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Abstract— In this article, we propose a new behavioral mod-
eling approach, called boosted model tree, to characterize and
compensate for the complex nonlinear distortions induced by
wideband high-efficiency radio frequency power amplifiers. With
the proposed model, the input data are classified into different
zones by decision trees and each zone is assigned separate
submodels. We also employ a model boosting technique to
build multiple parallel tree structures that jointly model the
desired nonlinear behavior. By designing dedicated optimization
procedures, both tree structures and submodel coefficients can
be efficiently identified. It is demonstrated that the combination
of piecewise and parallel structures provides a powerful and
hardware-efficient way to model nonlinear memory effect and
cross terms. Based on the experimental results, the proposed
method can achieve improved linearization performance with low
hardware complexity under challenging wideband predistortion
scenarios.

Index Terms— Behavioral modeling, boosting, decision
tree, digital predistortion (DPD), machine learning, power
amplifier (PA).

I. INTRODUCTION

IN THE 5G era, new technologies are expected to be

deployed in mobile communication systems to satisfy the

growing demand for better wireless networks. Key tech-

nologies, including new waveforms, advanced multiple-input–

multiple-output (MIMO), increased bandwidth, and network

densification, have been developed to meet the diverse require-

ments of the next-generation network [1]. Implementing

these new features while keeping high energy efficiency thus

becomes a challenging yet important task in the design of

future wireless communication systems.

Digital predistortion (DPD) is a widely adopted linearization

technique for mitigating nonlinearities caused by radio fre-

quency (RF) power amplifiers (PAs) [2], [3]. It allows PAs to

be operated at higher power levels for higher efficiency without

losing linearity, enabling a more efficient wireless system.

Nevertheless, the new specifications and operation principles
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of 5G transmitters pose challenges to the design of DPD [4].

On one hand, wider bandwidth and new high-efficiency

PA architectures lead to more complex PA characteristics [5],

which requires more sophisticated DPD models for lineariza-

tion. On the other hand, the use of MIMO and network

densification [6] techniques reduces the output power of indi-

vidual PAs, which lowers the power budget of DPDs. To tackle

these challenges, DPD systems with improved performance

and lower power consumption are desired.

In the past two decades, many DPD models have been

developed. Many classic models, e.g., memory polynomials

(MPs) [7], generalized MP (GMP) [8], and dynamic devia-

tion reduction (DDR) [9], are based on the Volterra series.

Such polynomial-based models provide an intuitive descrip-

tion of the PA nonlinearity, which eases the development

of interpretable models. The use of polynomials as basis

functions, however, suffers from high hardware complexity in

DPD implementation and potential ill-conditioning in model

extraction. Under this context, another important modeling

technique, lookup table (LUT), has regained popularity due

to its low hardware complexity [10]–[12]. The spacing of

LUTs can also be optimized to have a nonuniform pattern

for better accuracy [13], [14], but the achieved performance is

still limited by its simple structure. Other basis functions have

also been developed, e.g., decomposed vector rotation [15]

and splines [16], leading to new models with improved per-

formance and reduced complexity.

Besides the search for better nonlinear basis functions,

a few techniques have been proposed to boost performance by

aggregating a collection of different models. Parallel modeling

techniques include basis functions from multiple models to

generate a larger and more accurate behavioral model [17],

[18]. A different method is to arrange different models in

cascade [19], where the output of one model becomes the input

to the next. Another approach, piecewise modeling method,

keeps a number of models and selects one model each time

based on the input signal characteristics [20]–[22].

In this article, a novel behavioral modeling technique, called

boosted model tree (BMT), is developed to enhance the

linearization performance of conventional linear-in-parameters

DPD models. To achieve improved accuracy and lower com-

plexity, we use small-size pruned Volterra model as the

basic element and aggregate many of them using data-driven

machine learning techniques. Specifically, we design a piece-

wise model structure, named model tree, by using decision

trees to select the suitable submodel for each input data sam-

ple. To further improve the performance, we employ a model
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Fig. 1. AM-AM and AM-PM characteristics using 20- and 200-MHz signals.

boosting technique to build multiple model trees with distinct

tree structures and use them in parallel to produce the output

signal. The final BMT model with both tree-based piecewise

structure and boosting-based parallel architecture is shown

to provide strong linearization performance while consuming

few hardware resources. Dedicated model training algorithms

are also proposed to train both tree structures and submodel

coefficients efficiently. Compared with the exhaustive search

strategy, the proposed optimization techniques can achieve

satisfactory linearization performance with significantly lower

complexity.

The rest of this article is organized as follows. The

background of nonlinear memory effect modeling is briefly

discussed in Section II. Section III describes the proposed

model structure and explains the use of the two machine

learning techniques, i.e., decision tree and model boosting.

Subsequently, in Section IV, we show the training method for

the proposed model. The experimental results and complexity

analysis are reported in Section V, followed by a conclusion

in Section VI.

II. BACKGROUND

The evolution of emerging RF systems and communi-

cation standards has created significant new challenges for

DPD model development. Generally speaking, the reasons

are twofold. The first factor is the widespread adoption of

complex PA architectures, such as multiband/multimode and

multistage Doherty [23]–[25] and load-modulated balanced

amplifiers (LMBAs) [26]–[28]. While these techniques have

greatly improved the energy efficiency of modern RF systems,

these high-efficiency PAs are more difficult to model, because

of the sophisticated interaction between their internal blocks.

In particular, they often exhibit very different nonlinear char-

acteristics when driven to different power ranges.

The second consideration is the wider signal bandwidth,

which requires the DPD model to guarantee accurate fre-

quency response over a wider frequency range. Moreover, due

to the bandwidth limitation in circuit components, PAs typi-

cally exhibit more complicated characteristics with wideband

excitations. As discussed in [29], such frequency-dependent

nonlinearity can strongly affect the linearizability of PAs.

As shown in Fig. 1, with the same PA, the AM-AM and

AM-PM characteristics of 200-MHz signals have signifi-

cantly more dispersions than that with 20-MHz signals.

Fig. 2. Different memory effect representation in existing DPD models:
(a) MP, (b) GMP, and (c) DDR.

To tackle these issues, DPD models should be designed to have

more powerful capability to represent PA’s memory effects.

Therefore, the design of DPD models must consider more

complicated nonlinearities and memory effects at the same

time. In this regard, proper formulation of nonlinear memory

effect is at the core of DPD model design.

In existing approaches, the nonlinear memory effect is typ-

ically decomposed into different components. Some common

configurations are shown in Fig. 2. The simplest decomposi-

tion is to address each memory sample separately, as in the

MP model. To represent more complex nonlinear memory

effect, previous studies employed a two-input nonlinear func-

tion. For example, in GMP model, each polynomial involves

two adjacent samples (such as x̃(n − 1) and x̃(n − 2)), while

DDR model considers the instantaneous sample and the other

memory sample (such as x̃(n) and x̃(n − 2)). It is worth

noting that the nonlinear functions discussed here are not

restricted to polynomials. Other nonlinear operators, such as

LUTs [11], [30] or the combination of polynomials and

LUTs [12], are also used.

Following this line of thinking, it is easy to consider using

more complex nonlinear functions, such as three-input ones,

if we need to model ever more complicated nonlinear memory

effect, as in Fig. 3. This can be achieved by introducing more

terms from the full Volterra model [31], [32] or incorporating

LUTs with higher dimensions [33], [34]. Nevertheless, the size

and complexity of the model can grow exponentially with

the input dimension of nonlinear functions. In wideband

applications, as the model involves more memory samples,

such configuration will lead to prohibitive model complexity.
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Fig. 3. Ideal memory effect representation.

Fig. 4. Illustration of a decision tree. (a) Tree structure. (b) Zone selection.

To solve this dilemma, in this work, we attempt to move

one step beyond the conventional “memory decomposition”

methodology and present a new BMT approach by integrating

two machine learning techniques, namely decision tree and

model boosting.

III. PROPOSED MODEL STRUCTURE

Decision tree, as a classification model, can divide the

input space into different zones [35]. An example of decision

tree is shown in Fig. 4(a), and Fig. 4(b) shows the divided

input space. The tree has two real-valued splitting features

ψ1 and ψ2. When a new input sample x̃(n) comes in, it is

directed to one of the zones based on the value of splitting

features ψ1(n) and ψ2(n). In this example, if ψ1(n) = 0.7

and ψ2(n) = 0.3, we have ψ1(n) ≥ 0.6 and ψ2(n) < 0.4, so

x̃(n) will be classified to Zone C.

To use decision trees to represent PA memory effects,

a simple way is to define splitting features with magnitude

of the signals, i.e., ψm(n) = |x̃(n − m)|, making the model

outcome dependent on both current and past memory samples.

An important feature of the decision trees is that they

can perform automatic feature selection during the training

process. When a decision tree is trained, it will determine the

optimal splitting feature and threshold for each node in the

tree. Thus, it is possible to feed a large number of memory

samples to the decision tree, and we can simply let the

optimization algorithm select the dominant factors and model

the nonlinear relationship automatically.

However, a single decision tree will only pick a few most

important features. It may not be sufficient to fully characterize

Fig. 5. Operation principle of model trees.

the PA behavior. To cope with this deficiency, we propose to

employ a model boosting technique to build multiple decision

trees and encourage each tree to involve different memory

samples. With a few more trees, the aggregated model is

able to cover all necessary memory samples and construct the

model efficiently.

In the following, we will discuss the detailed construc-

tion of the proposed model by applying the abovementioned

methodology.

A. Decision Tree-Based Piecewise Modeling

The decision trees need to be properly arranged in a

behavioral model to unleash their full expressive power. In this

work, instead of designing a model from scratch, we propose

to combine decision trees with small-size pruned Volterra

models. The resulting model is referred to as “model trees.”

As shown in Fig. 5, a model tree defines a set of inde-

pendent submodels, and each input sample selects one of the

submodels for DPD processing. The process of selecting the

corresponding submodel is labeled as “zone selection” and

realized by using a decision tree. In other words, the deci-

sion tree acts as switches to select the best model for each

data sample. For instance, in the previous example, if x̃(n)

belongs to Zone C, it will be processed by submodel C of

the DPD. With properly designed submodels, the flexibility

of the proposed method is greatly extended and it is possible

to take full advantage of the prior knowledge of the PA by

adopting models that are best suited for a specific PA.

Because of the piecewise structure, model trees also have

low power consumption because each input data sample will

only be processed by the relevant nonlinear operators, rather

than the full model. Compared with using a single submodel,

it greatly increases the degrees of freedom in the model and,

at the same time, makes the basis functions more diverse

because different submodels are naturally orthogonal to each

other. Therefore, the proposed model can achieve good mod-

eling accuracy with minimal hardware resources and power

consumption.

Compared with the existing piecewise models, the proposed

model tree approach has some unique and important features:

1) Supervised Threshold Optimization: As we will show in

Section IV, the optimization procedures can directly optimize

the splitting thresholds of all nodes in the decision tree jointly

with the submodel coefficients so that the DPD can be fully

optimized to achieve the best performance for the PA under

test. It is very different from the conventional approaches that

determine the threshold by analyzing the signal characteris-

tics [20] or the memoryless PA behavior only [36]. Thus,

unlike existing solutions, the proposed algorithm takes full
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Fig. 6. Cross-term generation mechanism in (a) conventional piecewise
models and (b) model trees.

account of PA’s memory effect and can robustly solve the

threshold values within reasonable complexity budget.

2) Optimized Selection of Memory Samples: In model trees,

the splitting feature of each node can be chosen freely from

memory samples of the input signal. While existing methods

must designate the splitting feature manually in advance,

the proposed approach performs the selection automatically by

the optimization algorithm, so the flexibility of the DPD model

is greatly extended. Moreover, as only one feature is selected

for every split, the proposed model tree can work effectively

even when there are large numbers of potential features,

so it can cover more memory samples than the conventional

methods.

3) Modeling of Complex Memory Effect: As discussed in

the literature [8], [9], cross terms, namely the interactions

between current and delayed samples, play an important

role in improving model accuracy and DPD performance.

In conventional piecewise models that use the magnitude of

the instantaneous input sample as index, the cross terms can

only be embedded in the model basis functions, as shown

in Fig. 6(a). In contrast, the proposed model tree method offers

a flexible way of cross-term generation. As shown in Fig. 6(b),

the decision tree is built with many splitting features, so dif-

ferent features can be naturally mixed to produce cross-term

effects. Moreover, the zone-dependent coefficients are further

multiplied with the model basis functions to create a more

diverse mixture of nonlinear memory effects. With the super-

vised optimization procedures, the two cross-term generation

mechanisms of model tree can be jointly optimized to generate

powerful cross terms to best model the target PA behavior.

B. Model Boosting and Full Model Structure

To compensate for the distortions excited by wideband

signals, the DPD model needs complex and diverse cross

terms to address the memory effect. Model trees can efficiently

construct such cross terms using the tree structure. However,

for one model tree, only the interactions involving the selected

splitting features can be modeled. Thus, a single model tree

can only include limited types of cross terms.

Fig. 7. Full BMT model architecture.

To enhance the performance, we propose to employ

multiple parallel model trees using a model boosting

technique [35], [37]. The key idea of model boosting is to

aggregate many simple basic models to improve modeling

accuracy. In this way, the modeling residue from one model

can be compensated by the remaining models.

By applying the boosting technique to model trees,

we obtain the BMT model. In the BMT model, we construct

multiple model trees and let each model tree have distinct

tree structure and submodel coefficients. As each model tree

has a unique tree structure, we can integrate more different

cross terms into the model. It is worth mentioning that using

multiple trees has a very different effect than using more

zones in a single tree because every new tree involves different

memory samples and builds new types of cross terms, while

increasing the number of zones alone is only similar to

increasing the nonlinear order.

The architecture of the full BMT model is shown in Fig. 7.

The input signals are fed to different decision trees and the

tree structures make individual decisions on zone selection

for each model tree. The input data are then processed by

the corresponding submodels and each model tree generates

one output signal which is later summed up to produce the

final output of the model. While the full model has many

blocks, it can be implemented efficiently in hardware, as will

be detailed in Section III-C.

C. Implementation of BMT

In this work, as a proof of concept, we use the magnitude of

current and past input samples, |x̃(n−m)|, as splitting features

and employ pruned Volterra models as submodels. As the cal-

culation of |x̃(n−m)| or |x̃(n−m)|2 is included in most pruned

Volterra models, there is virtually no additional complexity to

generate the splitting features. Moreover, the splitting features

have a much lower accuracy requirement than other parts of

the DPD model because we only need to know which zone the

sample lies in and do not need to know the exact value. Thus,

depending on the application, this feature may be exploited to

optimize the hardware utilization.
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Fig. 8. Example hardware implementation of decision tree structures.

Fig. 9. BMT implementation with hardware sharing.

The core feature of the BMT model, i.e., the tree structure,

can be implemented with very low hardware complexity

because the design of this part involves comparators and

multiplexers only. An example is shown in Fig. 8, which

implements the tree structure shown in Fig. 4(a).

The implementation of the full BMT model can be fur-

ther simplified because different arithmetic operations can

be shared in hardware implementation if the same model

expression is employed in all submodels. The first shared

component is the basis function generation block since the

same basis functions can be fed to all parts of the model.

In addition, in each model tree, instead of switching the sub-

models, we can just switch the coefficients, as shown in Fig. 8.

Another hardware simplification is the sharing of coefficient

multipliers between different model trees. Specifically, we can

add the coefficients from different model trees together before

multiplying them with the model basis functions, so the

complex multiplications between model coefficients and basis

functions can be shared.

As shown in Fig. 9, due to the proposed hardware sharing

techniques, the additional complexity for adding a new tree

is reduced to adders (for summing up coefficients) and mul-

tiplexers (for tree structures) only, and no complex multiplier

is needed. Note that one complex multiplier can consume

over 1000 LUTs on FPGA [38], whereas adders and mul-

tiplexers only need fewer than 100 LUTs [39], [40]. Thus,

by utilizing low-complexity components, the final model to

be implemented can have very low hardware utilization.

Therefore, the BMT model derived in this section shows

great potential to achieve both powerful linearization perfor-

mance and low hardware complexity at the same time.

IV. MODEL TRAINING AND COEFFICIENT EXTRACTION

After deriving the model structure, we now present how

to extract the model parameters. The main framework of the

model training is shown in Fig. 10. The training follows

a stepwise strategy, and the trees are trained one by one.

As shown in the left of Fig. 10, the detailed training process

can be described as follows.

1) Add a new empty tree to the model.

2) Optimize every node of the new tree using a top-down

optimization strategy and a binary-split alternate mini-

mization (BAM) algorithm.

3) Fine-tune the coefficients of all existing submodels.

4) Update the target signal for the next model tree.

5) If more trees are needed, go to step 1 and continue the

optimization.

We will discuss each step in detail as follows.

To facilitate the discussion, we make the following def-

initions. All input and output samples are collected in

vector x and y, respectively. � is a matrix where each column

is a splitting feature, and � is a matrix where each column is

a basis function of submodel.

A. Construction of Tree Structures

To initialize the training algorithm, the modeling target for

building the first tree is the desired model output signal y.

Starting from the second tree, the target signal is the modeling

residue from the previous tree. With the proposed training

procedure, each model tree will be fit to the target signal.

To properly construct the tree, we employ a layer-by-layer

procedure, which starts from the top node and gradually moves

to nodes in lower layers. As shown in the middle of Fig. 10,

to optimize the i th node, we first treat the node as an end node

and assume that it has no child nodes. The splitting feature

and threshold of this node (vi and τi ) is then optimized by

the BAM algorithm presented in the right of Fig. 10. The

BAM algorithm will be introduced in Section IV-B. Once the

optimal splitting feature and threshold are found, the dataset

is divided into two parts based on the optimal split and fed

to its two child nodes in the layer below. The optimization of

the child nodes can thus start by using a subset of the data.

This process is iterated until all nodes of the tree are built.

It is worth mentioning that once optimized, the splitting

feature and threshold of a given node will be fixed and are not

affected by the training of nodes in lower layers. In addition,

within one layer, the optimization of different nodes can be

parallelized for faster execution speed on certain hardware.

B. Binary-Split Alternate Minimization Algorithm

Different methods to determine threshold values have been

presented in the prior art, including uniform spacing [12],

k-means clustering [20], and memoryless nonlinearity analy-

sis [13], [36]. Nevertheless, since they do not consider the

memory effects of the PAs and require manual selection
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Fig. 10. Proposed training framework for BMT model.

Fig. 11. Optimizable parameters in a single model tree with only one node.

of splitting features, their performance may be limited in

wideband DPD scenarios.

To find the optimum splitting features and thresholds,

the training process must jointly optimize both the splitting cri-

terion and submodel coefficients. An intuitive model training

method is to do an exhaustive search of all possible splitting

features and splitting thresholds [41], [42]. For each candidate

split, we extract the submodel coefficients with least-squares

(LS) and calculate the total squared error for both sides. The

best split will be found after sweeping over all features and

thresholds. While this method is widely adopted [43], [44],

it has prohibitively high computational complexity because we

need to solve a large number of LS problems.

To reduce computational complexity, a novel BAM algo-

rithm is proposed. As shown in Fig. 11, the splitting criterion

to be optimized is ψv < τ , where v is the index of the

feature to be split and τ is the splitting threshold, so both

v and τ are optimizable. The submodel coefficients for the

two sides are cL and cR. As shown in the right of Fig. 10,

the BAM algorithm alternately optimizes the splitting criterion

and submodel coefficients.

In the first step, the submodel coefficients are fixed, and

we optimize the splitting criterion. In this case, wherever the

splitting threshold is, each data sample must belong to one of

the two submodels, that is to say, an arbitrary input sample

x̃(n) must be processed by either cL or cR. Suppose that the

modeling error with cL and cR is eL(n) and eR(n), respectively.

As shown in Fig. 12, if the splitting threshold is moved by just

a little such that x̃(n) is processed by cR before moving and

by cL after moving, the variation of total error �e(n) will

be eL(n) − eR(n). The modeling error with a given splitting

criterion ψv < τ can thus be obtained by accumulating �e of

Fig. 12. Illustration of splitting threshold optimization.

all samples below the threshold. Therefore, we can evaluate all

possible splitting thresholds simply by moving the threshold

value across the training data. The split with the lowest error

will be chosen for the current node, after sweeping over all

potential splitting features.

In the second step, the splitting threshold is fixed, so the

dataset can be divided into two parts. We can then update the

coefficients of the two submodels using LS.

By iterating between the two steps, the splitting criterion and

submodel coefficients can be jointly optimized. The complete

description of the BAM algorithm, as well as the implemen-

tation details, is presented in the Appendix.

C. Submodel Coefficient Extraction

Once the tree structures are determined by the top-down

tree construction strategy and BAM algorithm, we can extract

the submodel coefficients of all model trees.

With tree structure fixed, the model becomes linear in the

submodel coefficients and can be expressed in the matrix

format. For example, suppose that in the tth model tree,

we have x̃(1), x̃(3), and x̃(4) in the first zone and x̃(2) in

the second zone. Then, the model matrix can be represented as

Xt =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�(1) 0

0 �(2)

�(3) 0

�(4) 0
...

...

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(1)

where �(n) is nth row of � and 0 represents an all-zero

row vector with the same size as �(n). Subsequently,

we concatenate the model matrices of all existing model
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trees, including both current and previous ones

X = [X1, X2, . . .]. (2)

Coefficients of all model trees can then be extracted by LS

ĉ =
(

XH X
)−1

XH y (3)

where ĉ is a vector including all submodel coefficients.

Afterward, the target signal for tree construction is updated

to be the current modeling residue

r = y − Xĉ. (4)

That is, the residue of the current BMT model is used as the

target for building the next tree.

This process is iterated until all trees are built, leading to

an optimized BMT model.

D. Dynamic Adaptation in Real Time Operation

After the DPD system is deployed for real-world operation,

the DPD model needs to be updated occasionally to track the

variation of PA characteristics. If the variation of PA behavior

is not significant, the model tree structure can be fixed and

only the submodel coefficients need to be updated. In this

case, the estimation can be done with (3), which is the same

as conventional LS method, leading to reduced computational

complexity.

V. RESULTS

A. Experimental Setup and Evaluation Metrics

To validate the model performance, a test platform was

set up, as shown in Fig. 13, which includes PC, sig-

nal generator, driver amplifier, PA, attenuator, and spec-

trum analyzer. The PA under test was an in-house designed

broadband gallium nitride (GaN) load-modulated balanced

PA operating at 2.1 GHz with 37-dBm output power and

42% drain efficiency [28]. The excitation input signals were

five-carrier 100-MHz and ten-carrier 200-MHz orthogonal

frequency-division multiplexing (OFDM) signals, both with

8-dB peak-to-average power ratio (PAPR). The sampling rates

were set to four times the signal bandwidths. Recorded I/Q

input and output samples were time-aligned and normalized

before training the model. The model extraction and predis-

torted signal generation were both performed in MATLAB.

In the forward modeling case, the normalized mean square

error (NMSE) is used as the indicator for modeling accuracy.

In the DPD test, we employ both NMSE and adjacent channel

power ratio (ACPR) as performance metrics. For both types

of evaluation, 80 000 samples were used for model extraction

and another set of 80 000 data points was used for performance

evaluation.

In the complexity analysis, we follow the same methodology

as in [45]. The main metric is the number of floating-point

operations per sample (FLOPs). Also, the complexity of sub-

models and zone selection is both included.

To evaluate the proposed BMT method, we compared the

proposed BMT technique with both conventional Volterra

models and other piecewise modeling methods, including

Fig. 13. Photograph of the DPD test bench.

VS [20], MLUT [34], and DLUTI [12] methods. In all

piecewise models, the submodels had the same model structure

as the pruned Volterra model but with different parameter

settings. The model extraction methods for these methods

followed the same procedures as the original papers.

In the evaluation, we used different pruned Volterra mod-

els to best suit the specific cases. For the 100-MHz test,

we used GMP model without leading cross terms as sub-

models. Both even- and odd-order terms were used. When

increasing the signal bandwidth to 200 MHz, the memory

effect becomes stronger, so an additional type of DDR term,

|x̃(n)|p−3 x̃2(n)x̃∗(n − m), was added to the model.

B. Forward Modeling Performance

The modeling accuracy of the proposed BMT model is first

evaluated in a forward modeling setup.

1) Performance Comparison With Parametric Sweeps:

To systematically draw a comparison between the proposed

method and the conventional models, we performed a para-

metric sweep over the model parameter settings and evaluated

the best performance/complexity tradeoff for each model.

In the sweep using 100-MHz signals, we compared

our BMT model with GMP, VS-GMP, DLUTI-GMP, and

MLUT-GMP models. The swept parameters of GMP model

included memory depth M , polynomial order P , and

cross-term length L. Specifically, we swept P from 2 to 8,

changed M from 3 to 6, and varied L from 0 to 2. In all

piecewise models, we used the same sweeping range for M

and L. Due to the piecewise operation, using high nonlinear

order is usually unnecessary, so we only considered P = 1

or 2. In VS and DLUTI models, the number of zones K had the

value of 2, 4, 8, or 16. For the MLUT model, the same settings

were used except for the number of zones. We considered

six cases, including three 1-D cases (K0 = 4, 8, or 16), two

2-D cases (K0 = K1 = 4 and K0 = 8 and K1 = 2), and a

3-D case (K0 = 4, K1 = 2, and K2 = 2), where Ki refers to

the number of zones in dividing |x̃(n − i)|. The sweep of the

BMT model had the same sweeping range for P , M , and L

as other piecewise models. Ns could be 2 or 3 and Nt was

swept from 1 to 3.

For 200-MHz signals, most settings were kept the same,

except that DDR terms were added and M was swept
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Fig. 14. NMSE performance of GMP and BMT models with sweeping
parameters.

from 4 to 8 instead. The two modifications were made to

address the wider bandwidth.

To give a quick impression of the results of the para-

metric sweep, we plot the performance of all model set-

tings for GMP and BMT models under 100-MHz excitation

in Fig. 14, where each marker represents the performance and

complexity for one model configuration. The solid lines in

the plot represent the best performance/complexity tradeoff

for the models. The comparison shows that the proposed

BMT model significantly outperforms the conventional GMP

model in terms of both modeling accuracy and computational

complexity.

The full sweeping results for the 100- and 200-MHz cases

are shown in Figs. 15 and 16, respectively. For clarity, only

the best results for each model are shown.

It can be seen that, in both cases, the proposed BMT

model can always achieve better performance than all other

models with similar complexity. Moreover, it also increases the

maximum achievable accuracy by up to 4 dB, compared with

the conventional Volterra models. In contrast, the achievable

performance of all other piecewise models is only slightly

improved by around 1 dB. Thus, it clearly shows that the

proposed BMT method not only uses the hardware resources

more efficiently but also successfully builds the desired cross

terms that are missing in existing methods.

2) Performance Comparison With Increasing Number of

Zones: To more clearly demonstrate the advantage of the

BMT technique over the existing methods, we used the same

submodel for all piecewise models and see how they perform

when we gradually increase the number of zones.

The parameters of the submodels were set to P = 2, L = 2,

and M = 6 (for 100-MHz signals) or 8 (for 200-MHz signals).

For MLUT and BMT models where different configurations

may have the same number of zones, the best NMSE result is

displayed.

The full results are shown in Figs. 17 and 18 for 100- and

200-MHz test signals, respectively. It shows that the BMT

technique has superior performance than all other methods.

In particular, when using over ten zones, the BMT model

can outperform the best competitor by at least 1 dB in both

Fig. 15. Performance comparison between different models using 100-MHz
signals.

Fig. 16. Performance comparison between different models using 200-MHz
signals.

Fig. 17. Performance for different piecewise techniques with the same
submodel using 100-MHz signals.

cases, and its lead is still enlarging with increasing number of

zones. Actually, the performance of other methods has almost

saturated in this case. It clearly shows that the proposed BMT

method can construct more effective cross terms and achieve

better performance using the same submodel.
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Fig. 18. Performance for different piecewise techniques with the same
submodel using 200-MHz signals.

Fig. 19. Performance of BMT models with different configurations using
100-MHz signals.

3) Influence of BMT Model Configurations: Afterward,

we further investigate the influence of BMT model configura-

tions. Using the same submodel as the previous comparison,

we swept over the number of trees and the number of tree

layers of the model. The results for 100- and 200-MHz signals

are shown in Figs. 19 and 20, respectively. The general trend

of the two cases is very similar.

According to the results, the performance of BMT model

is boosted significantly by employing multiple trees. A key

observation is that the combination of piecewise and paral-

lel structures can provide decent performance improvement,

which is difficult to achieve with the piecewise modeling

technique alone. For example, in Fig. 19, when we use four

zones in each tree, the NMSE is improved from −35 to

−37 dB by adding the second tree. This performance is even

better than what we can obtain with 16 zones if we keep using

only one tree. Moreover, the performance improvement slows

down when the number of zones in a tree increases to a large

number. Thus, to further improve the accuracy, employing

additional trees provides a new dimension to explore. There-

fore, to achieve good linearization performance, it is important

to take advantage of both piecewise and parallel structures of

the model.

Fig. 20. Performance of BMT models with different configurations using
200-MHz signals.

TABLE I

COMPARISON OF DIFFERENT MODELS USING 100-MHZ SIGNALS

C. DPD Performance Comparison

To ultimately verify the performance of the proposed

method, we evaluated the linearization performance of the

models using DPD tests. During all tests, closed-loop esti-

mation was used to extract the model coefficients.

In 100-MHz tests, we set the GMP parameters to P = 6,

M = 5, and L = 2. For piecewise models, the polynomial

order of submodels was changed to P = 2. This configuration

has shown to achieve good performance for all methods in

forward modeling. Both DLUTI and VS used eight zones

because using more zones had little improvement on accuracy.

MLUT method used 2-D LUTs with K0 = K1 = 4, which

is the best setting in forward modeling. In the BMT model,

we set Ns = 3 and Nt = 3. To better balance the complexity,

the submodel used in the BMT method had L = 1. Thus, all

piecewise models had around 200 FLOPs.

It can be shown that the BMT achieves leading lineariza-

tion performance. Spectral results using 100-MHz signals are

shown in Fig. 21. The AM-AM and AM-PM curves for

the BMT model in this case are shown in Fig. 22. The

spectral and time-domain AM-AM results show that the PA

exhibits a significant memory effect, but the proposed method

can still offer good linearization performance. The detailed

performance and complexity results are presented in Table I.

It shows the BMT method clearly outperforms all existing

methods by a large margin with similar level of complexity,

which agrees with the results of forward modeling.

To compare the performance of the models with wider

bandwidth, we further used a 200-MHz setup. In this
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Fig. 21. Spectral results for different models using 100-MHz signals.

Fig. 22. AM-AM and AM-PM characteristics with and without BMT-DPD
from the 100-MHz test.

TABLE II

COMPARISON OF DIFFERENT MODELS USING 200-MHZ SIGNALS

case, compared with 100-MHz tests, memory depth M was

increased to 8 and additional DDR terms were used. The rest

settings were the same as the 100-MHz case. The selected

model configurations all perform well in forward modeling

and the complexities are around 400 FLOPs.

The detailed spectral performance for selected model set-

tings in the 200-MHz test is shown in Fig. 23, and we also

depict the AM-AM and AM-PM characteristics of BMT model

in Fig. 24. We draw a detailed comparison of the different

models for the 200-MHz test in Table II. The results of this test

show a similar trend as the previous 100-MHz test and further

confirm the performance of the proposed BMT approach for

wideband behavioral modeling and linearization.

Fig. 23. Spectral results for different models using 200-MHz signals.

Fig. 24. AM-AM and AM-PM characteristics with and without BMT-DPD
from the 200-MHz test.

It is worth mentioning that, while the proposed model is

mainly developed for the wideband frequency-division duplex-

ing (FDD) systems, it can also be applied to other cases,

such as time-division duplexing (TDD) systems, but some

special treatments may be required. For instance, transient

memory effects in TDD must be considered. Nevertheless,

the combination of our work and other existing research on

TDD linearization techniques [46], [47] can also potentially

lead to good linearization performance.

D. Model Extraction Complexity

In this section, we evaluated different model training strate-

gies for BMT. Specifically, we compared the proposed BAM

algorithm with the conventional exhaustive search method [42]

mentioned in Section IV-B. To complete the search within a

reasonable time, we tested eight thresholds for each splitting

feature.

The training time and accuracy are reported in Table III, and

the training was performed on a PC. It shows that the proposed

BAM method can extract the full model with similar accuracy

and significantly shorter time than the exhaustive search strat-

egy. The results show that the computational complexity of full

model update is still manageable in the dynamic environment.

It is also worth noting that, as discussed in Section IV-D,

it is possible to update only the submodel coefficients of the
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TABLE III

COMPARISON OF DIFFERENT MODEL TRAINING METHODS

BMT model during the dynamic adaptation. In our test, when

PA behavior does not vary much, such a strategy can further

reduce the model extraction time to 4.5 s while maintaining

the same level of linearization performance.

Furthermore, as we target at wideband DPD solutions,

the bandwidth limit for data converters is also a practical issue

in real-world applications [4]. Some recent works have focused

on this problem and proposed some promising solutions [48],

[49]. We believe that the combination of this work with these

techniques can be a good topic for future research.

VI. CONCLUSION

In this article, we present a novel BMT model to achieve

improved linearization performance under wideband model-

ing scenarios with low hardware complexity. The proposed

approach extends the existing DPD model architectures by

introducing a combination of piecewise and parallel mod-

eling techniques. With the help of both decision tree-based

piecewise structure and boosting-based parallel architecture,

the proposed BMT model is shown to enhance the modeling

capability of conventional pruned Volterra models with low

complexity. We also develop dedicated model training algo-

rithms to efficiently identify the BMT model structure and

coefficients. Therefore, we believe that the BMT modeling

approach offers a new and promising solution to address the

performance and complexity challenges in the design of future

DPD models.

APPENDIX

IMPLEMENTATION OF BINARY-SPLIT ALTERNATE

MINIMIZATION ALGORITHM

In this appendix, we present the detailed implementation

of the proposed BAM algorithm. The splitting criterion to be

optimized is ψv < τ , where v is the index of the feature

to be split and τ is the splitting threshold. Input samples

below the threshold are collected in xL, and the corresponding

output samples, entries in regression matrix and submodel

coefficients, are yL, �L and cL, respectively. Similarly, all

entities for representing samples above the threshold will have

the subscript R. Note that, starting from the second tree,

the target signal becomes the residue of the previous tree,

so r is used as target signal instead of y in this case.

The BAM method alternately optimizes the tree structure

and submodel coefficients with two iterative steps.

1) Step I: In step 1, the submodel coefficients are fixed, and

we aim to find an optimum splitting threshold. As discussed in

Section IV-B, after fixing submodel coefficients, an arbitrary

input sample x̃(n) must be processed by either cL or cR. Thus,

the modeling error for this sample can only have two possible

values, |ỹ(n) − �(n)cL|2 or |ỹ(n) − �(n)cR|2, where ỹ(n) is

the target and �(n) is nth row of �. Therefore, if the splitting

threshold is moved by just a little such that x̃(n) is processed

by cR before moving and by cL after moving, the variation of

total error can be expressed by

�e(n) = |ỹ(n) − �(n)cL|2 − |ỹ(n) − �(n)cR|2. (A.1)

Based on this observation, we can evaluate all possible

splitting thresholds efficiently by sweeping over all training

data using (A.1). To be specific, when sweeping over the pth

splitting feature, we first sort the data samples based on the

value of ψp and then gradually move the splitting threshold

from min ψp to max ψp . Every single move will only change

the modeling error of one training sample. We define e(p, n)

as the total modeling error when the splitting threshold is

�(n, p). If we set the initial error to zero, i.e., e(p, 0) = 0,

the relative modeling error of all possible splitting thresholds

can be obtained by

e(p, n) = e(p, n − 1) + �e(n). (A.2)

Finally, the split with the lowest error will be chosen for the

current node.

In practice, it is also important to avoid too imbalanced

split, i.e., the number of samples for one branch is below a

predetermined threshold Nth. When the number of samples is

too small, the estimation of submodel coefficients may not

be accurate, resulting in overfitting. Besides, it is also not

efficient to assign a submodel that works only for very few

samples. Thus, too imbalanced split should be avoided and

excluded before searching for the best split. The final results

are generally not sensitive to the value of Nth. In this work,

we set Nth = 5Q, where Q is the number of coefficients in a

submodel.

2) Step II: In step 2, the splitting threshold is fixed. Thus,

the dataset can be divided into two parts based on the splitting

threshold obtained from the previous step. The model becomes

linear in parameters, and the submodel coefficients can be

easily extracted using LS

ĉL =
(

�L
H �L

)−1
�L

H yL (A.3)

and

ĉR =
(

�R
H �R

)−1
�R

H yR. (A.4)

3) Complete BAM Algorithm: The two steps will be iterated

until convergence. Based on our experience, typically, around

five iterations are sufficient to achieve satisfactory results.

As the main complexity, LS extraction, is performed only once

in every iteration, the computational complexity and memory

requirement can be kept low.

To initialize the algorithm, we need to have initial coef-

ficients for the two submodels. We achieve this by dividing

the data into two clusters and extracting one submodel in

each cluster. In our implementation, the clustering is done

by performing the k-means algorithm on the target signal y

(or r) with k = 2. In this way, we obtain two submodels

that are different from each other but can both reflect the

PA characteristics. One thing to note is that the proposed
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Algorithm 1 BAM Algorithm

Input: �, � , y

Output: v, τ

1: Initialization with k-means algorithm and sub-model LS

extraction

2: repeat

3: Calculate �e using (A.1)

4: for p = 1 to P do

5: Initialization: e(p, 0) = 0

6: Sort �e based on the pth column of �

7: for n = 1 to N do

8: Apply (A.2) to obtain e(p, n)

9: end for

10: end for

11: (v, t) = arg minp,n e(p, n) s.t. Nth < n < N − Nth

12: τ = �(t, p)

13: Divide samples into two parts based on the criterion

ψv < τ

14: Extract sub-models using (A.3) and (A.4)

15: until the error converges or maximum number of iterations

is reached

initialization algorithm generates two sets of coefficients, but

it is unclear which one should be assigned to cL (or cR).

Thus, for better robustness, it is desirable to compare

both assignments and keep the one resulting in better

performance.

To implement the BMT model in practical applications,

the splitting threshold τ may need to be quantized to save hard-

ware resources. Thus, at the end of optimization algorithm,

we can optionally quantize τ to a relatively low precision.

Based on our experience, there is only negligible accuracy

loss with up to 5-bit quantization.

A complete description of the BAM algorithm is presented

in Algorithm 1.

REFERENCES

[1] M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges,
deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6,
pp. 1201–1221, Jun. 2017.

[2] J. Wood, Behavioral Modeling and Linearization of RF Power Ampli-
fiers. Norwood, MA, USA: Artech House, 2014.

[3] L. Guan and A. Zhu, “Green communications: Digital predistortion for
wideband RF power amplifiers,” IEEE Microw. Mag., vol. 15, no. 7,
pp. 84–99, Nov. 2014.

[4] J. Wood, “System-level design considerations for digital pre-distortion of
wireless base station transmitters,” IEEE Trans. Microw. Theory Techn.,
vol. 65, no. 5, pp. 1880–1890, May 2017.

[5] T. Qi and S. He, “Power up potential power amplifier technologies
for 5G applications,” IEEE Microw. Mag., vol. 20, no. 6, pp. 89–101,
Jun. 2019.

[6] W. Cao, Y. Li, and A. Zhu, “Magnitude-selective affine function
based digital predistorter for RF power amplifiers in 5G small-cell
transmitters,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017,
pp. 1539–1541.

[7] L. Ding et al., “A robust digital baseband predistorter constructed
using memory polynomials,” IEEE Trans. Commun., vol. 52, no. 1,
pp. 159–165, Jan. 2004.

[8] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A gener-
alized memory polynomial model for digital predistortion of RF power
amplifiers,” IEEE Trans. Signal Process., vol. 54, no. 10, pp. 3852–3860,
Oct. 2006.

[9] A. Zhu, J. C. Pedro, and T. J. Brazil, “Dynamic deviation reduction-
based volterra behavioral modeling of RF power amplifiers,” IEEE

Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4323–4332,
Dec. 2006.

[10] K. J. Muhonen, M. Kavehrad, and R. Krishnamoorthy, “Look-up table
techniques for adaptive digital predistortion: A development and com-
parison,” IEEE Trans. Veh. Technol., vol. 49, no. 5, pp. 1995–2002,
May 2000.

[11] P. L. Gilabert, A. Cesari, G. Montoro, E. Bertran, and J.-M. Dilhac,
“Multi-lookup table FPGA implementation of an adaptive digital pre-
distorter for linearizing RF power amplifiers with memory effects,”
IEEE Trans. Microw. Theory Techn., vol. 56, no. 2, pp. 372–384,
Oct. 2008.

[12] A. Molina, K. Rajamani, and K. Azadet, “Digital predistortion using
lookup tables with linear interpolation and extrapolation: Direct least
squares coefficient adaptation,” IEEE Trans. Microw. Theory Techn.,
vol. 65, no. 3, pp. 980–987, Mar. 2017.

[13] S. N. Ba, K. Waheed, and G. T. Zhou, “Optimal spacing of a linearly
interpolated complex-gain LUT predistorter,” IEEE Trans. Veh. Technol.,
vol. 59, no. 2, pp. 673–681, Feb. 2010.

[14] T. Magesacher, P. Singerl, and M. Mataln, “Optimal segmentation for
piecewise RF power amplifier models,” IEEE Microw. Wireless Compon.

Lett., vol. 26, no. 11, pp. 909–911, Nov. 2016.

[15] A. Zhu, “Decomposed vector rotation-based behavioral modeling for
digital predistortion of RF power amplifiers,” IEEE Trans. Microw.

Theory Techn., vol. 63, no. 2, pp. 737–744, Feb. 2015.

[16] F. M. Barradas, T. R. Cunha, P. M. Lavrador, and J. C. Pedro, “Polynomi-
als and LUTs in PA behavioral modeling: A fair theoretical comparison,”
IEEE Trans. Microw. Theory Techn., vol. 62, no. 12, pp. 3274–3285,
Dec. 2014.

[17] M. Younes, O. Hammi, A. Kwan, and F. M. Ghannouchi, “An accurate
complexity-reduced ‘PLUME’ model for behavioral modeling and dig-
ital predistortion of RF power amplifiers,” IEEE Trans. Ind. Electron.,
vol. 58, no. 4, pp. 1397–1405, May 2010.

[18] O. Hammi and F. M. Ghannouchi, “Twin nonlinear two-box models
for power amplifiers and transmitters exhibiting memory effects with
application to digital predistortion,” IEEE Microw. Wireless Compon.

Lett., vol. 19, no. 8, pp. 530–532, Aug. 2009.

[19] F. M. Barradas, L. C. Nunes, J. C. Pedro, T. R. Cunha, P. M. Lavrador,
and P. M. Cabral, “Accurate linearization with low-complexity models
using cascaded digital predistortion systems,” IEEE Microw. Mag.,
vol. 16, no. 1, pp. 94–103, Feb. 2015.

[20] S. Afsardoost, T. Eriksson, and C. Fager, “Digital predistortion using a
vector-switched model,” IEEE Trans. Microw. Theory Techn., vol. 60,
no. 4, pp. 1166–1174, Apr. 2012.

[21] M. Younes, A. Kwan, M. Akbarpour, M. Helaoui, and F. M. Ghannouchi,
“Two-dimensional piecewise behavioral model for highly nonlinear
dual-band transmitters,” IEEE Trans. Ind. Electron., vol. 64, no. 11,
pp. 8666–8675, Nov. 2017.

[22] Y. Li, W. Cao, and A. Zhu, “Instantaneous sample indexed magnitude-
selective affine function-based behavioral model for digital predistortion
of RF power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 66,
no. 11, pp. 5000–5010, Nov. 2018.

[23] J. Pang, Z. Dai, Y. Li, M. Li, and A. Zhu, “Multiband dual-mode
Doherty power amplifier employing phase periodic matching network
and reciprocal gate bias for 5G applications,” IEEE Trans. Microw.

Theory Techn., vol. 68, no. 6, pp. 2382–2397, Jun. 2020.

[24] H. Lyu and K. Chen, “Balanced-to-Doherty mode-reconfigurable power
amplifier with high efficiency and linearity against load mismatch,”
IEEE Trans. Microw. Theory Techn., vol. 68, no. 5, pp. 1717–1728,
May 2020.

[25] J. Xia, W. Chen, F. Meng, C. Yu, and X. Zhu, “Improved three-
stage Doherty amplifier design with impedance compensation in load
combiner for broadband applications,” IEEE Trans. Microw. Theory

Techn., vol. 67, no. 2, pp. 778–786, Feb. 2019.

[26] D. J. Shepphard, J. Powell, and S. C. Cripps, “An efficient broad-
band reconfigurable power amplifier using active load modulation,”
IEEE Microw. Wireless Compon. Lett., vol. 26, no. 6, pp. 443–445,
Jun. 2016.

[27] P. H. Pednekar, E. Berry, and T. W. Barton, “RF-input load modulated
balanced amplifier with octave bandwidth,” IEEE Trans. Microw. Theory

Techn., vol. 65, no. 12, pp. 5181–5191, Dec. 2017.

[28] J. Pang, C. Chu, Y. Li, and A. Zhu, “Broadband RF-input continuous-
mode load-modulated balanced power amplifier with input phase
adjustment,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 10,
pp. 4466–4478, Oct. 2020.



3988 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 69, NO. 9, SEPTEMBER 2021

[29] X. Wei, W. Chen, X. Liu, L. Chen, and F. M. Ghannouchi,
“A methodology and a metric for the assessment of the linearizability of
broadband nonlinear Doherty power amplifiers,” IEEE Microw. Wireless
Compon. Lett., vol. 30, no. 8, pp. 764–767, Aug. 2020.

[30] Q. A. Pham, D. Lopez-Bueno, T. Wang, G. Montoro, and P. L. Gilabert,
“Multi-dimensional LUT-based digital predistorter for concurrent dual-
band envelope tracking power amplifier linearization,” in Proc. IEEE
Topical Conf. RF/Microw. Power Model. Radio Wireless Appl. (PAWR),
Jan. 2018, pp. 47–50.

[31] M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems,
2nd ed. São Paulo, Brazil: Krieger, 2014.

[32] C. Crespo-Cadenas, J. Reina-Tosina, M. J. Madero-Ayora, and
J. Munoz-Cruzado, “A new approach to pruning volterra models for
power amplifiers,” IEEE Trans. Signal Process., vol. 58, no. 4,
pp. 2113–2120, Apr. 2010.

[33] O. Hammi, F. M. Ghannouchi, S. Boumaiza, and B. Vassilakis,
“A data-based nested LUT model for RF power amplifiers exhibiting
memory effects,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 10,
pp. 712–714, Oct. 2007.

[34] Z. He, W. Ye, and S. Feng, “Digital predistortion based on multidi-
mensional look-up table storing polynomial coefficients,” Electron. Lett.,
vol. 48, no. 22, pp. 1396–1397, Nov. 2012.

[35] J. Friedman, T. Hastie, and R. Tibshirani, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction, 2nd ed. Cham,
Switzerland: Springer, 2009.

[36] A. Brihuega et al., “Piecewise digital predistortion for mmWave
active antenna arrays: Algorithms and measurements,” IEEE

Trans. Microw. Theory Techn., vol. 68, no. 9, pp. 4000–4017,
Sep. 2020.

[37] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 785–794.

[38] Xilinx. Performance and Resource Utilization for Complex

Multiplier V6.0. Accessed: Feb. 23, 2021. [Online]. Available:
https://www.xilinx.com/html_docs/ip_docs/pru_files/cmpy.html

[39] Xilinx. Performance and Resource Utilization for Adder/Subtracter

V12.0. Accessed: Feb. 23, 2021. [Online]. Available:
https://www.xilinx.com/html_docs/ip_docs/pru_files/c-addsub.html

[40] K. Chapman. Multiplexer Design Techniques for Datapath
Performance With Minimized Routing Resources. Accessed:
Feb. 23, 2021. [Online]. Available: https://www.xilinx.com/support/
documentation/application_notes/xapp522-mux-design-techniques.pdf

[41] A. Karalic, “Linear regression in regression tree leaves,” in Proc. ECAI.
Hoboken, NJ, USA: Wiley, pp. 440–441.

[42] D. S. Vogel, O. Asparouhov, and T. Scheffer, “Scalable look-ahead
linear regression trees,” in Proc. 13th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2007, pp. 757–764.

[43] J. C. Wang and T. Hastie, “Boosted varying-coefficient regression
models for product demand prediction,” J. Comput. Graph. Statist.,
vol. 23, no. 2, pp. 361–382, Apr. 2014.

[44] Y. Shi, J. Li, and Z. Li, “Gradient boosting with piece-wise linear
regression trees,” in Proc. 28th Int. Joint Conf. Artif. Intell., 2018,
pp. 3432–3438.

[45] A. S. Tehrani, H. Cao, S. Afsardoost, T. Eriksson, M. Isaksson, and
C. Fager, “A comparative analysis of the complexity/accuracy tradeoff
in power amplifier behavioral models,” IEEE Trans. Microw. Theory
Techn., vol. 58, no. 6, pp. 1510–1520, Jun. 2010.

[46] F. M. Barradas, L. C. Nunes, T. R. Cunha, P. M. Lavrador, P. M. Cabral,
and J. C. Pedro, “Compensation of long-term memory effects on GaN
HEMT-based power amplifiers,” IEEE Trans. Microw. Theory Techn.,
vol. 65, no. 9, pp. 3379–3388, Sep. 2017.

[47] P. M. Tome, F. M. Barradas, T. R. Cunha, and J. C. Pedro, “Hybrid
Analog/Digital linearization of GaN HEMT-based power amplifiers,”
IEEE Trans. Microw. Theory Techn., vol. 67, no. 1, pp. 288–294,
Jan. 2019.

[48] N. Hammler, A. Cathelin, P. Cathelin, and B. Murmann, “A spectrum-
sensing DPD feedback receiver with 30x reduction in ADC acquisition
bandwidth and sample rate,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 66, no. 9, pp. 3340–3351, Jun. 2019.

[49] Y. Li, X. Wang, and A. Zhu, “Sampling rate reduction for
digital predistortion of broadband RF power amplifiers,” IEEE
Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1054–1064,
Mar. 2020.

Yue Li (Member, IEEE) received the B.E. degree in
information engineering from Southeast University,
Nanjing, China, in 2016, and the Ph.D. degree
in electronic engineering from University College
Dublin (UCD), Dublin, Ireland, in 2020.

He is currently a Post-Doctoral Researcher with
the RF and Microwave Research Group, UCD. His
current research interests include behavioral model-
ing and digital predistortion for radio frequency (RF)
power amplifiers.

Xiaoyu Wang (Graduate Student Member, IEEE)
received the B.E. degree in information engineering
from Southeast University, Nanjing, China, in 2015.
She is currently pursuing the Ph.D. degree at Uni-
versity College Dublin (UCD), Dublin, Ireland.

She is currently with the RF and Microwave
Research Group, UCD. Her current research focuses
on digital predistortion for radio frequency (RF)
power amplifiers, with a particular emphasis
on applications to multiple-input–multiple-output
(MIMO) systems.

Jingzhou Pang (Member, IEEE) received the B.S.
degree in electrical engineering and the Ph.D. degree
in circuits and systems from the University of Elec-
tronic Science and Technology of China (UESTC),
Chengdu, China, in 2010 and 2016, respectively.

From December 2016 to July 2018, he was
with Huawei Technologies Company Ltd., Chengdu,
China, where he was an Engineer in charge of
the research and development of 5G high-efficiency
power amplifiers and transmitters. From July 2018 to
August 2020, he was with the RF and Microwave

Research Group, University College Dublin (UCD), Dublin, Ireland, where
he was a Research Fellow in charge of the research of novel broadband trans-
mitter architectures and radio frequency (RF)/microwave/mm-wave monolithic
microwave integrated circuit (MMIC) power amplifiers. He is currently an
Associate Professor with the School of Microelectronics and Communication
Engineering, Chongqing University, Chongqing, China. His research interests
include broadband high-efficiency power amplifier systems, bandwidth exten-
sion techniques for high-efficiency transmitters, and MMIC power amplifier
design for RF/microwave and millimeter-wave applications.

Dr. Pang was a recipient of the EDGE Marie Sklodowska-Curie Individual
Fellowship and the Third Place Award of the High Efficiency Power Amplifier
Student Design Competition at the IEEE Microwave Theory and Techniques
Society (IEEE MTT-S) International Microwave Symposium (IMS) in 2013.

Anding Zhu (Senior Member, IEEE) received the
Ph.D. degree in electronic engineering from Uni-
versity College Dublin (UCD), Dublin, Ireland,
in 2004.

He is currently a Professor with the School
of Electrical and Electronic Engineering, UCD.
He has published more than 150 peer-reviewed
journal articles and conference papers. His research
interests include high-frequency nonlinear system
modeling and device characterization techniques,
high-efficiency power amplifier design, wireless

transmitter architectures, digital signal processing, and nonlinear system
identification algorithms.

Prof. Zhu is an elected member of MTT-S AdCom, the Chair of the
Electronic Information Committee, and the Vice-Chair of the Publications
Committee. He was the General Chair of the 2018 IEEE MTT-S Inter-
national Microwave Workshop Series on 5G Hardware and System Tech-
nologies (IMWS-5G) and a Guest Editor of the IEEE TRANSACTIONS ON

MICROWAVE THEORY AND TECHNIQUES on 5G Hardware and System
Technologies. He is also the Chair of the MTT-S Microwave High-Power
Techniques Committee. He has served as the Secretary of MTT-S AdCom
in 2018. He is an Associate Editor of the IEEE Microwave Magazine and
a Track Editor of the IEEE TRANSACTIONS ON MICROWAVE THEORY AND

TECHNIQUES.


