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1 Introduction

A boomerang RG flow starts at an RG fixed point in the UV and then flows to exactly the

same RG fixed point in the IR [1]. A particularly interesting realisation is when the RG

fixed point is conformally invariant. In this context, in order to be consistent with either

the letter or the spirit of c-theorems, the deformations of the UV fixed point which are

driving the RG flow should necessarily break Poincaré invariance.

Various examples of such boomerang RG flows have been explicitly constructed within

the context of the AdS/CFT correspondence [1–4]. For example, within pure D = 5

Einstein gravity with a negative cosmological constant, and hence of relevance to the most

general class of d = 4 CFTs with a holographic dual, boomerang RG flows associated with

helical deformations of the metric were constructed in [3]. By contrast the boomerang flows

of [2] are associated with CFTs with a global U(1) symmetry and with a spatially varying

chemical potential. In another direction, the constructions in [1, 4] involve deformations

of operators dual to bulk scalar fields. All of these examples describe CFTs which have

been deformed by operators which explicitly break translation invariance in one or more

of the spatial directions and hence are special examples of holographic lattices [5]. One

motivation for studying holographic lattices is that they provide a natural framework for

studying thermal and electric transport with finite DC conductivities.
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The examples studied in [1–4] all involve deformations with a single spatial Fourier

mode and, for small enough deformations, a perturbative expansion can be used to argue

for the existence of boomerang flows. Indeed, the perturbative deformation of the bulk field

that is dual to the deforming operator exponentially dies out near the Poincaré horizon and

hence is not expected1 to modify the IR. An interesting feature of the specific top-down

examples constructed in [1, 3, 4] is that the boomerang flows actually persist for arbitrar-

ily large deformations, which a priori, is not guaranteed. Furthermore, it is particularly

interesting that for sufficiently large deformations the boomerang flows [1, 3, 4] exhibit one

or more intermediate scaling regimes, where the solution approaches, somewhere in the

bulk, a configuration with scaling properties. In the constructions of [4], which involved

deformations of the axion and dilaton in the context of AdS5 × X5 solutions of type IIB

supergravity, the intermediate scaling is dominated by a fixed point solution with Lifshitz-

like scaling [6]. By contrast, the constructions in [1] were made in the context of D = 11

supergravity and are of relevance to ABJM theory. In these examples, for large enough de-

formations, the boomerang flows approach two intermediate scaling regimes in succession,

each associated with hyperscaling violation.

The original aim of this paper was to construct boomerang RG flows in D = 5 which

have an intermediate scaling regime governed by another AdS5 factor associated with

approximate d = 4 conformal invariance. We have not yet been able to find top-down

examples but, as we will see, it is quite straightforward to construct bottom-up examples.

As in [1, 4], we will utilise a Q-lattice construction [7] in which we exploit a global sym-

metry of the bulk spacetime in order to develop an ansatz for the bulk fields in which the

dependence on the spatial directions of the CFT is solved exactly. This leads to a system

of ordinary differential equations for a set of functions that just depend on the holographic

radial coordinate which are then amenable to straightforward numerical integration.

A key ingredient in our construction is to have a bulk theory that admits a Poincaré

invariant domain wall solution that flows between AdS0
5 in the UV and another AdSc5 in the

IR. We demand that this domain wall flow is driven by deformations of relevant operators

in the UV CFT, with scaling dimension ∆, and hence is parametrised by a dimensionful

parameter Γ. By conformal invariance all values of Γ are physically equivalent for these

Poincaré invariant RG flows. Within a Q-lattice ansatz, we then consider deformations

by the same relevant operators which also have a dependence on the spatial directions of

the CFT, parametrised by a wave number k. This gives rise to a one parameter family of

associated RG flows, parametrised by a dimensionless number Γ/k4−∆. For small values of

Γ/k4−∆ we can easily show that we must have boomerang RG flows using a perturbative

construction. For larger values of Γ/k4−∆ the existence of the boomerang flows must be

established numerically. When they do exist, though, since large values of Γ/k4−∆ can be

achieved by holding Γ fixed and taking k → 0, one can expect that the boomerang RG

flows should start to track the Poincaré invariant flow and hence exhibit an intermediate

scaling regime with conformal invariance that is governed by the AdSc5 fixed point solution.

1A subtlety is that one needs to check that the expansion does not generate constant Fourier modes

which can change the IR.
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For holographic RG flows with intermediate scaling regimes, which have also been

extensively studied in other contexts (e.g. [8–13]), it is of interest to investigate to what

extent the scaling regime imprints itself on the scaling behaviour of physical observables.

For example, one might expect that the spectral weight of operators as a function of

frequency, ω, should exhibit scaling for a range of ω dictated by the range of the radial

region of the RG flow which has intermediate scaling. This issue was discussed in [1]

using matching arguments (for a related discussion see [14]). It was shown that while

intermediate scaling behaviour is not guaranteed it will manifest itself providing sufficient

conditions on the effective potential for the bulk fluctuations about the RG flow solutions

are met [1]. In this paper we make a complementary discussion by examining how the

holographic entanglement entropy behaves for the new boomerang RG flows. In particular,

by calculating the entanglement entropy of a strip geometry of width l, we analyse the

behaviour of the entropic ‘c-function’, C(l) [15–17] (see also [18]). While C(l) is not

monotonic along the boomerang flow, as it is for Poincaré invariant RG flows, it does

effectively encapsulate the correct scaling of the degrees of freedom of CFT in the UV and

IR as well as the CFT in the intermediate scaling regime.

We will study a class of D = 5 models with a quartic potential for the scalar fields

that depend on two real parameters. The constructions summarised above are for certain

values of the parameters, such that the models admit both the AdS0
5 vacuum and also the

AdSc5 solution (in fact there will be two AdSc5 related by a Z2 symmetry). Interestingly,

for different values of the parameters there is no longer an AdSc5 solution but there is an

AdS2 × R3 solution which breaks translations in all of the spatial directions.

In the second part of the paper, starting in section 5, we will investigate models with

boomerang flows that have intermediate scaling governed by such locally quantum critical

AdS2×R3 solutions. While there are some similarities to the previous constructions there

are also some interesting differences. The RG flows from AdS0
5 in the UV to AdS2×R3 in the

IR now exist for a specific value of the dimensionless deformation parameter Γ/k4−∆ ≡ Γ̄.

Focussing on a specific model, we find that the boomerang RG flows only exist in the range

0 ≤ Γ/k4−∆ ≤ Γ̄, and moreover, have increasingly large intermediate scaling behaviour

determined by the AdS2 × R3 solution as Γ/k4−∆ → Γ̄. In order to understand the RG

flows for Γ/k4−∆ > Γ̄ we construct finite temperature black holes and then cool them

down to very low temperatures. This investigation reveals an interesting phase diagram

schematically presented in figure 1. For a range of Γ/k4−∆ ≤ Γ̄ there is a line of first order

phase transitions ending on the AdS2×R3 fixed point at T = 0 and on a finite temperature

critical point. Furthermore, the T = 0 ground states for Γ/k4−∆ > Γ̄ are singular2 and, by

calculating the behaviour of the thermal DC conductivity, κ, as a function of temperature,

we conclude that they are thermally insulating ground states.

The behaviour of the entropy as a function of temperature is not a power law for the

new insulating ground states, in contrast to those constructed in [20–23]. This in itself

makes them worthy of further study. One additional calculation that we carry out here is

2Since these ground states are obtained by cooling down black hole solutions, they are necessarily “good

singularities” in the sense of [19].
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Figure 1. Schematic phase diagram as a function of the deformation parameter Γ for models with

m2 = −15/4, ξ = −1/4 discussed in section 5. The T = 0 ground states are RG flows from AdS5 in

the UV, dual to some CFT4, to various behaviours in the IR: for Γ < Γ̄ we have AdS5 (boomerang

RG flows), for Γ = Γ̄ we have AdS2×R3 (locally quantum critical ground states), and for Γ > Γ̄ we

have singular thermal insulating behaviour. There is line of first order phase transitions that end

in the critical point C. Intermediate scaling governed by the AdS2 × R3 solution is present in the

quantum critical wedge bounded by the first order line and the dashed line. For high temperatures

the scaling is fixed by the AdS5 solution in the UV.

motivated by the various investigations aiming to elucidate universal connections between

diffusion and quantum chaos in holography [24–26] (see also [27–39]). We determine the

thermal diffusion constant, D, using the Einstein relation D ≡ κ/c, where c is the specific

heat. We also calculate the butterfly velocity, vB, by analysing a shockwave on the black

hole solution as in [40, 41] (see also [42]). Remarkably, we find

D = E
v2
B

2πT
, (1.1)

with the dimensionless quantity E(T ) → 0.5 as T → 0. This is the first example of such

a relationship for ground states without power law behaviour. We have also made some

other constructions for models with slightly different parameters3 to those in figure 1, again

finding insulating ground states with E unchanged.

2 General set up

Consider an action in D = 5 spacetime dimensions of the form

S =
1

16πG

∫
d5x
√
−g
(
R+ 12 + Lz

)
, (2.1)

where Lz describes a sigma model for three complex scalars zα. In order to construct

the Q-lattice solutions of interest, we will take Lz to have a U(1)3 global symmetry and

3For certain models we also find a novel non-uniqueness of the boomerang RG flows which we discuss

in appendix A.1.
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consider

Lz =
∑
α

(
−1

2
∂µz

α∂µz̄ᾱ − 1

2
m2 zαz̄ᾱ − 1

3
ξ
(
zαz̄ᾱ

)2)
, (2.2)

where m2, ξ are two free parameters. The equations of motion admit a unit radius AdS0
5

vacuum solution with zα = 0 which is dual to a CFT in d = 4. In these units 1/16πG is

a measure of the number of degrees of freedom in the dual CFT, scaling like N2, at large

N . In a slight abuse of notation we will set factors of 16πG to unity in the following since

this simplifies some formulae and the factors can easily be reinstated in physical quantities

as needed.

We are interested in studying specific isotropic deformations of this CFT that break

translations in three spatial directions. To do this we exploit the U(1)3 global symmetry

and consider the Q-lattice ansatz

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2dxαdxα ,

zα = γ(r)eik x
α
, (2.3)

where xα ∈ {x, y, z} are the spatial directions of the field theory. Notice that a simultaneous

translation and a U(1)3 transformation preserves this ansatz. The associated equations of

motion are given by

0 = χ′ + r γ′2 ,

0 = g′ + g

(
1

2
rγ′2 +

2

r

)
+ γ2

(
k2 +m2r2

)
2r

+
1

3
ξrγ4 − 4r ,

0 = γ′′ + γ′
(
g′

g
− χ′

2
+

3

r

)
− γ

(
m2r2 + k2

)
r2g

− 4ξγ3

3g
. (2.4)

In sections4 2–4, we will be focussing on boomerang flows from AdS0
5 in the UV to

AdS0
5 in the IR that have an intermediate scaling behaviour governed by a different AdS5

solution. We will choose the parameters m2, ξ so that there are, in fact, three stable AdS5

solutions with constant γ (and all with k = 0). Writing the AdS5 metric in Poincaré

coordinates as

ds2 = −r2dt2 + r2d~x2 +
L2

r2
dr2 , (2.5)

the UV AdS5 vacuum solution, which we call AdS0
5 , has

L2
0 = 1 and γ0 = 0 , (2.6)

while the other two AdS5 solutions, which we call AdSc5, have

L2
c =

64ξ

3m4 + 64ξ
and γc = ±

√
−3m2

4ξ
. (2.7)

4In section 5 we will consider boomerang flows with an intermediate AdS2 × R3 solution and it is

convenient to use a different radial coordinate to that of (2.3).
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In order to have suitable relevant and irrelevant scalar operators in the UV and IR, with

conformal dimensions ∆0 and ∆c, respectively, we demand that

∆0 ≡ 2 +
√

4 +m2 < 4 , ∆c ≡ 2 +
√

4− 2m2L2
c > 4 . (2.8)

In sections 2–4 we will focus the specific values of m, ξ given by

m2 = −15/4 , ξ = 675/512 , (2.9)

corresponding to having a relevant scalar operator with dimension5 ∆0 = 5/2 in the CFT

dual to the AdS0
5 UV vacuum and an irrelevant scalar operator with dimension ∆c = 5

in the CFT dual to AdSc5. Furthermore, for the AdSc5 vacuum we have L2
c = 2/3 and

γc = ±(32/15)1/2.

2.1 Poincaré invariant domain wall flows: AdS0
5 → AdSc

5

With the set up just described there are standard Poincaré invariant domain wall solutions,

with k = 0 in (2.3), that approach the unit radius AdS0
5 vacuum solution in the UV and

then approach one of the two AdSc5 solutions (2.7) in the IR. As there is a Z2 symmetry

relating these IR vacua, without loss of generality we can focus on the solution with positive

γc.

In the UV, as r →∞, the solutions have a radial expansion of the form

g = r2 + . . . χ = χUV + . . . γ = Γr∆0−4 + . . . , (2.10)

and we set χUV = 0. In the IR, as r → 0, we have the expansion

g =
r2

L2
c

+ . . . χ = χ0 + . . . γ = γc + f0r
∆c−4 + . . . . (2.11)

The boundary conditions (2.10) are associated with deformations of the CFT dual to AdS0
5 ,

parametrised by Γ, using the real parts of the three operators Oα that are dual to the three

complex scalars zα. Note that within the ansatz (2.3), with k = 0, the deformation of all

three operators are the same. There are additional domain wall solutions flowing to the

same AdSc5 solution in the IR that lie outside this ansatz, but they will not play a role

in the sequel. We also note that by conformal invariance, the k = 0 domain walls with

different values of Γ are all physically equivalent.

We have explicitly constructed these domain wall solutions, for the specific values of

m2, ξ given in (2.9), using numerical shooting techniques. We did this both by shooting

from the UV and the IR and then matching at an intermediate point, as well as shooting

out just from the IR,6 with excellent numerical agreement.

5Note that, with this value of m2 we can also, if we wish, do an alternative quantisation of the scalar

field leading to ∆ = 3/2 [43].
6In this approach the solutions generically reach the UV with non-vanishing constant parameter χ →

χUV, as r →∞, so a simple rescaling of the time coordinate is necessary to bring the asymptotic metric to

the canonical form (2.5).
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3 Boomerang RG flows

We now want to consider RG flows, with k 6= 0 in the ansatz (2.3), that are seeded by

deformations of the UV CFT by relevant operators which break translation invariance.

Imposing the boundary conditions (2.10) in the UV now corresponds to deformations of

the real and imaginary parts of the operators Oα having spatial modulation of the form

cos kx and sin kx, respectively. For the specific values of m, ξ given earlier, with ∆0 = 5/2,

we deduce that there is a one-parameter family of RG flows that are parametrised by the

dimensionless number Γ/k3/2.

3.1 Perturbative analysis

For Γ/k3/2 � 1, it is straightforward to argue that the RG flows must be boomerang flows,

returning to the same AdS0
5 vacuum (with γ = 0) in the IR. Indeed we can construct the

RG flows in a perturbative expansion about the AdS0
5 vacuum solution. Starting with the

linearised scalar equation of motion in the AdS0
5 vacuum, we find that the leading order

solution that satisfies the UV boundary conditions and is regular at r = 0, is of the form

γ =
k3/2

r3/2
e−k/r

(
Γ

k3/2

)
+ . . . . (3.1)

This solution back reacts on the metric at order (Γ/k3/2)2 and the explicit form of the

metric functions, satisfying the correct UV boundary conditions, are given at this order by

g = r2

[
1− k3

r3
e−2k/r 1

4

(
− 3 + 2

k

r

)(
Γ

k3/2

)2

+ . . .

]
,

χ =
3

16

(
Γ

k3/2

)2

− e−2k/r 1

16

(
3 + 6

k

r
+ 6

k2

r2
− 8

k3

r3
+ 8

k4

r4

)( Γ

k3/2

)2

+ . . . . (3.2)

It is clear that in the IR as r → 0, the metric exponentially approaches exactly the

same AdS0
5 solution as the UV, with the scale of approach set by k. The only difference is

that there is a renormalisation of length scales, which is captured by the ‘index of refraction’

n [44] defined by

n ≡ e
1
2

(χIR−χUV) . (3.3)

At leading order in the expansion we immediately deduce that

n = 1 +
3

32

(
Γ

k3/2

)2

+ . . . . (3.4)

That the index of refraction is bigger than one is an example of a more general result.

Indeed returning to the equations of motion (2.4) we immediately deduce that χ′ ≤ 0 and

hence χIR ≥ χUV, with the equality realised only for flows in which the scalar does not run.
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Figure 2. Plot of the refractive index n, defined in (3.3), as a function of the dimensionless

deformation parameter Γ/k3/2, for boomerang RG flows with m2 = −15/4 and ξ = 675/512.

3.2 Numerical boomerang flows

To determine what happens for larger values of Γ/k3/2 we need to construct the solutions

numerically. In the IR we develop the expansion

g = r2

[
1− k3

r3
e−2k/r 1

4

(
− 3 + 2

k

r

)(
Cγ

k3/2

)2

+ . . .

]
,

χ =χ0 − e−2k/r 1

16

(
3 + 6

k

r
+ 6

k2

r2
− 8

k3

r3
+ 8

k4

r4

)(
Cγ

k3/2

)2

+ . . . ,

γ =
k3/2

r3/2
e−k/r

(
Cγ

k3/2

)
+ . . . , (3.5)

where Cγ , χ0 are constants, and demand that the solutions match onto the UV boundary

conditions (2.10). In the range 0 < Γ/k3/2 < 107 we find that the RG flows are always

boomerang flows, returning to the same AdS0
5 in the IR. Furthermore, we have no reason to

suspect that this behaviour will not persist for larger values of Γ/k3/2. In figure 2 we have

presented the index of refraction n for the flows. For small values of Γ/k3/2 we recover the

behaviour (3.4), as expected. For very large Γ/k3/2 we find that n appears7 to asymptote

to a constant, with n ∼ 2.09.

For sufficiently large Γ/k3/2, the boomerang RG flow solutions start to exhibit inter-

mediate scaling. Indeed, moving in from the UV, the solutions start to track the Poincaré

invariant RG flow solutions with k = 0, for a range of the radial variable, including a

region where the geometry approaches the AdSc5 solution, before heading off back to the

original AdS0
5 solution in the deep IR. This behaviour is displayed for four representative

flows with Γ/k3/2 = 102, 104, 105 and 107 in figure 3. In this figure one can see the so-

lution being dominated by the AdSc5 solution for an intermediate range of r/k which one

can make parametrically large by increasing Γ/k3/2. It is interesting to notice that for all

of the plotted values of Γ/k3/2 the solution rapidly approaches the AdS0
5 vacuum in the

IR as soon as the radial coordinate approaches r ∼ k. While this is consistent with the

intuition that the solution should start to approach the IR ground state for energy scales

7This can be contrasted with the D = 4boomerang flows constructed in [1], where it was unbounded.
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Figure 3. Boomerang RG flows with Γ/k3/2 = 102 (lightest), 104, 105 and 107 (darkest) showing

the build up of intermediate conformal invariance. The blue dashed line in the upper left plot

shows the value of the scalar in the AdSc
5 solution, with γc =

√
32/15. The plots clearly reveal an

intermediate scaling region, dominated by the AdSc
5 vacuum. The plots are for m2 = −15/4 and

ξ = 675/512.

in the dual field theory comparable or smaller than k, it would be interesting to obtain

an analytic understanding of the feature, manifest in figure 3, that there is a such a sharp

limiting behaviour around r ∼ k as Γ/k3/2 → ∞. We also see that as Γ/k3/2 is increased

the intermediate scaling regime, once it appears, then extends out to larger and larger

values of r/k. In particular, for very large values of Γ/k3/2, the function χ starts to take a

kind of ‘sliding’ form, in which the only significant difference is the value of r/k in which

χ increases to the first plateau when coming in from the UV boundary. This behaviour

gives rise to the asymptotic behaviour of n, but we have not been able to find a way to

analytically extract the asymptotic value of n as Γ/k3/2 →∞. The radial behaviour of the

boomerang flows will leave an imprint on the behaviour of certain entanglement entropy

observables, which we discuss in the next section.

4 Entanglement entropy

We now investigate how the intermediate scaling regime of the boomerang flows manifests

itself in the entanglement entropy. Specifically we focus on calculating the holographic

– 9 –
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entanglement entropy for a “strip geometry” of width l in the x direction [45, 46]. We take

a constant time slice and calculate the area, A, of the minimal two-dimensional surface

that is anchored to the strip on the boundary. The entanglement entropy, SA, is then

given by

SA = 4πA . (4.1)

A standard calculation shows that the area can be expressed as

A =
2W 2

r? 3

∫ Λ

r?

r5√
g
(
r6

r? 6 − 1
)dr , (4.2)

where W 2 is the area of the boundary strip in the y, z, directions. We have integrated from

a minimum radial position of the surface at r? to a UV cutoff Λ, which will eventually be

taken to infinity. We can relate r∗ to l via the formula

l = 2

∫ Λ

r?

dr

r

√
g
(
r6

r? 6 − 1
) . (4.3)

At this point, setting g = r2/L2, we can easily recover the AdS5 result of [45, 46]

A
L3

= Λ2W
2

L2
− b

(
W

l

)2

. (4.4)

where b = 4π3/2
(

Γ( 2
3

)

Γ( 1
6

)

)3

. Note that in the limit Λ → ∞ the area of the minimal surface

displays the expected UV divergence. As this term is scheme dependent, it is natural to

define the renormalised entanglement entropy, S̄A, after subtracting off the UV divergence,

as S̄A = 4π(A− Λ2W 2L0), and then take Λ→∞.

The expression (4.4) also motivates the definition of the so-called “entropic c-function”,

defined for general bulk geometries via [16]

C(l) =
l3

W 2

dSA
dl

. (4.5)

In particular, for a bulk AdS5 solution with radius L, we see that C(l) = 8πbL3 ≈ 8.06L3

and hence, as it is proportional to the a central charge of the dual CFT, provides a measure

for the number of degrees of freedom in the dual CFT. Furthermore, for Poincaré invariant

RG flows, it has been shown that within two derivative gravity and with matter satisfying

the null energy condition, C(l) monotonically decreases along the RG flow [17].

We now want to investigate S̄A and C(l) for the Poincaré invariant domain wall and

the boomerang RG flows. A preliminary issue is to first check whether the flows introduce

any additional UV divergences into the calculation of the minimal area. This would be

the case if, for example, there was a constant term g0 in the near boundary expansion g ≈
r2 + g0 +O(1/r). For the specific values of m2 = −15/4, ξ = 675/512, it is straightforward

to demonstrate that the Einstein equations require g0 = 0. Thus, when constructing a
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Figure 4. The entanglement entropy S̄A (left) and entropic c-function C(l) (right) evaluated in

the AdS0
5 → AdSc

5 domain wall flow. The pure AdS0
5 results are shown as dashed red lines, and

agree excellently with the numerically computed quantities for small values of l. The right plot

shows that the entropic c-function C(l) monotonically approaches the result for pure AdSc
5 (lower

dashed, blue line) for large l.

renormalised entanglement entropy from the numerical data we need only to account for

the quadratic “area law” divergence of pure AdS5.

We next discuss the Poincaré invariant AdS0
5 → AdSc5 domain wall solutions. For the

usual values of m2 = −15/4, ξ = 675/512, our results for S̄A and C(l) are shown in figure 4.

Notice that for very large values of l, where the minimal surface is dipping deep into the

AdSc5 geometry in the IR, S̄A is not falling off with increasing l but instead asymptotes to

a constant negative value. This behaviour was first observed for Poincaré invariant domain

wall solutions in [47]. Further insight into this phenomenon was also provided in [47] by

showing how this result is expected at least in the case of very thin domain wall solutions.

Figure 4 also shows that the entropic c-function C(l) is a monotonically decreasing function

of l, as expected, interpolating between the AdS0
5 result, C(l) → 8πbL3

0 ∼ 8.06, as l → 0

and the AdSc5 result, C(l)→ 8πbL3
c ∼ 4.39, as l→∞.

Finally, we turn to the boomerang RG flows, and our main results are shown in fig-

ure 5. For a given RG flow, labelled by Γ/k3/2, the entanglement entropy looks qualitatively

similar to the Poincaré invariant domain wall solution: it is always negative and asymptot-

ically approaches a negative constant for large l. For small values of Γ/k3/2 we can easily

understand this behaviour using the perturbative solutions given in (3.1), (3.2). Explicitly,

starting from (3.2), writing g = r2 +Γ2 u(r)+ . . . and expanding the integrand in the scalar

amplitude Γ yields

A = AAdS −
W 2

r? 3
Γ2

∫ Λ

r?

r2√
r6

r? 6 − 1
u(r) dr , (4.6)

where AAdS is the AdS0
5 result, and the second term, which is finite in the limit Λ → ∞,

thus contains the entire finite contribution at large strip width. To isolate the relevant part

of the integral, we next turn our attention to the small r? behaviour of the second term

in (4.6), since small r? corresponds to large strip width in these backgrounds. The area in

– 11 –
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Figure 5. The size of the entanglement entropy |S̄A| (left) and the entropic c-function C(l) (right)

evaluated for the boomerang RG flows for Γ/k3/2 = 102 (lightest), 104, 105 and 107 (darkest), as

in figure 3. In the left plot, the pure AdS0
5 result is a dashed red line. In the right plot, the pure

AdS0
5 and AdSc

5 results are given by the red and blue dashed lines, respectively.

this limit is given by

A = AAdS +
W 2 k3

4

(
Γ

k3/2

)2 ∫ ∞
r?→0

e−2k/r

r3
(2k − 3r)dr , (4.7)

and hence the renormalised strip entanglement entropy evaluated in the perturbative RG

flows asymptotes to

S̄A → −πW 2 k2

(
Γ

k3/2

)2

, (4.8)

at large strip width. This analytic prediction can be verified by comparing to the numerical

results, and shows excellent agreement. As we increase Γ/k3/2, we find that S̄A is always

negative and from figure 5 shows that it approaches an increasingly negative asymptotic

value.

In figure 5 we see that for the boomerang RG flows the entropic c-function reveals

additional interesting features. In the figure we have plotted C(l) for the same value as

in the boomerang flows of figure 3. We first notice that C(l) is not monotonic. Given

the matter content of our model satisfies the null energy condition this shows that the

result of [17] concerning the monotonicity of C(l) for Poincaré invariant flows does not

simply generalise to RG flows when Poincaré invariance is broken. Nevertheless, the broad

features of C(l) for our boomerang RG flows are readily understood. For small values of

lk we see the expected L3
0 behaviour of the AdS0

5 solution with C(l) → 8πbL3
0 ∼ 8.06, as

l→ 0. This is because the entangling surface stays in the bulk within the AdS0
5 part of the

geometry for large values of r/k. At intermediate length scales, and for boomerang flows

with intermediate scaling, the function dips to a second plateau, much like in the Poincaré

invariant domain wall, with C(l) → 8πbL3
c ∼ 4.39 as one might have naively anticipated.

Notice that the detailed behaviour is in direct parallel with the radial behaviour of the

boomerang RG flows as shown in figure 3, once we identify lk ∼ k/r. In particular the

sharp, limiting bump feature of C(l) for lk ∼ 1 is associated with the sharp limiting feature

of the radial behaviour of the solutions for r/k ∼ 1 seen in figure 3.
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Finally, far in the IR, the entropic c-function replicates the UV behaviour, as a conse-

quence of the boomerang RG flow. Thus while C(l) is certainly not a monotonic function

along the RG flow, figure 5 shows that it does, nevertheless, provide a measure of the

number of degrees of freedom in each of the three regions of the geometry where there is

approximate conformal invariance, in the sense that for ranges of l it approaches the result

for the corresponding AdS5 geometry.

5 Boomerang flows with intermediate AdS2×R3 scaling and novel insu-

lators

Within the same class of models (2.1), but for a different range of the parameters m2 and

ξ, we now investigate another interesting framework in which instead of a second AdS5

solution there is now an AdS2×R3 fixed point solution, which breaks translations. We will

construct boomerang RG flows with locally quantum critical intermediate scaling, governed

by the AdS2 × R3 solution, as well as novel ground states that are thermal insulators. It

is illuminating to construct the associated black hole solutions describing the systems at

finite temperature and, for the specific values m2 = −15/4, ξ = −1/4, we find the phase

diagram schematically shown in figure 1.

In this section (only) it will be convenient to use a slightly different radial variable

than that of (2.3) and consider the ansatz

ds2 = −Udt2 + U−1dρ2 + e2V dxαdxα ,

zα = γeik x
α
, (5.1)

with U, V, γ functions of ρ. This ansatz can be used to construct both the RG flows and the

black hole solutions. We start by noting that for certain parameter ranges, we can construct

AdS2 × R3 solutions with k 6= 0, similar to the solutions discussed in the appendix of [7].

Specifically, we take U = ρ2/L2
(2), V = 0, γ = γ(2) and

γ2
(2) =

√
12√
−ξ

, k2 =

√
−ξ√

3L2
(2)

, L−2
(2) = 8− m2

√
3√

−ξ
. (5.2)

Clearly these solutions require models in which ξ < 0. Now recall from (2.8) that the

requirement that there is a relevant scalar operator in the UV CFT with dimension ∆0 < 4,

implies that m2 < 0. From (2.7) we see that m2 < 0 and ξ < 0 are not compatible with

having the second AdSc5 fixed point that we discussed in sections 2–4.

We next consider the spectrum of deformations about the AdS2 × R3 solution. Con-

sidering perturbations of the form

U =
ρ2

L2
(2)

(1 + c1ρ
δ) , V = c2ρ

δ , γ = γ(2)(1 + c3ρ
δ) , (5.3)

with ci constant, then we find an unpaired mode with δ = −1, with c2 = c3 = 0, which

simply corresponds to shifting r by a constant in the solution. We also find a pair of modes

with δ = −2, 1. The mode with δ = −2 also has c2 = c3 = 0 and is associated with heating
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up the solution. The mode with δ = 1 has c1 = (2/3+8L2
(2)+

√
3√
−ξ )c3, c2 = −(8L2

(2)+
√

3√
−ξ )c3.

Finally there is another pair of modes with δ = −1
2 ±

1
2 [1 − 64√

3
L2

(2)

√
−ξ]1/2 which have

c2 = 0 and c1 related to c3. Notice that there are BF violating modes in the AdS2 solution

when
√
−ξ ≥

√
3

16 (1 + (1− 4m2)1/2).

In the remainder of this section8 we will focus on models with parameters given by

m2 = −15/4 , ξ = −1/4 . (5.4)

Choosing m2 = −15/4 (as in previous sections) implies that the UV CFT dual to the AdS0
5

vacuum has a relevant scalar operator with dimension ∆0 = 5/2. In this case there are BF

violating modes of the AdS2 solution when ξ ≤ −75/256 ∼ −0.293, and hence they are

absent for (5.4). The numerical constructions of the solutions described in the following

subsections are similar to those in previous sections and so we have relegated some details

to appendix A.

5.1 RG flows

We first consider RG flows which break spatial translations (i.e. with k 6= 0), starting from

AdS0
5 in the UV and going to the AdS2 × R3 solution in the IR, given by (5.2). Note

that with the values of the parameters given in (5.4) the value of the scalar field in the

AdS2 × R3 solution is γ(2) = 481/4 ∼ 2.63. From the point of view of the IR, we use the

δ = 1 mode mentioned below (5.3) to shoot out from the AdS2×R3 solution, as described

in appendix A. For future reference we note that this mode is associated with an irrelevant

operator in the CFT dual to AdS2 × R3 with ∆ = 2. These RG flows exist for a specific

value of the dimensionless deformation parameter which is numerically found to be at

Γ/k3/2 = Γ̄, with

Γ̄ ∼ 19.37 . (5.5)

We next consider the boomerang RG flows starting from AdS0
5 in the UV and ending

up at the same AdS0
5 in the IR. In the coordinates we are using the index of refraction is

now given by

n = eVIR−VUV . (5.6)

In figure 6 we have plotted some features of the one parameter family of boomerang RG

flows that we have constructed numerically, which, interestingly, exist in the finite range

0 ≤ Γ/k3/2 ≤ Γ̄. We find that as Γ/k3/2 approaches Γ̄ the boomerang RG flows start to

build up an intermediate scaling regime governed by the AdS2×R3 solution. We have also

calculated the holographic free energy for these RG flows and we find that as Γ/k3/2 → Γ̄

we have T tt/k4 → 1614, which is in excellent numerical agreement with the value of the

free energy that we directly obtain for the AdS0
5 to AdS2 × R3 RG flow.

While satisfying, this analysis does not reveal what happens for RG flows with Γ/k3/2 >

Γ̄. It turns out that these flows are singular in the far IR. In order to elucidate what is

8In appendix A.1 we will briefly consider models with ξ = −675/512 ∼ −1.32 which display some

additional new features.
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Figure 6. Boomerang RG flows for m2 = −15/4 and ξ = −1/4. The left plot shows the refractive

index n, defined by (5.6), as a function of the deformation parameter Γ/k3/2, for the one parameter

family of boomerang RG flows that exist in the finite range 0 ≤ Γ/k3/2 ≤ Γ̄. For the special value

Γ/k3/2 = Γ̄ ∼ 19.37 (dashed vertical line) we have the AdS0
5 to AdS2 × R3 RG flow. As Γ/k3/2

approaches Γ̄ there is a build up of an intermediate scaling regime, determined by the AdS2 × R3

solution, as displayed by the radial behaviour of the scalar function for Γ/k3/2 = 16.65, 19.17, 19.33

and 19.36 (red dots on the left plot and light grey to dark grey on the right plot) and we have also

marked the value of the scalar in the AdS2 × R3, γ(2) = 481/4, by a horizontal dashed line.

going on, we use the standard technique of constructing finite temperature black holes and

then cooling them down to low temperatures. As we will see this will also reveal interesting

features at finite T for Γ/k3/2 < Γ̄.

5.2 Black hole solutions and thermal insulators

It is straightforward to numerically construct black hole solutions for arbitrary values

of Γ/k3/2 using the IR expansion as given in appendix A. We first consider the black

hole solutions in the range 0 ≤ Γ/k3/2 < Γ̄, where the boomerang RG flows exist. In

the subrange 0 ≤ Γ/k3/2 ≤ ΓC , below a critical value ΓC , we find that the black hole

solutions can be cooled down, uneventfully, and they smoothly approach the boomerang

RG flows at T = 0. In particular, we find that as T → 0 the entropy, s, goes to zero with

s ∼ T 3. However, in the range ΓC < Γ/k3/2 < Γ̄ there is a first order phase transition

at finite temperature. The immediate signal for this behaviour can be seen in the entropy

versus temperature plots becoming multivalued, as displayed in figure 7. Furthermore,

by calculating the free energy for the black holes in this range as a function of T , which

display the characteristic swallowtail behaviour, we can determine the thermodynamically

preferred black holes, again shown in 7.

When Γ/k3/2 = ΓC the line of first order phase transitions ends in a second order

critical point with ΓC ∼ 10.5. When Γ/k3/2 = Γ̄ the line of first order phase transitions

smoothly ends at T = 0 at the AdS0
5 to AdS2 × R3 RG flow solution. This behaviour is

summarised in figure 1.

We next construct black hole solutions with Γ/k3/2 > Γ̄. In this case we find no

evidence of any phase transitions at finite T . When Γ/k3/2 is close to Γ̄, as the temperature

is lowered the solutions build up a finite temperature behaviour that is governed by the

AdS2 × R3 solution, before heading off to the new T = 0 ground states. This is displayed
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Figure 7. Plots of the entropy density s as a function of T for black hole solutions with various

deformation parameters and for models with m2 = −15/4 and ξ = −1/4. The left plot is for

Γ/k3/2 ≤ Γ̄ ∼ 19.37, namely 5.5, 10.3, 18, and 19.3 (light grey to dark grey). The dashed blue

line in both plots is for Γ/k3/2 = Γ̄. For Γ/k3/2 = 19.33 and 19.36 we have used dotted lines on

the curves to indicate the first order phase transition. As T → 0, for Γ/k3/2 < Γ̄ the black holes

approach the boomerang RG flows, with s ∼ T 3, and when Γ/k3/2 = Γ̄ they approach the AdS0
5

to AdS2 × R3 RG flow with, from (5.2), s ∼ 0.84k3. The right plot is for Γ/k3/2 ≥ Γ̄, namely,

19.41, 19.75, 25 and 35 (dark grey to light grey). As T → 0 the black holes have s → 0, but not

as a power of T . At T → 0 they approach insulating ground states. In both plots the intermediate

scaling regimes can be seen.

in the behaviour of entropy versus temperature plots shown in figure 7 and also in figure 1.

The plots show that as T → 0 we have s → 0. However, unlike other s = 0 ground states

which break translations [20–23], we find that the entropy density is not vanishing as a

power law with T . Indeed we find that d(ln s)/d(lnT ) is decreasing as T → 0. The very

slow decrease of s(T ) as T → 0, whose precise form we have not been able to ascertain

from the numerics, may lead one to question whether we are in fact closing in on the true

T = 0 ground states. The fact that we have constructed the black holes to extremely low

temperatures provides strong evidence that we have. In addition, jumping ahead, we will

also see that the ratio of the thermal diffusion constant to the butterfly velocity, presented

in figure 9, has a behaviour consistent with T = 0 ground states. We will continue now

assuming that we are studying the true T = 0 ground states. It is simple to see that they

are certainly singular: for example the value of the scalar field at the horizon diverges

as T → 0.

To determine some additional properties of the T = 0 ground states for Γ/k3/2 > Γ̄

we can calculate the thermal DC conductivity matrix, κij . For general holographic lattices

this can be calculated by solving a Stokes flow at the horizon [48]. In fact, for this case we

can use the results presented in [49] which showed that for all of the black hole solutions

that we have constructed we have κij = κδij with

κ =
4πsT

γ2
Hk

2
, (5.7)

where γH is the value of the scalar field at the black hole horizon. Plotting this as a

function of T we find the behaviour shown in the right panel of figure 8, clearly revealing

that, for Γ/k3/2 > Γ̄, κ→ 0 as T → 0. By examining the d lnκ/d lnT we deduce that κ is
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Figure 8. Plots of the temperature dependence of the thermal conductivity κ for the black hole

solutions constructed for m2 = −15/4 and ξ = −1/4. The left plot is for Γ/k3/2 ≤ Γ̄ ∼ 19.37,

namely 5.5, 10.3, 18, and 19.3 (light grey to dark grey), as in figure 7, and we see thermal conducting

behaviour with κ→∞ as T → 0. The dashed blue line in both plots is for Γ/k3/2 = Γ̄ with κ ∼ T
as T → 0. The right plot is for Γ/k3/2 ≥ Γ̄, namely, 19.41, 19.75, 25 and 35 (dark grey to light

grey), as in figure 7, and we see thermal insulating behaviour with κ→ 0 as T → 0.

not going to zero as a power law, in line with the radial behaviour of the metric mentioned

previously. This thermal insulating behaviour arises because sT/γ2
H → 0 as T → 0 i.e. the

number of degrees of freedom available to transport heat, captured by s, is going to zero

rapidly enough as T → 0.

For Γ/k3/2 = Γ̄, associated with the AdS0
5 to AdS2×R3 RG flow, we have κ ∼ T . For

Γ/k3/2 < Γ̄ the T = 0 ground states are the boomerang RG flows which have translationally

invariant horizons and hence κ(T )→∞ as T → 0, as we see in figure 8. We can be slightly

more precise about this behaviour, generalising arguments in [3, 4], essentially by heating

up the boomerang RG flow. By considering the AdS-Schwarzschild black hole we deduce

that the location of the black hole horizon is related to the temperature via ρ+ = πT . Next,

by considering (A.3) we deduce that we can obtain the renormalisation of length scales9

in the boomerang RG flow, L̄, by taking the following limit of the black hole solutions:

L̄ = limT/k→0[eV |ρ=ρ+/(πT )]. Using (A.3) and (5.7), we then anticipate that as T/k → 0,

the thermal conductivity blows up as κ → T 7eck/T , where c is a positive constant. We

have verified that this is the case for several branches of black holes with Γ/k3/2 < Γ̄.

Finally, although not displayed in figure 8, as T → ∞ we find that κ → T 7. This

behaviour can be understood using a similar argument, as given10 in section 3.3 of [49], to

show that the high temperature behaviour of κ is given by κ → T 2(6−∆), where ∆ = 5/2

is the scaling deformation of the operator dual to the complex scalar fields in (2.2) for the

UV AdS0
5 vacuum.

5.3 Diffusion and butterfly velocity

The black hole solutions that we have constructed all explicitly break translation invariance

in the dual field theory. On general grounds [50, 51], the black holes necessarily have a

quasinormal hydrodynamic mode associated with diffusion of heat. From the results of [51]

9For the coordinates we are using, L̄ is the same as the index of refraction for the boomerang RG flow

given in (5.6).
10Note that the T →∞ expression for κ given in eq. (3.30) of [49] is only valid for non-vanishing charge

density.
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Figure 9. Behaviour of the ratio of the thermal diffusion constant to the butterfly velocity, E ≡
D/(v2B/2πT ), as a function of T for the black hole solutions constructed for m2 = −15/4 and

ξ = −1/4 and Γ/k3/2 ≥ Γ̄. For Γ/k3/2 = Γ̄, dashed blue line, we see E → 1 as T → 0. For the

thermal insulators with Γ/k3/2 equal to 19.41, 19.75, 25 and 35 (dark grey to light grey), as in the

right panels of figure 7 and 8, we see that E → 1/2 as T → 0.

this mode has a diffusion constant, D, which governs the dispersion relation of the mode,

which can be obtained via the Einstein relation D = κ/c, where c ≡ T∂s/∂T is the specific

heat (holding the deformation parameter Γ/k3/2 fixed). Since we have already calculated,

numerically, both κ(T ) and s(T ) it is therefore straightforward to obtain D(T ).

We next consider the calculation of the butterfly velocity vB. This can be obtained by

studying the construction of a shockwave geometry on the black hole horizon [40, 41]. For

the class of metrics we are considering, from [25] we have

v2
B =

4πT

6[e2V V̇ ]H
. (5.8)

We now consider the possibility that we have a relationship of the form

D = E
v2
B

2πT
, (5.9)

where we are interested in the low temperature behaviour of the dimensionless quan-

tity E(T ).

For Γ/k3/2 = Γ̄ we see from figure 9 that as T → 0 we have E → 1, in agreement with

the results of [29], where we recall that the AdS0
5 to AdS2×R3 domain wall solution is being

driven by an irrelevant operator in the locally quantum critical CFT dual to AdS2 × R3

with scaling dimension ∆ = 2. For Γ/k3/2 < Γ̄ (not shown in figure 8) we have the

boomerang RG flows and the T = 0 ground states are AdS0
5 . Since these ground states are

translationally invariant, the diffusion mode is absent: as T → 0 we have κ→∞, D →∞
and E →∞. However for boomerang RG flows with intermediate scaling governed by the

AdS2 × R3 solution, we find that there is a range of temperatures where E ∼ 1.

Finally, of most interest, we consider the low temperature behaviour of E for Γ/k3/2 >

Γ̄, associated with the thermally insulating ground states. Remarkably, to good numerical

accuracy, we find that E → 0.5 as T → 0, as shown in figure 9.
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6 Final comments

Within a Q-lattice framework, in sections 2–4 we constructed simple holographic solutions

which describe boomerang RG flows from a CFT in the UV, deformed by spatially de-

pendent relevant operators, to the same CFT in the IR. For large enough deformation

the solutions approach an intermediate scaling regime with a new conformal symmetry

appearing at intermediate scales, which is governed by another AdS5 solution.

The main features of this construction, combined with insights obtained in [1], indi-

cate that within a bottom up framework there is significant freedom to construct ‘designer

boomerang flows’. In particular, suppose that we want to construct a boomerang flow from

a holographic fixed point in the UV to the same fixed point in the IR. This fixed point

does not have to be conformal and could be, for example, of Lifshitz type. Suppose also

that we want an intermediate scaling regime governed by some other holographic geome-

try which could be AdS, Lifshitz or even hyperscaling violation form, which doesn’t break

translations. Then one looks for a gravitational model in which there is a standard RG

flow from the UV fixed point to the intermediate scaling geometry driven by a relevant

deformation, which we suppose is driven by bulk scalar fields. In addition we demand

that the gravitational model allows for a Q-lattice ansatz in which the bulk scalar fields

depend on the spatial coordinates. Then, much as in this paper, there should be RG flows

parametrised by a dimensionless parameter of the form Γ/kα, where k is the characteristic

wave number of the spatial deformation and Γ characterises the strength of the deforma-

tion of the relevant operator. For small Γ/kα one expects a boomerang RG flow as the

perturbative mode rapidly dies out in the IR.11 If the boomerang RG flow exists for large

values of Γ/kα then the desired intermediate scaling will also appear. In simple models the

latter feature should be present, but on the other hand it is not guaranteed. For example,

if there were additional fixed point solutions in the model, then one may be driven away

from the boomerang flows by a quantum phase transition at some value of Γ/kα before

intermediate scaling is seen.

In section 5 we also constructed boomerang flows for models in which there was an

AdS2×R3 solution which breaks translation invariance. In this case, for a specific value of

Γ/k3/2 = Γ̄ there is an RG flow solution from AdS0
5 in the UV to AdS2×R3 in the IR. We

found that as Γ/k3/2 approached Γ̄ from below, the boomerang RG flow solutions build up

an increasingly large AdS2 × R3 intermediate scaling region. A priori, it is unclear what

might happen for Γ/k3/2 > Γ̄. However, by constructing finite temperature black holes, in

addition to finding an interesting line of first order phase transitions for Γ/k3/2 < Γ̄, we

found a new class of thermally insulating ground states for Γ/k3/2 > Γ̄.

A particularly interesting feature of these new insulating ground states is that s(T )→ 0

but not as a power law. This is in contrast to the insulating ground states found in [20–23].

We also showed, numerically, that these ground states exhibit a simple relationship between

the thermal diffusion constant and the butterfly velocity of the form D = Ev2
B/(2πT )

with E(T ) → 0.5 as T → 0. It would certainly be interesting to have a better analytic

11An exception would be if the perturbative expansion generates zero mode terms at higher orders which

change the IR. Such behaviour can be eliminated by imposing discrete symmetries.
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understanding of these ground state solutions, which should also allow us to confirm this

result for E(T ). An interrelated point would be to obtain a better understanding of these

insulating ground states in the limit of large Γ/k3/2.

A more general point is that in contrast to other holographic ground states, such as

Lifshitz, hyperscaling violation and the ground states of [20–23], a priori it is not clear how

one can directly construct novel ground state solutions, without power law behaviour, in

holography. On the other hand, in this paper we have shown that analysing models with

boomerang RG flows, perhaps fortuitously, has provided a way of revealing their existence.

Having found some examples, it is now a very interesting question to try and understand

the full landscape of such solutions.

In the above discussion we have been considering deformations associated with relevant

operators of the UV fixed point. However, we note that boomerang RG flows with inter-

mediate scaling and within a Q-lattice framework do not require the deformations to be

associated with relevant operators: indeed the examples in [4] were driven by marginal op-

erators. It is also worth emphasising that boomerang RG flows do not require Q-lattices and

can also arise for what are called inhomogeneous lattices. For example, in [2] boomerang

RG flows were driven by a deformation involving a spatially varying chemical potential of

CFT in d = 3 of the form V cos kx. For these deformations with k = 0 and V 6= 0, we

have the standard zero temperature AdS-Reissner-Nordstrom black hole, which approaches

AdS2×R2 in the IR. It is therefore natural to conjecture that for sufficiently large V/k the

boomerang RG flows could have an intermediate scaling regime approaching AdS2×R2. It

would be of interest to examine this in more detail, and more generally, analyse boomerang

RG flows for other inhomogeneous lattices.
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A Some details for section 5

For the ansatz used in (5.1) the equations of motion are given by

0 = U̇ + U

(
2V̇ − γ̇2

2V̇

)
− 1

V̇

(
4− 1

2
(e−2V k2 +m2)γ2 − ξ

3
γ4

)
,

0 = γ̈ + γ̇

(
U̇ + 3UV̇

U

)
− γ

(
e−2V k2 +m2

U

)
− 4ξ

3U
γ3 ,

0 = V̈ + V̇ 2 +
1

2
γ̇2 . (A.1)
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Restricting to m2 = −15/4 we have the following UV expansion as ρ→∞,

U = (ρ+ ρ+)2

(
1− 3Γ2

8(ρ+ ρ+)3
+

M

(ρ+ ρ+)4
+ . . .

)
,

e2V = (ρ+ ρ+)2

(
1− 3Γ2

8(ρ+ ρ+)3
− 5ΓΓ2

8(ρ+ ρ+)4
+ . . .

)
,

γ =
Γ

(ρ+ ρ+)3/2
+

Γ2

(ρ+ ρ+)5/2
+

Γk2

2(ρ+ ρ+)7/2
+ . . . . (A.2)

where the parameter ρ+, obtained by shifting the radial coordinate is included to conve-

niently place the IR in the RG flows at ρ = 0.

For the boomerang RG flows the IR expansion, at ρ→ 0, is given by

U = ρ2

[
1 +

3

16
e
− 2k
ρcV

(
2cV

k2

ρ2
+ c2

V

k

ρ

)(
cγ

k3/2

)2

+ . . .

]
,

e2V = ρ2c2
V

(
1− 1

16
e
− 2k
ρcV

(
4
k3

ρ3
+ 3c2

V

k

ρ
+ 3c3

V

)(
cγ

k3/2

)2

+ . . .

)
,

γ =
k3/2

ρ3/2
e−k/ρcV

(
cγ

k3/2

)
+ . . . , (A.3)

fixed by two parameters cγ and cV . For the RG flow from AdS0
5 to AdS2 ×R3 solution we

use the IR expansion

U =
ρ2

L2
(2)

(1 + c1 ρ+ . . .) ,

e2V = cV (1 + 2c2 ρ+ . . .) ,

γ = γ(2)(1 + c3 ρ+ . . .) , (A.4)

with the ci as given for the δ = 1 mode in section 5, and hence, with cV , (A.4) depends on

two free constants.

Finally, for the black hole solutions we use the expansion as ρ→ 0 given by

U = 4πTρ− ρ2 1

48

(
96 + 45γ2

H − 8ξγ4
H − 36γ2

H(k/VH)2
)

+ . . . ,

e2V = V 2
H + ρ

V 2
H

48πT

(
96 + 45γ2

H − 8ξγ4
H − 12γ2

H(k/VH)2
)

+ . . . ,

γ = γH + ρ
γH

48πT

(
−45 + 16ξγ2

H + 12(k/VH)2
)

+ . . . . (A.5)

In order to calculate the holographic energy of the domain wall solutions, we need

to calculate the holographic stress tensor. To do this, we need to supplement the bulk

action (2.1) with boundary terms including the usual Gibbons-Hawking term and a counter-

term action given by Sct = 1
16πG

∫
d4x
√
−γ(6+

∑
α

3
4z
αz̄α+. . . ), where γij is the pull back of

the bulk metric to the regulating UV boundary and the neglected terms are not important
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for the calculation of interest. After a little calculation we find that the energy density of

the dual field theory is given in terms of the UV expansion of (A.2) as

T tt = −3(M + ΓΓ2) . (A.6)

In order to determine the thermodynamically preferred black holes we also need to calculate

the free energy density, w, and we have

w = T tt − Ts . (A.7)

A.1 RG flows and black holes for m2 = −15/4, ξ = −675/512

In section 5 we focussed on models with m2 = −15/4 and ξ = −1/4. Here we briefly

discuss models with m2 = −15/4, ξ = −675/512 ∼ −1.32 which exhibit some interesting

different behaviour. It is worth noting that for these values, the AdS2 ×R3 solution given

in (5.2) has a BF violating mode (see the discussion below (5.3)) and this seems to be at

least partially responsible for the differing behaviour.

The AdS0
5 to AdS2×R3 RG flow now exists for the special value Γ/k3/2 = Γ̄ ∼ 1.8466.

We can also construct boomerang RG flows from AdS0
5 to AdS0

5 for a finite range of

Γ/k3/2 but unlike when m2 = −15/4, ξ = −1/4, and surprisingly, this range now extends

further than Γ̄ as shown in figure 10. In particular, there is now a range of Γ/k3/2 where

the boomerang RG flows are not uniquely determined by the UV deformation parameter

Γ/k3/2, but instead by the refractive index n.

These are perhaps the first examples of holographic RG flows which have the same fixed

point solution in the IR and yet they are not uniquely specified by their UV deformation

data.12 Furthermore, for the specific value Γ/k3/2 = Γ̄ there is also the AdS0
5 to AdS2×R3

RG flow solution, giving rise to an additional non-uniqueness for this specific value of the

UV deformation. As n → ∞ we find that Γ/k3/2 → Γ̄. Furthermore, as n gets larger

the boomerang RG flows build up an increasingly larger intermediate scaling regime that

is determined by the AdS2 × R3 solution, as also displayed in the radial behaviour of the

scalar field γ in figure 10.

For the values of Γ/k3/2 where there is not a unique solution, the physical RG flow

solution is the one that has the smallest energy. In figure 10 we have plotted T tt for the

boomerang flows and we find that for a given value of Γ/k3/2 the energetically preferred

solution is given by the smallest value of n. In particular, the amount of build up of

an intermediate scaling regime determined by the AdS2 × R3 solution is frustrated for

energetic reasons.

We have constructed some finite temperature black hole solutions, but the full phase

diagram is rather involved due to the presence of multiple branches of solutions in the

region of Γ/k3/2 where there is non-uniqueness of the boomerang RG flows. While we

leave a full analysis to future work, we note that we have constructed some black hole

solutions for values of Γ/k3/2 significantly larger than Γ̄ and we find that as T → 0 the

12Examples of holographic RG flows which are not uniquely specified by their UV data but with different

IR fixed point solutions arise in many situations including in the context of the T → 0 limit of spontaneously

broken phases.
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Figure 10. Boomerang RG flows for m2 = −15/4 and ξ = −675/512. The upper left plot shows

the refractive index n, defined by (5.6), as a function of the deformation parameter Γ/k3/2, for a

one parameter family of boomerang RG flows. For the special value Γ/k3/2 = Γ̄ ∼ 1.8466 (dashed

vertical line) there is also an AdS0
5 to AdS2 × R3 RG flow. Near Γ/k3/2 = Γ̄ the boomerang flows

are not uniquely specified by the value of Γ/k3/2. As n becomes large the boomerang flows build up

a large intermediate scaling regime dominated by the AdS2 × R3 solution: for several boomerang

flows with Γ/k3/2 ∼ 1.8466, denoted by red dots, we have plotted the radial behaviour of the scalar

function in the upper right plot, with light grey to dark grey associated with increasing n, and the

dashed horizontal line indicates the constant value of γ in the AdS2×R3 fixed solution. The bottom

plot shows the value of the energy for the boomerang flows and we see that for values of Γ/k3/2

where there is non-uniqueness, it is the solution with the smallest value of n that is preferred (the

lightest grey in the upper right plot), and hence the intermediate AdS2 ×R3 scaling is frustrated.

ground states have s(T ) → 0, not as a power law, and they are again thermal insulators.

Furthermore, we also find that they satisfy the diffusion-butterfly velocity relation given

in (5.9) with again, remarkably, E(T )→ 0.5 as T → 0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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