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Abstract This paper presents a unified account of a number of dual category equiva-
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Boolean topological bounded distributive lattices and the category of ordered sets.
By combining these dualities we obtain new insights into canonical extensions of
distributive lattices.
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1 Introduction

The purpose of this paper is to provide a fresh perspective on canonical extensions
of distributive lattices by studying several natural categories of structures and the
connections between them. What these categories have in common is that each is
generated by an object based on the two-element set {0, 1}, viewed as an ordered
set, a lattice, or a complete lattice, and with or without the discrete topology. Many
of these categories have undergone, over a period of about 70 years, a number of
reincarnations. Their appearance, in different guises and playing a variety of roles,
is indicative of the interest that they have provoked from researchers in diverse
fields. The present reappraisal has been prompted by developments in the theory
of canonical extensions, specifically for distributive lattice expansions (DLEs); by a
DLE we mean an algebra that is a distributive lattice with additional operations. In
the course of our review we are able to fit a duality first obtained by Banaschewski [2]
into a general scheme. Banaschewski’s duality was later revisited by Choe [7], who
derived it by a method different from Banaschewski’s, but it still seems to be less well
known than it deserves to be.1

To set this paper in context, let us begin with a brief historical review. Canonical
extensions, for Boolean algebras with operators (BAOs), originated in the classic
work of Jónsson and Tarski [37]. Their work was principally motivated by their
interest in relation algebras, and the import of their work for the relational (Kripke
frame) semantics of modal and other logics has only been fully recognised relatively
recently; see, for example, [5], pp. 41, 328 and also Jónsson’s comments in his survey
article [36], p. 245. In the same article (see p. 211), Jónsson makes explicit the
connection between canonical extensions for Boolean algebras and M. H. Stone’s
topological duality: one may view canonical extensions as providing a way to cast
Stone duality for Boolean algebras in purely algebraic terms. Here it should be
remembered that the introduction of topological methods into algebra was not
universally embraced: Stone’s maxim “one must always topologize” was, prior to the
1970s, at worst antipathetic and at best unnatural to some of those studying lattice-
ordered algebraic structures. The restriction to algebras with a Boolean algebra
reduct, rather than on those having a distributive lattice reduct persisted until the
mid 1990s. Then Jónsson and Gehrke published a series of papers, culminating
in [25], showing that the canonical extensions methodology could be extended very
successfully to the distributive-lattice setting and so greatly extending the range of
logics to which it could be applied. It was also shown by Gehrke and Harding [23]
that the theory of Galois connections could be exploited to define, and abstractly
to characterise, canonical extensions of (bounded) lattices. Finally, an extension
to poset expansions has been developed by Dunn, Gehrke and Palmigiano [21].
However, since the variety of distributive lattices is generated by a single finite
algebra whereas the variety of lattices is not, it is not surprising that the distributive
case yields a richer theory, at least as regards its connections, through various

1Since the submission of the first version of this paper we have learned that the Banaschewski
duality, and its relationship to Priestley duality, was also found independently in the 1990s by Gehrke
(unpublished manuscript).
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dualities, with other structures. We shall henceforth in this paper work exclusively
with lattices that are distributive. On the other hand, the presence or absence of
universal bounds for these lattices is not a major issue, since the theory can be
adapted to accommodate either situation.

From the point of view of logic, the significance of canonical extensions is that
they provide a natural route to complete relational semantics for many propositional
logics; see for example [22, 26, 44]. A variety V of algebraic models, usually obtained
as the Lindenbaum–Tarski algebras of a logic L, is considered. A class V+ of concrete
algebras is then constructed so that each A ∈ V embeds in an algebra Aσ ∈ V+;
under quite weak assumptions, this leads to a covariant functor from V into V+.
The variety V is said to be canonical if Aσ ∈ V, for all A ∈ V, that is, if the algebraic
laws of V are preserved under canonical extension. If this is the case, it is possible
to move via a contravariant functor from V+ to a category of relational frames, on
which the laws of V can be captured, in an algorithmic way, by first-order definable
properties. By adding topology on the dual (frame) side, it is in many instances
possible to capture from the frames not just the class of concrete algebras in V
but also the original variety V. In this situation one has a topological duality for
V; this sits on top of Priestley duality [41] for the underlying lattices. Many dualities
for varieties of distributive-lattice-based algebras studied for their intrinsic algebraic
interest, although originally derived by somewhat ad hoc methods, do in fact fit into
this general scheme. In summary, canonical extensions provide, in the setting of
canonical varieties of distributive lattice expansions at least, a uniform method for
deriving dual category equivalences.

We have not specified how the canonical extension of a DLE is to be defined.
Traditionally this is done in two stages (we note that [33], which exploits the theory of
natural dualities, provides a rare exception to date). At the first stage, an appropriate
lattice completion Aσ of the lattice reduct of any A ∈ V is defined. One way to obtain
Aσ is to take it to be the lattice of all down-sets of the Priestley dual space X of A,
where A is (isomorphic to) the lattice of all clopen down-sets of X. (We note that Aσ

can in fact be defined constructively, contrary to what the above description might
suggest; see Section 4.) This stage of the process, carried out within the category
of distributive lattices, works extremely smoothly. It can, in a very natural way, be
made functorial, and the (covariant) functor σ is a reflector. At the second stage the
non-lattice basic operations are extended to the completion. The way this process
is traditionally approached owes much to the subject’s roots in modal logic. The
unary modality ♦ preserves 0 and ∨ and, dually, � preserves 1 and ∧. For a ♦
operation, the extension can be defined in such a way that it preserves arbitrary
joins (likewise, coordinatewise, for multimodal operations), and this is just what is
wanted to set up relational frames; see Goldblatt’s classic paper [31] or Section 2
of [28]. For operations of other types—and stronger properties may be at least
as problematic as weaker ones (see [27], for example)—it is less obvious how the
extensions should be defined. However it is usually feasible to do this, and to do it
in a way that is (covariantly) functorial. But even when the extended operations are
suitably fixed, the algebraic laws holding in the initial variety may fail to hold on
canonical extensions. Thus canonicity may be thwarted, but this happens only at the
second stage of the two-stage process we have outlined. We draw attention here to an
interesting recent paper by Goldblatt [32]; this is framed in terms of modal operators
on Boolean algebras, but the ideas are applicable more widely.
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We have indicated above that the lattice operations are not treated on a par
with the non-lattice operations as regards canonical extensions of DLEs; the former
have a distinguished role. Expressed another way, the structures arising as canonical
extensions of distributive lattices provide the common platform on which the theory
of canonical extensions for all DLEs is built. From a categorical perspective, these
structures have quite admirable properties, which do not in general persist once we
move from distributive lattices to varieties of DLEs. In addition, structures arising
in this manner have, as we indicate below, a multitude of equivalent descriptions
and can be characterised in a correspondingly large number of ways, some of which
involve topology. They have also arisen in the past in a variety of contexts, most of
them far removed from canonical extensions.

Already in the 1950s algebra and topology had been brought together, when
work of A. D. Wallace and others initiated the study of topological algebras, and
in particular topological lattices (concerning the latter, we note also Papert Strauss’s
paper [40]). A paper of Numakura [39] revealed a link between topological algebras
whose topology is Boolean (that is, compact zero-dimensional) and profiniteness.
This area of investigation was subsequently sidelined, when the development of the
theory, first of continuous lattices, and later a more general theory of domains, caused
interest to shift from topological lattices to topological semilattices. Thus two primary
references on the interaction of topology and order, [29] and its successor [30],
contain relatively little material overlapping with that we present here. On the other
hand, as its list of authors may indicate, the presentation in this paper owes much to
the theory of natural dualities for quasi-varieties of algebras, for which [8] provides
a comprehensive basic reference. We would like to acknowledge the contribution
made by M. Ploščica who with M. Haviar rediscovered Banaschewski’s duality in the
mid-1990s which later initiated our investigations.

The paper is organised as follows. In the next section we make explicit the
isomorphism between two categories central to our investigation. In the following
one we use this isomorphism to give a direct proof of Banaschewski’s duality
between the category of Boolean topological bounded distributive lattices and the
category of ordered sets. Our proof follows similar lines to that of Choe [7] but is
more overtly lattice-theoretic. We see in particular how this duality may be seen
as relating to Priestley duality by a swap of topology from the category on one
side of a dual equivalence to that on the other. This process is explored in much
greater generality in [11]. Finally, in Section 4, we use the same isomorphism, but
in the opposite direction, to show how canonical extensions of distributive lattices
can be viewed from a purely topological standpoint and from the standpoint of a
profinite completion.

2 Boolean Topologies and Completeness

We shall make use of a number of different structures based on the set 2 := {0, 1}.
In particular,

2 := 〈{0, 1}; ∨,∧〉, 2∼ := 〈{0, 1};�, 0, 1〉 and 2T := 〈{0, 1};T〉
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denote, respectively, the two-element lattice, the two-element bounded ordered set
with 0 < 1 and the two-element discrete space. The topological structures 2T and 2∼T

are obtained by adding the discrete topology T to 2 and 2∼, respectively.
A Boolean topological lattice is a lattice whose underlying set is endowed with

a Boolean topology with respect to which the binary operations ∨ and ∧ are
continuous. (Throughout the paper, in the expression ‘Boolean topological lattice,’
the adjective ‘Boolean’ refers to the topological structure rather than the lattice
structure.) The following lemma of Numakura shows that Boolean topological
distributive lattices arise as closed sublattices of powers of 2T . (It also follows from
more general results on the axiomatisation of topological quasi-varieties proved by
Clark et al. [9, Example 5.1].)

Lemma 2.1 (Numakura [39, Theorem 2]) Every closed sublattice of a power of 2T

is a Boolean topological distributive lattice. Conversely, every Boolean topological
distributive lattice is isomorphic to a closed sublattice of a power of 2T .

A non-empty subset K of a complete lattice L is called a complete sublattice of L
if it is closed under joins and meets (taken in L) of arbitrary non-empty subsets. If,
in addition, 0L ∈ K and 1L ∈ K, then we say that K is a complete 0,1-sublattice of L.
Let A be a subset of 2S, for some set S. The topological closure of A in 2S

T will be
denoted by A. Throughout this paper, we will use the elementary fact that, for all
x ∈ 2S, we have x ∈ A if and only if x is locally in A, that is, for every finite subset T
of S, there exists a ∈ A with x�T = a�T . We shall write J � S to indicate that J is a
finite subset of S, and the constant maps in 2S onto 0 and 1 will be denoted bŷ0 and
̂1, respectively.

Lemma 2.2 Let L be a sublattice of a Boolean topological distributive lattice X.

(a) The underlying lattice of X is complete.
(b) For all x ∈ X, the following are equivalent (with the joins and meets calculated

in X):

(1) x ∈ L;
(2) x = ∨{∧

Ai | i ∈ I }, for some non-empty set I and non-empty subsets Ai

of L;
(3) x = ∧{∨

Ai | i ∈ I }, for some non-empty set I and non-empty subsets Ai

of L.

(c) L is the complete sublattice of X generated by L.
(d) L is a closed sublattice of X if and only if L is a complete sublattice of X.
(e) The closure A of a filter A in X is ↑∧

A, and dually for an ideal.

Proof By Lemma 2.1, we may assume that X is a closed sublattice of 2S
T , for some

non-empty set S. We begin by proving that L is a complete sublattice of 2S. This will
follow easily once we prove that:

∅ 	= A ⊆ L =⇒ ∨

A ∈ L &
∧

A ∈ L. (∗)
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Let A be a non-empty subset of L. We shall prove that x := ∧

A is locally in L. Let
T � S and define

T0 := { s ∈ T | x(s) = 0 } and T1 := { s ∈ T | x(s) = 1 }.
Assume that T0 is non-empty, and choose s ∈ T0. Since x = ∧

A, there exists as ∈ A
with as(s) = 0. Define b := ∧{ as | s ∈ T0 }. Clearly, b ∈ L and x�T0

=̂0�T0
=b�T0

. As
b � x, we also have x�T1

= b�T1
, and so x�T = b�T . If T0 is empty, then x�T =̂1�T .

So, if we choose b to be any element of A, we have b � x and hence x�T = b�T .
Therefore

∧

A is locally in L. Dually,
∨

A is also locally in L.
It is an easy exercise to prove that the closure of a subalgebra of a topological

algebra is again a subalgebra. Thus, L is a closed sublattice of 2S
T . By applying Eq. ∗

to X and L in turn we conclude at once that X is a complete sublattice of 2S and that
L is a complete sublattice of X. Thus (a) holds.

We now show that (b) holds. To prove (1) ⇒ (2), assume that x ∈ L. If x =̂0,
then, since x is locally in L, for each J � S there exists aJ ∈ L with aJ(s) = 0, for
all s ∈ J. Thus x = ∧{ aJ | J � S }, as required. By duality, we may assume that x /∈
{̂0,̂1}. Hence, the sets

S0 := { s ∈ S | x(s) = 0 } and S1 := { s ∈ S | x(s) = 1 }
are non-empty. Let J � S0 and K � S1. As x is locally in L, there exists aJ,K ∈ L with
aJ,K(s) = 0, for all s ∈ J, and aJ,K(s) = 1, for all s ∈ K. A simple calculation shows that

x =
∨

{
∧

{ aJ,K | J � S0 }
∣

∣

∣ K � S1

}

,

as required. By duality, we also have (1) ⇒ (3). Since L is a complete sublattice of 2S

containing L, the remaining implications, (2) ⇒ (1) and (3) ⇒ (1), follow at once.
Parts (c) and (d) follow easily from (b). Finally, consider (e). Note that, by (b),

applied with L = A, and the fact that A is an up-set, we have that

A =
{

∧

B
∣

∣

∣ ∅ 	= B ⊆ A
}

.

It follows immediately that A ⊆ ↑∧

A. In the other direction, take x � ∧

A. By
Lemma 2.1 and (d), we have that ∨ in X distributes over

∧

. Hence

x = x ∨
∧

A =
∧

{ x ∨ a | a ∈ A }.
Since x ∨ a ∈ A, for each a ∈ A, we have x ∈ A. ��

Lemma 2.3 Let L be a Boolean topological distributive lattice. Then the topology on
L agrees with the interval topology, that is, F := { ↑a | a ∈ L } ∪ { ↓a | a ∈ L } is a sub-
basis for the closed subsets of L.

Proof Let a ∈ L. Since ↑a is a complete sublattice of L, it is topologically closed in
L, by Lemma 2.2(d). Dually, ↓a is closed in L. Thus, F is a family of closed subsets
of L.

By Lemma 2.1, we may assume that L is a closed sublattice of 2S
T , for some

set S. Let s ∈ S, let i ∈ {0, 1} and consider the set Us,i := { a ∈ L | a(s) = i }. Since L is
closed under pointwise joins, Us,0 has a largest element, say as, and Us,0 = ↓as. Thus,
Us,0 ∈ F . Similarly, Us,1 ∈ F . By the definition of the product topology, the family of
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all non-empty subsets of L of the form Us,i, for s ∈ S and i ∈ {0, 1}, is a sub-basis for
the closed subsets of L, whence the result follows. ��

The following lemma, which is an immediate corollary of the previous one,
complements Lemma 2.1.

Lemma 2.4 Let L be a lattice isomorphic to a complete sublattice of a power of 2.
When endowed with the interval topology, L becomes a Boolean topological distribu-
tive lattice.

By Lemma 2.2(d), working with topologically closed sublattices of powers of 2T

is equivalent to working with complete sublattices of powers of 2. The following
often-rediscovered characterisation of such complete lattices dates in part to the
early 1950s, when Raney [42, 43], Balacharandran [1] and Büchi [6] each identified
some of the equivalences. More comprehensive lists of equivalences were recorded
by Davey [10] and Erné [16] (cf. also Hofmann and Mislove [34]). For a proof of the
theorem (and the missing definitions) see Theorem 10.29 of Davey and Priestley [12].
No fully satisfactory name has ever been devised for the members of the important
class of lattices the theorem describes. However we note that the term superalgebraic
is quite commonly used in the more recent literature.

Theorem 2.5 Let L be a lattice. The following are equivalent:

(1) L is isomorphic to a complete sublattice a power of 2S;
(2) L is isomorphic to a complete lattice of sets;
(3) L is isomorphic to the lattice O(P) of all down-sets of some ordered set P;
(4) L is algebraic and completely distributive;
(5) L is distributive and doubly algebraic (i.e. both algebraic and dually algebraic);
(6) L is algebraic, distributive and every element of L is a join of completely join-

irreducible elements of L;
(7) L is complete, satisfies the join-infinite distributive law and every element of L is

a join of completely join-irreducible elements of L;
(8) L is complete and every element of L is a join of completely join-prime elements

of L;
(9) the map μL : L → O(J ∞(L)), from L to the lattice of down-sets of the ordered

set of completely join-irreducible elements of L, is an isomorphism.

We remark that much of the content of this section can be seen as related to, or
specialising, more general results concerning continuous and bicontinuous lattices.
In the latter, the unit interval replaces 2T , and compact Hausdorff spaces replace
Boolean ones. Powers of the unit interval (and hence also powers of 2T and their
closed sublattices), are completely distributive, and hence a fortiori complete and
bicontinuous (cf. Papert Strauss [40]). The portmanteau result, Proposition VII-
2.10 [30, Section VII-2], gives a list of nine equivalent characterisations of what
are known as linked bicontinuous lattices. This can be specialised from the setting
of continuous lattices to that of algebraic ones essentially giving Theorem 2.5 as a
corollary. The proof given in [30] draws on much of the theory of continuous lattices
and domains presented elsewhere in the book. (We note that the corresponding
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proposition in [29], Proposition VII-2.9, presents five equivalent conditions rather
than nine.)

Concerning the wider context for Lemma 2.3, we recall that the bicontinuous
lattices are precisely the order-topological ones. That is, they are precisely those
lattices whose order convergence is topological and makes the lattice operations
continuous (cf. Erné [14]). From this it follows that the adherence points of a subset
are the liminfs and limsups of filterbases on that subset. The limits of ultrafilters
relative to order convergence are just the unique limits relative to the interval
topology; hence, a lattice is complete and its interval topology is Hausdorff if and
only if every ultrafilter order converges (cf. Erné and Weck [20]). We do not make
use of these facts subsequently.

Let L be the category whose objects are Boolean topological lattices and whose
morphisms are continuous lattice homomorphisms, and let C be the category whose
objects are doubly algebraic distributive lattices and whose morphisms are complete
lattice homomorphisms (that is, maps that preserves joins and meets of arbitrary non-
empty subsets). We have already seen that L and C are isomorphic at the object level.
We now show that this extends to morphisms. The following lemma is essentially
well known. Indeed, it is known that a map between ordered sets preserves up-
directed joins and down-directed meets if and only if it is continuous with respect
to any topology between the interval topology and the order topology (cf. Erné and
Gatzke [19]). For completeness we include a direct proof based on the preceding
lemmas.

Lemma 2.6 Let L, M ∈ L and let f : L → M be a lattice homomorphism. Then f is
continuous if and only if f is a complete lattice homomorphism.

Proof First, assume that f is continuous. Let ∅ 	= A ⊆ L. We shall prove that
f (

∧

A) = ∧

f (A). Since f is order-preserving, we have f (
∧

A) � ∧

f (A). The
set ↑∧

f (A) is closed in M, by Lemma 2.3, and hence B := f −1(↑∧

f (A)) is closed
in L. Clearly, B is a sublattice of L and A ⊆ B. By Lemma 2.2(c), we have

∧

A ∈ B,
whence f (

∧

A) ∈ ↑∧

f (A). Consequently, f preserves meets of arbitrary non-empty
sets. The proof for joins is dual.

Conversely, suppose that f is a complete lattice homomorphism. Then, for all
a ∈ M, we have that f −1(↑a) is either empty or equal to ↑∧

f −1(↑a) and f −1(↓a) is
either empty or equal to ↓∨

f −1(↓a). It follows immediately from Lemma 2.3 that f
is continuous. ��

We have established the following basic result.

Theorem 2.7 The categories L of Boolean topological distributive lattices and C of
doubly algebraic distributive lattices are isomorphic.

It follows almost immediately from this result that the category L01 of Boolean
topological distributive lattices with continuous 0,1-lattice homomorphisms and
the category C01 of doubly algebraic distributive lattices with complete 0,1-lattice
homomorphisms are also isomorphic.



Boolean lattices and canonical extensions 233

3 Banaschewski’s Duality for L

In 1976, Banaschewski [2] proved that there is a full duality (that is, a dual category
equivalence) between the category L01 of Boolean topological distributive lattices
(with continuous 0,1-preserving lattice homomorphisms) and the category P of
ordered sets. Although Banaschewski’s original paper is difficult to obtain, the
duality can be found in Johnstone’s text [35], where it is established by methods
that are more general than those in [2] and similarly indirect. A more direct,
essentially topological, approach is taken by Choe in [7]. We now sketch a proof of
the corresponding full duality for the category L of Boolean topological distributive
lattices. This approach is closely related to Choe’s, but replaces the category L by its
isomorphic copy C. This replacement has the advantage of showing very clearly how
the result extends the corresponding one for the finite case and reduces the proof to
completely straightforward lattice theory mimicing that required for finite objects.

Recall that 2∼ = 〈{0, 1};�, 0, 1〉 denotes the two-element bounded ordered set
with 0 < 1 and with 0 and 1 as nullary operations. The quasi-variety ISP(2∼) of all
structures of the same type as 2∼ that are isomorphic to substructures of powers of 2∼ is
obviously the class of all bounded ordered sets. Let P01 be the category whose objects
are non-trivial bounded ordered sets and whose morphisms are order-preserving,
0,1-preserving maps.

There are natural contravariant hom-functors D = L(−, 2T) : L → P01 and E =
P01(−, 2∼) : P01 → L. For each object L of L, we define

D(L) := 〈L(L, 2T);�, 0, 1〉 � 2∼
L,

that is, the order and constants 0 and 1 on D(L) are inherited from the pointwise
structure on 2∼L. The functor D is defined on morphisms in the usual way via
composition: for u ∈ L(L, K), define D(u) : D(K) → D(L) by D(u)(x) := x ◦ u, for
all x ∈ L(K, 2T). For each object P of P, we define

E(P) := 〈P01(P, 2∼); ∨, ∧,T〉 � 2P
T,

that is, E(P) inherits its operations from the pointwise operations on 2P and its
topology from the product topology on 2P

T . It is a very easy exercise to see that the
homset P01(P, 2∼) is a closed subset of 2P

T , whence E(P) belongs to L. Again, E is
defined on morphisms in the usual way via composition: for ϕ ∈ P01(P, Q), define
E(ϕ) : E(Q) → E(P) by E(ϕ)(α) := α ◦ ϕ, for all α ∈ P01(Q, 2∼). It is very easy to see
that E(ϕ) preserves ∨ and ∧. In fact E(ϕ) preserves arbitrary non-empty joins and
meets, because these are defined pointwise and the codomain is finite. So E(ϕ) is a
C-morphism. It is equally easy to show directly that E(ϕ) is continuous, using the fact
that the subbasic open sets in E(P) are of the form Ua,i := {α ∈ P01(P, 2∼) | α(a) = i },
with a ∈ P and i ∈ {0, 1}.

As in the case of the Birkhoff duality for finite distributive lattices [4], there are
alternative internal descriptions of these functors.

Lemma 3.1 Let L ∈ L and let P ∈ P01. Then D(L) is dually order-isomorphic to
the ordered set J ∞(L)

.∪ {0, 1} of completely join-irreducible elements of L with
new bounds adjoined, and E(P) is dually order-isomorphic (and therefore dually
isomorphic as a complete lattice) to the lattice O(P\{0, 1}) of down-sets of P with its
bounds removed.
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Proof Begin by replacing the category L by the isomorphic category C. Now let L ∈
C and let P ∈ P01. A non-constant map x : L → 2 is a complete lattice homomorph-
ism if and only if it is the characteristic function of ↑a for some completely join-prime
element a ∈ L. Since L satisfies the join-infinite distributive law (by Theorem 2.5
above), a ∈ L is completely join-prime if and only if it is completely join-irreducible.
Thus, C(L, 2) is dually order-isomorphic to the ordered set J ∞(L)

.∪ {0, 1}. Similarly,
a map α : P → 2 is order-preserving if and only if it is the characteristic function
of P\A, for some down-set A of P. Thus, P01(P, 2∼) is dually order-isomorphic
to the lattice O∗(P) of non-empty proper down-sets of P, which, since P is non-
trivial, is order-isomorphic to the lattice O(P\{0, 1}) of down-sets of P with its
bounds removed. ��

For every L ∈ L and P ∈ P01, we define the evaluation maps ηL : L → ED(L)

and εP : P → DE(P) in the usual way. For a ∈ L, x ∈ D(L) and p ∈ P, α ∈ E(P),
we define

ηL(a)(x) := x(a) and εP(p)(α) := α(p).

It is easy to verify that ηL and εP are morphisms in the categories L and P01,
respectively.

Lemma 3.2 The maps ηL and εP are isomorphisms, for all L ∈ L and P ∈ P01.

Proof Again, we replace the category L by the isomorphic category C. With the
various characterisations of the objects in C provided by Theorem 2.5, and with
Lemma 3.1 in hand, the proof is a simple modification of the proof in the finite case
as given, for example, in Davey and Priestley [12]: replace join-irreducible and join-
prime elements by completely join-irreducible and completely join-prime elements,
and replace applications of the distributive law by the join-infinite distributive law.
Below we indicate the steps involved.

Under the correspondence provided by Lemma 3.1, the map ηL : L → ED(L)

corresponds to the map μL : L → O(J ∞(L)) defined in (9) of Theorem 2.5. Thus,
since L ∈ C, we are done by (1) ⇒ (9) of Theorem 2.5. (A direct proof that μL is
an isomorphism follows the lines of the proof of Theorem 5.12 in [12].) Similarly,
the map εP : P → DE(P) corresponds to the map ξP : p �→ ↓p from P \ {0, 1} to the
ordered set J ∞(O(P\{0, 1})). The proof that ξP is an order-isomorphism is easy and
follows the lines of the proof of Theorem 5.9 in [12]. ��

Very easy calculations, analogous to those in [13, proof of 1.5], show that both η :
idL → ED and ε : idP01 → DE are natural transformations. Thus, we have proved a
variant of Banaschewski’s duality for the category of Boolean topological distributive
lattices. Completely trivial modifications to these arguments yield a direct proof of
Banaschewski’s original duality between the categories L01 and P.

Theorem 3.3 (Banaschewski [2]) The functors D and E establish a full duality
between the categories L and P01, and therefore between the categories C and P01.

We remark that the duality between P and L01 and its variants can be obtained
as special instances of a wealth of Stone-type dualities (see, for example, Erné [15,
17, 18]).
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Banaschewski’s duality is very closely related to the corresponding Priestley
duality between distributive lattices and bounded Priestley spaces [41]. As before,
let 2 = 〈{0, 1}; ∨, ∧〉 and 2∼T = 〈{0, 1};�, 0, 1,T〉 be, respectively, the two-element
lattice and the two-element bounded ordered set with the discrete topology. Then
D := ISP(2) is the variety of distributive lattices and the class X01 := IScP

+(2∼T),
consisting of all isomorphic copies of substructures of non-zero powers of 2∼T , is
the class of all non-trivial bounded Priestley spaces. The duality between D and
X01 is given by the contravariant hom-functors H = D(−, 2) : D → X01 and K =
X01(−, 2∼T) : X01 → L (see Clark and Davey [8, 4.3.2] for a brief proof in the setting
of natural dualities). Thus, Banaschewski’s duality can be thought of as coming from
Priestley duality for distributive lattices by swapping the discrete topology T from
the relational side to the algebraic side. Indeed, this is essentially how Banaschewski
obtained his duality.

We remark that, for very many varieties of DLEs, nullary operations 0 and 1 are
included in the type. In such situations we would expect to want to have 0 and 1 on
the algebraic side rather than the relational one (cf. [13, Section 2.8] or [8, Section
4.1]). Consequently we would want to work with P rather than with P01. However
where non-lattice operations of arity greater than one are present it turns out to be
necessary to augment the ordered sets to be used as frames (in the sense the term is
used in Kripke-style relational semantics) by adding universal bounds even when 0
and 1 are operations in the algebraic type; see Martínez [38] for an early recognition
of this awkwardness and also [27]. There are also important varieties of DLEs – the
variety of lattice-ordered groups being an obvious example – in which the underlying
lattices are not bounded. For these reasons we have chosen to put 0 and 1 on the
relational side in our presentation in this section and the preceding one.

4 Boolean Topological Distributive Lattices and Canonical Extensions

The breakthrough whereby the theory of canonical extensions was extended from
the setting of BAOs to that of distributive lattices with operators was made by
Gehrke and Jónsson in [24]. In that paper the construction was explicit, and based on
the dual space of the underlying lattice. Subsequently an abstract definition and char-
acterisation of the canonical extension was found. Gehrke and Harding [23] proved
that every bounded lattice L has a canonical extension and that any two canonical
extensions of L are isomorphic via an isomorphism that fixes the elements of L.
(Earlier, though published later, Gehrke and Jónsson [25] proved the corresponding
facts in the distributive case.) In this section we exploit the abstract characterisation
to give equivalent topological formulations of the conditions involved and thereby
are able to give a number of new descriptions of those complete lattices that, up to
isomorphism, occur as canonical extensions of distributive lattices.

We begin by recalling briefly the necessary definitions. Let L be a sublattice of a
complete lattice C. Then C is called a completion of L. (More generally, if e : L → C
is an embedding of the lattice L into the complete lattice C, then the pair (e, C) is also
called a completion of L.) The completion C of L is said to be dense if every element
of C can be expressed both as a join of meets and as a meet of joins of elements of
L, and C is called a compact completion of L if, for all non-empty subsets A and B
of L, we have

∧

A � ∨

B implies
∧

A0 � ∨

B0, for some A0 � A and B0 � B, or
equivalently, if for every filter A of L and every ideal B of L, we have

∧

A � ∨

B
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implies A ∩ B 	= ∅. A canonical extension of a lattice L is a completion C of L that is
both dense and compact. As noted above, any bounded lattice possesses a canonical
extension, and this is unique up to isomorphism. It is easy to extend this result to
not-necessarily bounded lattices.

We now give an interpretation of the canonical extension of a distributive lattice
in terms of Boolean topological distributive lattices. Let A and B be respectively a
filter and an ideal in a lattice L with A and B disjoint. Then (A, B) is called a filter-
ideal pair.

Theorem 4.1 Let X be a Boolean topological distributive lattice and let L be a
sublattice of X.

(a) The (underlying lattice of ) X is a completion of L.
(b) X is a dense completion of L if and only if L is topologically dense in X.
(c) X is a compact completion of L if and only if, for any filter-ideal pair (A, B), the

topological closures of A and B in X are disjoint.

Proof Parts (a) and (b) are an immediate consequence of Lemma 2.2. We now
prove (c). Assume that X is a compact completion of L. Let A be a filter of L and
B be an ideal of L with A ∩ B 	= ∅. Then Lemma 2.2(e) (applied to X) tells us that
↑X(

∧

A) ∩ ↓X(
∨

B) 	= ∅ and so
∧

A � ∨

B. As X is a compact completion of L,
there exists A0 � A and B0 � B with

∧

A0 � ∨

B0. But
∧

A0 ∈ A and
∨

B0 ∈ B,
and consequently A ∩ B 	= ∅.

Conversely, assume that the members of any filter-ideal pair have disjoint closures.
Let A, B ⊆ L with

∧

A � ∨

B. Let C be the filter of L generated by A and let D
be the ideal of L generated by B. By Lemma 2.2,

∧

A ∈ C and
∨

B ∈ D. Hence
C ∩ D 	= ∅ (note C is an up-set and D is a down-set, by Lemma 2.2(e)). Thus, C ∩
D 	= ∅, by assumption, and so there exists A0 � A and B0 � B with

∧

A0 � ∨

B0.
Thus X is a compact completion of L. ��

Assume that L is a sublattice of 2Z , for some set Z . Then the above theorem
indicates that the topological closure of L in 2Z

T is a natural candidate for a canonical
extension of L. Our next theorem shows that L is a compact extension, and therefore
a canonical extension, of L if and only if a certain topology on the exponent Z is
compact. (Note that we do not require that compact spaces be Hausdorff, that is, in
our usage compact spaces are those which are called quasicompact in [29, 30].)

Theorem 4.2 Let L be a sublattice of 2Z , for some set Z .

(a) For all A, B ⊆ L,
∧

A �
∨

B ⇐⇒
⋃

a∈A

a−1(0) ∪
⋃

b∈B

b−1(1) = Z .

(b) The following are equivalent:

(1) the lattice 2Z is a compact completion of L;
(2) the topology on Z with subbasis {a−1(0) | a ∈ L } ∪ {b−1(1) | b ∈ L } is

compact;
(3) there is a compact topology on Z such that L is a sublattice of the lattice

C(Z , 2T) of continuous maps from Z into 2T .



Boolean lattices and canonical extensions 237

Proof To prove (a), we establish the contrapositive in each direction.

∧

A �

∨

B ⇐⇒ (∃z ∈ Z )
(
∧

A
)

(z) = 1 &
(
∨

B
)

(z) = 0

⇐⇒ (∃z ∈ Z )(∀a ∈ A)(∀b ∈ B) a(z) = 1 & b(z) = 0

⇐⇒ (∃z ∈ Z ) z /∈
⋃

a∈A

a−1(0) ∪
⋃

b∈B

b−1(1).

We now prove (b). Assume that (1) holds. By Alexander’s Subbasis Theorem, to
prove (2) it suffices to show that every cover of Z by subbasic open sets has a finite
subcover. This follows very easily, via two applications of (a), from the fact that 2Z

is a compact completion of L. That (2) implies (3) is trivial. That (3) implies (1) is an
easy consequence, again using two applications of (a), of the compactness of Z and
the continuity of the elements of L. ��

Every distributive lattice L can be represented as a sublattice of the lattice
C(Z , 2T) of continuous maps from a compact space Z into 2T . For example, first
represent L as a sublattice of 2S, for some set S, equip S with the discrete topology,
and then take Z to be the Stone–Čech compactification of S. Alternatively, take Z
to be the Priestley dual of L. Thus, our next result, which is an immediate corollary
of Theorem 4.1(b) and Theorem 4.2(b), provides us with a ready way to obtain
topological structures serving as canonical extensions of a given distributive lattice.
Below, 2Z

T denotes the Z -fold product of 2T (the discretely topologised two-element
lattice); the more correct notation

(

2T

)Z would be rather clumsy.

Theorem 4.3 Assume that Z is a compact topological space and that L is a sublattice
of the lattice C(Z , 2T) of continuous maps from Z into 2T . Then the topological
closure of L in 2Z

T is a canonical extension of L.

Let L be a distributive lattice. When ordered pointwise, the homset D(L, 2) is
a bounded ordered set. Thus P01(D(L, 2), 2∼) is a complete sublattice of 2D(L,2).
Accordingly, a clear choice for Z in the previous theorem is (the underlying
topological space of) the bounded Priestley space

H(L) = 〈D(L, 2);�, 0, 1,T〉 � 2∼
L
T .

This suggests a natural description in terms of homsets of a canonical extension of
a distributive lattice, akin to that available in the more familiar case of bounded
distributive lattices. This description can be recast in terms of the up-sets of the
ordered set of prime filters of L or alternatively in terms of the down-sets of the
ordered set of prime ideals of L. We shall denote the latter set by Ip(L).

Theorem 4.4 Let L be a distributive lattice.

(a) Define the map e : L → P01(D(L, 2), 2∼) by e(a)(x) := x(a), for all a ∈ L and all
x ∈ D(L, 2). Then (e,P01(D(L, 2), 2∼)) is a canonical extension of L.

(b) Define the map e : L → O(Ip(L)) by e(a) := { I ∈ Ip(L) | a /∈ I }. Then
(e,O(Ip(L))) is a canonical extension of L.
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Proof By the previous theorem, to prove (a) we must show that the topological
closure of e(L) in 2D(L,2)

T is P01(D(L, 2), 2∼). It is enough to prove that every
order-preserving, 0,1-preserving map from D(L, 2) to 2∼ is locally an evaluation.
By Priestley duality, the evaluation maps from D(L, 2) to 2 are precisely the
bounded Priestley space morphisms from H(L) to 2∼T . Thus, it suffices to show that
if X is a bounded Priestley space and Y is a finite subset of X, then every order-
preserving, 0,1-preserving map from Y ∪ {0, 1} to 2∼ extends to a continuous, order-
preserving, 0,1-preserving map from X to 2∼T . This is a very easy consequence of the
definition of a Priestley space and also follows from the well-known fact that 2∼T is
injective in the category X01.

The ordered set D(L, 2) is dually order-isomorphic to Ip(L)
.∪ {0, 1}, via the map

x �→ x−1(0), and, for every non-trivial bounded ordered set P, the lattice P01(P, 2∼)

is dually order-isomorphic to O(P\{0, 1}), via the map α �→ α−1(0). That the map
e : L → O(Ip(L)) is an embedding is now an easy consequence of the fact that the
map e from (a) is an embedding. ��

Thus, the formation of canonical extensions of distributive lattices may be viewed
as a hybrid between the Priestley and Banaschewski dualities. The following property
of canonical extensions is an immediate corollary. Let � : X01 → P01 be the forgetful
functor that maps every bounded Priestley space to its underlying ordered set.

Corollary 4.5 (Gehrke and Jónsson [25, 3.2]) The formation of canonical extensions
is functorial from the category D of distributive lattices to the category L of Boolean
topological distributive lattices, or equivalently, to the category C of doubly algebraic
distributive lattices.

Proof By (a) of Theorem 4.4, the lattice E(H(L)�) is a canonical extension of L.
Since H, � and E are functors, the result follows. ��

We close this section by showing how our approach leads to a conceptually
simple proof of the fact, proved for bounded distributive lattices in Bezhanishvili
et al. [3], that the profinite completion and the canonical extension of a distributive
lattice coincide.

Given a distributive lattice L, let SL be the set of all congruences on L of finite
index. For θ1, θ2 ∈ SL with θ1 ⊆ θ2, let ϕθ1θ2 : L/θ1 → L/θ2 be the natural map. Thus,
by ordering the set SL by reverse inclusion and taking these homomorphisms as the
connecting maps, the set of all factor algebras L/θ , for θ ∈ SL, forms an inverse
system in D. The profinite completion of L is defined to be the inverse limit of this
inverse system.

The proof below requires the following well-known description of congruences on
a distributive lattice via Priestley duality. Let L be a distributive lattice. Applying
Priestley duality, we may assume that L = K(X), for some nontrivial bounded
Priestley space X. A subset Y of a bounded ordered set that includes the bounds
will be called a 0,1-subset. For every closed 0,1-subset Y of X, define a congruence
θY on K(X) by

α ≡ β (θY) ⇐⇒ α�Y = β�Y .
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Then the map Y �→ θY is a dual lattice isomorphism between the lattice of closed 0,1-
subsets on X and the lattice of congruences on L = K(X): more generally, see Clark
and Davey [8, 3.2.1]. Moreover, we have H(L/θY) ∼= Y. Thus the set of congruences
of finite index on L = K(X) is given by SL = { θY | Y � X }.

Theorem 4.6 (Bezhanishvili et al. [3]) Let L be a distributive lattice. Then the profinite
completion of L is a canonical extension of L.

Proof Without loss of generality, let L = K(X), for some bounded Priestley space X
(recall that K = X01(−, 2∼T) : X01 → L). The calculations below use two easy facts.
First, that every bounded ordered set P is the direct limit in P01 of its finite 0,1-subsets
(with the order on each subset induced from the order on P), and second, that if M
is a finite distributive lattice, then the Priestley and Banaschewski duals of M differ
only by the removal of the discrete topology: in symbols, D(M) = H(M)�. All of the
direct limits in the next line are calculated in P01.

X� ∼= lim−→
Y�X

Y ∼= lim−→
Y�X

H(L/θY)� = lim−→
Y�X

D(L/θY) ∼= lim−→
θ∈SL

D(L/θ).

Since we now apply the functor E, the inverse limits in the next line are formed in L.

E(X�) ∼= E

(

lim−→
θ∈SL

D(L/θ)

)

∼= lim←−
θ∈SL

ED(L/θ) ∼= lim←−
θ∈SL

L/θ. (†)

As L/θ is finite, for all θ ∈ SL, the underlying lattice of the Boolean topological
lattice lim←−

L
θ∈SL

L/θ is isomorphic to the lattice lim←−
D
θ∈SL

L/θ . Hence, by Eq. †, the

lattice E(X�) is isomorphic to the profinite completion of L. Since, by Theorem 4.4,
E(X�) ∼= E(HK(X)�) = E(H(L)�) is a canonical extension of L, the result follows.

��
Acknowledgement The authors would like to thank the referee for pointing out several connec-
tions between our results and results in related areas.
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