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Abstract
Boolean Satisfiability (SAT) is often used as the under-

lying model for a significant and increasing number of
applications in Electronic Design Automation (EDA) as
well as in many other fields of Computer Science and
Engineering. In recent years, new and efficient algorithms
for SAT have been developed, allowing much larger prob-
lem instances to be solved. SAT “packages” are currently
expected to have an impact on EDA applications similar to
that of BDD packages since their introduction more than a
decade ago. This tutorial paper is aimed at introducing the
EDA professional to the Boolean satisfiability problem.
Specifically, we highlight the use of SAT models to formu-
late a number of EDA problems in such diverse areas as
test pattern generation, circuit delay computation, logic
optimization, combinational equivalence checking,
bounded model checking and functional test vector gener-
ation, among others. In addition, we provide an overview
of the algorithmic techniques commonly used for solving
SAT, including those that have seen widespread use in spe-
cific EDA applications. We categorize these algorithmic
techniques, indicating which have been shown to be best
suited for which tasks.

1 Introduction

Recent years have seen a tremendous growth in the
number of R&D groups at Electronic Design Automation
(EDA) companies, universities and research laboratories,
that have started using Boolean Satisfiability (SAT) mod-
els and algorithms for solving different problems in EDA.
Despite SAT being an NP-complete decision problem,
SAT algorithms have seen dramatic improvements in
recent years, allowing larger problem instances to be
solved in different application domains [4, 24, 27, 42].
Moreover, dedicated SAT algorithms that target solving
instances from EDA problems have been proposed [26,

37]. These algorithms exploit the specific structure of most
instances from EDA problems and incorporate techniques
for solving SAT problems in digital circuits. It is reason-
able to expect further improvements to SAT algorithms as
more attention is focused on the practical application of
SAT to real design problems in EDA.

The main purpose of this paper is to review existing
applications of SAT to EDA, and to survey modern SAT
algorithms, emphasizing solutions that have been shown
effective for EDA applications.

The paper is organized as follows. Section 2 intro-
duces the definitions used throughout the paper, emphasiz-
ing Conjunctive Normal Form (CNF) formulas and the
representation of circuits in CNF. Afterwards, we review
algorithms for Boolean Satisfiability, giving emphasis to
the algorithms that are recognizably more suitable for
EDA applications, and address the extension of the well-
known recursive learning paradigm to CNF formulas. Sec-
tion 5 addresses specific solutions for solving SAT in com-
binational circuits. Section 6 reviews recent work that has
shown promise for solving SAT in EDA applications. Sec-
tion 7 concludes the paper.

2 Definitions

A conjunctive normal form (CNF) formula  on n
binary variables  is the conjunction of m clauses

 each of which is the disjunction of one or
more literals, where a literal is the occurrence of a variable

 or its complement . A formula  denotes a unique n-
variable Boolean function  and each of its
clauses corresponds to an implicate of f. Clearly, a func-
tion f can be represented by many equivalent CNF formu-
las. The satisfiability problem (SAT) is concerned with
finding an assignment to the arguments of 
that makes the function equal to 1 or proving that the func-
tion is equal to the constant 0.

The CNF formula of a combinational circuit is the
conjunction of the CNF formulas for each gate output,
where the CNF formula of each gate denotes the valid
input-output assignments to the gate. An example of a cir-
cuit, associated CNF formula and the specification of an
objective is shown in Figure 1. (The derivation of the CNF
formulas for simple gates is shown in Table 1 [20].) If we
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view a CNF formula for a gate as a set of clauses, the CNF
formula ϕ for the circuit is defined by the set union (or
conjunction) of the CNF formulas of each gate. Hence,
given a combinational circuit it is straightforward to create
the CNF formula for the circuit as well as the CNF for
proving a given property of the circuit.

SAT algorithms operate on CNF formulas, and conse-
quently can readily be applied to solving instances of SAT
associated with combinational circuits. 

3 SAT Applications in EDA

This section briefly surveys the application of SAT
models to EDA applications. (See [31] for a more detailed
account of some of the earlier applications.) One of the
most well-know applications is Automatic Test Pattern
Generation (ATPG) [20, 25, 38]. Other applications in

testing include delay fault testing [7] and redundancy iden-
tification and elimination [17].

Besides testing, SAT models have been used in circuit
delay computation [28, 36], FPGA routing [29, 30], logic
synthesis [12] and, recently, in crosstalk noise analysis [8].
SAT models have also been used for functional vector
generation [13].

With respect to circuit verification, SAT models have
found several applications. Combinational equivalence
checking can easily be cast as an instance of SAT, and dif-
ferent approaches have been proposed [16, 19, 26]. Addi-
tional work has included processor verification [6] and
bounded model checking [5].

SAT can also be used for solving linear integer opti-
mization problems [3], with immediate potential applica-
tions in solving covering problems [9], in computing
prime implicants of Boolean functions [22] and in physical
design problems [35]. An example of a SAT-based cover-
ing algorithm is described in [23].

4 Algorithms for Satisfiability

Over the years several approaches have been proposed
for solving SAT, including local search [32], backtrack
search [11], continuous formulations [33] and algebraic
manipulation [15, 34]. Of these, only backtrack search has
proven useful for solving instances of SAT from EDA
applications, in particular for applications where the
objective is to prove unsatisfiability. In this section we
review modern backtrack search algorithms for SAT and
describe recent extensions of the recursive learning para-
digm [19] to solving SAT.

4.1  Backtrack Search

The overall organization of a generic backtrack search
SAT algorithm is shown in Figure 2. This generic SAT
algorithm captures the organization of several of the most
competitive algorithms [4, 27, 42]. The algorithm con-

Figure 1: Example circuit and CNF formula
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(a) Consistent assignments

(b) With property z 0=

Gate type Gate function ϕ x 

AND

NAND

OR

NOR

NOT

BUFFER

Table 1: CNF formulas for simple gates
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x NOR w1 … wj, ,( )=
wi¬ x¬+( )
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∏ wi x+
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⋅

x NOT w1( )= x w1+( ) x¬ w1¬+( )⋅

x BUFFER w1( )= x¬ w1+( ) x w1¬+( )⋅

// Input arg: Current decision level d
// Output arg: Backtrack decision level 
// Return value: SATISFIABLE or UNSATISFIABLE
//
SAT (d, & )
{

if (Decide (d) != DECISION)
return SATISFIABLE;

while (TRUE) {
if (Deduce (d) != CONFLICT) {

if (SAT (d + 1, ) == SATISFIABLE)
return SATISFIABLE;

else if (  != d || d == 0) {
Erase (d); return UNSATISFIABLE;

}
}
if (Diagnose (d, ) == CONFLICT) {

return UNSATISFIABLE;
}

}
}

β

β

β

β

β

Figure 2: Generic backtrack search SAT algorithm
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ducts a search through the space of the possible assign-
ments to the problem instance variables. At each stage of
the search, a variable assignment is selected with the
Decide() function. A decision level d is associated with
each selection of an assignment. Implied necessary assign-
ments are identified with the Deduce() function, which
in most cases corresponds to straightforward derivation of
implications [10, 41]. Whenever a clause becomes unsatis-
fied the Deduce() function returns a conflict indication
which is then analyzed using the Diagnose() function.
The diagnosis of a given conflict returns a backtracking
decision level , which denotes the decision level to
which the search process is required to backtrack to. The
Erase() function clears implied assignments that result
from each assignment selection. Different organizations of
SAT algorithms can be modeled by this generic algorithm.
Currently, all of the most efficient SAT algorithms [4, 27,
42] are characterized by several of the following key prop-
erties:
1. The analysis of conflicts can be used for implementing

Non-chronological Backtracking search strategies.
Hence, assignment selections deemed irrelevant can be
skipped over during the search [4, 27, 42].

2. The analysis of conflicts can also be used for identifying
and recording new implicates of the Boolean function
associated with the CNF formula. Clause Recording
plays a key role in recent SAT algorithms, but in most
cases large recorded clauses are eventually deleted [4,
27, 42].

3. Other techniques have been developed. Relevance-
Based Learning [4] extends the life-span of large
recorded clauses that will eventually be deleted.
Conflict-Induced Necessary Assignments [27] denote
assignments to variables which are necessary for
preventing a given conflict from occurring again during
the search.

Before running the SAT algorithm, different forms of
preprocessing can be applied [27]. This in general is
denoted by a Preprocess() function.

The techniques that characterize modern backtrack
search SAT algorithms are based on the ability to analyze
the causes of conflicts during the search and deriving
explanations for those conflicts. For example, let us con-
sider the example circuit of Figure 3, where  and

, and  is assigned value 1. Clearly, this assign-

ment yields a conflict, since  and  are both assigned
value 0, and these assignments are inconsistent with the
assignment of node . This conflict will hold as long as
the assignments ,  and  hold.
Hence, in order to prevent this conflict at least one of the
assignments must be complemented. As a result, the
clause  can be derived.

4.2  Recursive Learning

Recursive learning has been extensively used in
EDA [19]. Moreover, in [26] the recursive learning para-
digm has been extended to CNF formulas. Next, we
briefly describe how this can be done in practice.

For any clause ω in a CNF formula ϕ to be satisfied,
at least one of its yet unassigned literals must be assigned
value 1. Recursive learning on CNF formulas consists of
studying the different ways of satisfying a given selected
clause and identifying common assignments, which are
then deemed necessary for the clause to become satisfied
and consequently for the instance of SAT to be satisfiable.
Clearly, and because conflict diagnosis can also be imple-
mented, each identified assignment needs to be adequately
explained. Consequently, with each identified assignment
a clause that describes why the assignment is necessary is
created. Let us consider the example CNF formula of Fig-
ure 4. In order to satisfy clause ω3, either  or

. Considering each assignment separately leads to
the implied assignment ; for  due to  and
for  due to . Hence, the assignment  is
necessary if the CNF formula is to be satisfied. One suffi-
cient explanation for this implied assignment is given by
the logical implication ,
which can be represented in clausal form as .
Consequently, this clause represents a new implicate of the
Boolean function associated with the CNF formula and so
it can be added to the CNF formula. This new clause also
implies the assignment  as long as  and

, as intended. As with recursive learning for combi-
national circuits, recursive learning for CNF formulas can
be generalized to any recursion depth. The proposed recur-
sive learning algorithm is further detailed in [26].

Observe that our proposed recursive learning proce-
dure derives and records implicates of the function associ-
ated with the CNF formula. Clearly, these implicates
prevent repeated derivation of the same assignments dur-
ing the subsequent search. In contrast, the recursive learn-
ing procedure developed for combinational circuits [19]
only records necessary assignments. Hence, when used as

β
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Figure 3: Example circuit
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Figure 4: Recursive learning on clauses

w 1=
y 1=

x 1= w 1= ω1
y 1= ω2 x 1=

z 1=( ) u 0=( )∧ x 1=( )⇒
z¬ u x+ +( )

x 1= z 1=
u 0=



Accepted for presentation at DAC 2000

part of a search algorithm, the original recursive learning
procedure might eventually re-derive some of the already
derived necessary assignments. 

5 Solving SAT on Combinational Circuits

It is generally accepted that the utilization of CNF
models and SAT algorithms has important advantages:
1. Existing, and extensively validated SAT algorithms, can

be used instead of dedicated algorithms.
2. New improvements and new SAT algorithms can be

easily applied to each target application. 
In contrast, the utilization of CNF formulas and asso-

ciated SAT algorithms is also characterized by several
drawbacks:
1. As observed in [39], the structural information of the

circuit, often of crucial importance, is lost.
2. In many EDA problems, a large number of instances of

SAT has to be solved for each circuit. Hence, mapping a
given problem description into SAT can represent a
significant percentage of the overall running time [25].

3. Computed input patterns are in general overspecified.
Overspecification can be a serious drawback in different
applications, including circuit testing and binate
constraint solving.

With the purpose of addressing these problems, in
[39, 40] a new dynamic data structure, i.e. an extended
implication graph, is proposed for solving instances of
SAT in combinational circuits. Despite the promising
results of [39, 40], utilizing a new data structure requires
dedicated algorithms. Hence new search pruning tech-
niques, developed for example in the context of SAT algo-
rithms, will have to be adapted to the circuit graph data
structure.

In this section we illustrate how to utilize structural
information in SAT algorithms [37]. To a generic SAT
algorithm we add a layer that maintains circuit-related
information, e.g. fanin/fanout information as well as value
justification relations. The proposed approach allows
using any SAT algorithm to which this layer can be added.
The main advantages of the proposed approach is that
some of the previously mentioned drawbacks, i.e. inacces-
sibility to structural information and overspecification of
input patterns, are eliminated. The main contribution over
the work of [39] is that data structures used for SAT need
not be modified, and so existing algorithmic solutions for
SAT can naturally be augmented with the proposed layer
for handling structural information. Moreover, the
approach proposed in this paper is significantly simpler
than the one in [39], since only minor modifications to
SAT algorithms are required.

Let  denote a property of a combinational circuit C
which is to be satisfied to an objective value o. This satisfi-
ability problem is denoted by  and can be mapped
into an instance of SAT, . The following information is

associated with each variable x of ϕ, that also represents a
circuit node x of :
1.  denotes the fanin nodes of x.
2.  denotes the set of fanout nodes of x.
3.  denotes the threshold value on the number of

suitable assigned inputs (of x) that are necessary for
justifying value v on node x.

4.  denotes the actual counter of assigned inputs (of x)
that are involved in justifying the value v on node x. 

Note that the value assigned to each variable x is
denoted by . Moreover, observe that each circuit node
x, with assigned value v, becomes justified whenever

.
Table 2 contains a few examples of threshold values

on the number of assigned inputs required for justifying a
given node. For example, for an AND gate at least one
input assigned value 0 justifies the assignment of value 0
to x, whereas for value 1 all inputs must be assigned value
1. Hence,  and . As another
example, observe that for an XOR gate justification of any
assigned value requires assignments to all gate inputs;
hence . For other simple gates
this information can also be easily derived, and in all cases
we have .

For any simple gate with output x, we can associate
with each fanin node w the counters that must be updated
as the result of assigning a value v to w. For example, for
an AND gate an assignment of 0 to a fanin node w incre-
ments  by 1, and an assignment of 1 to fanin node w
increments  by 1. These relations are illustrated in
Table 3 for a few example gates. Note that for the XOR
gates, both counters are updated when an input node
becomes assigned.

As with standard search algorithms in combinational
circuits [1], a justification frontier is maintained, which
denotes the sets of variables/nodes that require justifica-

Cp

Cp o,〈 〉
ϕ

C
FI x( )
FO x( )
υv x( )

ι v x( )

ν x( )

ι v x( ) υv x( )≥

Gate

1

1

1

Table 2: Threshold values on assigned inputs

υ0 x( ) υ1 x( )

x AND w1 … wk, ,( )= FI x( )

x NAND w1 … wk, ,( )= FI x( )

x NOR w1 … wk, ,( )= FI x( )

x XOR w1 … wk, ,( )= FI x( ) FI x( )

υ0 x( ) 1= υ1 x( ) FI x( )=

υ0 x( ) υ1 x( ) FI x( )= =

υ0 x( ) υ1 x( ), 1 FI x( ),{ }∈

ι 0 x( )
ι 1 x( )

Gate

, , 

Table 3: Justification counters associated with gate inputs

wi 0= wi 1=

x AND w1 … wk, ,( )= ι 0 x( ) ι 1 x( )

x NAND w1 … wk, ,( )= ι 1 x( ) ι 0 x( )

x NOR w1 … wk, ,( )= ι 1 x( ) ι 0 x( )

x XOR w1 … wk, ,( )= ι 0 x( ) ι 1 x( ) ι 0 x( ) ι 1 x( )
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tion. Observe that the condition that indicates the need for
node justification is , where

.
Given the previous definitions, a SAT algorithm can

be adapted so that the information regarding justification
can be properly maintained. Moreover, the fanin informa-
tion can be used for implementing structure-based heuris-
tic decision making procedures, e.g. simple or multiple
backtracing [1]. With respect to the algorithm of Figure 2,
functions Deduce() and Diagnose() have to invoke
dedicated procedures for updating node justification infor-
mation. Additionally, the Decide() function now tests
for satisfiability by checking for an empty justification
frontier instead of checking whether all clauses are satis-
fied. These are the only required modifications to the gen-
eral SAT algorithm. In addition, the Decide() function
can optionally be modified to perform backtracing given
the fanin information associated with each variable.

We should note that the data structures described
above operate in much the same way as justification works
in combinational circuits [1]. The main difference is that in
our approach justification and value consistency are for-
mally dissociated; value consistency is handled by the SAT
algorithm and justification by the new added layer.

Moreover, we should observe that by taking into
account the circuit structure information, the recursive
learning procedure described in Section 4.2 can be made
simpler, since only clause justifications of nodes in the
fanin of a given unjustified node need to be considered.

6 Recent Work

Recent research work on SAT algorithms has included
equivalency reasoning [21] and randomization with
restarts [14]. Both approaches show great promise for
EDA applications.

Equivalency reasoning targets the simplification of
CNF formulas, either before or during the search, its main
objective being the identification of equivalency clauses

, that indicate that x and y must
always be assigned the same value. Hence, variable y can
be replaced by variable x, and one variable is eliminated.

Randomization [21] can be viewed as the process of
introducing a certain degree of uncertainty in selecting
branching variables and values during the search. The
addition of randomization allows for repeatedly restarting
the search each time a given limit number of decisions is
reached. Restarts with randomization allow searching dif-
ferent regions of the search space and have been shown to
yield dramatic improvements on satisfiable instances.

With respect to SAT algorithms for EDA applications,
recent work has also attempted to exploit the fact that in
many applications SAT solvers tend to be used iteratively
and/or incrementally. Specific techniques for the iterative
use of SAT algorithms [25] or the incremental formulation

of problem instances [18] have been proposed.
Finally, the interest of the EDA community in solving

SAT has led to the proposal of dedicated reconfigurable
hardware architectures [2, 43] that, despite being signifi-
cantly less sophisticated than software algorithms, can
achieve significant speedups for specific classes of
instances.

7 Conclusions

This paper surveys applications of SAT models to
EDA applications, and briefly describes the core tech-
niques that characterize modern SAT solvers, capable of
solving large and hard instances of SAT. In addition, the
paper describes different recently proposed techniques,
that show promise for EDA applications. Among these, we
address the extension of recursive learning to CNF formu-
las, adapting SAT solvers to combinational circuits, equiv-
alency reasoning and randomization.

Despite the large number of practical EDA applica-
tions that can be mapped into SAT instances, and despite
the improvements in the effectiveness of SAT algorithms,
SAT is an NP-complete problem. Most (if not all) SAT
solvers are still unable to solve many practical problem
instances, many of these from EDA applications. The
recent increase in the number of EDA applications utiliz-
ing SAT models further motivates a continuing effort
towards improving SAT algorithms. 
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