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Abstract

A Boolean dynamical system integrating the main signaling pathways involved in cancer is constructed based on the
currently known protein-protein interaction network. This system exhibits stationary protein activation patterns – attractors
– dependent on the cell’s microenvironment. These dynamical attractors were determined through simulations and their
stabilities against mutations were tested. In a higher hierarchical level, it was possible to group the network attractors into
distinct cell phenotypes and determine driver mutations that promote phenotypic transitions. We find that driver nodes are
not necessarily central in the network topology, but at least they are direct regulators of central components towards which
converge or through which crosstalk distinct cancer signaling pathways. The predicted drivers are in agreement with those
pointed out by diverse census of cancer genes recently performed for several human cancers. Furthermore, our results
demonstrate that cell phenotypes can evolve towards full malignancy through distinct sequences of accumulated
mutations. In particular, the network model supports routes of carcinogenesis known for some tumor types. Finally, the
Boolean network model is employed to evaluate the outcome of molecularly targeted cancer therapies. The major find is
that monotherapies were additive in their effects and that the association of targeted drugs is necessary for cancer
eradication.
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Introduction

Cancer is a genetic disease derived, with few exceptions, from

mutations on single somatic cells that disregard the normal control

of proliferation, invade adjacent normal tissues, and give rise to

secondary tumors (metastasis) on sites different from its primary

origin [1]. In the human population, cancer refers to more than

100 forms of a disease that can develop in almost every tissue in

the body [2]. Today, cancer replaced heart disease as the leading

cause of death among the United States citizens younger than 85
years [3] and will probably become the leading one in some other

parts of the world within a few years [4]. Altough each cancer type

has unique features, all these diverse tumors evolve according to a

universal scheme of progression [5] which involves genetic and

epigenetic events as well as an intricate network of interactions

among cancer cells and their host microenvironment (stromal cells

and extracellular matrix).

The tumor growth is intrinsically multiscale in nature. It

involves phenomena occurring over a variety of spatial scales

ranging from tissue (for instance, invasion and angiogenesis) to

molecular length scales (for example, mutations and gene

silencing), while the timescales vary from seconds for signaling to

years for tumor doubling times. Moreover, all those processes are

strongly coupled. Indeed, an oncogene activation may confer a

proliferative advantage to a given cell, promoting its clonal

expansion and the depletion of the nutrient and oxygen supply

which, in turn, affect the growth of cell clones. To survive in a

hypoxic (low level of oxygen) environment, the transformed cells

may acquire new traits such as resistance to apoptosis by a tumor

suppressor gene inactivation or activated synthesis of growth

factors that stimulate angiogenesis. Thus information flows not

only from the finer to coarser scales, but between any pair of scales

[6].

Despite the extensive information on the genetic and molecular

basis of cancer currently available, the integration of this

information into the physiological environment of the functioning

cell and tissue remains a major challenge. Due to the complexity

and redundancy of tumor survival and growth pathways,

increasing resistance and tumor progression still is the rule for

patients with advanced cancers. Better diagnostic and effective

anticancer therapies demand a fundamentally systemic under-

standing of the disease, starting from the molecular level. There,

complexity emerges from the large number of interacting proteins

and the cross-talk between diverse cell signaling pathways. This

vast network of complexity, characterized by multiple feedback

loops, will not be understood by merely describing all its

component pathways. An integrative approach considering

simplified cell-wide models of protein interactions dependent on

external environmental signals and accumulated genetic alter-

ations is demanded. In addition, modeling protein interaction

networks in cancer is essential to construct the ‘‘microscopic’’

(molecular) level in multiscale models of tumor growth [6].
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Concerning the modeling of genetic interactions, Boolean

networks is a promising framework [7]. Instead of providing

quantitatively precise dynamical trajectories taken by complex

networks, this class of discrete systems, with binary states,

qualitatively predict the sequences of states accessed by these

networks along their temporal evolution. This is especially true for

signaling and regulatory circuits where activation and inhibition

are the basic responses. Furthermore, Boolean models use much

less parameters, such as biochemical reaction rates or binding

affinities, often hard to measure, than do traditional differential

equations approach. Successful applications of Boolean networks

in biology include the reproduction of the yeast S. Pombe’s cell-

cycle [8], the mammalian cell cycle [9], the course of cell

differentiation in early embryogenesis [10], the signaling mecha-

nisms underlying T cell activation [11], and the behavior of the

apoptotic pathway [12,13].

In this study, we construct a Boolean network model integrating

the main signaling pathways involved in cancer. These pathways

and the network interconnecting them are discussed in the next

subsection. Established the network topology, its dynamics is

defined and validated in subsequent subsections. Then, the

dynamical attractors, their stability to mutations, and the

network’s response to targeted ‘‘attacks’’ are reported in the

following section. These results are interpreted in terms of the

mutational events leading to carcinogenesis and cancer cell

response to molecularly targeted agents. Finally, we conclude

with a discussion where these biological interpretation is empha-

sized and confronted with experimental data on cancer genome

and oncogenesis.

The Main Cancer Pathways
In a seminal paper [14], Hanahan and Weinberg proposed a

logical framework for understand the diversity and complexity of

Figure 1. Simplified cancer network. Links correspond to interactions between proteins and to each node is associated a threshold function, eq.
1. Activating interactions are represented by arrows and inhibiting interactions by lines with a bar. The input nodes are shown in red.
doi:10.1371/journal.pone.0069008.g001
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cancer. The key notion is that along the multistep process of tumor

pathogenesis, normall cells need to acquire six biological traits in

order to ultimately become malignant. These are the capabilities

of ‘‘sustaining proliferative signaling, evading growth suppressors,

resisting cell death, enabling replicative immortality, inducing

angiogenesis, and activating invasion and metastasis’’ [15]. The

acquisition of such traits is ensured by genome instability. All genes

are potentially subjected to mutations. Thereby, there are several

alternative ways to achieve the same cell phenotypic transforma-

tion. But there are many fewer signaling pathways controlling cell

response than genes. Rather than individual genes, it seems more

appropriate focusing on pathways that have a role in many tumors

[16]. They include those involving receptor tyrosine kinase

(RTKs), phosphatidylinosital 3-kinase (PI3K)/AKT, WNT/b-

Catenin, transforming growth factor-b (TGF-b)/Smads, retino-

blastoma protein (Rb), hypoxia-inducible transcription factor

(HIF-1), p53 and ataxia-telangiectasia mutated (ATM)/ataxia-

telangiectasia and Rad3-related (ATR) protein kinases. These

major pathways regulating cell death and proliferation share some

genes and exhibit a substantial cross-talk among them. Some

pathways were detailed studied in isolation [12,17,18], but in

order to integrate them a natural organizing principle is represent

these pathways as a network. Given the complexity and lacunas

present in its structure, an operational alternative is work with a

simplified model network.

The constructed, simplified signaling network is illustrated in

Figure 1. It contains 96 nodes and 249 edges. These nodes

represent a significant subset of proteins involved in cancer and the

network edges produce numerous parallel pathways and alterna-

tive routes through which transformed cells can sustain aberrant

gene expression patterns, survive and develop further malignancy.

The network has 5 input nodes for applying distinct environmental

stimuli and stresses to the cell such as hypoxia, carcinogens,

nutrients depletion, proliferative and growth suppressive signal-

ings.

The topological structure of this cancer network was charac-

terized in terms of its shortest path length, clustering coefficient

and connectivity or degree distributions [19]. These quantities

were compared with their average counterparts for random

networks with the same number of nodes (see Table 1). It can be

noticed that the cancer network has a much higher clustering

coefficient than random networks. Major features of complex

networks are their connectivity distributions. Directed networks

are characterized by in-degree P(kin) and out-degree P(kout)
distributions. P(kin) is the probability that a node in the network

has kin inputs or is ‘‘regulated’’ by other kin vertices. In turn,

P(kout) is the probability that a node ‘‘regulates’’ other kout

vertices. In Figure 2 these distributions for the cancer network are

shown.

A Boolean Dynamics for Cancer Pathways
Each protein i , a node in the network, is represented by a

binary state si, i~1,2, . . . ,N. When si~1 the protein is

functionally active. On the contrary, when si~0 the protein is

inactive. The network state at a given time t is specified by its

protein activity pattern s1(t),s2(t), . . . ,sN (t). Each protein i

interacts with kin(i) other input proteins. These inputs are all

nodes in the network from which a directed link is sent towards the

protein i, including eventually itself. So, kin(i) is the in-degree of

the node i. In turn, each link can be either a activating or

inactivating interaction. Activation or inhibition can be the result

of distinct biochemical mechanisms such as transcriptional

regulation, phosphorylation, enzymatic or biding interactions.

The dynamics of the network proceeds in discrete time steps

through the simultaneous (parallel) update of the states of its nodes

according to the rule.

si(tz1)~sgn
Xkin(i)

j~1

Jjisj(t){hi

 !
: ð1Þ

Here, Jji is the interaction strength from input j on protein i. An

activation interaction is positive and an inhibitory one is negative.

The threshold function sgn(x) is the unitary step function

(sgn(x)~0 if xƒ0 but sgn(x)~1 if xw0). Finally, hi is the

activation threshold of protein i. Thus, every protein evaluates the

present stimulus from all its inputs. If the overall stimulus it

receives at time t overcomes its activation threshold, the protein

activates, or stays active if it was already active; otherwise, it turns

inactive or stays inactive. Text S1 lists all the update rules of the

model (see Text S1). As emphasized in reference [8], a dramatic

simplification inserted in this evolution rule consists in neglect any

difference in the time scales of the biochemical interactions

involved.

Results

The Basic Phenotypes
Since the state space of a Boolean network with N nodes

contains 2N different configurations, its deterministic dynamics,

viewed as a flow in this state space, ultimately will drive the system

towards attractors. Such attractors are particular subsets of states,

either a fixed point, i. e, a single network configuration, or a limit

cycle of period p, comprised by p states sequentially visited by the

network dynamics. These attractors correspond to specific protein

activation patterns and can be interpreted as distinct cell

phenotypes.

Thirty two million initial states, associated to all environmental

conditions, flowed into 62 attractors (36 fixed points and 26 limit

cycles). All attractors are listed in the Text S1. The state space is

hierarchically organized. At a higher level, it is partitioned into

subsets of states by distinct environmental conditions. At a lower

level, every of these subsets is subdivided into basins of attraction

associated to distinct attractors. None of these attractors can be

reached starting from initially distinct environmental conditions.

Thus, the repertoire of cell behaviors (attractors) is determined

univocally by the cell microenvironment.

Although distinct, these 62 attractors can be classified in groups

characterized by specific phenotypes, some of them comprised of

very similar elements, i. e, having small Hamming distances

among them (Text S1). The phenotypes were defined taking into

account the states of a small subset of nodes, instead of all N~96
proteins on the network. Considering the effects of mutations,

reported on the next subsection, they include the following basic

cell phenotypes: apoptotic, characterized by active caspases;

glycolytic, with H1f1 activated under normoxia; immortalized,

in which hTert is active; migratory, associated to inactivate E-

cadherin; mutator, corresponding to inactive Atm/Atr proteins in

the presence of DNA damage; proliferative, in which cyclins are

activated along the cell cycle in the correct sequence; and

quiescent, with cyclins inactive or activated in a wrong sequence.

In terms of such phenotypes, the network response to the diversity

of microenvironments is highly constrained, as illustrated in

Figure 3. Among the 62 attractors, 47 correspond to apoptotic, 3
to proliferative and 12 to quiescent phenotypes, which attract

87:4%, 3:1%, and 9:5% of tested initial states, respectively.

Boolean Network Model for Cancer Pathways
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In particular, for some environmental conditions the behaviors

emergent from the whole network were compared with those of a

normal cell. Under normoxia and adequate nutrient supply, the

network reaches from all compatible initial states a fixed point

interpreted as a quiescent phenotype. If, in addition to normoxia

and nutrient abundance, growth factor signaling is receipt, the

network always evolves to a limit cycle associated to a proliferative

phenotype. So, as expected, normal cells are totally dependent for

their proliferation upon mitogenic signals [20]. Furthermore,

under hypoxia, adequate nutrient supply and absence of growth

factors, the network is attracted from all compatible initial states to

a fixed point corresponding to an apoptotic phenotype. Consis-

tently, programmed cell death is the typical response of somatic

cells to many forms of stress such as hypoxia and nutrient

deprivation [20].

Under a hypoxic environment with nutrients and growth

factors, the network exhibits bistability. It is either attracted to the

quiescent phenotype (in 2% of the initial states) or to the apoptotic

phenotype (in 98% of the initial states). Accordingly, it is known

that hypoxia-dependent activation of HIF1a inhibits Myc, leading

to cell cycle arrest [21]. Also, HIF1a can bind to and stabilize p53,

resulting in apoptosis or growth arrest. Bistability is also observed if

DNA damage is introduced in a scenario of normoxia, adequate

nutrient supply, and mitogenic signaling: around 99:35% of the

compatible initial states are attracted to the apoptotic phenotype,

while a very small fraction (0:65%) of them reach the proliferative

phenotype. Again, it is widely known that the cell cycle is easily

interrupted and apoptosis triggered by DNA damage in normal

cells. But a proliferative response, although rare, endows altered

somatic cells with a proliferative capacity. In our model, this

proliferative response is associated to two distinct limit cycles. In

one of them the anti-apoptotic signals – Bcl2, Bcl-Xl, and Mdm2 –

are consistently active whereas pro-apoptotic signals – Bad, Bax,

p53 – are inactive. In the other, Bad and Bax are inactive but p53

and anti-apoptotic signals oscillate in such a way that whenever

p53 is activated, the same occurs with Bcl2, Bcl-Xl, and Mdm2.

Then, the result is that caspases, the effectors of apoptosis, are

always inactive along these limit cycles.

Summarizing, the whole network generates responses coherent

with those observed in a normal cell under different somatic

environments, indicating the fundamental correctness of the

model.

Mutational Events and Carcinogenesis
We additionally checked the robustness (stability) of attractors to

mutations in network nodes and/or links. This is a central feature

because incipient cancer cells need to acquire hallmark traits to

ultimately become malignant [15] and genome instability under-

lies these acquisitions. Once a mutation was introduced, the node

DNA damage is permanently turned on, activating the Atm/Atr

pathway. We focused on the attractors associated to two

environmental conditions, namely, adequate nutrient supply and

either normoxia or hypoxia, frequently present in early carcino-

genesis.

Under normoxia and adequate nutrient supply, it was found

that mutations in 10 proteins transform the formerly quiescent,

normal cell into a proliferating one. These proteins, as well as the

nature of the driver mutations and their efficacy are listed in

Table 2. In turn, under hypoxia and adequate nutrient supply,

mutations in 7 proteins enable the transformed cell to evade

apoptosis formerly induced by hypoxia (Table 3). The protein Nf-

kB is common to Tables 2 and 3, hence it can enable a

transformed cell to simultaneously acquire proliferative capacity

and evading apoptosis.

We also investigated the effect of defective DNA integrity

sensors that impair a cell to detect the occurrence of mutations.

Now, the node DNA damage is permanently turned off and does

Figure 2. Connectivity distributions for the cancer network. (a) In-degree P(kin) and (b) out-degree P(kout) distributions. The insets suggest
exponential and power law distributions for the number of nodes regulating and regulated by a given node, respectively.
doi:10.1371/journal.pone.0069008.g002

Table 1. Topological properties of the cancer network and
their average counterpats for an ensemble of 1,000 random
networks.

Network property Cancer Random

nodes 96 96

edges 249 249612

mean connectivity 2.59 2.5960.12

shortest path length 3.14 2.9160.08

clustering coefficient 0.178 0.02660.005

doi:10.1371/journal.pone.0069008.t001
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Figure 3. Network’s responses to distinct environmental conditions. Three phenotypes (apoptotic, proliferative and quiescent) are
generated in response to all 32 distinct environmental conditions. Here, a microenvironment is specified by the binary sequence of values associated
to input nodes (carcinogens, growth factors, nutrient supply, growth suppressors, hypoxia). For instance, the microenvironment (11000)
corresponding to a carcinogenic and mitogenic background leads the cell to either an apoptotic (in 99.8% of the initial states) or a quiescent
phenotype (rarely, 0:2%). In our network, carcinogens elicit DNA damage and TNF-a is the suppressive growth signal.
doi:10.1371/journal.pone.0069008.g003

Boolean Network Model for Cancer Pathways

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e69008



not activates the Atm/Atr pathway. Under normoxia and

adequate nutrient supply, the number of mutated proteins that

transform a quiescent, defective cell into a proliferating one

increases to 12. Yet, the number of mutated proteins that confer to

a hypoxic, defective cell the capacity to evade apoptosis also

increases to 22. These proteins include Akt, Bcl2, Egfr, Nf-kB,

p53, Pi3k, Pten, Ras, and Wnt (see Tables S3 and S4). In the

absence of an intact DNA damage repair pathway, in which Atm

and Atr play central roles, our results indicate that network

attractors become more prone to structural changes or, in

biological terms, exhibit increased genomic instability.

Finally, we investigated if nodes whose mutations can confer

hallmark capabilities to the transformed cell have special status in

network topology. For all them their betweenness centrality B

were determined [19]. Three groups have been observed. The first

one, comprised of eight nodes (Akt, Hif1, hTert, Ikk, mTor, Myc,

Nf-kB, and p53), has more than twice the network average

centrality SBT. Further, the group average connectivity is

SkT~13:87 and seven of its elements are highly connected

(k~kinzkout§8). These results indicate the centrality of the

nodes in this group for which converge or through which crosstalk

distinct signaling pathways. The second group, containing nodes

with SBTƒBv2SBT, includes Mdm2 and Pdk1. In addition, the

group average connectivity is SkT~6:5 and half of them exhibits

intermediate connectivities (5ƒkv8). At last, the third group is

characterized by small B (BvSBT) and connectivities

(SkT~4:08). Among its elements, Bcl2,Bcl-xL, Egfr, Gli, Nf1,

Phd, Pi3k, Pkc, Pten, Ras, Snail, Vhl, and Wnt, nine have small

connectivities kv5. Even though these nodes are not topologically

central, almost all are nearest neighbors (direct regulators) of

central nodes from the first group. Hence, they assume major roles

in network dynamics.

Colorectal carcinogenesis. Here, we investigate if cancer

cells need only a few driver mutations (those that change

phenotypic traits) to deal with all environmental constraints and

advance towards a fully malignant phenotype. As a paradigm, the

carcinogenesis of the colorectal cancer was considered. So, the first

mutations introduced in the network were Apc deletion and Tcf

interactions with their targets strengthened by a factor 3. These

mutations lead to a structural instability of the network ‘‘phase

portrait’’. Now, there are 58 attractors, 47 apoptotic, 7 pro-

liferatives, and 4 quiescent, which attract 87:36%, 12:52% and

0:12% of tested initial states, respectively. The number of

proliferative attractors and the sizes of their basins increased at

the expenses of the quiescent attractors. However, no anti-

apoptotic advantage was observed. As expected, the network

response was environmental dependent. Under normoxia and

nutrient availability, these mutations lead to a proliferative

phenotype. However, this proliferative advantage is lost under

hypoxia or genotoxicity (DNA damage), when apoptotic pheno-

types are observed.

Next in the sequence, a new mutation – Ras constitutively

activated – was implemented. As a result the network dynamics

exhibits 72 attractors, 58 apoptotic, 8 proliferatives, and 6
quiescent, which attract essentially the same fractions of tested

initial states (87:36%, 12:53% and 0:11%, respectively) as before

(Apc and Tcf mutated). However, this additional mutation

conferred to the network a small chance to overcome the hypoxic

barrier, sustaining quiescent phenotypes for 0:10% of tested initial

states under a hypoxic, but nutrient rich environment. Further,

constitutive Ras activation also can lead to a proliferative

phenotype in 0:07% of initial states in a normoxic, nutrient rich,

but genotoxic environment.

In the sequence, Smad4 was deleted. This mutation increases to

75 the number of attractors, 60 apoptotic, 6 proliferative, and 9
quiescent. The network acquires proliferative phenotypes for all

initial states under normoxia and adequate nutrient supply, even

receiving inhibitory growth signaling provided by a constitutively

active Tgf-b. It is worthy to mention that the network exhibits only

apoptotic and quiescent attractors if Tgf-b is constitutively active

and Smad4 is functional (undeleted). So, Smad4 deletion in

accumulation with the previous mutations endows the transformed

network with the capacity to evade suppressive growth signals.

The next mutations were Pten deletion and doubling of Akt

interaction strengths. In consequence, the number of attractors

further increases to 80, 40 apoptotic, 16 proliferative, and 24
quiescent, which attract 50%, 27:9% and 22:1% of tested initial

states, respectively. Again, different microenvironments elicit

Table 2. Driver mutations under normoxia.

Protein mutation efficacy

Egfr activation 0.91%

overexpression 0.91%

Gli activation 0.08%

overexpression 0.08%

hTert activation 0.08%

overexpression 0.07%

Nf1 deletion 0.03%

Nf-kB overexpression 0.13%

Pi3k activation 0.14%

overexpression 0.73%

Pkc activation 25%

overexpression 0.73%

Pten deletion 0.51%

Ras activation 0.16%

Wnt activation 0.6%

overexpression 0.6%

Targeted proteins and corresponding mutations that drive the network into a
proliferative phenotype under normoxia and adequate nutrient supply. The
efficacy of a mutation was defined as the fraction of initial states that are driven
to the new phenotype.
doi:10.1371/journal.pone.0069008.t002

Table 3. Driver mutations under hypoxia.

Protein mutation efficacy

Akt overexpression 100%

Bcl2 activation 100%

overexpression 100%

Bcl-Xl overexpression 100%

Ikk overexpression 88.7%

Nf-kB activation 91.7%

overexpression 100%

p53 deletion 100%

Snail overexpression 83.6%

Targeted proteins and corresponding mutations that enable the network to
evade apoptosis induced by hypoxia. The efficacy of a mutation was defined as
the fraction of initial states that are driven to the new phenotype.
doi:10.1371/journal.pone.0069008.t003
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distinct responses. Under normoxia and adequate nutrient supply

the network always exhibit aggressive (proliferative, glycolitic and

immortalized) phenotypes. But if hypoxia replaces normoxia, in

addition to proliferative, glycolitic and immortalized phenotypes

which attract 70:8% of the initial states, there are quiescent

attractors toward which 29:2% of initial states converge. Adding

growth suppressors or DNA damage to the former microenviron-

ment can at most lead to quiescence. For instance, in normoxic,

nutrient rich and genotoxic microenvironment, 51:2% of initial

states are driven to proliferative, glycolytic and immortalized

attractors, whereas 48:8% of them are driven to quiescent

attractors. Therefore, since hypoxia or functional DNA damage

sensors can lead to quiescent phenotypes, some constraints persist

impairing tumor growth.

The last mutation was p53 deletion. Its result is decrease to 48
the number of attractors, 24 apoptotic and 24 proliferative, both

attracting 50% of the initial states. Indeed, apoptosis for 50% of

the initial states is the minimum value possible because in our

network active TNF-a leads to p53-independent activation of

caspases. Nevertheless, the main result is that the network always

exhibits proliferative, glycolytic and immortalized phenotypes in

microenvironments with adequate nutrient supply, hypoxic or

normoxic, even genotoxic, which activate DNA damage sensors,

and under growth suppressor signaling. Almost all barriers to

tumor growth were overcome after this sequence of few mutations.

In summary, as shown in Figure 4, our simulations reveal that

each driver mutation in the canonical route for the colorectal

cancer [22] contributes to increase either the proliferative capacity

or the resistance to apoptosis of the transformed cell. In particular,

although Smad4 is mutated in only 8% of colorectal cancers, its

mutation in concert with the others in the classical colorectal

carcinogenesis model generates more aggressive tumor cells.

Indeed, their associated proliferative phenotypes attract 50% of

the initial states against only 25% in the absence of the Smad4

mutation. Further, the model indicates that other mutations

outside this classical route of colorectal carcinogenesis also leads to

proliferative and apoptotic resistant phenotypes. These are the

cases, for instance, of Pten, or p53, or Atm, or Fadd, or Chk

deletions after Apc and Ras mutations. Alternatively, the

constitutive activation of Pi3k, or Akt, or Bcl2, or Mdm2 again

after Apc and Ras mutations decreases apoptosis and increases

proliferation.

The Outcomes of Targeted Therapies
The rationale of targeted therapy is inhibit critical, functional

nodes in the oncogenic network to elicit the cessation of the

tumorigenic state through apoptosis, necrosis, senescence, or

differentiation [23]. We performed a survey of nodes in our

Boolean model whose inhibition or activation (reintroduction of

wild-type proteins) either increase the basins of attraction of

apoptotic and quiescent phenotypes or decrease those associated

to proliferative phenotypes. Specifically, as a model for fully

developed colorectal cancer cells, a network carrying mutations in

Apc, Ras, Smad4, Pten, and p53, was considered. For this

network, only two phenotypes were observed under all microen-

vironmental conditions and from every initial state tested:

apoptotic (50%) and proliferative (50%). All nodes were individ-

ually targeted. Our simulations reveal that the inhibition of Pdk1,

Akt, E2F, Cyclins D and E, and Mdm2 enhances quiescent

phenotypes (37:5% for Pdk1 and Akt, and 50% for E2f, cyclins and

Mdm2) and also impair the proliferative ones (12:5% for Pdk1 and

Akt, and 0% for E2f, cyclins and Mdm2). The same is observed

with the activation of p53, Rb, Cdh1, p21, p27, and Smad4

(quiescence increases to 50% and proliferation vanishes for p53,

Rb, Cdh1, p21 and p27, whereas for Smad4 both fractions

changes to 25%). In turn, the activation of FADD and Caspases

enhances apoptosis to 100% of chance. Paradoxically, the model

predicts that either inhibition or activation of Cyclins A and B as

well as Cdc20 enhances quiescence and impair proliferation (50%
and 0%, respectively).

Concerning the combinatorial application of drugs currently

under clinical trial [23], the effects of several targeted inhibitors on

our colorectal cancer cell model were investigated under three

environmental conditions, namely, normoxia and adequate

nutrient supply, hypoxia and adequate nutrient supply, and

normoxia, adequate nutrient supply and carcinogenic stress. For

these conditions our colorectal cancer cell model is always

attracted to a proliferative, immortalized and glycolytic pheno-

type. According our simulations the combined use of mTor and

hTert inhibitors reverses two malignant hallmarks: glycolysis and

immortalization; the association of mTor and Cdks inhibitors

prevents glycolysis and cell cycling; and the combination of Cdks

and hTert inhibitors prevents proliferation and immortalization.

So, since in our model monotherapies with mTor, Cdks, and

hTert inhibitors prevents glycolysis, cell division, and immortal-

ization, respectively, the therapeutic outcome seems to be additive

or ‘‘linear’’ (i. e., obeys a superposition principle). In turn, the

association of p53 reactivators and Bcl-2/Bcl-Xl inhibitors leads to

cell cycle arrest under hypoxia and adequate nutrient supply or

normoxia, adequate nutrient supply and carcinogenic stress, but

has no effect under normoxic and nutrient rich microenviron-

ments. Another association involving p53 reactivators and Vegf

inhibitors blocks cell cycling in 29% of the initial states tested in

these three environmental conditions. In our model, the action of

Vegf inhibitors is simulated by forcing hypoxia and nutrient

depletion on the input nodes.

Finally, we tested mono- and two-drugs therapies using mTor,

Vegf, Ras, and Pkc inhibitors in cells at distinct stages of

malignancy. Again, our colorectal cancer cell model was

considered. Our results reveal that a full malignant cell (network

carrying mutations in Apc, Ras, Smad4, Pten, and p53) at most

lost its glycolytic phenotype if mTor is inhibited by a therapeutic

agent, but its limitless proliferative capacity remains unchanged. In

contrast, a cell in the previous carcinogenic stage (network with

mutations in Apc, Ras, Smad4, and Pten) can have its chance of

proliferation decreased under both monotherapy and two-drugs

association. Indeed, the fraction of proliferative phenotypes

decreases from 100% to about 70%, 63%, and 67% using Vegf,

mTor z Vegf, and Pkc z Vegf inhibitors, respectively. Also, the

therapeutic outcome depends on the external environment. For

instance, combined mTor and Pkc inhibition reduces the

proliferation chance from about 51% to 8% under normoxia,

adequate nutrient supply and carcinogenic stress, but this change

is significantly smaller under hypoxia and adequate nutrient

supply, from about 71% to 63%. So, these results demonstrate that

each treatment distinctly affects cells in different grades of

malignancy and eventually clones will emerge, rendering the

therapy ineffective.

Discussion

We constructed a Boolean dynamical system integrating the

main cancer signaling pathways in a simplified network. The

dynamics of this network is controlled by attractors associated to

apoptotic, proliferative and quiescent phenotypes that qualitatively

reproduce the behaviors of a normal cell under diverse microen-

vironmental conditions. Indeed, the network response is highly

constrained with 87:4%, 3:1%, and 9:5% of the initial states
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attracted to apoptotic, proliferative and quiescent phenotypes,

respectively. So, under persistent stress, apoptosis or cell cycle

arrest are the rule. Further, cell proliferation is tightly regulated,

occurring almost only in a normoxic environment and in the

presence of growth signaling. As observed in our model, GF

signaling significantly increases the stability of the surviving

(proliferative and quiescent) phenotypes while inhibits apoptosis.

This result is consistent with the findings of Mai and Lieu [13]

that, using a Boolean network integrating both the intrinsic and

extrinsic pro-apoptotic pathways with pro-survival GF signaling,

demonstrated that apoptosis can be induced either easily or

difficultly depending on the balance between the strengths of pro-

apoptotic and pro-surviving signals.

Our simulational results demonstrate that perturbations in some

network nodes elicit phenotypic transitions. We interpreted them

as driver mutations and can represent either the constitutive

activation or inactivation of a node or yet an increase in the

interaction strengths of a node with its targets. Under normoxia

and adequate nutrient supply, we found that mutations in Egfr,

Gli, Nf1, Nf-kB, Pi3k, Pkc, Pten, Ras, and Wnt transform the

formerly quiescent, normal cell into a proliferating one. The

resultant clonal expansion often leads to hypoxia. Additional

mutations in Akt, Bcl2, Bcl-Xl, Ikk, Nf-kB, p53 and Snail enable

the transformed cell to evade apoptosis formerly induced by

hypoxia. These 17 driver mutations predict by our model are

included among the approximately 2% of genes in the human

genome causally implicated in tumor progression by diverse census

of cancer genes recently performed [24,25,26]. The predicted

drivers clusters on certain signaling pathways as, for instance, in

the classical Mapk/Erk (Egfr, Nf1 and Ras), Pi3k (Pi3k, Pkc, Pten,

Akt), p53 and Wnt signaling pathways. Also, sequencing data

reveal that some of them are significantly mutated in cancers: Pi3k,

Pten, and Akt in breast cancer [26,27]; Ras and p53 in either

breast and colorectal cancers [26,28]; p53 and Nf1 in ovarian

carcinoma [29]; p53 and Pten in small-cell lung cancer [30]; and

Egfr, p53, Nf1, and Pi3k in human glioblastoma [31]. In turn, Gli

is target of translocation or amplification in either breast and

colorectal cancers [28], Bcl2 is amplified in squamous cell lung

cancers [32] and the Wnt signaling pathway is altered in 93% of all

colon and rectal cancer [33]. The other predicted drivers realize a

main result obtained from our model: driver nodes are not

necessarily central in the network topology, but at least they are

direct regulators of central components towards which converge or

through which crosstalk distinct cancer signaling pathways.

Our Boolean model for cancer pathways allowed us to explore

carcinogenesis at the molecular level. Carcinogenesis is an

evolutionary process driven by a sequential acquisition of stepwise,

somatic-cell mutations with concomitant subclonal selection [34].

Cells in a nascent tumor are continuously facing environmental

stresses often in response to inflammation. Inflammation elicits

cytokine-induced hyperplasia, genotoxicity, and ROS-induced cell

death. In hyperplasic epithelia, abnormal cell growth leads first to

hypoxia and selection for a glycolytic phenotype, resulting in

increased acidity and nutrient and growth factor deprivation.

Severe chronic hypoxia can select for apoptosis resistance or

mutated p53, further promoting the accumulation of mutations.

Low pH can generate DNA damage and glucose deprivation

strongly reinforces the selection for activated oncogenes. The

spatial heterogeneity of microenvironments within a primary

tumor selects for cell migration, which may produce invasion and

metastasis. So, as was demonstrated by our simulations of the

colorectal carcinogenesis, in order to evolve, cancer cells perform

sequential and random searches for phenotypic solutions to

overcome the barriers imposed by their altering environment.

Ultimately, each driver mutation in a carcinogenic route

contributes to increase either the proliferative capacity or the

resistance to apoptosis of the transformed cell, while several

‘‘passenger’’ mutations can accumulate along the process. Our

Boolean model supports distinct carcinogenic routes characterized

by specific sets of critical mutations embedded within varied

Figure 4. Network response to driver mutations in colorectal carcinogenesis. Fraction of initial states evolving into apoptotic, proliferative
or quiescent attractors (phenotypes) for all environmental conditions after the sequential accumulation of each driver mutation in colorectal cancer.
doi:10.1371/journal.pone.0069008.g004
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spectra of passenger mutations. Thus, as observed in genomic

analysis of diverse cancers, different combinations of mutated

genes exist and most samples of a given tumor type differ from all

others [26].

The development of effective targeted therapies copes with a

major challenge. From the experimental view point it is very hard

to determine which proteins have critical roles in tumor

progression to be targeted pharmacologically. This is where

mathematical models integrating diverse cancer pathways can be

Table 4. Interaction strengths and activation thresholds with special values.

Strength Nature Protein interaction

+2 Activation Nf-kB R Bcl-2

Ikk R Nf-kB

22 Inactivation Gsk-3 R Cyclin D

Rb R E2f

Vhl R Hif1

Threshold Protein Comment

23 Gsk-3 Active in the absence of GFs.

E-cadherin Active in non-transformed epithelial cells.

Rb Active in non-cycling cells.

22 Foxo Active unless Akt is superexpressed.

Hif1 Active under hypoxia.

Max Node without inputs; so it is constitutively activated.

Ras Activated by GFs or Nf1 inactivation.

E2f Activated by GFs

p21 Active in non-transformed cells.

p53 Inactive in NTU cells.

Ampk

Mdm2 Active in NTU cells.

Phds

21 Vhl

p27 Active in non-cycling cells in normoxia and GFs free.

Apc Constitutively activated.

Nf1 Active in non-transformed, non-cycling cells.

Pip3 Activated by GFs.

Tsc1/2 Active in NTU cells free from GFs.

Cyclin B, Rheb Only inhibitory inputs. The node is activated if its

b-catenin, Cdh1 inhibitors are inactive.

eEf2, Miz-1, Pten

Bad, Bcl-Xl, AMP/ATP

p53/Pten, Myc/Max, Binary complexes formed only if its component

Gsk-3/Apc, E2f/Cyclin E, parts are activated.

Cdh1/UbcH10, Smad/Miz-1,

p53/Mdm2

Akt Demand both of its inputs activated.

+1 mTor Active in proliferating, NTU cells.

Glut1 Inactive in normoxia and proliferative signals absent.

Nf-kB Inactive in NTU cells free from GFs.

Myc Inactive in NTU cells free from GFs.

Ldha Inactive in normoxic, non-transformed cells.

Snail Ativated by TGF-b and proliferative signals.

+3 p14ARF Active under E2f overexpression.

+4 HTert Inactive in non-immortalized cells.

Abbreviations: GFs, growth factors; NTU cells, non-transformed, unstressed (normoxia, adequate nutrient supply, undamaged DNA, mutation free, etc.), non-
proliferating cells.
doi:10.1371/journal.pone.0069008.t004
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helpfull. Using our model, we find that the inhibition of some

nodes (Pdk1, Akt, E2F, Cyclins D and E, and Mdm2) or the

activation of others (p53, Rb, Cdh1, p21, p27, and Smad4)

enhances quiescent phenotypes and also impairs the proliferative

ones. However, all the monotherapies tested were ineffective to

simultaneously reverse all the malignant hallmarks and seems to be

additive or ‘‘linear’’ in their effects. Thus, our simulations indicate

that the association of targeted drugs is necessary for cancer

control or eradication. Further, we find that each treatment

distinctly affects cells in different grades of malignancy or subject

to distinct microenvironmental conditions. Although a combined

targeted therapy can eradicate a set of cancer cells with certain

phenotypes, eventually clones will emerge, rendering the therapy

ineffective. So, these results provide additional support to the view

that a combinatorial series of drugs applied concurrently to block

cancer pathways and alter the tumor environment is needed to

eradicate all of the cancer cells in a tumor [23]. However, in

contrast to the present model focusing an isolated cell, tumors are

highly heterogeneous systems on larger length scales patterned in

patches (local microenvironments) that continuously change in

space and time. Thus, a single drug association can have a limited

effectiveness or to be efficacious demands a large number of

therapeutic agents which imposes unacceptable clinical risks.

Finally, we briefly comment on the limitations and prospects of

our modeling approach. In its present form, the cancer network

and its Boolean dynamics are able to reproduce some biologically

relevant features of carcinogenesis. It will certainly be true that

further improvements on the topology of the cancer network will

lead to better results and predictions. Indeed, adding new nodes,

links and signaling pathways to the network can generate new

convergences and redundancies essential to achieve more accurate

predictions concerning cancer gene candidates and effective

targets for therapies. Despite these rather straightforward second-

ary advances, the primary limitation of the model lies in its own

single-scale nature constrained to the molecular level of a cell.

Ultimately, cell-cell interactions in a changing environment

determine which of the possible transformed cell clones will be

generated and selected along cancer progression and, in conse-

quence, the efficacy and safety of molecularly targeted therapies.

Hence, Boolean network models for cancer pathways might be

suitable to describe the microscopic scale in multiscale models of

cancer growth and therapy [6]. Currently, we are pursuing this

goal by extending our previous multiscale models considered in

references [35] and [36].

Materials and Methods

The network integrating the main signaling pathways involved

in cancer was constructed based on the current literature and

protein-protein interactions map reported on KEGG database

[1,16,37]. Specifically, subgraphs of the PI3K-AKT, mTOR,

MAPK, HIF1, TGF-b, WNT, NF-kB, TNF, cell cycle, p53, and

apoptosis KEGG pathways were included in our network model.

Detailed descriptions of these pathways can be found in several

comprehensive reviews [38,39,40,18,41,42,43,44,45,46]. Its input

nodes, i. e., those which are not regulated by other nodes and

therefore associated to environmental cues, represent growth

factors, nutrient and oxygen supplies, carcinogens (or mutagens),

and apoptotic signal (Tnf-a). This simplified network focuses

attention on those gene products and signaling pathways that are

implicated more universally in cancer and which seems to be

sufficient to generate a simple model still capable of explaining

some general features of carcinogenesis.

Almost all activating interactions have a strength J~z1,

whereas the inhibitory ones have J~{1. The exceptions are

listed in Table 4 and totalizes three of the 249 network links.

Similarly, the majority of the activation thresholds has hi~0, but

there are 40 nodes among the 96 proteins with different values.

They are also listed in Table 4. The assignment of each threshold

value was guided by the local network topology (the inputs of each

node) and very general dynamical arguments or expected

biological responses of normal cells (see comments in Table 4).

For instance, some nodes are ‘‘regulated’’ only by inhibitory

inputs. For them, hi~{1 in order to ensure their activation and

the spreading of their signals on the network if those inputs are

inactive. Other nodes are binary protein complexes whose

activation thresholds were set to hi~z1 because their two

constituents must be activated to form the complexes.

In our simulations, every environmental condition, each one

corresponding to a fixed set of input nodes, were analyzed

individually. Fixed the input nodes, 106 initial states for the other

nodes were randomly chosen according the following protocol.

Firstly, 100 distinct and equally spaced values for the probability f
of a node to be active, f ~0:01, 0:02, . . ., 1, were used. Secondly,

104 configurations for the non-input nodes were randomly

generated for each value of f .

In order to analyze the stability of the network attractors, two

types of mutations were implemented: constitutive activation or

inactivation of a chosen protein i (si(t)~1 or si(t)~0Vt,
respectively), and protein overexpression (constitutive activation

with concomitant increasing in its interaction strengths Jij with its

target proteins). In the simulations, all nodes were subjected to

such mutations and their effects were observed for 10:000
randomly chosen initial states.

The simulations were performed in gfortran using a microcom-

puter with a Intel i3-2310 M, 2.1 GHz dual core processor and

4 Gb RAM. The network was drawn with Cytoscape [47].
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and plenty of nutrients and growth factors), 011000 (hypoxic and

nutrient rich), 01101 (hypoxic, plenty of nutrients and growth
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solid tumors.
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28. Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J et al. (2006) The consensus

coding sequences of human breast and colorectal cancers. Science 314: 268–274.

29. The Cancer Genome Atlas Research Network (2011) Integrated genomic

analysis of ovarian carcinoma. Nature 474: 609–615.

30. Pleasance ED, Stephens PJ, O’Meara S, McBride DJ, Meynert A et al (2010) A

small-cell lung cancer genome with complex signatures of tobacco exposure.

Nature 463: 184–190.

31. The Cancer Genome Atlas Research Network (2008) Comprehensive genomic

characterization defines human glioblastoma genes and core pathways. Nature

455: 1061–1068.

32. The Cancer Genome Atlas Research Network (2008) Comprehensive genomic

characterization of squamous cell lung cancers. Nature 489: 519–525.

33. The Cancer Genome Atlas Research Network (2012) Comprehensive molecular

characterization of human colon and rectal cancer. Nature 467: 330–337.

34. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481: 306–313.

35. Ferreira Jr SC, Martins ML, Vilela MJ (2002) Reaction-diffusion model for the

growth of avascular tumor. Phys.Rev.E 65: 021907.

36. Paiva LR, Binny C, Ferreira Jr SC, Martins ML (2009) A multiscale

mathematical model for oncolytic virotherapy. Cancer Res. 69: 1205–1211.

37. KEGG Pathway database, Kyoto Encyclopedia of Genes and Genomes.

Available at http://www.genome.jp/kegg/pathway.html.

38. Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to

discovery and understanding. Nat. Rev. Mol. Cell Biol. 13(3): 195–203.

39. Keith B, Johnson RS, Celeste Simon M (2012) HIF1a and HIF2a: sibling

rivalry in hypoxic tumour growth and progression. Nat. Rev.

Cancer 12(1): 9–22.
40. Yarden Y, Pines G (2012) The ERBB network: at last, cancer therapy meets

systems biology. Nat. Rev. Cancer 12(8): 553–563.

41. Massague J (2012) TGFb signalling in context. Nature Rev. Mol.

Cell Biol. 13: 616–630.
42. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in

cancer. Nat. Rev. Cancer 13: 11–26.

43. Cotter TG (2009) Apoptosis and cancer: the genesis of a research field. Nat. Rev.

Cancer, 9: 501–507.

44. Batchelor E, Loewer A, Lahav G (2009) The ups and downs of p53:

understanding protein dynamics in single cells. Nat. Rev. Cancer, 9: 371–377.

45. Balkwill F (2009) Tumour necrosis factor and cancer. Nat. Rev. Cancer, 9: 361–

371.

46. Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kB in cancer: from

innocent bystander to major culprit. Nat. Rev. Cancer, 2:

301–310.
47. Smoot M, Ono K, Ruscheinski J, Wang PL, Ideker T (2010) Cytoscape 2.8: new

features for data integration and network visualization. Bioinformatics 27(3):

431–432. Cytoscape is available for download at http://www.cytoscape.com.

Boolean Network Model for Cancer Pathways

PLOS ONE | www.plosone.org 11 July 2013 | Volume 8 | Issue 7 | e69008


