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Abstract

A Boolean network model of the cell-cycle regulatory network of fission yeast (Schizosaccharomyces Pombe) is constructed
solely on the basis of the known biochemical interaction topology. Simulating the model in the computer faithfully
reproduces the known activity sequence of regulatory proteins along the cell cycle of the living cell. Contrary to existing
differential equation models, no parameters enter the model except the structure of the regulatory circuitry. The dynamical
properties of the model indicate that the biological dynamical sequence is robustly implemented in the regulatory network,
with the biological stationary state G1 corresponding to the dominant attractor in state space, and with the biological
regulatory sequence being a strongly attractive trajectory. Comparing the fission yeast cell-cycle model to a similar model of
the corresponding network in S. cerevisiae, a remarkable difference in circuitry, as well as dynamics is observed. While the
latter operates in a strongly damped mode, driven by external excitation, the S. pombe network represents an auto-excited
system with external damping.
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Introduction

Predicting the dynamics of complex molecular networks that

control living organisms is a central challenge of systems biology.

While cell-wide, or organism-wide, models of genetic and molecular

interactions appear well out of reach, predictive models of single

pathways and small modular molecular networks of living cells have

been studied with great success and are a matter of active research

[1–4].

If the biochemical details of a chemical molecular network are

known, an efficient yet detailed method for its simulation is to use

chemical Monte-Carlo simulations [5,6]. Less computationally

costly, and perhaps the most commonly used approach to

modeling biochemical pathways and networks, are differential

equations which capture the underlying reaction kinetics in terms

of rates and concentrations [7]. Such methods are highly

developed today and are broadly applied to predictive dynamical

modeling from single pathways to complex biochemical networks

[8].

Such mathematical models contain detailed information about

the time evolution of the system, which, in some circumstances,

may be more than one is interested in. For many biological

questions, the sole prediction of the sequential pattern of states of

the central control circuit of a cell could advance our knowledge

significantly, as may be the case in cell cycle progression, cell

commitment (e.g. to apoptosis), and in stem cell control and

differentiation. When we are interested in the path that a cell

takes, the exact time course of the control circuit dynamics may

not be needed, however, its modeling takes most of our efforts and

often one needs to know large numbers of biochemical parameters

that are not easily obtained [9,10].

Indeed, recent research indicates that some molecular control

networks are so robustly designed that timing is not a critical factor

[11]. Vice versa, as a working hypothesis, this observation bears

the chance for vastly simplified dynamical models for molecular

networks, as soon as one drops the requirement for accurate

reproduction of timing by the model, and just asks for the

sequence of dynamical patterns of the network. Recent studies

demonstrate, that such more simplified models indeed can

reproduce the sequence of states in biological systems. For

example, a class of discrete dynamical systems with binary states,

mathematically similar to models used in artificial neural networks,

has recently proven to predict specific sequence patterns of protein

and gene activity as observed in living cells [12,13].

Such models are in the mathematical tradition of random

Boolean networks which, for decades, served as a simplistic

analogy for how gene regulation networks could in principle work

[14]. In these historical studies, dynamical properties of random

networks of discrete dynamical elements were studied to derive

possible properties of (the then hardly known) regulatory circuits

[15]. In the new approach outlined above, however, similar

mathematical elements now serve to simulate one specific

biological control network of fully known circuitry. From a

different perspective, they can be viewed as a further simplification

of the differential equation approach [16]. Recent application of

this model class to modeling real biological genetic circuits show

that they can predict sequence patterns of protein and gene

activity with much less input (e.g. parameters) to the model as the

classical differential equations approach. Examples are models of

the genetic network underlying flower development in A. thaliana

[17–19], the cell-cycle networks of S. cerevisiae [13], the signal

transduction network for abscisic acid induced stomatal closure
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[20], the mammalian cell-cycle [21], as well as gene regulatory

networks determining embryonic segmentation in D. melanogaster

[12,21].

For example, the model by Albert and Othmer [12] of the

segment polarity gene network in D. melanogaster, as well as the

model by Li et al. [13] of the S. cerevisiae cell-cycle control network,

yield accurate predictions of sequential events of the processes

previously not obtained from such a simple model class. In these

models, the dynamics can be viewed in terms of flow in the space

of possible states of the network, converging towards so-called

attractors, or fixed points, which here correspond to specific

biological states. These attractors and their basins of attraction in

state space mainly depend on the circuitry of the network, and

their analysis yields further information about the robustness of the

dynamics against errors or mutations.

How generic is this approach? In this article we address the

question whether the approach of discrete dynamical network

models is a more general method, namely whether constructing

predictive dynamical models for regulation of proteins and genes

from Boolean networks is a straightforward procedure that

generalizes to other organisms. We choose the fission yeast

(Schizosaccharomyces Pombe) cell-cycle as an example system that on

the one hand is well understood in terms of established differential

equation models, but on the other hand is markedly different from

the above examples, as S. cerevisiae. The yeast S. Pombe has been

sequenced in 1999 and has been used as a model organism only

relatively recently [23]. Models exist [24,25] that mathematically

model the fission yeast cell-cycle with a common ODE (ordinary

differential equation) approach. These are based on a set of

differential equations for the biochemical concentrations that take

part in the network and their change in time (and space). This

approach allows to predict the dynamics of the fission yeast cell-

cycle for the wild-type and some known mutant cells [10,26].

We will in the following construct a discrete dynamical model

for the fission yeast cell cycle network. An interesting question will

be, how far we will get without considering parameters, as kinetic

constants etc., that are a key ingredient of the existing models. We

will base our model on the circuitry of the known biochemical

network, only. Let us in the next section briefly review the fission

yeast cell cycle network, then define our discrete dynamical model

in the subsequent section. This is followed by a section reporting

our results, and then we will compare our findings with a similar

model of the budding yeast (S. cerevisiae) network and conclude with

a discussion.

The fission yeast cell cycle network
Let us briefly review the regulatory processes that control the

cell cycle in S. Pombe. The full process of one cell division consists of

four stages, named G1—S—G2—M. At the first stage (G1), the

cell grows and, under specific conditions, commits to division. At

the second stage (S), DNA is synthesized and chromosomes are

replicated. This is followed by a ‘‘gap’’ stage G2. The final stage

(M) corresponds to mitosis, in which chromosomes are separated

and the cell divides itself. Eventually, after the M stage, the cell

enters G1 again, thereby completing one cycle.

The biochemical reactions that form the network that controls the

fission yeast cell-cycle have been studied in detail over the last years

[25,27–34]. The major role is played by a cyclin-dependent protein

kinase complex Cdc2/Cdc13 with Tyr-15, a residue of Cdc2. When

Tyr-15 is unphosphorylated, complex Cdc2/Cdc13 reaches high

activity. This residue is inactive during the G2 phase, when Cdc2/

Cdc13 is phosphorylated, and becomes active during the G2—M

transition [25,26]. We have two nodes, representing this complex:

Cdc2/Cdc13 and Cdc2/Cdc13*. The first is responsible for the

intermediate activity of the complex, when the residue Tyr-15 is in its

inactive form. Cdc2/Cdc13* is an indicator of high activity of Cdc2/

Cdc13, when Tyr-15 is unphosphorylated.

The other members that participate in the cell-cycle control can

be attributed to two different classes. The first class consists of

positive regulators of the kinase Cdc2/Cdc13: an indicator of mass

of the cell, works as ‘‘Start’’, ‘‘Start kinase’’ (SK), a group of Cdk/

cyclin complexes (Cdc2 with Cig1, Cig2 and Puc1 cyclins), and the

phosphatase Cdc25. A second class is composed of the antagonists

of the complex Cdc2/Cdc13: Slp1, Rum1, Ste9, and the

phosphatase PP [9].

We give a full compilation of the network of key-regulators of the

fission yeast cell cycle network in Table 1, corresponding to our

current knowledge as given in [9,25,26]. Also our translation into an

interaction graph with activating and inhibiting links is given in the

table, which is the starting point for our discrete dynamical network

simulation of this network. Let us in the next section define the

discrete dynamics that we will simulate on this graph.

A discrete dynamical model of the cell cycle network
We assume proteins to be the nodes of the network and assign a

binary value Si(t)M{0,1} to each node i, denoting whether the

protein is present or not (due to different possible biochemical

mechanisms, as, e.g., gene expression of a corresponding protein,

or fast biochemical reactions as phosphorylization). The interac-

tions between the nodes, as compiled in Table 1, are denoted as

links, or arrows (see Figure 1). We do not quantify any interaction

strength, except whether a link is present or not, and whether it is

activating or inhibiting. Again, different biochemical mechanisms

are subsumed under this simplified picture, as, e.g., transcriptional

regulation, or faster enzymatic interactions.

The states of the nodes are updated (in parallel) in discrete time

steps according to the following rule:

Si(tz1)~

0,
P

j

aijSj(t)whi

1,
P

j

aijSj(t)vhi

Si(t),
P

j

aijSj(t)~hi

8>>>>><
>>>>>:

ð1Þ

where aij(t) = 1 for an activating interaction (green link) from node j

to node i, aij(t) = 21 for an inhibiting (red) link from node j to node

i, and aij(t) = 0 for no interaction at all. This definition follows

closely the approach in [13]. hi is a threshold of activation of node

i, which is 0 for all nodes, except two explained below. The

dramatic simplification step in constructing this model consists in

not differentiating between absolute values of interaction strengths

on the one hand, and not distinguishing between the different time

scales of the biochemical interactions involved on the other. This

corresponds to dropping all biochemical parameter values, time

constants, as well as binding constants, from the differential

equation models. As we will see below, dynamical models on

networks can be built to be insensitive to these parameters,

provided that the interaction topology has certain properties.

Two of the ten nodes included in the model exhibit a slightly

different activation behavior, which we account for by a non-zero

activation threshold. Cdc2/Cdc13*, the highly activated form of

the complex Cdc2/Cdc13, has to be actively maintained by a

positive regulatory signal, therefore hi = 1 for this node. The

second special rule is to add ‘‘self-activation’’ (corresponding to

adding a negative activation threshold hi = 21) to the node Cdc2/

Cdc13, as it is otherwise not positively regulated. The biological

motivation for this rule is the following. Cdc13 is constantly

Boolean network model
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synthesized and after synthesis it immediately associates with Cdc2

[24]. Intracellular concentration of Cdc2 does not vary throughout

the cell cycle [26]. Thereby, as soon as enemies are not active,

Cdc2/Cdc13 is becoming active. A similar mechanism is

implemented in the corresponding ODE model [24] in terms of

an inhomogeneous differential equation for Cdc13T with a

heterogeneous exciting term k1M.

We also follow [13] by adding ‘‘self-degradation’’ (yellow loops)

to those nodes that are not negatively regulated by others,

representing the continuous degradation of proteins in the cell,

which corresponds to aii(t) = 21.

Nodes, that have the same function as, for example, Wee1/Mik1

and SK (Cdc2/Cig1, Cdc2/Cig2, Cdc2/Puc1) are joined together

in a single node (see Figure 1), as it does not make a difference in the

specific mathematical model dynamics considered here.

Finally let us define the initial condition of the model at the start

of the simulation, which is chosen to correspond to the biological

start condition with all nodes being in the OFF (inactive) state,

except for the proteins Start, Ste9, Rum1, and Wee1/Mik1 [26].

Results

Simulation of the fission yeast cell cycle
Let us first consider the time evolution of the proteins of the

dynamical model described above. We run the cell-cycle model by

exciting the G1 stationary state with the cell size signal (‘‘Start’’

node). This initiates a sequence of network activation states of

proteins that, eventually, return to the G1 stationary state. The

temporal evolution of the protein states is presented in Table 2,

where one observes a sequence of states which exactly matches the

corresponding biological time sequence in the cell-cycle control

network, from the excited G1 state (START) through S and G2 to

the M phase and finally back to the stationary G1 state. This is a

remarkable observation as it is unlikely to occur by chance due to

the size of the state space.

In the next step we run the model starting from each one of the

210 = 1024 possible initial states. We find that each initial state

flows into one of 13 stationary states (fixed points and one limit

cycle). The largest attractor belongs to a fixed point attracting 73%

of all network states. Our first observation is that this fixed point

exactly coincides with the biological G1 stationary state (see

Table 3) of the cell. Thus, the biological target state is the

dominant attractor of the network dynamics. As soon as the system

reaches this state with the specific corresponding combination of

active and inactive proteins it stays there, and is likely to do so even

in the presence of perturbations.

A further observation is best depicted by Figure 2, showing the

dynamical flow of the network states and how it converges towards

the biological fixed point. In this figure, the dynamical trajectories

in the state space starting from all 1024 possible initial states of the

network are shown. Each network state is represented by a dot,

with the arrows between them indicating the dynamical transition

from one state to its temporally subsequent state. At the root of the

largest attractor (tree) the G1 state is found and the blue arrows

show the biological time sequence that leads to it. This attractor

tree consists of 73% of all network states.

We additionally checked the probability of reaching the G1

stationary state, starting only from those initial conditions, when

‘‘Start’’ is active on the first time step. Here, in 75% of the cases

one ends up in the G1 fixed point.

Table 1. The rules of interaction of the main elements involved in the fission yeast cell cycle regulation.

Parent node Daughter node Rule of activation (comments) Rule of inhibition (comments)

Start node Starter Kinases (SK): Cdc2/Cig1, Cdc2/
Cig2, Cdc2/Puc1

Start node works as an indicator of mass
of the cell and activates Start Kinases (SK)
Cdc2/Cig1, Cdc2/Cig2, Cdc2/Puc1, +1[9]

SK Ste9, Rum1 Phosphorylate, thereby inactivate, 21
[9,25]

Cdc2/Cdc13 Cdc25 Cdc25 is phosphorylated thereby
activated, +1 [9].

Wee1, Mik1 Cdc2/Cdc13* Phosphorylate, inactivating, 21 [9]

Rum1 Cdc2/Cdc13, Cdc2/Cdc13* Binds and inhibits activity, 21 [9].

Cdc2/Cdc13 Rum1 Phosphorylates and thereby targets
Rum1 for degradation. 21 [9,25]

Ste9 Cdc2/Cdc13, Cdc2/Cdc13* Labels Cdc13 for degradation [25,9], 21.

Cdc2/Cdc13* Slp1 Highly activated Cdc2/Cdc13* activates
Slp1, [24,9] +1.

Slp1 Cdc2/Cdc13, Cdc2/Cdc13* Promotes degradation of Cdc13, thereby
the activity of Cdc2/Cdc13 drops 21 [9]

Slp1 PP Activates, +1 [9]

PP (Unknown phosphatase) Ste9, Rum1, Wee1, Mik1 Activates Rum1, Ste9, and the tyrosine-
modifying enzymes (Wee1, Mik1) [9], +1

Cdc25 Cdc2/Cdc13* Cdc25 reverses phosphorylation of Cdc2,
thereby Cdc2/Cdc13* becomes active, +1
[9,24]

Cdc2/Cdc13 Ste9 inhibits 21 [24]

PP Cdc25 inhibits 21 [9]

Cdc2/Cdc13 Wee1, Mik1 inhibits 21 [24]

Cdc2/Cdc13* Rum1, Ste9 Inhibits 21 [24]

doi:10.1371/journal.pone.0001672.t001

Boolean network model

PLoS ONE | www.plosone.org 3 February 2008 | Volume 3 | Issue 2 | e1672



We further performed a robustness test by reversing the state of

a single, randomly chosen node while the network proceeds

through the biological sequence. This deviation from the

biological pathway by the activity state of one single protein at

one randomly chosen step of the cycle, the system returns to the

fixed point G1 in 81 out of 100 possible cases. Thus we observe an

additional robustness in the fission yeast cell-cycle network,

meaning that there is an increased probability to stay in the

attractor basin of the biological fixed point when perturbing states

along the biological trajectory.

An immediate question about the specific network structure

considered here is whether the architecture of the network has

special properties as, for example, traces of being optimized by

biological evolution. We compare the network dynamics to the

null model of random networks with the same number of

inhibiting and activating links, self-degrading and self-activating

nodes and the same activation thresholds. Indeed one finds that

the corresponding random networks typically have smaller

attractors. The mean size of the biggest attractors is about 40%

of all initial states (averaged over 1000 random networks). This

may indicate that attractor basin size of the biological attractor is

optimized to provide additional dynamical robustness.

Start

SK

Ste9 Rum1Cdc2/Cdc13

PP
Cdc25

Slp1 Wee1/Mik1

Cdc2/Cdc13*

Figure 1. Network model. Network model of the fission yeast cell-
cycle regulation. Nodes denote threshold functions (1), representing
the switching behavior of regulatory proteins. Thresholds for the
specific nodes are chosen as described in the text. Arrows represent
interactions between proteins as defined in the interaction matrix aij of
the model (with aij = +1 for green/solid arrows and aij = 21 for red/
dashed arrows).
doi:10.1371/journal.pone.0001672.g001
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Comparison with S. cerevisiae
The two yeasts, S. cerevisiae and S. pombe, are remarkably different

organisms and a comparison may provide insights relevant for the

understanding of higher eukaryotes. As we now have discrete

dynamical models for the cell cycle network of both of them at hand

(this work, as well as [13]), let us discuss how they compare.

As these two organisms are closely related genetically, one might

expect a large overlap also in the biochemical control machinery.

On the other hand, the biology of the two is markedly different, so

there have to be some differences on the biochemical level as well.

As an overview, the second model is shown in Figure 3.

There are a number of closely related genes (see Table 4)

between the two yeasts [10], which, however, can have vastly

differing functions [23]. In fission yeast, for example, phosphatase

Cdc25 is required for the G2—M transition, while in the model of

budding yeast [13] the corresponding homologue Mih1 is

insignificant. The reason is that in the fission yeast cell cycle,

Cdc25 removes an inhibitory phosphate group from the residue

Tyr-15 of Cdc2, which is important for the right timing of the

G2—M transition. In contrast, the tyrosine residue in S. cerevisiae

Cdc28 kinase (fission yeast: Cdc2) is not as critical and usually not

phosphorylated. Therefore, for a model of fission yeast, Cdc25 is

essential, whereas the homologue Mih1 in budding yeast is not

[13]. One other example is the role of the protein Cdc13. In fission

yeast it acts in a complex with Cdc2, while in the budding yeast

model its functionality is represented by two complexes Clb1,2/

Cdc28 and Clb5,6/Cdc28, which exhibit some differences in

interactions, as well as in timing.

Despite of the differences in many details, the general logic of

both yeast cell cycles is surprisingly similar and exhibits a number

of ‘‘structural homologues’’. For example, both exhibit a negative

feedback loop similar in role: Clb1,2/Cdc28 activates Cdc20

which inhibits Clb1,2/Cdc28 (fission yeast: Cdc2/Cdc13 activates

through Cdc25 Cdc2/Cdc13*, which activates Slp1, which in turn

inhibits Cdc2/Cdc13, Cdc2/Cdc13*).

The most interesting comparison is in our view on the level of

the global network dynamics. From this point of view, the S.

cerevisiae network is a strongly damped system, driven by external

excitation. External signals are entering the network, triggering

signal cascades in the network that induce the subsequent phases.

In contrast, the network of S. pombe corresponds to an auto-excited

system (driven by a node with self-excitation-Cdc2/Cdc13) with

additional damping. Here, an external signal works as a trigger

mechanism that counteracts internal damping, causing the auto-

excitation to spread its activity in the system

While these differences in the ‘‘mechanics’’ of the signaling

networks are considerable, the overall dynamics is surprisingly

similar. The state space picture is quite similar in both cases: one

observes only a small number of attractors and just one big global

attractor (with 86% resp. 73% of all initial states), which for both

organisms corresponds to the stationary G1 state.

Finally, a most prominent difference between the two yeast

networks is their choice in biochemical machinery: S. cerevisiae

relies more on transcriptional factors while S. pombe mostly relies

on post-translational regulation [35]. From the methodological

point of view, we note that for this reason we were surprised to find

our model for the S. pombe cell cycle network so robust against

neglecting the vastly different time scales of interactions, which we

expected to be the major difficulty in constructing a discrete

dynamical model for S. pombe as compared to S. cerevisiae.

Discussion

We have constructed a Boolean model for the biochemical

network that controls the cell cycle progression in fission yeast S.

pombe, and found a number of interesting results. The dynamics of

this network reproduces the time sequence protein activation along

the biological cell cycle, solely on the basis of the connectivity graph

of the network, neglecting all biochemical kinetic parameters. The

dynamics of the network is characterized by a dominant attractor in

the space of all possible states, with an attractor basin that attracts

most of all states. The network dynamics is robust against

perturbation of the biological sequence of protein activation.

Also there is an interesting result, that the second big attractor is

a limit cycle. This limit cycle could be related to the Wee1-Cdc25

double mutant. These cells have quantized cell cycles [9] as a

Table 3. All attractors (fixed points ( = FP) and one limit cycle ( = LC)) of the dynamics of the network model for the fission yeast
cell cycle regulation.

Attractor Type Basin size Start SK Cdc2/Cdc13 Ste9 Rum1 Slp1 Cdc2/Cdc13* Wee1/Mik1 Cdc25 PP

1 FP 762 0 0 0 1 1 0 0 1 0 0

2 LC 208 0 0 0 0 0 0 0 0 1 1

LC 0 0 0 0 0 0 1 0 0 1 0

LC 0 0 0 1 1 1 0 1 1 0 0

3 FP 18 0 0 0 0 1 0 0 1 0 0

4 FP 18 0 0 0 1 0 0 0 1 0 0

5 FP 2 0 0 0 1 0 0 0 0 0 0

6 FP 2 0 0 0 1 0 0 0 0 1 0

7 FP 2 0 0 0 1 0 0 0 1 1 0

8 FP 2 0 0 0 0 1 0 0 0 0 0

9 FP 2 0 0 0 0 1 0 0 0 1 0

10 FP 2 0 0 0 0 1 0 0 1 1 0

11 FP 2 0 0 0 1 1 0 0 0 0 0

12 FP 2 0 0 0 1 1 0 0 0 1 0

13 FP 2 0 0 0 1 1 0 0 1 1 0

doi:10.1371/journal.pone.0001672.t003
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result of an underlying oscillator that creates small amplitude

oscillations in Cdc2/Cdc13 activity (with a role of Slp1 in this).

The overall results obtained from our model are in accordance

with the existing ODE model of fission yeast [10]. Let us discuss the

differences between these two approaches. The S. pombe ODE system

[10] has several steady state solutions. One can identify every such

solution with the corresponding physiological stage. The growth of

cell size brings the cell from one phase to another via a series of

bifurcations. At the same time, other variables indicate the degree of

activity of various components of the cell regulatory nodes. One

observes [26] that the typical curves depicting this activity have

almost rectangular shape. This motivates our choice of binary valued

function to approximate protein concentrations in time. Further, the

ODE-based model makes use of continuous system parameters,

which we omit and replace by their signs, only. As a result, the ODE

bifurcation curve then corresponds to the Boolean biological path.

The main advantage of our Boolean model is that we were able to

drop 47 kinetic constants that were necessary in the ODE approach

and, while doing so, still reproduce the biological sequence of protein

activation.

This fact and our further observations point at built-in dynamical

robustness of the network, which may provide a mechanism for

organisms to ensure functional robustness [36]. Vice versa, our study

indicates that the regulatory robustness of biological chemical

networks may allow for ‘‘robust’’ modeling approaches: Our

paradigm here is nothing but assuming that biochemical networks

are functioning in a parameter-insensitive way—which motivated us

to eliminate tunable parameters alltogether. That our model

Figure 2. Network state space. State space of the 1024 possible network states (green circles) and their dynamical trajectories, all converging
towards fixed point attractors. Each circle corresponds to one specific network state with each of the ten proteins being in one specific activation
state (active/inactive). The largest attractor tree corresponds to all network states flowing to the G1 fixed point (blue node). Arrows between the
network states indicate the direction of the dynamical flow from one network state to its subsequent state. The fission yeast cell-cycle sequence is
shown with blue arrows.
doi:10.1371/journal.pone.0001672.g002
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reproduces the biological sequence instantly without any further

parameter tuning, confirms our assumption a posteriori. We therefore

encourage further modeling experiments with the here presented,

quite minimalistic approach as it may prove a quick route to

predicting biologically relevant dynamical features of genetic and

protein networks in the living cell.

Materials and Methods

The network of the key regulators of the fission yeast cell cycle is

constructed by compiling information from an extensive literature

study [9,25–34]. For building a model, all types of interactions are

divided into two classes—inhibition or activation. The summa-

rized interactions are shown in Table 1, which correspond to [9]

except for the cases explained below.

Since the mechanism of activation of the negative Cdc2/Cdc13

regulators is unknown, the authors of [9] assumed a mechanism

similar to budding yeast. In [9] Slp1/APC degrades a hypothetical

inhibitor of PP, which helps PP to become active. Recently, Clp1p

has been proposed as a possible candidate for PP [37]. Following

[25], the helper molecules such as Start Kinases (SK) are inhibited,

otherwise they prevent the final transition to the G1 stationary

state. This is why in a Boolean model of the cell cycle helper

molecules-Start Kinase (SK), Slp1, and PP-have self-inhibiting

links. We further represent Wee1/Mik1 by one node, since they

have similar function.

One also needs to distinguish activation levels of Cdc2/Cdc13.

During the cell cycle, this complex has three different levels—low,

intermediate, or high. It is also known that a high-level corresponds

to dephosphorylation of the residue Tyr-15 of Cdc2. Therefore,

Cdc2/Cdc13 is represented by two nodes: Cdc2/Cdc13 and Cdc2/

Cdc13*, where the latter indicates the high activity state of Cdc2/

Cdc13. During the G1 phase, when activity of Cdc2/Cdc13 is low,

this corresponds to an inactive Cdc2/Cdc13 node. Intermediate

levels of excitation correspond to activation of the node Cdc2/

Cdc13, whereas high activity in the M phase is represented by the

Cdc2/Cdc13* node being active in addition.

We focus on a case where checkpoints are disregarded except

the checkpoint of the cell size. Also the change in the rate of DNA

replication is neglected in the model. In comparison to [9] we

further neglect the phosphatase group Pyp3, which works in the

absence of Cdc25, but does its job less effectively.

The networks and dynamical trajectories were drawn with Pajek

[38].

Acknowledgments

We thank Attila Csikasz-Nagy for inspiring discussions and helpful

comments on an earlier version of our model, as well as Stefan Braunewell,

Michael C. Mackey, and Fabian Zoehrer for further discussions and

comments.

Author Contributions

Conceived and designed the experiments: SB MD. Performed the

experiments: MD. Wrote the paper: SB MD.

References

1. Gunsalus KC, Ge H, Schetter AJ, Goldberg DS, Han J-DJ, et al. (2005)

Predictive models of molecular machines involved in Caenorhabditis elegans

early embryogenesis. Nature 436 (11): 861–865.

2. Hasty J, McMillen D, Isaacs F, Collins JJ (2001) Computational studies of gene

regulatory networks: in numero molecular biology. Nat Rev Genet 2: 268–279.

3. Riel NAW (2006) Dynamic modelling and analysis of biochemical networks:

mechanism-based models and model-based experiments. Briefings in Bioinfor-

matics 7(4): 364–374.

4. Smolen P, Baxter DA, Byrne JH (2000) Mathematical modeling of gene

networks. Neuron 26: 567–580.

5. Gillespie DT (1976) A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions, J Comp Phys 22: 403–434.

6. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions.

J Phys Chem 81: 2340–2361.

7. Glass L, Kauffman SA (1973) The logical analysis of continuous, nonlinear

biochemical control networks. J Theor Biol 39: 103–129.

8. Tyson JJ, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers:

dynamics of regulatory and signaling pathways in the cell. Curr Op Cell Biol 15:

221–231.

9. Sveiczer A, Csikasz-Nagy A, Gyorffy B, Tyson JJ, Novak B (2000) Modeling the

fission yeast cell cycle: Quantized cycle times in wee1-cdc25 mutant cells. Proc

Natl Acad Sci U S A 97(14): 7865–7870.

10. Tyson JJ, Chen KC, Novak B (2001) Network dynamics and cell physiology.

Nature Rev Mol Cell Biol 2: 908–916.

11. Braunewell S, Bornholdt S (2006) Superstability of the yeast cell-cycle dynamics:

Ensuring causality in the presence of biochemical stochasticity. J Theor Biol

245(4): 638–643.

12. Albert R, Othmer HG (2003) The topology of the regulatory interactions

predicts the expression pattern of the Drosophila segment polarity genes. J Theor

Biol 223: 1–18.

13. Li F, Long T, Lu Y, Quyang Q, Tang C (2004) The yeast cell-cycle network is

robustly designed. Proc Natl Acad Sci U S A 101(14): 4781–4786.

14. Kauffmann SA (1969) Metabolic stability and epigenesis in randomly

constructed genetic nets. J Theor Biol 22: 437–467.

15. Kauffman SA (1993) The Origins of Order: Self-Organization and selection in

evolution. Oxford, UK: Oxford University Press.

16. Bornholdt S (2005) Systems biology: Less is more in modeling large genetic

networks. Science 310 (5747): 449–451.

Cell Size

Cln3

SBF MBF

Cln1,2
Clb5,6

Cdh1

Sic1

Mcm1/SFF

Clb1,2

Swi5Cdc20&Cdc14

Figure 3. Budding yeast model. Budding yeast cell cycle network
model [13] for comparison with our model of fission yeast. This network
relies on transcriptional regulation more than the fission yeast network.
Note that some homologues corresponding to the latter do not have to
be included here. Note also the difference in circuitry.
doi:10.1371/journal.pone.0001672.g003

Table 4. Homologue proteins related to the cell cycle
networks of fission yeast and budding yeast.

Fission yeast Rum1 Ste9 Slp1 Cdc2 Cdc13

Budding yeast Sic1 Cdh11 Cdc20 Cdc28 Clb1-6

doi:10.1371/journal.pone.0001672.t004

Boolean network model

PLoS ONE | www.plosone.org 7 February 2008 | Volume 3 | Issue 2 | e1672



17. Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene

regulatory network model for cell-fate determination during Arabidopsis
Thaliana flower development that is robust and recovers experimental gene

expression profiles. Plant Cell 16: 2923–2939.

18. Mendoza L, Thieffry D, Alvarez-Buylla ER (1999) Genetic control of flower
morphogenesis in Arabidopsis Thaliana: a logical analysis. Bioinformatics 15:

593–606.
19. Thum KE, Shasha DE, Lejay LV, Coruzzi GM (2003) Light- and

carbonsignaling pathways. Modeling circuits of interactions. Plant Physiol 132:

440–452.
20. Li S, Assmann SM, Albert R (2006) Predicting Essential Components of Signal

Transduction Networks: A Dynamic Model of Guard Cell Abscisic Acid
Signaling. PLOS Biol. e312(10): 1732–1748.

21. Faure A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a
generic Boolean model for the control of the mammalian cell cycle.

Bioinformatics 22(14): e124–e131.

22. Sanchez L, Thieffry D (2001) A logical analysis of the drosophila gap-gene
system. J Theor Biol 211: 115–141.

23. Forsburg SL (1999) The best yeast? Trends in Genetics 15 (9): 340–344.
24. Novak B, Tyson JJ (1997) Modeling the control of DNA replication in fission

yeast. Cell biology. Proc Natl Acad Sci U S A 94: 9147–9152.

25. Novak B, Pataki Z, Ciliberto A, Tyson JJ (2001) Mathematical model of the cell
division cycle of fission yeast. Chaos 11(1): 277–286.

26. Tyson JJ, Csikasz-Nagy A, Novak B (2002) The dynamics of the cell-cycle
regulation. BioEssays 24: 1095–1109.

27. Buck V, Ng SS, Ruiz-Garcia1 AB, Papadopoulou K, Bhatti S, et al. (2003)
Fkh2p and Sep1p regulate mitotic gene transcription in fission yeast J Cell

Science 116: 4263–4275.

28. Correabordes J, Nurse P (1995) P25(rum1) orders s-phase and mitosis by acting
as an inhibitor of the p34(cdc2) mitotic kinase. Cell 83: 1001–1009.

29. Jaspersen S, Charles J, Morgan D (1999) Inhibitory phosphorylation of the APC

regulator Hct1 is controlled by the kinase Cdc28 and phosphatase Cdc14. Curr

Biol 9: 227–236.

30. Lundgren K, Walwortha N, Booherb R, Dembskia M, Kirschnerb M, et al.

(1991) Mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of

cdc2. Cell 64(6): 1111–1122.

31. Martin-Castellanos C, Labib K, Moreno S (1996) B-type cyclins regulate G1

progression in fission yeast in opposition to the p25rum1 cdk inhibitor. J EMBO

15(4): 839–849.

32. Russel P, Nurse P (1987) Negative regulation of mitosis by wee1[+], a gene

encoding a protein kinase homologue. Cell 49: 559–567.

33. Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, et al. (1998) The phosphatase

Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol

Cell 2: 709–718.

34. Yamaguchi S, Okayama H, Nurse P (2000) Fission yeast Fizzy-related protein

srw1 is a G1-specific promoter of mitotic cyclin B degradation. J EMBO 19(15):

3968–3977.

35. Simanis V (2003) Events at the end of mitosis in the budding and fission yeasts.

J Cell Sci 116: 4263–4275.

36. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial

chemotaxis. Nature 397: 168–171.

37. Trautmann S, Wolfe BA, Jorgensen P, Tyers M, Gould KL, et al. (2001) Fission

yeast Clp1p phosphatase regulates G2/M transition and coordination of

cytokinesis with cell cycle progression. Curr Biol 11(12): 931–940.

38. Batagelj V, Mrvar A (1998) Pajek-Program for Large Network Analysis.

Connections 21(2): 47-57. Trautmann S, Wolfe BA, Jorgensen P, Tyers M,

Gould KL et al (2001) Fission yeast Clp1p phosphatase regulates G2/M

transition and coordination of cytokinesis with cell cycle progression. Curr Biol

11(12): 931–940.

Boolean network model

PLoS ONE | www.plosone.org 8 February 2008 | Volume 3 | Issue 2 | e1672


