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ABSTRACT

Cloud computing makes datacenter clusters a commodity, po-
tentially enabling a wide range of programmers to develop
new scalable services. However, current cloud platforms do
little to simplify truly distributed systems development. In
this paper, we explore the use of a declarative, data-centric
programming model to achieve this simplicity. We describe
our experience using Overlog and Java to implement a “Big
Data” analytics stack that is API-compatible with Hadoop and
HDFS, with equivalent performance. We extended the system
with complex features not yet available in Hadoop, includ-
ing availability, scalability, and unique monitoring and debug-
ging facilities. We present our experience to validate the en-
hanced programmer productivity afforded by declarative pro-
gramming, and inform the design of new development envi-
ronments for distributed programming.

1. INTRODUCTION

Cluster computing has become a standard architecture for
datacenters over the last decade, and the major online services
have all invested heavily in cluster systems infrastructure (e.g.,
[6,12,15,1,29, 31, 8, 13]). This infrastructure consists of dis-
tributed software that manages difficult issues including par-
allelism, communication, failure, and system resizing. Cluster
infrastructure systems support basic service operation, and fa-
cilitate software development by in-house developers.

The advent of cloud computing promises to commoditize
datacenters by making it simple and economical for third-
party developers to host their applications on managed clus-
ters. Unfortunately, writing distributed software remains as
challenging as ever, which threatens to prevent this new plat-
form from being fully utilized. The right programming model
for the cloud remains an open question.

Current cloud platforms provide conservative, “virtualized
legacy” interfaces to developers, which typically take the form
of traditional single-node programming interfaces in an envi-
ronment of hosted virtual machines and shared storage. For
example, Amazon’s EC2 exposes “raw” VMs and distributed
storage as their development environment, while Google App
Engine and Microsoft Azure provide programmers with tra-
ditional single-node programming languages and APIs to dis-
tributed storage. These single-node models were likely chosen
for their maturity and familiarity, rather than their ability to
empower developers to write innovative distributed programs.

A notable counter-example to this phenomenon is the MapRe-
duce framework popularized by Google [12] and Hadoop [31],

which has successfully enabled a wide range of developers
to easily coordinate large numbers of machines. MapReduce
raises the programming abstraction from a traditional von Neu-
mann model to a functional dataflow model that can be easily
auto-parallelized over a shared-storage architecture. MapRe-
duce programmers think in a data-centric fashion: they worry
about handling sets of data records, rather than managing fine-
grained threads, processes, communication and coordination.
MapReduce achieves its simplicity in part by constraining its
usage to batch-processing tasks. Although limited in this sense,
it points suggestively toward more attractive programming mod-
els for datacenters.

1.1 Data-centric programming in BOOM

Over the last twelve months we have been working on the
BOOM project, an exploration in using data-centric program-
ming to develop production-quality datacenter software.' Re-
viewing some of the initial datacenter infrastructure efforts
in the literature (e.g., [12, 15, 8, 13]), it seemed to us that
most of the non-trivial logic involves managing various forms
of asynchronously-updated state — sessions, protocols, stor-
age — rather than intricate, uninterrupted sequences of oper-
ations in memory. We speculated that the Overlog language
used for Declarative Networking [25] would be well-suited to
those tasks, and could significantly ease the development of
datacenter software without introducing major computational
bottlenecks. Overlog looked promising for our setting: there
is pre-existing code for network protocol specification, it has
been shown to be useful for distributed coordination proto-
cols [37], and it offers an elegant metaprogramming frame-
work for static analysis, program rewriting, and generation of
runtime invariant checks [11]. The initial P2 implementation
of Overlog [25] is aging and targeted at network protocols, so
we developed a new Java-based Overlog runtime we call JOL
(Section 2).

To evaluate the feasibility of BOOM, we chose to build
BOOM Analytics: an API-compliant reimplementation of the
Hadoop MapReduce engine and its HDFS distributed file sys-
tem. In writing BOOM Analytics, we preserved the Java API
“skin” of Hadoop and HDFS, but replaced their complex in-
ternals with Overlog. The Hadoop stack appealed to us for
two reasons. First, it exercises the distributed power of a
cluster. Unlike a farm of independent web service instances,

"BOOM stands for the Berkeley Orders Of Magnitude project,
which aims to build orders of magnitude bigger systems in
orders of magnitude less code.



the Hadoop and HDFS code entail non-trivial coordination
among large numbers of nodes, including scheduling, consen-
sus, data replication, and failover. Second, Hadoop is a work
in progress, still missing significant distributed features like
availability and scalability of master nodes. The difficulty of
adding these complex features could serve as a litmus test of
the programmability of our approach.

1.2 Contributions

The bulk of this paper describes our experience implement-
ing and evolving BOOM Analytics, and running it on Amazon
EC2. After twelve months of development, BOOM Analytics
performs as well as vanilla Hadoop, and enabled us to eas-
ily develop complex new features including Paxos-supported
replicated-master availability, and multi-master state-partitioned
scalability. We describe how a data-centric programming style
facilitated debugging of tricky protocols, and how by metapro-
gramming Overlog we were able to easily instrument our dis-

tributed system at runtime. Our experience implementing BOOM

Analytics in Overlog was gratifying both in its relative ease,
and in the lessons learned along the way: lessons in how to
quickly prototype and debug distributed software, and in un-
derstanding — via limitations of Overlog and JOL — issues
that may contribute to an even better programming environ-
ment for datacenter development.

This paper presents the evolution of BOOM Analytics from
a straightforward reimplementation of Hadoop/HDEFS to a sig-
nificantly enhanced system. We describe how an initial pro-
totype went through a series of major revisions (“revs”) fo-
cused on availability (Section 4), scalability (Section 5), and
debugging and monitoring (Section 6). In each case, the mod-
ifications involved were both simple and well-isolated from
the earlier revisions. In each section we reflect on the ways
that the use of a high-level, data-centric language affected our
design process.

1.3 Related Work

Declarative and data-centric languages have traditionally
been considered useful in very few domains, but things have
changed substantially in recent years. MapReduce [12, 31]
has popularized functional dataflow programming with new
audiences in computing. And a surprising breadth of research
projects have proposed and prototyped declarative languages
in recent years, including overlay networks [25], three-tier
web services [41], natural language processing [14], modu-
lar robotics [2], video games [40], file system metadata analy-
sis [17], and compiler analysis [21].

Most of the languages cited above are declarative in the
same sense as SQL: they are based in first-order logic. Some
— notably MapReduce, but also SGL [40] — are algebraic
(dataflow) languages, used to describe the composition and
extension of a small dataflow of operators that produce and
consume sets or streams of data. Although arguably impera-
tive, they are far closer to logic languages than to traditional
imperative languages like Java or C, and often amenable to
set-oriented optimization techniques developed for declarative
languages [16, 40]. Declarative and dataflow languages can
also share the same runtime, as demonstrated by recent inte-
grations of MapReduce and SQL-like syntax in Hive [38] and
DryadLINQ [42], and commercial integrations of SQL and
MapReduce.

path(@From, To, To, Cost)
:- link(From, To, Cost);
path(@From, End, To, Costl+Cost2)
:- link(@From, To, Costl),
path(@To, End, NextHop, Cost2);

WITH path(Start, End, NextHop, Cost) AS
( SELECT link.From, path.End,
link.To, link.Cost+path.Cost
FROM link, path
WHERE link.To = path.Start );

Figure 1: Example Overlog for computing paths from
links, along with an SQL translation of the second rule.

Concurrent with our work, the Erlang language was used to
implement a simple MapReduce framework called Disco [30],
and a transactional DHT called Scalaris with Paxos support [33].
Philosophically, Erlang revolves around a notion of program-
ming concurrent processes, rather than data. We do not have
experience to share regarding the suitability of Erlang for dat-
acenter programming. For the moment, Disco is significantly
less functional than BOOM Analytics, lacking a distributed
file system, multiple scheduling policies, and high availabil-
ity via consensus. The Disco FAQ warns that “Hadoop is
probably faster, more scalable, and more featureful” [30]. By
contrast, BOOM Analytics performs as well as Hadoop in
apples-to-apples performance tests, and adds significant fea-
tures. Overlog seem to offer only modestly more compact
code than Erlang — as one example, the Scalaris Paxos im-
plementation in Erlang has significantly more lines of code
than our Overlog version, but in the same order of magnitude.
In Section 7 we reflect on some benefits of a data-centric lan-
guage, which may not be as natural in Erlang’s process-centric
model.

Distributed state machines are the traditional formal model
for distributed system implementations, and can be expressed
in languages like Input/Output Automata (IOA) and the Tem-
poral Logic of Actions (TLA) [27]. These ideas have been
used extensively for network protocol design and verification [3,
7]. They also form the basis of the MACE [20] language for
overlay networks. They do not offer the query-like facilities
for monitoring and management that data-centric languages
provide. These facilities seemed particularly useful for clas-
sical protocols such as Paxos that were originally specified in
terms of logical invariants. As we discuss in Section 6, this
was confirmed by our experience, especially when we were
able to convince ourselves of the correctness of our imple-
mentations by metaprogramming our logic.

Our use of metaprogrammed Overlog was heavily influ-
enced by the Evita Raced Overlog metacompiler [11], and
the security and typechecking features of Logic Blox” LB-
Trust [28]. Some of our monitoring tools were inspired by
Singh et al. [35], though our metaprogrammed implementa-
tion is much simpler than that of P2.

2. BACKGROUND

The Overlog language is sketched in a variety of papers.
Originally presented as an event-driven language [25], it has
evolved a more pure declarative semantics based in Datalog,
the standard deductive query language from database theory [39].
Our Overlog is based on the description by Condie et al. [11].
We briefly review Datalog here, and the extensions presented
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Figure 2: An Overlog timestep at a participating node: in-
coming events are applied to local state, a logical Datalog
program is run to fixpoint, and any outgoing events are
emitted.

by Overlog.

The Datalog language is defined over relational tables; it is
a purely logical query language that makes no changes to the
stored tables. A Datalog program is a set of rules or named
queries, in the spirit of SQL’s views. A simple Datalog rule
has the form:

Thead (< col-list >):-ri(< col-list>), . .., rn(<col-list >)

Each term r; represents a relation, either stored (a database ta-
ble) or derived (the result of other rules). Relations’ columns
are listed as a comma-separated list of variable names; by con-
vention, variables begin with capital letters. Terms to the right
of the :- symbol form the rule body (corresponding to the
FROM and WHERE clauses in SQL), the relation to the left is
called the head (corresponding to the SELECT clause in SQL).
Each rule is a logical assertion that the head relation contains
those tuples that can be generated from the body relations.
Tables in the body are unified (joined together) based on the
positions of the repeated variables in the col-lists of the body
terms. For example, a canonical Datalog program for recur-
sively computing paths from links [26] is shown in Figure 1
(ignoring the Overlog-specific @ signs), along with analogous
SQL for the inductive rule. Note how the SQL WHERE clause
corresponds to the repeated use of the variable X in the Data-
log.

Overlog extends Datalog in three main ways: it adds nota-
tion to specify the location of data, provides some SQL-style
extensions such as primary keys and aggregation, and defines
a model for processing and generating changes to tables. The
Overlog data model consists of relational tables “horizontally”
partitioned row-wise across a set of machines based on some
column called the location specifier, which is denoted by the
symbol @. A tuple is stored at the address specified in its lo-
cation specifier column. JOL generalizes this slightly by sup-
porting “local” tables that have no location specifier. This is
a notational shorthand to prevent bugs: the same effect can
be achieved by adding an additional location specifier column
such tables, and ensuring that the value for each tuple is al-
ways “localhost”. In Figure 1, the location specifiers reflect
typical network routing tables, with each link or path stored at
its source.

When Overlog tuples arrive at a node either through rule
evaluation or external events, they are handled in an atomic
local Datalog “timestep”. Within a timestep, each node sees
only locally-stored tuples. Communication between Datalog
and the rest of the system (Java code, networks, and clocks) is
modeled using events corresponding to insertions or deletions

of tuples in Datalog tables.

Each timestep consists of three phases, as shown in Fig-
ure 2. In the first phase, inbound events are converted into
tuple insertions and deletions on the local table partitions. In
the second phase, we run the Datalog rules to a “fixpoint”
in a traditional bottom-up fashion [39], recursively evaluat-
ing the rules until no new results are generated. At the end of
each local Datalog fixpoint, the local Datalog tables (includ-
ing stored data and deductions) are consistent with each other
via the rules. In the third phase, outbound events are sent over
the network, or to local Java extension code (modeled as re-
mote tables). Note that while Datalog is defined over static
databases, the first and third phases allow Overlog programs
to mutate state over time.

Communication in Overlog happens as a side-effect of data
partitioning. Loo et al. show that any Overlog program can
be compiled into a form where the body relations join on the
same location-specifier variable, so that all relational process-
ing is localized [26]. They also prove eventual consistency of
the distributed tables under the rules, when certain simplify-
ing assumptions hold. In Section 7 we discuss our experience
with this model.

JOL is an Overlog runtime implemented in Java, based on
a dataflow of operators similar to P2 [25]. JOL implements
metaprogramming akin to P2’s Evita Raced extension [11]:
each Overlog program is compiled into a representation that
is captured in rows of tables. As a result, program testing, op-
timization and rewriting can be written concisely in Overlog
to manipulate those tables. JOL supports Java-based extensi-
bility in the model of Postgres [36]. It supports Java classes as
abstract data types, allowing Java objects to be stored in fields
of tuples, and Java methods to be invoked on those fields from
Overlog. JOL also allows Java-based aggregation (reduce)
functions to run on sets of column values, and supports Java
table functions: Java iterators producing tuples, which can be
referenced in Overlog rules as ordinary database tables.

2.1 Experimental Setup

We validated our results on a 101-node cluster on EC2. A
single node executed the Hadoop JobTracker and the DFS Na-
meNode, while the remaining 100 nodes served as slaves for
running the Hadoop TaskTrackers and DFS DataNodes. The
master node ran on an “high-CPU extra large” EC2 instance
with 7.2 GB of memory and 8 virtual cores, with the equiv-
alent of a 2.5GHz Intel Xeon processor per core. Our slave
nodes executed on “high-CPU medium” EC2 VMs with 1.7
GB of memory and 2 virtual cores, with the equivalent of a
2.5GHz Intel Xeon processor per core.

3. INITIAL BOOM PROTOTYPE

Our coding effort began in May, 2008, with an initial im-
plementation of JOL. By June of 2008 we had JOL working
well enough to begin running sample programs. Development
of the Overlog-based version of HDFS (BOOM-FS) started in
September of 2008. We began development of our Overlog-
based version of MapReduce (BOOM-MR) in January, 2009,
and the results we report on here are from March, 2009. Re-
finement of JOL has been an ongoing effort, informed by the
experience of writing BOOM Analytics. In Section 7 we re-
flect briefly on language and runtime lessons related to JOL.

We used two different design styles in developing the two



halves of BOOM Analytics. For the MapReduce engine, we
essentially ported much of the “interesting” material in Hadoop’s
MapReduce code piece-by-piece to Overlog, leaving various
API routines in their original state in Java. By contrast, we be-
gan our BOOM-FS implementation as a clean-slate rewrite in
Overlog. When we had a prototype file system working in an
Overlog-only environment, we retrofitted the appropriate Java
APIs to make it API-compliant with Hadoop.

3.1 MapReduce Port

In beginning our MapReduce port, we wanted to make it
easy to evolve a non-trivial aspect of the system. MapReduce
scheduling policies were one issue that had been treated in re-
cent literature [43]. To enable credible work on MapReduce
scheduling, we wanted to remain true to the basic structure
of the Hadoop MapReduce codebase, so we proceeded by un-
derstanding that code, mapping its core state into a relational
representation, and then developing the Overlog rules to man-
age that state in the face of new messages delivered by the
existing Java APIs. We follow that structure in our discussion.

3.1.1 Background: Hadoop MapReduce

The Hadoop MapReduce source code is based on the de-
scription of Google’s implementation [12]. It has a single
master called the JobTracker, which manages a number of
workers called TaskTrackers. A job is divided into a set of
map and reduce rasks. The JobTracker assigns map tasks to
nodes; each task reads a 64MB chunk from the distributed
file system, runs user-defined map code, and partitions out-
put key/value pairs into hash-buckets on local disk. The Job-
Tracker then forms reduce tasks corresponding to each hash
value, and assigns these tasks to TaskTrackers. A TaskTracker
running a reduce task fetches the corresponding hash buckets
from all mappers, sorts locally by key, runs the reduce func-
tion and writes results into the distributed file system

The Hadoop scheduler is part of the JobTracker. The sched-
uler multiplexes TaskTracker nodes across several jobs, exe-
cuting maps and reduces concurrently. Each TaskTracker has
a fixed number of slots for executing Map/Reduce tasks —
two maps and two reduces by default. A heartbeat proto-
col between each TaskTracker and the JobTracker is used to
update the JobTracker’s bookkeeping of the state of running
tasks, and drive the scheduling of new tasks: if the JobTracker
identifies free TaskTracker slots, it will schedule further tasks
on the TaskTracker. As in Google’s paper, Hadoop will often
schedule speculative tasks to reduce a job’s response time by
preempting “straggler” nodes [12]. Scheduling these specula-
tive tasks is one topic of interest in recent work [43].

Our initial goal was to port the JobTracker code to Overlog.
We began by identifying the key state maintained by the Job-

Tracker, which is encapsulated in the org.apache.hadoop.mapred

Java package. This state includes both data structures to track
the ongoing status of the system, and transient state in the form
of messages sent and received by the JobTracker. We captured
this information fairly naturally in five Overlog tables, shown
in Table 1.

The underlined attributes in Table 1 together make up the
primary key of each relation. The job relation contains a single
row for each job submitted to the JobTracker. In addition to
some basic metadata, each job tuple contains a field called job-
Conf'that can hold a Java object constructed by legacy Hadoop

Name Description Relevant attributes

job Job definitions jobid, priority, submit_time,
status, jobConf

task Task definitions jobid, taskid, type, partition, status

taskAttempt Task attempts jobid, taskid, attemptid, progress,
state, phase, tracker, input_loc,
start, finish

taskTracker TaskTracker name, hostname, state,

definitions map_count, reduce_count,

max_map, max_reduce

trackerAction | Generated actions | tracker, action

Table 1: BOOM-MR tables and selected attributes defin-
ing the JobTracker state.

code, which captures the configuration of the job. The rask re-
lation identifies each task in each job. The attributes for a task
identify the task type (map or reduce), the input “partition”
(a chunk for map tasks, a bucket for reduce tasks), and the
current running status.

A task may be attempted more than once, under speculation
or if the initial execution attempt failed. The taskAttempt re-
lation maintains the state of each such attempt. In addition to
a progress percentage [0..1], and a state (running/completed),
reduce tasks can be in any of three phases: copy, sort, or re-
duce. The tracker attribute identifies the TaskTracker that is
assigned to execute the task attempt. Map tasks also need to
record the location of their input chunk, which is given by the
input_loc.

The taskTracker relation identifies each TaskTracker in the
cluster by a unique name. It is also used to constrain the
scheduler, which can assign map and reduce tasks up to the
max_map and max_reduce attributes of each tracker.

The internal JobTracker Overlog rules maintain the book-
keeping of the internal tables based on inbound messages that
are turned into job, taskAttempt and taskTracker tuples. This
logic is largely straightforward, ensuring that the relations are
internally consistent. Scheduling decisions are encoded in the
taskAttempt table, which assigns tasks to TaskTrackers. These
decisions are encapsulated in a set of policy rules we discuss
next, and invoked via a join when faskTracker tuples exist with
unassigned slots.

3.1.2  Scheduling Policies

MapReduce scheduling has been the subject of recent re-
search, and one of our early motivations for building BOOM
Analytics was to make that research extremely easy to carry
out. With our initial BOOM-MR implementation in place, we
were ready to evaluate whether we had made progress on that
front. We had already implemented Hadoop’s default First-
Come-First-Served policy for task scheduling, which was cap-
tured in 9 rules (96 lines) of scheduler policy. To evaluate ex-
tensibility, we chose to replace that with the recently-proposed
LATE policy [43], to evaluate both (a) the difficulty of proto-
typing a new policy, and (b) the faithfulness of our Overlog-
based execution to that of Hadoop using two separate schedul-
ing algorithms.

The LATE policy presents an alternative scheme for spec-
ulative task execution on straggler tasks [43], in an effort to
improve on Hadoop’s policy. There are two aspects to each
policy: choosing which tasks to speculatively re-execute, and
choosing TaskTrackers to run those tasks. Original Hadoop
re-executes a task if its progress is more than 0.2 (on a scale
of [0..1]) below the mean progress of similar tasks; it assigns



System Lines in Patch | Files Modified by Patch
Hadoop 2102 17
BOOM-MR 82 2

Table 2: Modifying MapReduce schedulers with LATE.

// Compute progress rate per task
taskPR(JobId, TaskId, Type, ProgressRate) :-
task(JobId, TaskId, Type, _, _, _, Status),
Status.state() != FAILED,
Time = Status.finish() > 0 7
Status.finish() : currentTimeMillis(),
ProgressRate = Status.progress() /
(Time - Status.start());

// For each job, compute 25th pctile rate across tasks
taskPRList (JobId, Type, percentile<0.25, PRate>) :-
taskPR(JobId, TaskId, Type, PRate);

// Compute progress rate per tracker
trackerPR(Tracker, JobId, Type, avg<PRate>) :-
task(JobId, TaskId, Type, _),
taskAttempt (JobId, TaskId, AttemptId, Progress,
State, Phase, Tracker, Start, Finish),
State != FAILED,
Time = Finish > O ? Finish : currentTimeMillis(),
PRate = Progress / (Time - Start);

// For each job, compute 25th pctile rate across trackers

trackerPRList (JobId, Type, percentile<0.25, AvgPRate>)
trackerPR(_, JobId, Type, AvgPRate);

// Compute available map/reduce slots
speculativeCap(sum<MapSlots>, sum<ReduceSlots>) :-
taskTracker(Tracker, _, _, _, _, _,
MapCount, ReduceCount,
MaxMap, MaxReduce),
MapSlots = MaxMap - MapCount,
ReduceSlots = MaxReduce - ReduceCount;

Figure 3: Overlog to compute statistics for LATE.

speculative tasks using the same policy as it uses for initial
tasks. LATE chooses tasks to re-execute via an estimated fin-
ish time metric based on the task’s progress rate. Moreover,
it avoids assigning speculative tasks to TaskTrackers that ex-
hibit slow performance executing similar tasks, in hopes of
preventing the creation of new stragglers.

The LATE policy is specified in the paper via just three lines
of pseudocode, which make use of three performance statistics
called SlowNodeThreshold, SlowTaskThreshold, and Specula-
tiveCap. The first two of these statistics correspond to the 25th
percentiles of progress rates across TaskTrackers and across
tasks, respectively. The SpeculativeCap is suggested to be set
at 10% of available task slots [43]. We compute these thresh-
olds via the five Overlog rules shown in Figure 3. Integrating
the rules into BOOM-MR required modifying two additional
Overlog rules that identify tasks to speculatively re-execute,
and that choose TaskTrackers for scheduling those tasks.

Table 2 quantifies the relative complexity of patching LATE [24]

into Hadoop and BOOM-MR by comparing the sizes of the
patch files involved.

3.1.3 BOOM-MR Results

To compare the performance of our Overlog-based JobTracker
with the stock version of the JobTracker, we used Hadoop ver-

sion 18.1. Our workload was a wordcount on a 30 GB file.
The wordcount job consisted of 481 map tasks and 100 re-
duce tasks. Figure 4 contains a grid of experiments performed
on the EC2 setup described in Section 2.1. Each of the 100
slave nodes hosted a single TaskTracker instance that can sup-
port the simultaneous execution of 2 map tasks and 2 reduce
tasks. Each graph reports a cumulative distribution of map
and reduce task completion times (in seconds). The evolu-
tion of map task completion times occurs in three waves. This
occurrence is due to scheduling 481 map tasks across a limit
of 2 x 100 that can be scheduled at any given time. On the
other hand, all 100 reduce tasks can be scheduled immedi-
ately. However, no reduce task will finish until all map tasks
have completed since each reduce task requires the output of
all map tasks.

The upper-left graph serves as a baseline for subsequent
graphs by reporting the result of running our workload on
Hadoop 18.1 over HDFS. The lower-left graph reports the re-
sult of running BOOM-MR over HDFS. The graph shows that
map and reduce task completion times under BOOM-MR are
nearly identical to Hadoop 18.1. We postpone the description
of the upper-right and lower-right graphs to Section 3.2.

Figure 5 shows the cumulative distribution of the execution
time for reduce task executions on EC2 under normal load,
and with artificial extra load placed on six straggler nodes.
The same wordcount workload was used for this experiment
but the number of reduce tasks was increased from 100 to 400
in order to produce two waves of reduce tasks. The plots la-
beled “No stragglers” represent normal load. The plots labeled
“Stragglers” and “Stragglers (LATE)” are taken under the (six
node) artificial load using the vanilla Hadoop and LATE poli-
cies (respectively) to identify speculative tasks. We do not
show a CDF of the map task execution time since the artificial
load barely affects it — the six stragglers have no effect on other
map tasks, they just result in a slower growth from just below
100% to completion. The first wave of 200 reduce tasks is
scheduled concurrently with all the map tasks. This first wave
of reduce tasks will not finish until all map tasks have com-
pleted, which increases the execution time of these tasks as
indicated in the right portion of the graph. The second wave
of 200 reduce tasks will not experience the delay due to unfin-
ished map work since it is scheduled after all map tasks have
finished. These shorter execution times are reported in the left
portion of the graph. Furthermore, stragglers have less of an
impact on the second wave of reduce tasks since less work
(i.e., no map work) is being performed. Figure 5 shows this
effect, and also demonstrates how the LATE implementation
in BOOM Analytics handles stragglers much more effectively
than the default speculation policy ported from Hadoop. This
echoes the results of Zaharia et al. [43]

3.1.4 Discussion

We had an initial version of BOOM-MR running after a
month of development, and have continued to tune it until very
recently. The BOOM-MR codebase consists of 55 Overlog
rules in 396 lines of code, and 1269 lines of Java. It was based
on Hadoop version 18.1; we estimate that we removed 6,573
lines from Hadoop (out of 88,864) in writing BOOM-MR. The
removed code contained the core scheduling logic and the data
structures that represent the components listed in Table 1.

Our experience gutting Hadoop and inserting BOOM Ana-
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lytics was not always pleasant. Given that we were committed
to preserving the client API, we did not take a “purist” ap-
proach and try to convert everything into tables and Overlog
rules. For example, we chose not to tableize the JobConf ob-
ject, but instead to carry it through Overlog tuples. In our
Overlog rules, we pass the JobConf object into a custom Java
table function that manufactures fask tuples for the job, sub-
ject to the specifications in the JobConf regarding the number
of input files and the requested number of output files.

In retrospect, it was handy to be able to draw the Java/Overlog
boundaries flexibly. This kept us focused on porting the more
interesting Hadoop logic into Overlog, while avoiding ports
of relatively mechanical details — particularly as they related

to the API. We also found that the Java/Overlog interfaces we
had were both necessary and sufficient for our needs. We did
employ all the Java interfaces we set up: table functions for
producing tuples from Java, Java objects and methods within
tuples, Java aggregation functions, and Java event listeners
that listen for insertions and deletions of tuples into tables. We
did not identify an interface that was clearly missing from the
system, or one that would have made our lives substantially
easier.

With respect to the Overlog itself, we did find it much sim-
pler to extend and modify than the original Hadoop code in
Java. This was especially true with the scheduling policies.
We have been experimenting with new scheduling policies re-
cently, and it has been very easy to modify the existing poli-
cies and try new ones. Informally, our Overlog code seems
about as simple as the task should require: the coordination of
MapReduce task scheduling is not a terribly rich design space,
and we feel that the simplicity of the BOOM-MR code is ap-
propriate to the simplicity of the system’s job.

3.2 HDFS Rewrite

The BOOM-MR logic described in the previous section is
based on entirely centralized state: the only distributed aspect
of the code is the implementation of message handlers. HDFS
is somewhat more substantial. Although its metadata is still
centralized, the actual data in HDFS is distributed and repli-
cated [4]. HDFS is loosely based on GFS [15], and is targeted
at storing large files for full-scan workloads.

In HDEFS, file system metadata is stored at a centralized Na-
meNode, while file data is partitioned into 64MB chunks and



stored at a set of DataNodes. Each chunk is typically stored
at three DataNodes to provide fault tolerance. The canonical
record of which chunks are stored at which DataNode is not
persistently stored at the NameNode; instead, DataNodes pe-
riodically send heartbeat messages to the NameNode contain-
ing the set of chunks stored at the DataNode. The NameNode
keeps a cache of this information. If the NameNode has not
seen a heartbeat from a DataNode for a certain period of time,
it assumes that the DataNode has crashed, and deletes it from
the cache; it will also create additional copies of each of the
chunks stored at the crashed DataNode to ensure fault toler-
ance.

Clients contact the NameNode only to perform metadata
operations, such as obtaining the list of chunks in a file; all
data operations involve only clients and DataNodes. Because
of HDFS’s intended workload, it only supports file read and
append operations — chunks cannot be modified once they
have been written.

3.2.1 BOOM-FS In Overlog

In contrast to our “porting” strategy for implementing BOOM-
MR, we chose to build BOOM-FS from scratch. This required
us to exercise Overlog more broadly, limiting our Hadoop/Java
compatibility task to implementing the Hadoop file system
Java API. We did this by creating a simple translation layer be-
tween Hadoop API operations and BOOM-ES protocol com-
mands. The resulting BOOM-FS implementation works with
either vanilla Hadoop MapReduce or BOOM-MR.

Like GFS, HDFS maintains a clean separation of control
and data paths: metadata operations, chunk placement and
DataNode liveness are cleanly decoupled from the code that
performs bulk data transfers. This made our rewriting job sub-
stantially more attractive. JOL is a relatively young runtime
and is not tuned for high-bandwidth data manipulation, so
we chose to implement the relatively simple high-bandwidth
data-path routines “by hand” in Java, and used Overlog for the
trickier but lower-bandwidth control path. While we initially
made this decision for expediency, as we reflect in Section
7, it yielded a hybrid system that achieved both elegance and
high-performance.

3.2.2 File System State

The first step of our rewrite was to represent file system
metadata as a collection of relations. We then implemented
file system policy by writing queries over this schema, rather
than creating algorithms that explicitly manipulate the file sys-
tem’s data structures. This takes the spirit of recent work on
declarative file system checking [17] one level deeper, to cover
all file system metadata logic. A simplified version of the rela-
tional file system metadata in BOOM-FS is shown in Table 3.

The file relation contains a row for each file or directory
stored in BOOM-FS. The set of chunks in a file is identified
by the corresponding rows in the fchunk relation.> The datan-
ode and hb_chunk relations contain the set of live DataNodes
and the chunks stored on each DataNode, respectively. The
NameNode updates these relations as new heartbeats arrive;

2The order of a file’s chunks chunks must also be specified,
because relations are unordered. In the current system, we
assign chunk IDs in a monotonically increasing fashion and
only support append operations, so the client can determine a
file’s chunk order by sorting chunk IDs.

Name Description Relevant attributes

file Files fileid, parentfileid, name, isDir
fchunk Chunks per file chunkid, fileid

datanode DataNode heartbeats | nodeAddr, lastHeartbeatTime
hb_chunk | Chunk heartbeats nodeAddr, chunkid, length

Table 3: Relations defining file system metadata.

// fqpath: Fully-qualified paths.
// Base case: root directory has null parent
fgpath(Path, FileId) :-
file(Fileld, FParentlId, _, true),
FParentId = null, Path = "/";

fqpath(Path, FileId) :-
file(FileId, FParentId, FName, _),
fqpath(ParentPath, FParentId),
// Do not add extra slash if parent is root dir
PathSep = (ParentPath = "/" 7 "" : "/"),
Path = ParentPath + PathSep + FName;

Figure 6: Example Overlog for file system metadata.

if the NameNode does not receive a heartbeat from a DataN-
ode within a configurable amount of time, it assumes that the
DataNode has crashed and removes the corresponding rows
from these tables.

The NameNode must ensure that the file system metadata
is durable, and restored to a consistent state after a failure.
This was easy to implement using Overlog, because of the
natural atomicity boundaries provided by fixpoints. We used
the Stasis storage library [34] to achieve durability, by writing
the durable state modifications to disk as an atomic transaction
at the end of each fixpoint. We return to a discussion of Stasis
in Section 4.

Since a file system is naturally hierarchical, it is a good
fit for a recursive query language like Overlog. For exam-
ple, Figure 6 contains a single Overlog rule that infers fully-
qualified pathnames from the parent information in the file re-
lation. The fgpath relation defined by these rules allows the
file ID associated with a given absolute path to be easily de-
termined. Because this information is queried frequently, we
configured the fgpath relation to be cached after being com-
puted. JOL automatically updates the cache of fgpath cor-
rectly when its input relations change via materialized view
maintenance logic [32]. For example, removing a directory
/x will cause the fgpath entries for the children of /x to be
removed. BOOM-FS defines several other views to compute
derived file system metadata, such as the total size of each
file and the contents of each directory. The materialization of
each view can easily be turned on or off via simple Overlog ta-
ble definition statements. During the development process, we
regularly adjusted view materialization to tradeoff read perfor-
mance against write performance and storage requirements.

The state at each DataNode is simply the set of chunks
stored by that node. The actual chunks are stored as regular
files on the file system. In addition, each DataNode maintains
arelation describing the chunks stored at that node. This rela-
tion is populated by periodically invoking a table function de-
fined in Java that walks the appropriate directory of the DataN-
ode’s local file system.

3.2.3 Communication Protocols

BOOM-FS uses three different protocols: the metadata pro-
tocol which clients and NameNodes use to exchange file meta-



// The set of nodes holding each chunk
compute_chunk_locs(ChunkId, set<NodeAddr>) :-
hb_chunk (NodeAddr, ChunkId, _);

// Chunk exists => return success and set of nodes
response (@Src, RequestId, true, NodeSet) :-
request (@Master, RequestId, Src,
"ChunkLocations", ChunkId),
compute_chunk_locs(ChunkId, NodeSet);

// Chunk does not exist => return failure
response(@Src, RequestlId, false, null) :-
request (@Master, RequestId, Src,

"ChunkLocations", ChunkId),
notin hb_chunk(_, ChunkId, _);

Figure 7: Return the DataNodes that hold a given chunk.

data, the heartbeat protocol which DataNodes use to notify
the NameNode about chunk locations and DataNode liveness,
and the data protocol which clients and DataNodes use to ex-
change chunks. As illustrated by P2 [25], client-server mes-
sage generation and handling patterns are easy to implement
in Overlog. We implemented the metadata and heartbeat pro-
tocols with a set of distributed Overlog rules in a similar style.
The data protocol was implemented in Java because it is sim-
ple and performance critical. We proceed to describe the three
protocols in order.

For each command in the metadata protocol, there is a sin-
gle declarative rule at the client (stating that a new request tu-
ple should be “stored” at the NameNode). There are typically
two corresponding rules at the NameNode: one to specify the
result tuple that should be stored at the client, and another to
handle errors by returning a failure message. An example of
the NameNode rules is shown for Chunk Location requests in
Figure 7.

Requests that modify metadata follow the same basic struc-
ture, except that in addition to deducing a new result tuple at
the client, the NameNode rules also deduce changes to the file
system metadata relations. Concurrent requests are serialized
by JOL at the NameNode. While this simple approach has
been sufficient for our experiments, we plan to explore more
sophisticated concurrency control techniques in the future.

DataNode heartbeats have a similar request/response pat-
tern, but are not driven by the arrival of network events. In-
stead, they are “clocked” by joining with the Overlog periodic
relation [25], whose tuples appear on the JOL event queue
via a JOL runtime timer, rather than via network events. In
addition, control protocol messages from the NameNode to
DataNodes are deduced when conditions specified by certain
rules indicate that system invariants are unmet; for example,
when the number of replicas for a chunk drops below the spec-
ified replication factor.

Finally, the data protocol is a straightforward mechanism
for transferring the content of a chunk between clients and
DataNodes. This protocol is orchestrated in Overlog but im-
plemented in Java. When an Overlog rule deduces that a chunk
must be transferred from host X to Y, an output event is trig-
gered at X. A Java event handler at X listens for these output
events, and uses a simple but efficient data transfer protocol
to send the chunk to host Y. To implement this protocol, we
wrote a simple multi-threaded server in Java that runs on the
DataNodes.

System Lines of Java | Lines of Overlog
HDFS ~21,700 0
BOOM-FS 1,431 469

Table 4: Code size of two file system implementations.

Our resulting initial BOOM-FS implementation has per-
formance, scaling and failure-handling properties similar to
those of HDFS. Figure 4 demonstrates that the performance of
BOOM-FS is comparable to HDFS under both Hadoop’s and
BOOM’s MapReduce. Like HDFS, our implementation toler-
ates significant DataNode failure rates, but has a single point
of failure and scalability bottleneck — at the NameNode.

3.2.4 Discussion

We began implementing BOOM-FS in September, 2008.
Within two months we had a working implementation of meta-
data handling strictly in Overlog, and it was straightforward to
add Java code to store chunks in UNIX files. Adding the nec-
essary Hadoop client APIs in Java took an additional week.
Adding metadata durability took about a day, spread across
a few debugging sessions, as BOOM-FS was the first serious
user of JOL’s persistent tables. Table 4 compares statistics
about the code bases of BOOM-FS and HDFS. The DataNode
implementation accounts for 414 lines of the Java in BOOM-
FS; the remainder is mostly devoted to system configuration,
bootstrapping, and a client library. Adding support for ac-
cessing BOOM-FS to Hadoop itself required an additional 400
lines of Java.

In Hadoop 18, each map or reduce task is executed in a
newly-spawned child process. In our initial BOOM-FES proto-
type, each process created a new copy of the JOL interpreter.
This resulted in poor performance, because the current ver-
sion of JOL takes ~1.5 seconds to create an instance of the
interpreter, which can be a significant portion of the total run-
time of a typical map task. To avoid this problem, we modified
Hadoop to spawn a single “JOL server” process at each worker
node. To access BOOM-FS, map and reduce tasks communi-
cate with the JOL server process using RPCs. This issue could
also have been mitigated by using the “reuse JVMs” capability
introduced in Hadoop 19.

Like MapReduce, HDFS is actually a fairly simple sys-
tem, and we feel that BOOM-FS reflects that simplicity well.
HDFS sidesteps many of the performance challenges of tra-
ditional file systems and databases by focusing nearly exclu-
sively on scanning large files. It avoids most distributed sys-
tems challenges regarding replication and fault-tolerance by
implementing coordination with a single centralized NameN-
ode. As a result, most of our implementation consists of sim-
ple message handling and management of the hierarchical file
system namespace. Datalog materialized view logic was not
hard to implement in JOL, and took care of most of the perfor-
mance issues we faced over the course of our development.

4. THE AVAILABILITY REV

Having achieved a fairly faithful implementation of MapRe-
duce and HDFS, we were ready to explore one of our main
motivating hypotheses: that data-centric programming would
make it easy to add complex distributed functionality to an
existing system. We chose an ambitious goal: retrofitting
BOOM-FS with high availability failover via “hot standby”



NameNodes. A proposal for a slower-to-recover warm standby
scheme was posted to the Hadoop issue tracker in October of
2008 ([18] issue HADOOP-4539). We felt that a hot standby
scheme would be more useful, and we deliberately wanted to
pick a more challenging design to see how hard it would be to
build in Overlog.

4.1 Paxos Implementation

Correctly implementing efficient hot standby replication is
tricky, since replica state must remain consistent in the face of
node failures and lost messages. One solution to this problem
is to implement a globally-consistent distributed log, which
guarantees a total ordering over events affecting replicated
state. The Paxos algorithm is the canonical mechanism for
this feature [22]. It is also considered a challenging distributed
algorithm to implement in practice [9], making it a natural
choice for our experiment in distributed programming.

When we began working on availability, we had two rea-
sons to believe that we could cleanly retrofit a hot standby
solution into BOOM-FS. First, data-centric programming had
already forced us to encode the relevant NameNode state into
a small number of relational tables, so we knew what data we
needed to replicate. Second, we were encouraged by a con-
cise Overlog implementation of simple Paxos that had been
achieved in an early version of P2 [37]. On the other hand,
we were sobered by the fact that the Paxos-in-P2 effort failed
to produce a useable implementation; like the Paxos imple-
mentation at Google [9], they discovered that Lamport’s pa-
pers [23, 22] present just a sketch of what would be necessary
to implement Paxos in a practical environment.

We began by creating an Overlog implementation of basic
Paxos, focusing on correctness and adhering as closely as pos-
sible to the initial specification. Our first effort resulted in an
impressively short program: 22 Overlog rules in 53 lines of
code. We found that Overlog was a good fit for this task: our
Overlog rules corresponded nearly line-for-line with the state-
ments of invariants from Lamport’s original paper [22]. Our
entire implementation fit on a single screen, so its faithful-
ness to the original specification could be visually confirmed.
To this point, working with a data-centric language was ex-
tremely gratifying.

We then needed to convert basic Paxos into a working prim-
itive for a distributed log. This required adding the ability to
pass a series of log entries (“Multi-Paxos”), a liveness mod-
ule, and a catchup algorithm, as well as optimizations to re-
duce message complexity. This caused our implementation to
swell to 50 rules in roughly 400 lines of code. As noted in
the Google implementation [9], these enhancements made the
code considerably more difficult to check for correctness. Our
code also lost some of its pristine declarative character. This
was due in part to the evolution of the Paxos research papers:
while the original Paxos was described as a set of invariants
over state, most of the optimizations were described as transi-
tion rules in state machines. Hence we found ourselves trans-
lating state-machine pseudocode back into logical invariants,
and it took some time to gain confidence in our code. The re-
sulting implementation is still very concise relative to a tradi-
tional programming language, but it highlighted the difficulty
of using a data-centric programming model for complex tasks
that were not originally specified that way. We return to this
point in Section 7.

4.2 BOOM-FS Integration

Once we had Paxos in place, it was straightforward to sup-
port the replication of the distributed file system metadata. All
state-altering actions are represented in the revised BOOM-FS
as Paxos decrees, which are passed into the Paxos logic via a
single Overlog rule that intercepts tentative actions and places
them into a table that is joined with Paxos rules. Each action
is considered complete at a given site when it is “read back”
from the Paxos log, i.e. when it becomes visible in a join with a
table representing the local copy of that log. A sequence num-
ber field in that Paxos log table captures the globally-accepted
order of actions on all replicas.

Finally, to implement Paxos reliably we had to add a disk
persistence mechanism to JOL, a feature that was not consid-
ered in P2. We chose to use the Stasis storage library [34],
which provides atomicity and durability for concurrent trans-
actions, and handles physical consistency of its indexes and
other internal structures. Unlike many transactional storage
libraries, Stasis does not provide a default mechanism for con-
currency control. This suited our purposes well, since Over-
log’s timestep semantics isolate the local database from net-
work events, and take it from one consistent fixpoint to an-
other. We implemented each JOL fixpoint as a single Stasis
transaction.

Many of the tables in BOOM Analytics represent transient
in-memory data structures, even though they are represented
as “database” tables. Hence we decided to allow JOL pro-
grams to decide which tables should be durably stored in Sta-
sis, and which should be transient. Fixpoints that do not touch
durable tables do not create Stasis transactions.

4.3 Evaluation

We had two goals in evaluating our availability implemen-
tation. At a fine-grained level, we wanted to ensure that our
complete Paxos implementation was operating according to
the specification in the papers. This required logging and
analyzing network messages sent during the Paxos protocol.
We postpone discussion of this issue to Section 6, where we
present the infrastructure we built to help with debugging and
monitoring. At a coarser grain, we wanted to see the availabil-
ity feature “in action”, and get a sense of how our implemen-
tation would respond to master failures.

For our first reliability experiment, we evaluated the impact
of the consensus protocol on BOOM Analytics system perfor-
mance, and the effect of failures on overall completion time.
To this end, we ran a Hadoop wordcount job on a 5GB input
file with a cluster of 20 machines, varying the number of mas-
ter nodes and the failure condition. These results are summa-
rized in Table 5. We then used the same workload to perform
a set of simple fault-injection experiments to measure the ef-
fect of primary master failures on job completion rates at a
finer grain, observing the progress of the map and reduce jobs
involved in the wordcount program. Figure 8 shows the cu-
mulative distribution of the percentage of completed map and
reduce jobs over time, in normal operation and with a failure
of the primary NameNode during the map phase.

4.4 Discussion

The Availability revision was our first foray into what we
consider serious distributed systems programming, and we con-
tinued to benefit from the high-level abstractions provided by
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Figure 8: CDF of completed tasks over time (secs).

Number of Failure Avg. Completion Standard
NameNodes | Condition Time (secs) | Deviation
1 None 101.89 12.12
3 None 102.70 9.53
3 Backup 100.10 9.94
3 Primary 148.47 13.94

Table 5: Job completion times with a single NameNode,
3 Paxos-enabled NameNodes, backup NameNode failure,
and primary NameNode failure.

Overlog. Most of our attention was focused at the appropri-
ate level of complexity: faithfully capturing the reasoning in-
volved in distributed protocols.

Lamport’s original paper describes Paxos as a set of logi-
cal invariants, and the author later uses these invariants in his
proof of correctness. Translating them into Overlog rules was
a straightforward exercise in declarative programming. Each
rule covers a potentially large portion of the state space, drasti-
cally simplifying the case-by-case transitions that would have
to be specified in a state machine-based implementation. On
the other hand, locking ourselves into the invariant-based im-
plementation early on made adding enhancements and opti-
mizations more difficult, as these were often specified as state
machines in the literature. For example, a common optimiza-
tion of basic Paxos avoids the high messaging cost of reach-
ing quorum by skipping the protocol’s first phase once a mas-
ter has established quorum: subsequent decrees then use the
established quorum, and merely hold rounds of voting while
steady state is maintained. This is naturally expressed in a
state machine model as a pair of transition rules for the same
input (a request) given different starting states. In our imple-
mentation, special cases like this would either have resulted
in duplication of rule logic, or explicit capturing of state. In
certain cases we chose the latter, compromising somewhat our
high-level approach to protocol specification.

Managing persistence was direct. Lamport’s description of
Paxos explicitly distinguishes between state that should be
made durable, and state that should be transient; our imple-
mentation had already separated this state in separate rela-
tions, so we simply declared Lamport’s description in the ta-
ble definitions. Adding durability to BOOM-FS metadata was
similar; the relations in Table 3 are marked durable, whereas
“scratch tables” that we use to compute responses to file sys-
tem requests are transient. These are simple uses of Overlog
persistence, but for our purposes to date this model has been
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sufficient. Stasis seems to be an elegant fit due to its sepa-
ration of atomic, durable writes from traditional transactions
locking for isolation and consistency management. However,
given the modest load we put on Stasis, we also would proba-
bly have been fine using a traditional database.

S. THE SCALABILITY REV

HDFS NameNodes manage large amounts of in-memory
metadata for filenames and file chunk lists. The original GFS
paper acknowledged that this could cause significant memory
pressure [15], but at the time the authors suggested solving the
problem by purchasing more RAM. More recently, our col-
leagues within Yahoo! have observed that NameNode scal-
ing is often an issue in practice. For the data-centric imple-
mentation in BOOM-FS, we hoped to very simply scale out
the NameNode across multiple NameNode-partitions. From a
database design perspective this seemed trivial — it involved
adding a “partition” column to some Overlog tables. To keep
various metadata operations working, we added partitioning
and broadcast support to the client library. The resulting code
composes cleanly with our availability implementation: each
NameNode-partition can be a single node, or a Paxos quorum
of replicas.

There are many options for partitioning the files in a direc-
tory tree. We opted for a simple strategy based on the hash of
the fully qualified pathname of each file. We chose to broad-
cast requests for directory listings and directory creation to
each NameNode-partition. Although the resulting directory
creation implementation is not atomic, it is idempotent; recre-
ating a partially-created directory will restore the system to
a consistent state, and will preserve any files in the partially-
created directory.

For all other HDFS operations, clients have enough infor-
mation to determine the correct NameNode-partition. We do
not support atomic “move” or “rename” across partitions. This
feature is not exercised by Hadoop, and complicates distributed
file system implementations considerably. In our case, it would

involve the atomic transfer of state between otherwise-independent

Paxos instances. We believe this would be relatively clean to
implement — we have a two-phase commit protocol imple-
mented in Overlog — but decided not to pursue this feature at
present.

5.1 Discussion

By isolating the system state into relational tables, it be-
came a textbook exercise to partition that state across nodes.
It took 8 hours of developer time to implement our NameNode
partitioning; two of these hours were spent adding partitioning
and broadcast support to the Overlog code. This was a clear
win for the data-centric approach.

Our simplified file system metadata update semantics were
sufficient to support Hadoop’s MapReduce behavior. We be-
lieve that adding support for file renames via two-phase com-
mit should be easy as well.

The simplicity of file system scale-out made it easy to think
through its integration with Paxos, a combination that might
otherwise seem very complex. Our confidence in being able
to compose techniques from the literature is a function of the
compactness and resulting clarity of our code.



6. THE MONITORING REV

As our BOOM Analytics prototype matured and we be-
gan to refine it, we started to suffer from a lack of perfor-
mance monitoring and debugging tools. Singh et al. pointed
out that the Overlog language is well-suited to writing dis-
tributed monitoring queries, and offers a naturally introspec-
tive approach: simple Overlog queries can monitor complex
Overlog protocols [35]. Following that idea, we decided to
develop a suite of debugging and monitoring tools for our own
use.

While Singh et al. implemented their introspection via cus-
tom hooks in the P2 dataflow runtime, we were able to imple-
ment them much more simply via Overlog program rewriting.
This was made easy for us because of the metaprogramming
approach that we adopted from Evita Raced [11], which en-
ables Overlog rewrites to be written at a high level in Overlog.
This kept the JOL runtime lean, and allowed us to prototype
and evolve these tools very quickly.

6.1 Invariants

One advantage of a logic-oriented language like Overlog is
that it encourages the specification of system invariants, in-
cluding “watchdogs” that provide runtime checks of behavior
induced by the program. For example, one can count that the
number of messages sent by a protocol like Paxos is as ex-
pected. Distributed Overlog rules induce asynchrony across
nodes; such rules are only attempts to achieve invariants. An
Overlog program needs to be enhanced with global coordina-
tion mechanisms like two-phase commit or distributed snap-
shots to convert distributed Overlog rules into global invari-
ants [10]. Singh et al. have shown how to implement Chandy-
Lamport distributed snapshots in Overlog [35]; we did not go
that far in our own implementation.

To simplify debugging, we wanted a mechanism to integrate
Overlog invariant checks into Java exception handling. To this
end, we added a relation called die to JOL; when tuples are
inserted into the die relation, a Java event listener is triggered
that throws an exception. This feature makes it easy to link
invariant assertions in Overlog to Java exceptions: one writes
an Overlog rule with an invariant check in the body, and the
die relation in the head.

We made extensive use of these local-node invariants in our
code and unit tests. Although these invariant rules increase the
size of a program, they tend to improve readability in addition
to reliability. This is important in a language like Overlog:
it is a terse language, and program complexity grows rapidly
with code size. Assertions that we specified early in the im-
plementation of Paxos aided our confidence in its correctness
as we added features and optimizations.

6.2 Monitoring via Metaprogramming

Our initial prototypes of both BOOM-MR and BOOM-FS
had significant performance problems. Unfortunately, Java-
level performance tools were little help in understanding the
issues. A poorly-tuned Overlog program spends most of its
time in the same routines as a well-tuned Overlog program: in
dataflow operators like Join and Aggregation. Java-level pro-
filing lacks the semantics to determine which rules are causing
the lion’s share of the dataflow code invocations.

Fortunately, it is easy to do this kind of bookkeeping di-
rectly in Overlog. In the simplest approach, one can replicate
the body of each rule in an Overlog program, and send its
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outputs to a logging predicate, which can have a local or re-
mote location specifier. For example, the Paxos rule that tests
whether a particular round of voting has reached quorum:

quorum(@Master, Round) :-
priestCnt(@Master, Pcnt),
lastPromiseCnt (@Master, Round, Vcnt),
Vent > (Pent / 2);

might lead to an additional pair of rules:

tap_quorum(@Master, Round) :-
priestCnt(@Master, Pcnt),
lastPromiseCnt (@Master, Round, Vcnt),
Vent > (Pent / 2);

trace_precondition(@Master, "paxos", Predicate,
"quoruml", Tstamp) :-
priestCnt(@Master, Pcnt),
lastPromiseCnt (@Master, Round, Vcnt),
Vent > (Pent / 2),
Predicate = "quorum",
Tstamp = System.currentTimeMillis();

This approach captures the dataflow generated per rule in a
trace relation that can be queried later. Finer levels of detail
can be achieved by “tapping” each of the predicates in the rule
body separately in a similar fashion. The resulting program
passes no more than twice as much data through the system,
with one copy of the data being “teed off” for tracing along the
way. When running in profiling mode, this overhead is often
acceptable. But writing the trace rules by hand is tedious.

Using the metaprogramming approach of Evita Raced, we
were able to automate this task via a trace rewriting program
written in Overlog, involving the meta-tables of rules and terms.
The trace rewriting expresses logically that for selected rules
of some program, new rules should be added to the program
containing the body terms of the original rule, and auto-generated
head terms.®> Network traces fall out of this approach naturally
as well: any dataflow transition that results in network com-
munication is flagged in the generated head predicate during
trace rewriting.

Using this idea, it took us less than a day to create a general-
purpose Overlog code coverage tool that traced the execution
of our unit tests and reported statistics on the “firings” of rules
in the JOL runtime, and the counts of tuples deduced into ta-
bles. Our metaprogram for code coverage and network tracing
consists of 5 Overlog rules that are evaluated in every partic-
ipating node, and approximately 12 summary rules that can
be run in a centralized location. Several hundred lines of Java
implement a rudimentary front end to the tool. We ran our
regression tests through this tool, and immediately found both
“dead code” rules in our BOOM Analytics programs, and code
that we knew needed to be exercised by the tests but was as-yet
uncovered.

The results of this tracing rewrite can be used for further
analysis in combination with other parts of our management
infrastructure. For example, using the assertion style described
above, we created unit tests corresponding to the correctness
goal mentioned in Section 4.3: we confirmed that the mes-
sage complexity of our Paxos implementation was exactly as

3A query optimizer can reorder the terms in the body of a
rule, so the trace rewriting needs to happen after that query
optimization. The Evita Raced architecture provides a simple
“staging” specification to enforce this.



predicted by the specification, both at steady state and under
churn. This gave us more confidence that our implementation
was correct.

6.3 Logging

Hadoop comes with fairly extensive logging facilities that
can track not only logic internal to the application, but per-
formance counters that capture the current state of the worker
nodes.

TaskTrackers write their application logs to a local disk and
rely on an external mechanism to collect, ship and process
these logs; Chukwa is one such tool used in the Hadoop com-
munity [5]. In Chukwa, a local agent written in Java imple-
ments a number of adaptors that gather files (e.g., the Hadoop
log) and the output of system utilities (e.g. top, iostat), and
forward the data to intermediaries called collectors, which in
turn buffer messages before forwarding them to data sinks. At
the data sinks, the unstructured log data is eventually parsed
by a MapReduce job, effectively redistributing it over the clus-
ter in HDFS.

We wanted to prototype similar logging facilities in Over-
log, not only because it seemed an easy extension of the exist-
ing infrastructure, but because it would close a feedback loop
that — in future — could allow us to make more intelligent
scheduling and placement decisions. Further, we observed
that the mechanisms for forwarding, buffering, aggregation
and analysis of streams are already available via Overlog.

We began by implementing Java modules that read from the
/proc file system and produce the results as JOL tuples. We
also wrote Java modules to convert Hadoop application logs
into tuples. Windowing, aggregation and buffering are carried
out in Overlog, as are the summary queries run at the data
sinks.

In-network buffering and aggregation were simple to im-
plement in Overlog, and this avoided the need to add explicit
intermediary processes to play the role of collectors. The re-
sult was a very simple implementation of the general Chukwa
idea. We implemented the “agent” and “collector” logic via a
small set of rules that run inside the same JOL runtime as the
NameNode process. This made our logger easy to write, well-
integrated into the rest of the system, and easily extensible. On
the other hand, it puts the logging mechanism on the runtime’s
critical path, and is unlikely to scale as well as Chukwa as log
sizes increase. For our purposes, we were primarily interested
in gathering and acting quickly upon telemetry data, and the
current collection rates are reasonable for the existing JOL im-
plementation. We are investigating alternative data forwarding
pathways like those we used for BOOM-FS for the bulk for-
warding of application logs, which are significantly larger and
are not amenable to in-network aggregation.

7. EXPERIENCE AND LESSONS

Our BOOM Analytics implementation began in earnest just
nine months before this paper was written, and involved only
four developers. Our overall experience has been enormously
positive — we have been frankly surprised at our own produc-
tivity, and even with a healthy self-regard we cannot attribute
it to our programming skills per se. Along the way, there have
been some interesting lessons learned, and a bit of time for
initial reflections on the process.
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7.1 Everything Is Data

The most positive aspects of our experience with Overlog
and BOOM Analytics came directly from data-centric pro-
gramming. In the system we built, everything is data, rep-
resented as tuples in tables. This includes traditional persis-
tent information like file system metadata, runtime state like
TaskTracker status, summary statistics like the LATE sched-
uler thresholds, in-flight messages, system events, execution
state of the system, and even parsed code.

The benefits of this approach are perhaps best illustrated by
the extreme simplicity with which we scaled out the NameN-
ode via partitioning (Section 5): by having the relevant state
stored as data, we were able to use standard data partitioning
to achieve what would ordinarily be a significant rearchitect-
ing of the system. Similarly, the ease with which we imple-
mented system monitoring — via both system introspection
tables and rule rewriting — arose because we could easily
write rules that manipulated concepts as diverse as transient
system state and program semantics (Section 6).

The uniformity of data-centric interfaces also enables inter-
position [19] of components in a natural manner: the dataflow
“pipe” between two system modules can be easily rerouted
to go through a third module. (Syntactically, this is done in
Overlog by interposing the input and output tables of the third
module into rules that originally joined the first two modules’
output and input.) This enabled the simplicity of incorporat-
ing our Overlog LATE scheduler into BOOM-MR (Section 3).
Because dataflows can be routed across the network (via the
location specifier in a rule’s head), interposition can also in-
volve distributed logic — this is how we easily added Paxos
support into the BOOM-FS NameNode (Section 4). Our expe-
rience suggests that a form of encapsulation could be achieved
by constraining the points in the dataflow at which interposi-
tion is allowed to occur.

The last data-centric programming benefit we observed re-
lated to the timestepped dataflow execution model, which we
found to be simpler than traditional notions of concurrent pro-
gramming. Traditional models for concurrency include event
loops, and multithreaded programming. Our concern regard-
ing event loops — and the state machine programming mod-
els that often accompany them — is that one needs to reason
about combinations of states and events. That would seem to
put a quadratic reasoning task on the programmer. In princi-
ple our logic programming deals with the same issue, but we
found that each composition of two tables (or tuple-streams)
could be thought through in isolation, much as one thinks
about piping Map and Reduce tasks. Candidly, however, we
have relatively limited experience with event-loop program-
ming, and the compactness of languages like Erlang suggests
that it is a plausible alternative to the data-centric approach
in this regard. On the hand, we do have experience writing
multi-threaded code with locking, and we were happy that the
simple timestep model of Overlog obviated the need for this
entirely — there is no explicit synchronization logic in any of
the BOOM Analytics code, and we view this as a clear victory
for the programming model.

In all, none of this discussion seems specific to logic pro-
gramming per se. We suspect that a more algebraic style of
programming — for instance a combination of MapReduce
and Joins — would afford many of the same benefits as Over-
log, if it were pushed to a similar degree of generality.



7.2 Developing in Overlog

We have had various frustrations with the Overlog language:
many minor, and a few major. The minor complaints are not
technically significant, but one issue is worth commenting on
briefly — if only to sympathize with some of our readers. We
have grown to dislike the Datalog convention that connects
columns across relations via “unification”: repetition of vari-
able names in different positions. We found that it makes Dat-
alog harder than necessary to write, and even harder to read.
A text editor with proper code-coloring helps to some extent,
but we suspect that no programming language will grow pop-
ular with a syntax based on this convention. That said, the
issue is eminently fixable: SQL’s named-field approach is one
option, and we can imagine others. In the end, our irritability
with Datalog syntax was outweighed by our positive experi-
ence with the productivity offered by Overlog.

Another programming challenge we wrestled with was the
translation of state machine programming into logic (Section 4).
We had two reactions to the issue. The first is that the porting
task did not actually turn out to be that hard: in most cases
it amounted to writing message-handler style rules in Over-
log that had a familiar structure. But upon deeper reflection,
our port was shallow and syntactic; the resulting Overlog does
not “feel” like logic, in the invariant style of Lamport’s origi-
nal Paxos specification. Having gotten the code working, we
hope to revisit it with an eye toward rethinking the global in-
tent of the state-machine optimizations. This would not only
fit the spirit of Overlog better, but perhaps contribute a deeper
understanding of the ideas involved.

With respect to consistency of storage, we were comfortable
with our model of associating a local storage transaction with
each fixpoint. However, we expect that this may change as
we evolve the use of JOL. For example, we have not to date
seriously dealt with the idea of a single JOL runtime hosting
multiple programs. We expect this to be a natural desire in our
future work.

7.3 Performance

JOL performance was good enough for BOOM Analytics
to compete with Hadoop, but we are conscious that it needs
to improve. For example, we observed anecdotally that sys-
tem load averages were much lower with Hadoop than with
BOOM Analytics. Having convinced ourselves that the BOOM
direction has promise, we are exploring a reimplementation of
the dataflow kernel of JOL in C. Our ambition is to make that
kernel as fast as the OS network handling that feeds it.

In the interim, we actually think the modest performance of
the current JOL interpreter guided us to reasonably good de-
sign choices. By using Java for the data path in BOOM-FS,
for example, we ended up spending very little of our devel-
opment time on efficient data transfer. In retrospect, we were
grateful to have used that time for more challenging efforts
like implementing Paxos.

8. CONCLUSION

We built BOOM Analytics to evaluate three key questions
about data-centric programming of clusters: (1) can it radi-
cally simplify the prototyping of distributed systems, (2) can
it be used to write scalable, performant code, and (3) can it
enable a new generation of programmers to innovate on novel
cloud computing platforms. Our experience suggests that the
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answer to the first of these questions is certainly true, and
the second is within reach. The third question is unresolved.
Overlog in its current form is not going to attract program-
mers to distributed computing, but we think that its benefits
point the way to more pleasant languages that could realisti-
cally commoditize distributed programming in the Cloud.
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