adult DN2 biological rep. 3 Gene expression 

data from an 

intermediate 

progenitor stage 

during T-cell 

differentiation in the 

adult thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594233 DN3 wt Adult DN3 biological rep. 1 Gene expression 

data from 

irreversibly 

committed T-cell 

progenitors in the 

adult thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594234 DN3 wt Adult DN3 biological rep. 2 Gene expression 

data from 

irreversibly 

committed T-cell 

progenitors in the 

adult thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM594235 DN3 wt Adult DN3 biological rep. 3 Gene expression 

data from 

irreversibly 

committed T-cell 

progenitors in the 

adult thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594236 DN1 wt Fetal ETP biological rep. 1 Gene expression 

data from the most 

immature stage of T-

cell differentiation 

in the fetal thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594237 DN1 wt Fetal ETP biological rep. 2 Gene expression 

data from the most 

immature stage of T-

cell differentiation 

in the fetal thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594238 DN1 wt Fetal ETP biological rep. 3 Gene expression 

data from the most 

immature stage of T-

cell differentiation 

in the fetal thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594239 DN2 wt Fetal DN2 biological rep. 1 Gene expression 

data from an 

intermediate 

progenitor stage 

during T-cell 

differentiation in the 

fetal thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594240 DN2 wt Fetal DN2 biological rep. 2 Gene expression 

data from an 

intermediate 

progenitor stage 

during T-cell 

differentiation in the 

fetal thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM594241 DN2 wt Fetal DN2 biological rep. 3 Gene expression 

data from an 

intermediate 

progenitor stage 

during T-cell 

differentiation in the 

fetal thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594242 DN3 wt Fetal DN3 biological rep. 1 Gene expression 

data from 

irreversibly 

committed T-cell 

progenitors in the 

fetal thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594243 DN3 wt Fetal DN3 biological rep. 2 Gene expression 

data from 

irreversibly 

committed T-cell 

progenitors in the 

fetal thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM594244 DN3 wt Fetal DN3 biological rep. 3 Gene expression 

data from 

irreversibly 

committed T-cell 

progenitors in the 

fetal thymus. 

Sep 15 2010 Nikolai 

Nikolaevich 

Belyaev 

GPL8321 GSE24142 

GSM700782 DN3 Miz1 KO DN3 KO5 Miz1 knockout Apr 02 2011 Lothar Vassen GPL1261 GSE28342 

GSM700783 DN3 wt DN3 WT2 wt Apr 02 2011 Lothar Vassen GPL1261 GSE28342 

GSM769775 DN wt DN thymocytes, rep1 Aug 01 

2011 

Takeshi 

Egawa 

GPL1261 GSE31082 

GSM769776 DN wt DN thymocytes, rep2 Aug 01 

2011 

Takeshi 

Egawa 

GPL1261 GSE31082 

GSM769777 DN wt DN thymocytes, rep3 Aug 01 

2011 

Takeshi 

Egawa 

GPL1261 GSE31082 

GSM769778 DP wt DP thymocytes, rep1 Aug 01 

2011 

Takeshi 

Egawa 

GPL1261 GSE31082 

GSM769779 DP wt DP thymocytes, rep2 Aug 01 

2011 

Takeshi 

Egawa 

GPL1261 GSE31082 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM769780 DP wt DP thymocytes, rep3 Aug 01 

2011 

Takeshi 

Egawa 

GPL1261 GSE31082 

GSM791134 DN2-3 wt preT.DN2-3.Th#2 preT.DN2-3.Th#2, 

DN2-DN3 

transitional 

thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791135 DN2-3 wt preT.DN2-3.Th#3 preT.DN2-3.Th#3, 

DN2-DN3 

transitional 

thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791136 DN2 wt preT.DN2.Th#4 preT.DN2.Th#4, 

DN2 thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791137 DN2 wt preT.DN2.Th#5 preT.DN2.Th#5, 

DN2 thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791138 DN2 wt preT.DN2.Th#6 preT.DN2.Th#6, 

DN2 thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791139 DN2A wt preT.DN2A.Th#1 preT.DN2A.Th#1, 

DN2a thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791140 DN2A wt preT.DN2A.Th#2 preT.DN2A.Th#2, 

DN2a thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791141 DN2B wt preT.DN2B.Th#1 preT.DN2B.Th#1, 

DN2b thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791142 DN2B wt preT.DN2B.Th#2 preT.DN2B.Th#2, 

DN2b thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791143 DN3-4 wt preT.DN3-4.Th#1 preT.DN3-4.Th#1, 

DN3-DN4 

transitional 

thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791144 DN3-4 wt preT.DN3-4.Th#2 preT.DN3-4.Th#2, 

DN3-DN4 

transitional 

thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791145 DN3-4 wt preT.DN3-4.Th#3 preT.DN3-4.Th#3, 

DN3-DN4 

transitional 

thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791146 DN3A wt preT.DN3A.Th#1 preT.DN3A.Th#1, 

DN3a thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM791147 DN3A wt preT.DN3A.Th#2 preT.DN3A.Th#2, 

DN3a thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791148 DN3A wt preT.DN3A.Th#3 preT.DN3A.Th#3, 

DN3a thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791149 DN3B wt preT.DN3B.Th#1 preT.DN3B.Th#1, 

DN3b thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791150 DN3B wt preT.DN3B.Th#2 preT.DN3B.Th#2, 

DN3b thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791151 DN3B wt preT.DN3B.Th#3 preT.DN3B.Th#3, 

DN3b thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791152 DN1-2 wt preT.ETP-2A.Th#3 preT.ETP-2A.Th#3, 

DN1-DN2 

transitional 

population 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791153 DN1-2 wt preT.ETP-2A.Th#4 preT.ETP-2A.Th#4, 

DN1-DN2 

transitional 

population 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791154 DN4 wt T.DN4.Th#4 T.DN4.Th#4, DN4 

thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791155 DN4 wt T.DN4.Th#5 T.DN4.Th#5, DN4 

thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM791156 DN4 wt T.DN4.Th#6 T.DN4.Th#6, DN4 

thymocytes 

Sep 06 2011 Richard Cruse GPL6246 GSE15907 

GSM800500 DP wt DP wt thymocyte, biological rep1 Gene expression 

data from mouse DP 

stage thymocytes. 

Sep 22 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 

GSM800501 DP wt DP wt thymocyte, biological rep2 Gene expression 

data from mouse DP 

stage thymocytes. 

Sep 22 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 

GSM800502 DP wt DP wt thymocyte, biological rep3 Gene expression 

data from mouse DP 

stage thymocytes. 

Sep 22 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 

GSM800503 DP Ikaros KO Ikaros KO thymocyte stage 1, biological 

rep1 

Gene expression 

data from mouse DP 

stage thymocytes. 

Sep 22 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 

GSM800504 DP Ikaros KO Ikaros KO thymocyte stage 1, biological 

rep2 

Gene expression 

data from mouse DP 

stage thymocytes. 

Sep 22 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM800505 DP Ikaros KO Ikaros KO thymocyte stage 1, biological 

rep3 

Gene expression 

data from mouse DP 

stage thymocytes. 

Sep 22 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 

GSM800506 DP Ikaros 

dominant 

negative, pre-

leukemic 

Ikaros dominant negative thymocyte 

stage 2 (16 d), biological rep1 

Gene expression 

data from mouse DP 

stage thymocytes 

with Ikaros 

inactivation by 

dominant negative 

Ik. 

Sep 22 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 

GSM800507 DP Ikaros 

dominant 

negative, pre-

leukemic 

Ikaros dominant negative thymocyte 

stage 2 (16 d), biological rep2 

Gene expression 

data from mouse DP 

stage thymocytes 

with Ikaros 

inactivation by 

dominant negative 

Ik. 

Sep 22 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 

GSM802973 DP Ikaros 

dominant 

negative, pre-

leukemic 

Ikaros dominant negative thymocyte 

stage 2 (27 d), biological rep1 

Gene expression 

data from mouse DP 

stage thymocytes 

with Ikaros 

inactivation by 

dominant negative 

Ik. 

Sep 28 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 

GSM802974 DP Ikaros 

dominant 

negative, pre-

leukemic 

Ikaros dominant negative thymocyte 

stage 2 (27 d), biological rep2 

Gene expression 

data from mouse DP 

stage thymocytes 

with Ikaros 

inactivation by 

dominant negative 

Ik. 

Sep 28 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 

GSM802975 DP Ikaros 

dominant 

negative, 

leukemic 

Ikaros dominant negative thymocyte 

stage 3, biological rep1 

Gene expression 

data from mouse DP 

stage thymocytes 

with Ikaros 

inactivation by 

dominant negative 

Ik. 

Sep 28 2011 Jiangwen 

Zhang 

GPL1261 GSE32311 
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ID Stage Perturbation Title Description Date Submitter Platform Series 

GSM823502 DN3 wt WT DN3 thymocytes, biological rep 1 Gene expression 

data from WT DN3 

thymocytes 

Oct 27 2011 Hai-Hui Xue GPL6246 GSE33292 

GSM823503 DN3 wt WT DN3 thymocytes, biological rep 2 Gene expression 

data from WT DN3 

thymocytes 

Oct 27 2011 Hai-Hui Xue GPL6246 GSE33292 

GSM823504 DN3 wt WT DN3 thymocytes, biological rep 3 Gene expression 

data from WT DN3 

thymocytes 

Oct 27 2011 Hai-Hui Xue GPL6246 GSE33292 

GSM823505 DN3 Tcf7 KO TCF-1 KO DN3 thymocytes, biological 

rep 1 

Gene expression 

data from TCF-1-

deficient DN3 

thymocytes 

Oct 27 2011 Hai-Hui Xue GPL6246 GSE33292 

GSM823506 DN3 Tcf7 KO TCF-1 KO DN3 thymocytes, biological 

rep 2 

Gene expression 

data from TCF-1-

deficient DN3 

thymocytes 

Oct 27 2011 Hai-Hui Xue GPL6246 GSE33292 

GSM823507 DN3 Tcf7 KO TCF-1 KO DN3 thymocytes, biological 

rep 3 

Gene expression 

data from TCF-1-

deficient DN3 

thymocytes 

Oct 27 2011 Hai-Hui Xue GPL6246 GSE33292 

GSM829333 DN1 Tcf7 KO Tcf7-/- ETP thymocyte, biological rep1 Gene expression 

data from mouse 

ETP stage 

thymocytes with 

ablation of Tcf7. 

Nov 07 

2011 

Jiangwen 

Zhang 

GPL1261 GSE33513 

GSM829334 DN1 Tcf7 KO Tcf7-/- ETP thymocyte, biological rep2 Gene expression 

data from mouse 

ETP stage 

thymocytes with 

ablation of Tcf7. 

Nov 07 

2011 

Jiangwen 

Zhang 

GPL1261 GSE33513 

GSM829335 DN1 Tcf7 KO Tcf7-/- ETP thymocyte, biological rep3 Gene expression 

data from mouse 

ETP stage 

thymocytes with 

ablation of Tcf7. 

Nov 07 

2011 

Jiangwen 

Zhang 

GPL1261 GSE33513 
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GSM829336 DN1 wt Tcf7-/+ ETP thymocyte, biological rep1 Gene expression 

data from mouse 

ETP stage Tcf7-/+ 

thymocytes. 

Nov 07 

2011 

Jiangwen 

Zhang 

GPL1261 GSE33513 

GSM829337 DN1 wt Tcf7-/+ ETP thymocyte, biological rep2 Gene expression 

data from mouse 

ETP stage Tcf7-/+ 

thymocytes. 

Nov 07 

2011 

Jiangwen 

Zhang 

GPL1261 GSE33513 

GSM829338 DN1 wt Tcf7-/+ ETP thymocyte, biological rep3 Gene expression 

data from mouse 

ETP stage Tcf7-/+ 

thymocytes. 

Nov 07 

2011 

Jiangwen 

Zhang 

GPL1261 GSE33513 

GSM854335 DN1 wt preT.ETP.Th#6 preT.ETP.Th#6, 

Early T Lineage 

Progenitor 

Dec 27 2011 Richard Cruse GPL6246 GSE15907 

GSM854336 DN1 wt preT.ETP.Th#7 preT.ETP.Th#7, 

Early T Lineage 

Progenitor 

Dec 27 2011 Richard Cruse GPL6246 GSE15907 

GSM854337 DN1 wt preT.ETP.Th#8 preT.ETP.Th#8, 

Early T Lineage 

Progenitor 

Dec 27 2011 Richard Cruse GPL6246 GSE15907 
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Supplementary Table 3: Primer sequences used for qRT-PCR 

Species Target Forward Primer Reverse Primer 

Mouse Aiolos CCGAGATGGGAAGTGAGAGA CGCTTCTCACCGATGAATTT 

Mouse Bactin GAAATCGTGCGTGACATCAAAG TGTAGTTTCATGGATGCCACAG 

Mouse Bcl11a TGGTATCCCTTCAGGACTAGGT TCCAAGTGATGTCTCGGTGGT 

Mouse Bcl11b GGGCGATGCCAGAATAGAT GGTAGCCTCCACATGGTCAG 

Mouse Cd3e ATGCGGTGGAACACTTTCTGG GCACGTCAACTCTACACTGGT 

Mouse Cd3g TGGAGAAGCAAAGAGACTGACA GCCATCCACTTGTACCAAATTC 

Mouse Cd4 AGGTGATGGGACCTACCTCTC GGGGCCACCACTTGAACTAC 

Mouse Cd44 TCTGCCATCTAGCACTAAGAGC GTCTGGGTATTGAAAGGTGTAGC 

Mouse Cd8a AAGAAAATGGACGCCGAACTT AAGCCATATAGACAACGAAGGTG 

Mouse Cebpa CGGTCATTGTCACTGGTCAACT GGACAAGAACAGCAACGAGTACC 

Mouse Deltex GAGGATGTGGTTCGGAGGTA CCCTCATAGCCAGATGCTGT 

Mouse E2a TTTGACCCTAGCCGGACATAC GCATAGGCATTCCGCTCAC 

Mouse Ebf1 TCTACAGCAATGGGATACGGA GTGTGTGAGCAATACTCGGCA 

Mouse Eomes GGCCCCTATGGCTCAAATTCC GAACCACTTCCACGAAAACATTG 

Mouse Ets1 AAAAGTGGATCTCGAGCTTTTCC CTTTCAAGGCTTGGGACATCA 

Mouse Gapdh ACTCCACTCACGGCAAATTCA GCCTCACCCCATTTGATGTT 

Mouse Gata2 ACCACAAGATGAATGGACAGAA GTCGTCTGACAATTTGCACAAC 

Mouse Gata3 CTCGGCCATTCGTACATGGAA GGATACCTCTGCACCGTAGC 

Mouse Gfi1 AGAAGGCGCACAGCTATCAC GGCTCCATTTTCGACTCGC 

Mouse Gfi1b CTTCCACCAGAAGTCGGACAT GAGATTGTGTTGACTCTCACGG 

Mouse HEB GAGAAGAAGACCGCTCCATGAT TGGCTTGGGAGATGGGTAAC 

Mouse HEBalt GTGCTTATCCTGTCCCTGGAATG TGGCTTGGGAGATGGGTAAC 

Mouse Hes1 TCAACACGACACCGGACAAAC ATGCCGGGAGCTATCTTTCTT 

Mouse Hhex CGGACGGTGAACGACTACAC CGTTGGAGAACCTCACTTGAC 

Mouse Id2 CGACCCGATGAGTCTGCTCTA GACGATAGTGGGATGCGAGTC 

Mouse Id3 CTGTCGGAACGTAGCCTGG GTGGTTCATGTCGTCCAAGAG 

Mouse Ikaros TCCCAAGTTTCAGGAAAGGA TCTGCTGTGCTCCAGAGGTA 

Mouse Il2ra CACTACGAGTGTATTCCGGGA TCGGTGGTGTTCTCTTTCATCT 

Mouse Il7ra AGTCCGATCCATTCCCCATAA ATTCTTGGGTTCTGGAGTTTCG 

Mouse Irf8 AGACGAGGTTACGCTGTGC TCGGGGACAATTCGGTAAACT 

Mouse Kit GGCCTCACGAGTTCTATTTACG GGGGAGAGATTTCCCATCACAC 

Mouse Lat TTTCCTACCCTCTAGTCACTTCC CCACATTCTTACAGGCTGGCT 

Mouse Lck TGGAGAACATTGACGTGTGTG ATCCCTCATAGGTGACCAGTG 

Mouse Lef1 ACCTACAGCGACGAGCACTT GGGTAGAAGGTGGGGATTTC 

Mouse Lmo2 GACGATGCGGGTGAAAGACAA TCACACACTATGTCGGAGTTGA 

Mouse Lyl1 AAAACTGAGATGGTATGTGCCTC TGTCCCAGGTTTATCACTGGC 

Mouse Myb GAGCAGAAGAAGTTTCCCGATTT AGCGGGAATCGGATGAATCT 

Mouse Notch1 CCCTTGCTCTGCCTAACGC GGAGTCCTGGCATCGTTGG 

Mouse Pax5 ACAGCATAGTGTCTACAGGCT CCCTCTTGCGTTTGTTGGTG 

Mouse Ptcra GGTGTCAGGCTCTACCATCAG TGCCTTCCATCTACCAGCAGT 
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Species Target Forward Primer Reverse Primer 

Mouse Pu.1 ATGTTACAGGCGTGCAAAATGG TGATCGCTATGGCTTTCTCCA 

Mouse Rag1 ACCCGATGAAATTCAACACCC CTGGAACTACTGGAGACTGTTCT 

Mouse Rplp1 CTCGCTTGCATCTACTCCGC AGAAAGGTTCGACGCTGACAC 

Mouse Runx1 GCAGGCAACGATGAAAACTACT GCAACTTGTGGCGGATTTGTA 

Mouse Scl CTCACTAGGCAGTGGGTTCTTT GGACCATCAGAAATCTCCATCT 

Mouse Tbx21 AACCGCTTATATGTCCACCCA CTTGTTGTTGGTGAGCTTTAGC 

Mouse Tcf7 AGCTTTCTCCACTCTACGAACA AATCCAGAGAGATCGGGGGTC 

Mouse Zap70 CTACGTGCTGTCGTTGGTG GTTACACGGCTTACGCAGGT 

Human Bactin CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT 

Human Bcl11b TCCAGCTACATTTGCACAACA GCTCCAGGTAGATGCGGAAG 

Human Cebpa TATAGGCTGGGCTTCCCCTT AGCTTTCTGGTGTGACTCGG 

Human Deltex ATCGGAGAAGGCTCTACAGG CGTCTGGCCTCCTTTCTAACT 

Human E2a CCGACTCCTACAGTGGGCTA CGCTGACGTGTTCTCCTCG 

Human Gata3 GTTGGCCTAAGGTGGTTGTG ACAGGCTGCAGGAATAGGGA 

Human Hes1 CCTGTCATCCCCGTCTACAC CACATGGAGTCCGCCGTAA 

Human Notch1 GAGGCGTGGCAGACTATGC CTTGTACTCCGTCAGCGTGA 

Human Pu.1 TGCAATGTCAAGGGAGGGGG AAACCCTTCCATTTTGCACGC 

Human Tcf7 TGCACATGCAGCTATACCCAG TGGTGGATTCTTGGTGCTTTTC 

 


