
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Boosted Random Ferns for Object Detection
Michael Villamizar, Juan Andrade-Cetto, Member, IEEE, Alberto Sanfeliu, Member, IEEE

and Francesc Moreno-Noguer

Abstract—In this paper we introduce the Boosted Random Ferns (BRFs) to rapidly build discriminative classifiers for learning and
detecting object categories. At the core of our approach we use standard random ferns, but we introduce four main innovations that let
us bring ferns from an instance to a category level, and still retain efficiency. First, we define binary features on the histogram of oriented
gradients-domain (as opposed to intensity-), allowing for a better representation of intra-class variability. Second, both the positions
where ferns are evaluated within the sliding window, and the location of the binary features for each fern are not chosen completely
at random, but instead we use a boosting strategy to pick the most discriminative combination of them. This is further enhanced by
our third contribution, that is to adapt the boosting strategy to enable sharing of binary features among different ferns, yielding high
recognition rates at a low computational cost. And finally, we show that training can be performed online, for sequentially arriving
images. Overall, the resulting classifier can be very efficiently trained, densely evaluated for all image locations in about 0.1 seconds,
and provides detection rates similar to competing approaches that require expensive and significantly slower processing times. We
demonstrate the effectiveness of our approach by thorough experimentation in publicly available datasets in which we compare against
state-of-the-art, and for tasks of both 2D detection and 3D multi-view estimation.

Index Terms—Image processing and computer vision, object detection, random ferns, boosting, online-boosting.

✦

1 INTRODUCTION

Detecting a specific object of interest in unconstrained
images is a challenging task, as object appearance may
suffer large variations due to viewpoint and illumination
changes, occlusion or clutter. Yet, it has been shown that
if several training images of the object are available, its
appearance can be accurately modeled using simple clas-
sifiers built from hundreds of binary features. Decision
Trees or Random Ferns are used for this purpose, and
allow for real time object detection [23], [29], [38], [57].

When instead of dealing with single instances we seek
to model object categories, it is necessary to further con-
sider intra-class variation, especially due to differences
in object shape and texture. To handle this additional
complexity, current approaches resort to more elaborate
statistical techniques such as Boosting [36], [44], [49], [64]
or Support Vector Machines [7], [10], [20] that learn class
appearance from large training sets. Yet, while most of
these approaches provide high detection rates on many
datasets, they are usually combined with computation-
ally demanding features, like SIFT [32], making them
slow when integrated on a standard sliding window
approach. To speed up the search, cascade strategies [58],
[65] or branch-and-bound schemes [24], [26] have been
proposed. Recently, an alternative paradigm based on a
random forest codebook and Hough voting, has been
shown to yield high detection rates with significant
efficiency levels (a few seconds per image) [16]. This is
further accelerated in [48], where binary HOG features
are combined with a random forest classifier, to achieve

• All authors are with tthe Institut de Robòtica i Informàtica Industrial,
CSIC-UPC, Barcelona, 08028, Spain. Email: {mvillami, cetto, sanfeliu,
fmoreno}@iri.upc.edu.

pedestrian detection at about five frames per second. In
any case, all these approaches make the problem com-
putationally tractable by optimizing the search strategy,
and little is done at the feature level.

In this paper we combine the strengths of the Random
Ferns method for single instance detection [38] with a
boosting strategy to explicitly compute a reduced set
of features that is both highly discriminative and fast
to evaluate. More specifically, our classifier consists of
a combination of weak learners that evaluate fern-like
features on HOGs. Each of these ferns is defined by
two parameters: its 2D location on the image plane,
and the set of bin indices within the HOG. The main
contribution of this paper, is in learning these two pa-
rameters using either offline and online boosting. The
latter is especially interesting when dealing with very
large training datasets that are hard to batch process, or
in tracking, where data arrives sequentially. As shown
in Fig. 1, boosting automatically places our ferns on
the most salient regions of the object and discards non-
informative areas. In addition, we also propose sharing
the set of histogram bin indices among different ferns.
Both these contributions, help to significantly alleviate
the computational load of the classifier, yielding detec-
tion times on the order of 0.1 seconds.

We demonstrate the effectiveness of our approach,
named Boosted Random Ferns (BRFs), or Online BRFs
(OBRFs) –depending on the boosting strategy we use–
through several experiments involving 2D and 3D multi-
view localization of object categories. In Fig. 1 we plot
the response of our classifier on several public datasets.
We will show that both in terms of speed and detection
rates our results are at the top of the state-of-the-art.

Preliminary versions of this work already appeared
in [53] and [51] for single view-point object detection,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Fig. 1: Results for single- and multi-view object detection. Left: 2D detection results on public datasets of cars, motorbikes
and horses. The green rectangles indicate the location and scale at which an object was detected. The level contours show the
distribution of the centers for the 300 ferns used to build the classifier. Ferns concentrate on regions that have been found to be
more discriminative. Note how these locations are salient regions that one would naturally choose as discriminative, like the
wheels of a car or the head of a horse. Right: Multi-view detection results on cars and bikes datasets. The pie-like circles on the
top-left of each image indicate the estimated (green) and ground truth (blue) orientation of the object.

and in [52] for multiple view-point detection. In this
paper we unify the formulation of all these papers,
perform a more in-depth analysis of the algorithm and
propose the online version of the method. Thorough
discussions about the parameter selection, additional
experiments, and further comparisons against competing
approaches are also included in this version.

2 RELATED WORK

Techniques for object category detection have matured
greatly in recent years, achieving high performance rates
on many challenging datasets [2], [3], [8], [10], [16], [18],
[20], [34], [62]. The methodology more widely used to
tackle this problem is based on the sliding window
approach, where a classifier first extracts features from
a rectangular window scanned over the image and then
computes their probability to belong to a specific object
class. SVM [2], [7], [10], [20], [24], [34] and Boosting [25],
[36], [44], [49], [58], [61], [64] are typical classifier used
for this purpose.

Regarding the features that feed the classifiers, we
may find approaches using pixel intensities [45], [58],
[55], contours [11], [44], [50], HOG [7], [10], [60], [62],
[64] or any combination of them [28], [37]. Yet, the best
detection rates are obtained when considering orienta-
tion and scale invariant SIFT-like descriptors [4], [32].
This benefit, though, comes at the price of a heavy
computational load, especially if dense computation is
needed. Even when these descriptors are only extracted
at singular image locations, like corners or salient blobs,
and are compactly represented using bags-of-words, the
intermediate steps required for their computation still
hinder real time performance [27]. There have been
several attempts to reduce this overhead, such as the
use of a cascade of classifiers [9], [58], [64], or a branch-
and-bound strategies to discard regions of the search
space where the object is not expected to be [24], [26]. In
JointBoost [49] , the computational complexity is reduced
by sharing features between classifiers. Yet, this can only
be exploited for multiclass and multiview problems. For
a two class problem, JointBoost boils down to a simpler
boosting technique called GentleBoost [13].

Another alternative to reduce the computational bur-
den is to use features that can be efficiently extracted.
In this regard, simple binary features computed on the
intensity domain have been shown to accurately capture
the varying appearance of a target object. Classifiers like
Random Trees, Forests or Ferns [21], [23], [29], [38], [45],
[56], [57] have then been proposed for matching these
features very quickly, yielding similar results as those
obtained with SIFT [32]. However, most of these meth-
ods only tackle problems with single object instances,
and do not generalize to complete categories.

An interesting exception are the Hough Forests [16],
that combine a random forest codebook, computed in
a intensity-contour domain to identify object patches,
with a Hough voting scheme to determine the location of
object centers. Yet, although this methodology improves
efficiency compared to sliding-window approaches, it
still takes a few seconds per image. This scheme has been
recently combined with a coarse-to-fine cascading to
achieve pedestrian detection at 5 frames per second [48].

In this paper we advocate for a different strategy to
pursuit efficiency. Instead of explicitly focusing on de-
signing an efficient architecture, or a feature that can be
rapidly extracted, we will stick to a standard sliding win-
dow architecture and to the well-known fern features,
and will attempt to reduce the cost of our algorithm
by using boosting to optimize the location of only a
small number of ferns, and also to optimize an even
smaller shared set of binary comparison indices for them.
This results in a simple yet very powerful classifier, that
achieves state-of-the-art results without requiring most
of the pre- and post-processing computations or hand-
crafted strategies that are usually tailored to a particular
dataset. We would like to point that the combination
of boosting with trees (note that ferns are indeed one
dimensional trees), has already been explored in [5]. This
work evaluates a large number of supervised learning
methods of the early 90’s on simple binary classification
problems, and in particular, it shows very promising
results when using different variants of boosted trees.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Image Window Local Gradients Oriented GradientsSubwindow HOG

Fig. 2: HOG-based fern. Given an image window x, a Histogram of Oriented Gradients (HOG) is locally computed in a
subwindow s, centered at location u. The HOG computation is carried out by calculating gradients within s and casting votes
for a particular spatial partition and orientation bin. Votes are weighted according to the gradient magnitude. For this example,
a 2 × 2 spatial grid and 4 orientation bins are considered. The resulting HOG-descriptor is then a concatenation of local and
adjacent distributions of oriented gradients. The features f we consider in this paper, compare the value of two of these bins
chosen at random during training. The fern f is made from several such individual features.

3 BOOSTED RANDOM FERNS

Our approach to object detection uses a fixed-size rect-
angular sliding window to scan an input image, and
computes a classifier response on such window. The
classifier returns the probability that such window be-
longs to a particular object class. Non-maximal neighbor-
hood suppression is further applied to remove multiple
overlapping detections, and the process is repeated for
different window sizes, to handle scaling.

In this paper we contribute in three main aspects for
building the classifier: we define a set of random binary
features in the HOG domain, we provide a boosting
strategy to select the most discriminant of these features,
and devise a framework to share them among the weak
learners during boosting. These three contributions sig-
nificantly alleviate overall computation time, both for
training and for testing, while preserving competitive
detection rates. We next describe them in detail.

3.1 Random Ferns in the HOG-domain

To compute a set of features on a given image window x,
we draw inspiration from the Random Ferns (RFs) clas-
sifier [38]. In RFs, a feature f corresponds to a binary
comparison of intensity image values at two randomly
chosen pixel locations u1 and u2 within the window

f(x;u1, u2) = I(x(u1) > x(u2)) (1)

where I(a) is the indicator function, i.e., I(a) = 1 if a is
true, and 0 otherwise.

The computation of these features in the intensity
domain has been shown effective to model the varying
appearance of patches in a particular object instance [16],
[38]. However, our purpose is not modeling just one
single object instance, but entire categories. In order to
cope with large intra-class variability, we use as features
density values of a local histogram of oriented gradients
(HOG) computed over a square subwindow s of size
S × S inside x (See Fig. 2).

More specifically, let u be the center of s (measured
from the upper-left corner of x), and let HOG(x;u, b)
be the value of the b-th bin of the HOG computed in
such subwindow. Each local gradient in s contributes,

weighted by its magnitude, to its corresponding orien-
tation bin in the histogram. Then, our binary features are
of the form

f(x;u, θ) = I(HOG(x;u, b) > HOG(x;u, b′) (2)

where θ = {b, b′} are two randomly chosen indices
within the interval [1, B], with B being the total number
of bins in the histogram.

Just as with intensity-based features in [38], we also
represent the appearance of s by aggregating M local
features into a binary feature vector called fern; in our
case, a HOG-based fern

f(x;u, θ) = [f(x;u, θ1), . . . , f(x;u, θM)] . (3)

Note how our fern is fully defined by two parameters: u,
the 2D center of s, and M random pairs of histogram bin
indices θ = {θ1, . . . , θM}. These are the parameters for
which we will seek to optimize classifier response. Each
fern output is an M-dimensional binary vector, which at
the implementation level, is represented by an integer
value z ∈ 0, . . . , 2M − 1.

Fig. 2 (right) shows an example of how a HOG-based
fern is computed on a local subwindow s, inside x, and
centered at u. In this case, M = 3 binary comparisons of
HOG bins are considered, with individual outputs 0,1,1.
The overall output of this fern is z = (011)2 = 3.

3.2 Building the Classifier

Our HOG-based ferns encode the appearance of small
patches inside the window x, which in turn is to be
assigned to a particular object or background class. In
order to build a classifier for the whole window, we
combine the response of T ferns, each centered on a
specific position ut and with their corresponding sets of
random pairs of histogram bin indices θt, t ∈ {1, . . . , T }.

The major issue that needs to be resolved is which
are the fern positions and the associated histogram bin
indices that maximize the performance of the classifier.
These parameters, once defined, are kept constant when
scanning any test image. As for the set of positions, one
obvious solution would be to use a very large number T
of ferns, uniformly distributed over the whole window x.
However, this would be inappropriate, since evaluat-
ing many ferns would incur significant computational

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Algorithm 1: Boosted Random Ferns (Training)

Input: Training set of object/background class labeled
image window samples (x1, y1), . . . , (xN , yN).

Output: Object classifier H(x).
1 Initialize the image window sample weights w1(i) = 1/N ,
i = 1, ..., N

2 Create the list of 2D pixel positions u1, . . . , uL in x.
3 Create a random pool of histogram bin index pairs
θ1, . . . ,θR.

4 for t = 1, . . . , T do
5 for l = 1, . . . , L do
6 for r = 1, . . . , R do
7 Compute the class-conditioned probabilities

p(z|O) and p(z|B) (Eqs. 7 and 8).
8 Compute the Bhattacharyya coefficient

Q(ul,θr) (Eq. 9).

9 Select the optimal parameters ul∗ , θr∗ for the weak
learner ht(x). (Eq. 10).

10 Save the probability histograms p(z|O) and p(z|B).
11 Evaluate the classification odds on each image

window sample to update the sample weights
wt+1(i), i = 1 . . . , N . (Eqs. 6 and 13).

12 Assemble the final strong classifier H(x), i.e., save
parameters ul∗ and θr∗ for all weak learners.

cost, besides that we would be possibly evaluating non-
informative or non-discriminative regions of the image.

With regards to the set of parameters θ to use for
each feature, the standard solution adopted in the lit-
erature [39], is to assign a different set of random pa-
rameters to each fern (pixel coordinates in their case,
histogram bin indices in ours), using as many sets θt

as ferns. However, as we will discuss below, the cost of
testing the classifier can be highly reduced if different
ferns share the same parameters. We will see that sam-
pling these features from a pool with R << T parameter
sets, we virtually obtain the same classification results
as using a different parameter set per fern, but at a
significantly smaller cost.

3.2.1 Training the Classifier

In order to train the classifier, and to optimize the fern
positions and histogram bin indices, we resort to a Real
Adaboost [43] strategy. As it is standard in AdaBoost, we
define a strong two-class classifier H(x) = {+1,−1} for
the object (O) and background (B) classes respectively,
using a combination of T weak learners ht,

H(x) = sign

(

T
∑

t=1

ht(x)− β

)

, (4)

where β is a threshold that determines the classifier
tolerance. Every weak learner returns a confidence score
estimating the reliability of classification as the log odds

ht(x) =
1

2
log o(x;ut, θt), (5)

where the odds represent a conditional probability ratio

o(x;ut, θt) =
p(f(x;ut, θt)|O) + ǫ

p(f(x;ut, θt)|B) + ǫ
(6)

w
in
d
o
w

Fig. 3: Example showing the response of ferns densely com-
puted over the image but using only three different vectors
of histogram bin indices θ1, θ2 and θ3, and M = 8. The fern
response is color coded, where each color indicates a particular
output value z ∈ {0, . . . , 255}.

and ǫ is a small positive constant used to avoid division
by zero. A large score for ht(x) indicates significant
difference between the object and background class
probabilities predicted by f(x;ut, θt), meaning that the
fern position ut and parameter choice θt produce a
discriminative weak learner.

To obtain the adequate values for ut and θt for each
weak learner, we train with a set of N labeled sample
pairs (x1, y1), . . . , (xN , yN), where yi ∈ {+1,−1} is the
object or background class label associated with each
sample image window xi. Every training sample has also
an associated weight wt(i), initially set to w1(i) = 1/N ,
and iteratively updated as detailed in Alg. 1.

More specifically, we first define a set u1, . . . , uL of all
possible 2D pixel coordinates within a window x, and
a pool θ1, . . . , θR of R different sets of random pairs of
histogram bin indices.

Next, to build every weak learner, we iterate for every
possible pair (ul, θr) and assemble the fern f(x;ul, θr).
For instance, in Fig. 3 we visualize the output of ferns
densely computed at every location ul of an image
window x, for three different sets θ1, θ2 and θ3.

Each such fern is then evaluated with respect to the
whole training set, and its object and background class
probability distribution histograms built with

p(z|O) =
∑

i:f(xi;ul,θr)=z ∧ yi=+1

wt(i) (7)

p(z|B) =
∑

i:f(xi;ul,θr)=z ∧ yi=−1

wt(i) (8)

where p(z|O) stands for p(f(x;ul, θr) = z|O), the proba-
bility that a fern with parameters ul and θr has output
z given that image window x belongs to the object
class; or p(z|B), to the background class. Fig. 4 shows
an example of these class-conditional probabilities for
two ferns sharing the same feature parameters θr, but
located at different positions ul within the window x.

Following [43], we then compute the Bhattacharyya
coefficient, an upper bound on the training error we seek
to minimize

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

window

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

z

p
ro

b
a
b
ili

ty

p(z|B)
p(z|O)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

z

p
ro

b
a
b
ili

ty

p(z|B)
p(z|O)

Fig. 4: Class-conditional probabilities of two ferns sharing
the same feature parameters θr and tested at two different
locations u1 and u2. Similarity between these distributions is
computed using the Bhattacharyya coefficient Q.

Q(ul, θr) = 2

2M−1
∑

z=0

√

p(z|O) p(z|B) . (9)

The lower the value of Q, the more discriminant the
weak learner ht(x) is. For instance, in Fig. 4, the fern
located at u1 would be more discriminant than the one
at u2. We therefore keep as parameters for the weak
learner ht, those that minimize Q,

(l∗, r∗) = argmin
l,r

Q(ul, θr) (10)

ht(x) =
1

2
log o(x;ul∗ , θr∗) , (11)

and store the probability distributions p(z|O) and p(z|B),
evaluated in ul∗ and θr∗ , used later at test.

Finally, at the end of the iteration, this weak learner
is used to update the weights associated to the image
window samples

wt+1(i) =
wt(i) exp(−yiht(xi))

∑N

j=1 wt(j) exp(−yjht(xj))
(12)

which simplifies to

wt+1(i) =
wt(i)

√

o(xi;ul∗ , θr∗)−yi
∑N

j=1 wt(j)
√

o(xj ;ul∗ , θr∗)−yj
(13)

This updating rule increases the weight for the incor-
rectly classified samples and decreases the weight for the
correctly classified samples, with the purpose of focusing
the next weak learner t+ 1 on the misclassified ones.

3.2.2 Testing the Classifier

We next explain how BRFs are tested on an input image
and give an intuition on the computational effort needed,
pinpointing the benefits of sharing fern features.

Given an input image of size U ×V , we initially com-
pute its intensity gradients, and for each pixel position,
we store them in a HOG with B bins, which encodes
the orientation of the pixel neighborhood along such
directions. This can be done very quickly using integral
images [59], yielding an U × V × B HOG image H.
A sliding window is then scanned through H, and for
every window instance x we need to evaluate T ferns,
each centered on a specific position ul∗ and with HOG
bin indices θr∗ . Here, it is important to note that despite
the set of fern positions ul∗ can be sparsely distributed
within x, we are sliding our window over the entire

image. Thus in practice, each fern needs to be densely
evaluated for all image locations.

Therefore, instead of evaluating each fern on each
individual window x, we alter the order of computations
and first convolve the HOG image H with all needed
histogram bin comparisons, R of them. The computation
of these convolutions is the most consuming part of our
classifier, as it requires U×V ×M binary comparisons per
parameter set θr∗ . The result is a U ×V ×R lookup table
with a dense sampling of all possible fern responses.

This explains why sharing R << T histogram bin
comparisons among T different ferns, highly improves
the efficiency of the classifier [54], [51]. In fact, since the
complexity of the rest of computations involved in the
test is negligible compared to the cost of these convo-
lutions, we can roughly approximate a T

R
-fold speed-

up achieved by the sharing scheme, compared to the
original version of the BRFs presented in [53], where
each fern had its own parameter set. With this, a typical
classifier with T = 300 ferns and R = 10 distinct sets of
histogram bin indices, yields speed-ups of up to 30×.

Testing a classifier entails accessing the aforemen-
tioned lookup table at locations ul∗ and for the parameter
sets θr∗ , and using the stored fern values as indices to
the probability distribution histograms p(z|O) and p(z|B)
that were saved during the training session. These prob-
abilities are in turn used for the computation of the odds
(Eq. 6) and consequently, of the weak learner response
(Eq. 5). The response for the entire set of T weak learners
is added up (Eq. 4), and decisions about detection are
made by thresholding this value. Note that even when
only R different fern parameters are used to build the
weak learner, we still have T object and background
class probability distribution histograms, one per learner,
computed with different weight values depending on
its order during the training session (Eq. 13). Thus, the
whole operation has a computational load linear on T .

In order to handle object scaling, this detection process
is repeated at multiple resolutions of H, and multi-
ple scales of the input image. In addition, since our
boosting strategy sorts the weak learners according to
their discriminant power, we can safely reject an image
window x if after evaluating the first K weak learners its
accumulated response is negative. In our experiments,
K = 50 proved a good value for this parameter. This
provides additional speed-ups to the detection process.

3.3 A Simple 2D Classification Problem

We designed a simple 2D classification problem to
illustrate and compare the performance of BRFs
vs other standard classifiers, namely Random Ferns
(RFs) [38], Random Forests (RForest) [6] and Gentle-
Boost (GBoost) [13], a variant of JointBoost [49] for
two-class problems. This kind of controlled experiments
are customary in analyzing classifiers performance [6],
[22]. We carried out a controlled comparison in terms
of the most relevant parameters concerned with the
computation of BRFs, i.e., the number M of features

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Classi✁cation Results Con✁dence Map Uncertainty Map Score Distributions

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 95.0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

0

0.005

0.01

0.015

0.02

0.025

Score

P
ro

b
a
b
ili

ty

Positive

Negative

Distance: 0.64

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 98.0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

0

0.01

0.02

0.03

0.04

0.05

0.06

Score

P
ro

b
a
b
ili

ty

Positive

Negative

Distance: 0.99

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 97.0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Score

P
ro

b
a
b
ili

ty

Positive

Negative

Distance: 0.97

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 73.2

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Score

P
ro

b
a
b
ili

ty

Positive

Negative Distance: 0.19

R
F
s

B
R

F
s

R
F
o
r
e
s
t

G
B

o
o
s
t

Fig. 5: 2D classification results of BRFs, RFs [38], Random Forest [6] and GentleBoost classifier [13]. First column: classification
results on 500 positive and negative testing samples. Correctly classified samples are shown in cyan (positive samples) and red
(negative samples). Misclassified samples are shown in black. Second column: confidence maps provided by the classifiers over
the 2D feature space. Third column: uncertainty maps where brighter regions correspond to uncertain classification values. Red
contours indicate uncertainty of 90%. Fourth column: score distributions for the positive and negative classes.

per fern, and the number T of weak learners tested,
where each classifier is associated to a specific fern. The
experiment is performed in a synthetic case with two
non-separable multi-modal classes (see Fig. 5-Left). For
further synthetic experiments with varying degrees of
complexity we refer the reader to the Appendix 5.

The classifiers are built using axis-aligned split func-
tions (2D decision stumps) as binary features. Each
decision stump f maps a given sample x ∈ [0, 1]×[0, 1] to
a Boolean label, f(x) = I(xj > τ), where xj corresponds
to a specific (horizontal or vertical) coordinate of x, and
τ is a random threshold in the interval [0, 1]. No feature
sharing is used in this example.

To build the classifiers, we use large pools of 500 ferns
(sets of decision stumps), each with individual features
selected at random. Every approach then uses a specific
strategy to select and ensemble ferns into a set of weak
learners and obtain the final classification rule H(x):
BRFs use Real AdaBoost; RFs simply choose the features
randomly; RForest picks those that maximize informa-
tion gain at a node-level and GBoost ensembles multiple
one-dimensional decision stumps using GentleBoost.

All methods were tested on samples drawn from the
same distributions as those used in the training sets, and
each experiment was repeated 10 times to account for
randomness in feature selection. We base our analysis on
two metrics: the Equal Error Rate (EER) on the precision-

recall curve1; and the Hellinger distance2 that measures
the degree of separability between the positive and
negative distributions. We also report the performance
in terms of the training and testing (running) times for
various numbers of weak learners (WLs) and tree depth
values (D), that in the case of RFs and BRFs corresponds
to the number of features (M). For the GBoost, we
directly use an implementation publicly available3. Since
no trees are considered, depth D = 1.

Fig. 5 shows a qualitative, visual evaluation of the
classification performance of all methods, for a case
with 100 WLs and D = 6 (D = 1 for GBoost). Note
that BRFs and RForest yield clearly defined decision
boundaries (second and third columns of Fig. 5) and
a separation (last column) between the positive and
negative classes that is much larger than in the case of
the RFs and GBoost. This favors the correct classification.
An exhaustive quantitative analysis is summarized in the
Table of Fig. 6. Again, RForest and specially BRFs, con-
sistently outperform other approaches, providing both
much higher Equal Error Rates and larger Hellinger
Distances for equivalent classifier configurations.

It is also remarkable that BRFs perform very efficiently,
and in particular they can be trained up to 10× faster

1. The equal error rate is the point in the precision-recall curve where
precision=recall.

2. The squared Hellinger distance for two distributions P and Q
is defined as: H2(P,Q) = 1 −

√

k1/k2 exp(−0.25k3/k2), with k1 =
2σP σQ, k2 = σ2

P
+ σ2

Q
, and k3 = (µP − µQ)2.

3. http:/people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html

http:/people.csail.mit.edu/torralba/shortCourseRLOC/ boosting/boosting.html

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Equal Error Rate [%] Hellinger Distance [%] Training Time [sec.] Run Times [msec.] D
65.3 67.8 70.9 72.1 13.7 12.8 14.0 17.5 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.03 1
69.8 78.4 80.5 80.4 20.3 26.2 27.7 29.8 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 2
83.5 89.4 90.4 91.2 35.6 46.0 49.0 50.0 0.01 0.01 0.02 0.03 0.02 0.03 0.03 0.05 4

RFs

90.8 93.8 94.3 94.9 50.1 60.9 66.6 64.8 0.01 0.02 0.03 0.05 0.02 0.03 0.04 0.06 6
73.6 75.9 75.9 75.4 19.1 20.4 18.6 20.9 0.29 0.64 1.21 2.36 0.02 0.02 0.02 0.03 1
95.4 97.0 97.3 97.6 67.0 83.7 86.9 85.3 0.29 0.66 1.23 2.38 0.02 0.02 0.02 0.03 2
97.0 97.6 98.0 97.5 86.7 94.6 95.2 94.7 0.35 0.71 1.28 2.47 0.02 0.02 0.03 0.04 4

BRFs

97.5 97.3 97.9 97.7 92.4 95.4 97.4 97.3 0.44 0.80 1.38 2.63 0.02 0.03 0.04 0.06 6
76.6 72.7 72.8 73.0 38.9 34.6 32.3 39.2 0.17 0.38 0.74 1.48 0.27 0.60 1.15 2.29 1
72.6 75.3 74.3 74.2 28.6 32.1 26.2 29.6 0.41 1.06 2.02 4.02 0.37 0.90 1.70 3.41 2
89.8 92.9 91.8 90.9 57.3 59.4 60.1 59.0 1.21 2.95 5.87 11.78 0.55 1.34 2.67 5.42 4

RForest

96.8 96.5 96.8 96.9 92.7 93.2 95.2 94.9 2.31 5.91 11.55 23.89 0.71 1.73 3.45 7.25 6
GBoost 73.2 75.4 75.4 75.5 21.0 21.9 19.7 21.5 0.01 0.01 0.02 0.04 0.02 0.02 0.02 0.02 1
WLs 10 25 50 100 10 25 50 100 10 25 50 100 10 25 50 100

Fig. 6: Classification performance of RFs, BRFs, RForest and GBoost in the scenario of Fig. 5 for different values of weak learners
(WLs) and tree depth (D). First column: mean EERs on the precision-recall curve. Second column: Hellinger distances between
classes. Third and fourth columns: computational times for training and testing the classifiers.

D RForest BRFs
1 10 25 50 100 10 25 50 100
2 28 71 138 272 20 50 100 200
4 78 189 386 779 40 100 200 400
6 150 378 753 1533 60 150 300 600

#WLs 10 25 50 100 10 25 50 100

Fig. 7: Number of features used by the RForest and BRFs.

than RForest. RFs and GBoost are more efficient to
train, but as mentioned above, at a significantly loss in
performance. The reason of the efficiency gain of BRFs
compared to RForest is that for the latter the size of the
trees exponentially grow with the depth D, requiring
thus to explore much more features than in the case of
the BRFs, in which the number of features remains fixed
to the depth of the tree. This is depicted in Fig 7.

Another consequence of the simplicity of the BRFs is
that they can be learned with relatively small training
sets. As shown in Fig. 8, the performance of the BRFs
hardly decays when reducing the size of the training set
fromN = 1000 to 50 examples. All other methods signifi-
cantly drop their performance. This is quite accentuated
in the case of the RForest which, to avoid correlation
among trees, performs bagging by randomly splitting
the training set into different sample sets per tree. For the
BRFs, fern independence, and therefore decorrelation, is
automatically enforced by the boosting strategy, which
is more effective than randomly splitting the training
set. To illustrate this, in Fig. 20 of the appendix we
show the process of how boosting picks the four first
ferns of the classifier in a 2D classification problem.
The example demonstrates that each fern generates a
decision boundary decorrelated from all previous ones.

3.4 Online Boosted Random Ferns

We have just seen that BRFs can be learned very ef-
ficiently and with relatively small amounts of training
data. We next show that they can indeed be trained
online in almost real time. We denote this version of
the classifier as Online Boosting Random Ferns (OBRFs).
Essentially, OBRFs combine the BRFs with an online

RFs BRFs RForest GBoost
N EER HD EER HD EER HD EER HD
50 89.0 55.7 94.0 82.0 70.0 15.4 71.6 12.4
100 90.6 56.1 95.2 87.6 77.1 28.1 70.0 15.6
200 94.6 61.6 97.2 95.6 88.4 54.0 72.1 16.8
500 94.0 62.6 97.7 97.6 96.1 90.0 76.5 21.7

1000 94.1 62.6 97.5 97.9 96.8 94.3 75.5 21.2

Fig. 8: Equal Error Rate (EER) and Hellinger distance (HD),
as a function of the training set size (N).

Boosting algorithm and with an incremental bootstrap-
ping strategy to systematically enlarge the training set.
We next describe each of these two main ingredients.

3.4.1 Online Boosting

We compute OBRFs using an adaptation of the online
Boosting algorithm proposed in [19], which allows build-
ing a strong classifier from sequentially incoming train-
ing data. For this purpose, [19] introduces the concept
of selector and builds a strong classifier from a linear
combination of T selectors:

H(x) = sign

(

T
∑

t=1

hselt (x)− β

)

. (14)

The basic idea is that we are given a pool of K weak
learners hk(x), and upon the arrival of a new training
sample (x, y), each selector hselt (x) is updated to the
weak learner that minimizes the misclassification error

et,k =
λwrongt,k

λwrongt,k + λcorrt,k

, (15)

where et,k is the error of the k-th weak learner in the
t-th selector, estimated from the weights of correctly
λcorrt,k and wrongly λwrongt,k classified samples seen by far.
These weights are estimated and updated incrementally
using the importance sample weight λ. Once the selector
hselt (x) has chosen a weak learner, the weight λ is
updated and passed to the next selector t+ 1.

Regarding specific details of our implementation, it
is worth to point that the pool of weak learners is
made of ferns f(x;uk, θk), where uk ∈ {u1, . . . , uL} and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Algorithm 2: Online Boosted Random Ferns

Input: Previous online classifier H(x)
Input: Input sample (x, y), with y = {+1,−1}
Input: Classification weights λcorr

t,k
, λwrong

t,k

Output: Updated online classifier H(x)
1 Initialize the importance weight λ = 1
2 for r = 1, . . . , R do
3 for l = 1, . . . , L do
4 Test the fern f(x;ul,θr) for every location ul of the

input sample x to compute the fern outputs z. (Eq. 3)

5 for k = 1, . . . , K do
6 Update the estimate Θk,z of the weak learner hk using the

computed fern output z, (Eq. 16)
7 if y = +1 then

8 η+1
k,z

= η+1
k,z

+ 1

9 else

10 η−1
k,z

= η−1
k,z

+ 1

11 for t = 1, . . . , T do
12 for k = 1, . . . ,K do
13 if sign(hk(x)− β) = y then
14 λcorr

t,k
= λcorr

t,k
+ λ

15 else
16 λwrong

t,k
= λwrong

t,k
+ λ

17 Select the weak learner hsel
t (x) such that hk(x) minimizes

the misclassification error et,k (Eq. 15).
18 Update the importance weight λ,
19 if sign(hsel

t (x) − β) = y then

20 λ = λ · 1
2·(1−et)

21 else

22 λ = λ · 1
2·et

23 Assemble the final strong classifier

H(x) = sign
(

∑T
t=1 h

sel
t (x)− β

)

. (Eq. 14)

θk ∈ {θ1, . . . , θR}, thus yielding a total of K = L · R
weak learners. Each of these classifiers represents the
probability of the sample x to belong to the object class.
In order to speed up the learning process, we set this
probability to a Bernoulli distribution,

hk(x) = p(y = 1|f(x;uk, θk)) ∼ Θ
I(y=1)
k,z (1−Θk,z)

I(y=−1)

where Θk,z is the distribution parameter indicating the
probability that a sample in the fern f(x;uk, θk) with
output z belongs to the positive class. These parameters
can be computed online and very quickly based on a
Maximum Likelihood Estimate over the labeled set of
samples we have previously observed,

Θk,z =
η+1
k,z

η+1
k,z + η−1

k,z

(16)

where η+1
k,z and η−1

k,z are the accumulated number of pos-
itive and negative samples with output z in f(x;uk, θk).
These numbers are initialized to one, and recomputed
for every new input sample (x, y).

Algorithm 2 summarizes the OBRFs computation.
Note that all ferns are precomputed (lines 1 and 4)
outside of the main loop where the weak learners are
updated (lines 5 to 10). This yields a reduction of the

Cars Horses Motorbikes
Approaches

PR-EER PR-EER PR-EER

BRFs/INT 94.9 54.6 53.4
BRFs/HOG 98.9 74.1 84.4

TABLE 1: Equal error rates achieved by BRFs on various
datasets using signed binary comparisons of pixel intensities
(INT) or signed binary comparisons of cells of the local his-
togram of oriented gradients (HOG).

computational cost for updating the classifier, allowing
frame rates of more than 1 fps in real implementations.

3.4.2 Incremental Bootstrapping

In order to improve the stability and accuracy of the
OBRFs we use bootstrapping to feed the classifier with
additional input data. For this purpose, the classifier
H(x) is evaluated in the input image to extract both
positive and negative additional samples that are used to
update the weak learners {hk}

K
k=1 and their correspond-

ing classification weights (λcorrt,k , λwrongt,k). The criterion
used to decide if a sample is positive or negative is based

on the overlapping measure defined by r = |B(xi)∩BA|
|B(xi)∪BA|

where B(xi) and BA denote the bounding boxes for the
current sample xi and the image annotation, respectively.
If r > 0.9, we assume a positive sample. And if r < 0.1
the sample is labeled as negative. This simple strategy
is shown to improve the robustness of the classifier to
target deformations and background clutter.

4 APPLICATIONS

We now show extensive experiments in several com-
puter vision problems that validate the performance of
BRFs and OBRFs compared to competing approaches in
three problems: object class detection, rotation-invariant
object detection and multi-view object detection.

4.1 Object Class Detection

For object class detection we train and test BRFs in three
public datasets, the UIUC cars dataset [1], the INRIA
horses dataset [11], and the TUD motorbikes dataset [14].
These datasets are well-known and allow performance
comparison with a wide range of detection methods.

Unless otherwise stated, in these experiments, BRFs
are computed with values ranging from M = {2, . . . , 8}
features per fern, and T = {25, . . . , 300} weak learners,
sharing R = 10 random fern parameter sets θr. To
allow fast feature computation, HOGs are built using 4
unsigned gradient orientations over 6×6 pixel windows,
and HOG pyramids are built using integral images.

The experiments were designed to evaluate classifiers
based on the type of features, the use of boosting, the
amount of fern parameter sharing, and the possibility of
performing online-learning.

4.1.1 Feature Space

To evaluate the effect of the type of features we compute
BRFs using either binary pixel intensity comparisons or
binary comparisons of cell values on the HOG space.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Cars Horses Motorbikes # WLs
15.9 23.8 40.5 40.0 14.6 25.7 27.6 20.6 18.3 34.1 35.5 25.3 25
47.8 49.4 73.1 73.7 27.1 43.1 45.6 39.9 28.0 42.6 51.0 44.9 50
49.4 65.7 80.3 88.9 42.2 58.1 63.6 54.9 40.5 48.5 65.2 62.9 100

RFs

65.3 70.3 88.7 90.2 55.5 68.9 72.2 72.2 61.3 61.1 70.6 66.0 300
75.9 84.5 82.0 85.8 37.4 45.8 41.6 39.4 56.3 60.6 59.7 66.9 25
87.1 90.7 92.4 94.1 48.1 49.6 53.5 51.5 68.6 73.3 75.8 73.3 50
94.1 96.6 96.4 98.2 55.7 59.9 64.0 63.7 75.8 79.8 83.4 81.6 100

BRFs

96.0 98.4 98.6 98.9 63.6 68.5 70.1 74.1 78.2 83.8 85.6 84.4 300
Features 2 4 6 8 2 4 6 8 2 4 6 8

TABLE 2: Comparison of not boosting (RFs) vs. boosting (BRFs) on three distinct object datasets. The values indicate mean
equal error rates on the precision-recall curve for varying numbers of fern features, and the number of weak learners used (WLs).

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

Shared Random Ferns

#
 W

C
s

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Shared Random Ferns

#
 W

C
s

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Shared Random Ferns

#
 W

C
s

Feature Density Map Feature Distribution

M
o
to
rb
ik
e
s

H
o
rs
e
s

c
a
rs

Fig. 9: In the left column, spatial layout of ferns for different
object categories. In the right column, distribution of weak
learners for each class.

The results, shown in Table 1, indicate that HOG-based
features yields significant increase in recognition rates.
This is particularly relevant for the horses and motorbike
datasets, delivering EER gains of up to 30%.

4.1.2 Boosting

We compare the performance of estimating fern param-
eters with and without boosting, for different numbers
of weak learners T , and features per fern M . Table 2
shows mean equal error rates over five training and
testing rounds for the three datasets. It can be seen that
BRFs yield better detection results than RFs, especially
for small fern sizes and few weak learners. This shows
once more how RFs require a more stringent method
to achieve competitive detection rates, and that per-
formance strongly depends on the amount of features
per fern. Here, it is important to clarify that this RFs
implementation differs from the original one [38] in that
features are computed as comparisons of cells of a local
HOG instead of as comparisons of intensity values.

A useful property of boosting is its ability to perform
feature selection. The discriminative selection of random
ferns during the training phase focuses the classifier in
those object parts which are more relevant for classifica-
tion. In Fig. 9, we observe the results of feature selection
for the three different object classifiers. The left frames
depict the spatial layout of the ferns used to ensemble
the classifiers. The colored contour levels indicate the
positional density and weight of individual ferns that

25 50
0

0.2

0.4

0.6

0.8

1

WLs
T

im
e
 [
s
e
c
o
n
d
s
]

2 Features
4 Features
6 Features
8 Features

25 50
0

0.2

0.4

0.6

0.8

1

WLs

T
im

e
 [
s
e
c
o
n
d
s
]

2 Features
4 Features
6 Features
8 Features

Shared ferns Independent ferns

Fig. 10: Average detection times (in Matlab) given by BRFs
on the UIUC cars dataset with and without feature sharing for
varying feature sizes and total number of weak learners.

give rise to the strong classifier. Red contours indicate
higher density of ferns. We can see how ferns concentrate
in those regions semantically relevant, such as the wheels
of cars and bikes, or the neck and head on horses. The
right side of the figure contains plots of shared fern
distributions for each strong classifier, that is, the height
of the i-th column indicates the number of weak learners
that use the parameters θi.

4.1.3 Feature sharing

The most important benefit of sharing the sets of his-
togram bin indices θ1, . . . , θR among different ferns is
the reduction in computational cost when testing the
classifier. The pool of ferns is reduced to a small set that
can be computed prior to classifier evaluation. Thus, the
cost of feature computation will mostly depend on the
size of this pool, and not in the total number of weak
learners needed. Fig. 10 shows average detection times
for the shared and non-shared [53] versions of BRFs,
varying the total number of features per fern, and the
total number of weak learners. The plots correspond to
experiments on the UIUC car dataset, and when the sets
of histogram bin indices are shared, we consider a pool
of size R = 10.

The computational efficiency gained when sharing
ferns is at the slight expense of discriminant power of
the classifier. This is specially relevant for small fern sizes
(N small) and when only a few weak learners are used
to build the global classifier. As the number of weak
learners or features is increased, fern sharing tends to
produce similar results than its non-shared counterpart.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Cars Horses Motorbikes
Settings

Shar. Indep. Shar. Indep. Shar. Indep.
25 WLs

2 Features
75.9 84.9 37.4 42.0 56.3 62.7

50 WLs
4 Features

90.7 95.7 49.6 57.4 73.3 75.8

100 WLs
6 Features

96.4 97.7 64.0 68.0 83.4 82.1

300 WLs
8 Features

98.9 98.9 74.1 73.9 84.4 84.8

TABLE 3: Comparison of shared vs. independent ferns. The
table shows mean EER rates of BRFs for the three datasets.

Cars Horses Motorbikes
R

EER Time (ms) EER Time (ms) EER Time (ms)
2 97.8 23 70.6 15 78.0 45
5 99.0 44 73.9 27 83.8 86
10 98.9 76 74.0 47 84.4 150
15 99.1 111 73.4 68 85.3 221
30 98.9 213 74.6 126 84.7 428

TABLE 4: Execution times (in Matlab) and PR-EER rates for
various pool sizes of BRFs (R).

Table 3 shows mean EERs for the two alternatives for
different fern sizes and total number of weak learners.

Table 4 jointly shows execution time and equal error
rates for varying pool sizes. Note how classifier rates
are improved as the shared fern pool size gets larger.
However, larger fern pools also mean higher computa-
tional cost. A good compromise between efficiency and
performance will depend on the computational resources
available, and for our case, it comes at pool sizes of 10
shared ferns. After that point, recognition rate improve-
ments are negligible.

4.1.4 Comparison to the State of the Art

Table 5 reports ROC (at 1.0 false positives per image) and
EER scores of our method and other competitive works
when available. BRFs attains very competitive detection
rates, yet is straightforward, efficient, and easy to im-
plement. Other works reporting outstanding recognition
results, mainly for the horse and motorbike categories,
come at the expense of much demanding computational
load with detectors that use multiple cues and descrip-
tors [28], [37], [63]. In [28], for instance, descriptors
include a top-down image segmentation expensive to
compute. [63] proposed Hough-based voting and an
optimization procedure to group dependent parts and a
verification stage to refine the voting hypotheses, taking
a couple of minutes to detect objects. Similarly, [37]
integrates curvature information with HOG-based fea-
tures, yielding high recognition rates but also significant
computational burden through the extraction of edges
and connected segments tailored to a specific class.

In contrast, BRFs are not class specific, are very simple
to compute, and run in less than one second per image
in an unoptimized Matlab implementation on a 3.1GHz
CPU and up to 10 fps in C++ code. The high detection
rates of BRFs are possible not only because we are using
more discriminant and boosted cues, but, as in [51], by
also adding a bootstrapping mechanism to account for
limited training sample sizes. The experiments for the

Cars Horses Motorbikes
Method

PR-EER ROC PR-EER

Agarwal et al. [1] 39.6 - -
Ferrari et al. [12] - 73.7 -
Ferrari et al. [11] - 80.8 -
Gall et al. [15] 98.6 - -
Leibe et al. [28] - - 92.8
Leibe et al. [27] 95.0 - 87.0
Maji et al. [33] - 86.0 -
Mikolajczyk et al. [35] 94.7 - 89.0
Monroy et al. [37] - 94.5 -
Riemenschnei-
der et al. [41]

- 83.7 -

Toshev et al. [50] - 92.4 -
Yarlagadda et al. [63] - 87.3 -
BRFs 98.9 ±0.2 88.6±1.6 87.7 ±1.4
OBRFs 98.7 ±0.4 88.1±1.5 88.4 ± 1.9

TABLE 5: BRFs recognition rates compared to the state of the
art for object detection in the chosen object datasets.

200

 25 50 75 100

150 300 500

Fig. 11: Spatial layout of ferns at various instances of the
training phase in the OBRFs for the UIUC car dataset.
Note that after using 300 of the training examples the
feature map did already converge.

horse dataset are performed with three bootstrapping
iterations using 500 weak learners.

4.1.5 Online Boosted Random Ferns

We have also evaluated the online version of our Boosted
Random Ferns on the same experiments just presented.
In this case, training images are sequentially fed to train
a classifier with T = 300 weak learners, R = 10 fern sets
θr, and M = 6 binary features. Once this is done, the
classifier is evaluated over the test images. The results
are given in the last row of Table 5, yielding virtually the
same performance as the offline version. Note, however,
that when training the online version the classifier is
available at any time of the training, and there is no need
to wait until the end. Indeed, as shown in Fig. 11 for the
UIUC car dataset, after using about 50% of the training
set, the feature map of the detector did already converge.
This yields an additional reduction of the computational
load required for training the classifier.

4.2 Rotation-Invariant Object Detection

BRFs are versatile enough to be used also in cascade, first
to hypothesize object pose, and then to refine detection
at that pose. This two-step strategy allows to efficiently
detect objects subject to in-plane rotation, without hav-
ing to densely test the classifier at multiple orientations.
The technique is demonstrated for the IRI Freestyle
Motocross Dataset [53]. The image set used from the
dataset in these experiments includes 100 images of 128
motorbikes under arbitrary in-plane rotations.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Fig. 12: Cascaded BRFs. Top: object pose hypotheses. Bottom:
object classifications results. Each column corresponds to a
different value of the tolerance parameter β = (0, 2, 4) in Eq. 4.

4.2.1 Orientation Estimation

The pose estimator is trained with image window sam-
ples at labeled orientations ψ(i) ∈ {ψ1, . . . , ψW }, gen-
erated synthetically from a set of artificially rotated
object image windows. Class probability distribution
histograms are built for each orientation, i.e.,

p(z, ψ|O) =
∑

i:f(xi;ul,θr)=z ∧ yi=+1 ∧ ψ(i)=ψ

wt(i) ,

and optimal weak learner parameters (position and
HOG bin indices) are chosen so as to minimize the joint
Bhattacharyya bound for all possible orientations

Q(ul, θr) = 2

ψW
∑

ψ=ψ1

2M−1
∑

z=0

√

p(z, ψ|O) p(z|B) .

The resulting pose estimator is made up of T = 300 weak
learners, R = 7 HOG bin tests θr, and W = 16 distinct
orientations. The threshold β in Eq. 4 is set permissively
enough to allow a significant number of false positives.
The top row in Fig. 12 shows object pose estimates for
varying β. The red line segments indicate hypothesized
object poses, and their length indicates scale.

4.2.2 Detection refinement

In the second level of the cascade, no sliding window
is needed. Instead, the above-mentioned detections are
fed as testing image windows to another BRFs classifier.
This second classifier is built without taking orientation
into account, and trained only with image samples at
canonical orientations, i.e., images with non-rotated ob-
ject instances. To achieve rotation invariance, in the test
phase, ferns must be evaluated at the adequately rotated
HOG bin indices. A simple lookup table is formed to
bring the fern parameter set θ to a new θ

′ for each of
the W possible values of ψ. The object classifier then
proceeds as usual, with 100 weak learners. No feature
sharing is used in this case.

4.2.3 Comparison to the State of the Art

To show the benefit of using cascaded BRFs for rota-
tion invariant recognition, we designed an experiment
in which the approach is compared against two other
methods. The first consists in repeatedly testing with a
sliding window, and at multiple orientations, the clas-
sifier trained at the canonical orientation. The second

Motorbikes Time
Method

PR-EER AP (secs.)
Pose estimation + Detection BRFs 93.75 90.6 6.1
Individually rotated BRFs 85.94 79.5 19.6
Liu et al. [31] 92.00 - -

TABLE 6: Performance comparison of cascaded BRFs vs. other
methods for rotation invariant object detection.

Fig. 13: Cascaded BRFs for rotation invariant object detection.
Green rectangles are true positives, while red ones are false
positives. Blue rectangles are ground truth.

method is reported in [31], and proposes the use of
equivariant filters and a kernel-weighted model.

Performance rates and computation times for the three
methods are shown in Table 6. The performance rates
include EER and average precision4 (AP) were available.

The proposed approach achieves better recognition
rates at a significantly smaller computational load for
this dataset than using a single BRFs tested at multiple
orientations. This is because hypotheses verification at
every possible orientation increases not only the com-
putational cost, but also the false positives rate. Our
method also compares favorably to using equivariant
filters, as reported in [31], despite this work is specifically
designed to handle in-plane rotations, while BRFs can be
used as general purpose classifiers. Fig. 13 shows detec-
tion results for this dataset. In green positive detections,
in blue ground truth poses, and in red false positives.

4.3 Multi-View Object Detection

When dealing with multiple view object detection, we
need to handle the problem of varying aspect ratios
across different viewpoints. Standard approaches like
JointBoosting [49] and ClusterBoost [61], do not address
this issue and consider constant object sizes. Deformable
Part Models [10] handle varying object sizes by incor-
porating multiple HOG filters, one of which serves as
an anchor or ‘root’, plus local ‘part’ filters that can shift
around it. However, learning this classifier is computa-
tionally intensive and slow.

In this paper, we propose an alternative two-step
approach in which we first use a Hough voting scheme
to generate hypotheses about the object center and cor-
responding pose, and then we test pose specific BRFs in
each of these hypotheses. We next describe these steps.

4. Average precision amounts to the average value of precision (p)
for the whole recall (r) interval, and is computed as the area under the
precision-recall curve AP =

∑1
r=0 p(r)∆r.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Fig. 14: Two-step approach to multi-view object detection. The first step produces potential hypotheses about the object location
and its 3D pose (color encoded). The second step validates each of these hypotheses using pose-specific classifiers (BRFs).

4.3.1 Pose Hypotheses Estimation

In the same spirit as other Hough voting object clas-
sifiers [3], [15], we build a pose hypotheses estimator
that, at runtime, yields a number of candidate object lo-
cations with their corresponding pose. The construction
of this estimator is done during training as follows. Let
X (i) be the subset of training samples for one specific
pose i (see Fig. 14-a), and assume we are given a fern
fj(x;u, θj), and an output zj for this fern. Our goal, is to
compute an object pose prior for this specific fern and
output. For this purpose, fj is evaluated over all training
samples X (i). By retaining only those pixel positions for
which the fern output is zj we build binary response
maps as those shown in Fig. 14-b. These binary responses
are then added to build a probability map (Fig. 14-c) that,
for every pixel position in x, gives the likelihood that if
the object is under the i-th pose, the fern fj will output zj .
We finally extract the local maxima of this probability
map (we plot two maxima in the figure, but we typically
choose up to five), and keep its relative displacement to
the object center.

This process is iterated over all fern outputs, all ferns,
and all poses. We build a lookup table indexed by the
fern id, fern output, pose id, and that stores the location
of the object center.

At runtime, given a new sample window x, we
densely test all ferns at every pixel position. Let’s say we
test fern fj at position ul and we get that fj(x;ul, θj) = zj .
Then, for each pose id, we perform a query at the lookup
table, to get votes for the center of the object. Once
all ferns are evaluated in all pixel positions, we build
clusters of pose indexed object positions, such as those
shown in Fig. 14-d.

4.3.2 Object Detection

For the second step, individual BRFs are trained for
all different viewpoints, but sharing the same ferns.
These strong classifiers are computed using T = 300
weak learners each, R = 15 ferns parameters sets θr,
and M = 7 HOG bin indices. The best valued pose
hypotheses from the first step are then tested on their
corresponding viewpoint classifier. Fig. 14-e shows the
maximum response of the classifiers, where the bound-
ing box color encodes the pose id.

We use the same configuration of parameters for the
Online BRFs, with the only difference that training sam-
ples are sequentially used to update the classifier.

4.3.3 Comparison to the State of the Art

We evaluate the approach using the 3DObject dataset
of [42], that contains object categories seen from several
viewpoints and multiple scales. We report results on
the car and bicycle categories. Each class contains 10
object instances observed from 8 different viewpoints,
each with significant variation of camera height and
distance to the object. The pose estimator and the BRFs
classifiers are all trained using five class instances only.
The remainder instances are used for testing.

As shown in Table 7, both BRFs and OBRFs com-
pare competitively with respect to the state of the art.
Detection rates are computed as the mean values over
five training-testing trials to account for randomness.
Furthermore, the AP values are computed using the 2010
Pascal protocol5. Fig. 15 (left) plots the confusion matrix
obtained with BRFs for the car view pose estimation case
for which a detection rate of 91.5% was attained. Observe
that the low ratio of confusions is mainly due to object
symmetry (e.g., viewing the object from opposite sides).
Again, the results obtained with OBRFs are equivalent.

The performance of the BRFs is also illustrated in
Fig. 1-right, where the localization (green boxes) and ori-
entation estimates (upper-left green circles) are shown.
The figure also shows the spatial distribution of fea-
tures (visualized using colored contours) for the different
pose-specific classifiers, as well as ground truth orienta-
tions (upper-left blue circles). Note that although all of
the orientation-specific classifiers share the same random
ferns, their presence in the final classifier has different
weights and locations, making it able to distinguish
different parts of the object.

The computational benefits of using the initial step
when testing BRFs are shown in Fig. 15 (middle, right)
for the car class. A tolerance parameter (βe) for the
Hough-based estimator is used to indicate the amount
of pose estimation hypotheses, obtained in the first step,
that are passed to the classifiers in the second step

5. This protocol, emanating from the Pascal Visual Object Class
Challenges is used to smooth out PR values to produce better estimates
of the area under the precision-recall curve.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

0.61 0.01 0.37 0.01

0.96 0.03 0.01

0.99 0.01

0.97 0.01 0.01 0.01

0.01 0.01 0.96 0.01 0.01

0.03 0.97

0.01 0.99

0.02 0.11 0.87

Estimated Pose

G
ro

u
n

d
 T

ru
th

 P
o

s
e

A1 A2 A3 A4 A5 A6 A7 A8

A1

A2

A3

A4

A5

A6

A7

A8 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Approaches

P
e

rf
o

rm
a

n
c
e

Detection (EER)
Pose Estimation

Indep. β
e

= 0 β
e

= 10 β
e

= 20 β
e

= 30 β
e

= 50
0

0.25

0.5

0.75

1

1.25

1.5

Approaches

T
im

e
 [

s
e

c
.]

SRFs
Estimator
Classifiers

β
e
=0 β

e
=10 β

e
=20 β

e
=30 β

e
=50Indep.

Fig. 15: BRFs Perfomance in multiview object detection for the car class. Left: confusion matrix for object orientation estimation.
Middle: detection and pose estimation accuracy as the parameter βe is increased, limiting the number of hypotheses that are
trimmed from the Hough map. Right: decrease in computational speed for the two steps in the algorithm, as a function of βe.

Cars Bicycles
Method

Detec. View. Detec. View.

Bao et al. [2] 98.0 95.3 93.1 92.3
Glasner et al. [18] 99.2 85.3 - -
Liebelt et al. [30] 76.7 70.0 69.8 75.0
Stark et al. [46] 89.9 81.0 - -
Su et al. [47] 55.3 67.0 - -
Xiang et al. [62] 98.4 93.8 93.0 91.4
BRFs 98.9 91.5 94.6 89.2
OBRFs 98.9 90.2 92.9 86.2

TABLE 7: Multi-view object detection rates and view pose
recognition accuracy on the 3DObject dataset.

EPFL Dataset KITTI Dataset

Method Detec. View. Easy Moder. Hard

Felzenszwalb [10] 98.1 56.6 72.2 46.0 35.4
Glasner et al. [18] 89.5 - - - -
Ozuysal et al. [40] 85.4 41.6 - - -
Xiang et al. [62] 96.4 64.8 - - -
BRFs 90.1 60.1 72.4 56.0 41.5

TABLE 8: Multi-view object detection rates and view pose
recognition accuracy on the EPFL and KITTI cars datasets.

for verification. The first column in the plots (Indep.)
represents the case when no prior pose estimation is
made, and window-sliding is used to feed all possible
locations and orientations to the classifiers. The center
plot indicates EER detection and pose estimation rates,
whereas the plot to the right shows overall computation
times. Note that the time spent on computing the shared
random ferns (SRFs) is constant regardless of the amount
of pose hypotheses to be tested. Limiting the amount
of hypotheses significantly reduces computational cost
at the expense of impoverished orientation estimation
rates. Nonetheless, the detection rates remain unaltered.

Similar to previous experiments for multi-view car
detection, the proposed approach is evaluated in the
EPFL Car dataset [40]. This dataset contains 20 car
instances rotating on a platform. The first 10 cars are
used to train the pose estimator and 32 pose-specific
classifiers (at 16 different angles and with two aspect
ratios per orientation), whereas the remaining 10 cars
are used during testing.

Once more, our method achieves significant perfor-
mance when compared to the state of the art as depicted
in Table 8. The reported values were attained for βe = 10,

and as in the previous case, averaging over five training-
testing iterations to account for randomness, and also
using the 2010 Pascal protocol for the computation of
the AP metric. Contrary to other works that require ex-
pensive features combined with more complex learning
and detection strategies, as is the case of the Deformable
Part Models (DPMs) approach [10] that obtains the best
detection rates, our method is able to train a pose-specific
classifier in a couple of minutes and to detect cars in less
than one second despite difficult scene conditions.

Finally, we have performed a one-to-one comparison
against the DPMs with a subset of the KITTI Dataset [17],
for multi-view car detection. We have split the 7, 481
original training images into a training set of 5, 000 im-
ages and a test set of 2, 481 images. For the DPMs we use
the code and pretrained detectors publicly available at
http:/www.cs.berkeley.edu/~rbg/latent/. Table 8 sum-
marizes the results of this experiment for different levels
of difficulty considered in the evaluation: easy, moderate
and hard. Observe that in this case BRFs even slightly
outperform DPMs, despite BRFs are using much simpler
features and constraints when building the classifier. In
Appendix 5 we show some detection results.

5 CONCLUSIONS

In this work, we introduced Boosted Random Ferns
(BRFs), an efficient and effective classifier for the de-
tection of object categories. Four key aspects make the
method particular. On the one hand, we propose to use
as features sets of random binary comparisons in the
HOG domain. We call them HOG-based ferns. These
features are very fast to compute and are very effective to
model intra-class appearance variability. The second key
contribution of the method is the idea of boosting these
features to select the most discriminant ones. Boosting
identifies the most relevant regions within each class
(bike wheels, horse’s neck and head, etc.). The third
key contribution is the idea of sharing features amongst
weak learners, and also during classifier cascading. Fea-
ture sharing provides remarkable computational advan-
tages when compared to the state of the art. Finally,
we show that the classifier can be even trained online,

http:/www.cs.berkeley.edu/~rbg/latent/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

with sequentially arriving data. As future work we plan
introducing BRFs within a DPM formulation, or even in
a Deep Network (e.g. in the first convolutional layer),
to combine the strengths of all these methods. We also
believe that our features can be appropriate to tackle
problems involving RGB-D data.

APPENDIX A

2D Classification Problem

This section reports several additional synthetic ex-
periments where we compare the performance of the
Boosted Random Ferns (BRFs) proposed in this paper
against other related approaches, namely Random Ferns
(RFs) [38], Random Forests (RForest) [6] and Gentle
Boost (GBoost) [13].

We perform two additional experiments. In the first
one (Fig. 16 and Table 18) the two classes are linearly sep-
arable. In the second experiment (Fig. 17 and Table 19)
the two classes are not linearly separable. In both cases,
the results of RForest and BRFs clearly deliver much
better classification rates than RFs and GBoost. Note,
however, that BRFs are significantly much faster than
RForest, both in train and test.

APPENDIX B

Ferns Selection: A Simple Example

In Fig. 20 we show the process of how the four first ferns
of a BRFs classifier are chosen, in an synthetic two class
problem, where classes are linearly separable. The type
of binary features and experimental setup are the same
as to those described in Section 3.3. For visualization
purposes, we reduced the training set to 100 positive
and 100 negative samples. At the top of the figure we
plot the equivalent tree-like structure of every fern and
their corresponding parameters, chosen from a pool of
500 random values. The middle row depicts the weights
wt(i) for the 200 training samples, computed using Eq. 13
after each boosting step. The bottom-most graphs plot
the classification results, where the size of each sample
is proportional to its weight. Note that larger weights
at step t usually correspond to misclassified samples
or samples lying near the frontier that separates the
two classes. The subsequent classifier at step t + 1 will
prioritize the correct classification of theses samples. By
doing this, we prevent correlation (i.e, selection of the
same decision boundary) among different ferns, a key
aspect for the generalization capabilities of the classifier.

APPENDIX C

KITTI Dataset: Detection Examples

Fig. 21 shows the output of the BRFs on some sample
images. The green boxes represent the location and scale
of detected cars while the pie-like circles indicate the
estimated orientation of every car. False detections are
shown with red boxes. Note that the proposed method is
able to detect cars at multiple scales and under complex
lighting conditions and mild occlusions.

ACKNOWLEDGMENTS

This work was partially supported by the Catalan
Agency for Management of University and Research
Grants for the Consolidated Group VIS (2014 SGR
897). A.S. acknowledges support also from project Col-
RobTransp (DPI2016-78957-R), and J.A. and F.M. from
project RobInstruct (TIN2014-58178-R), both funded by
the Spanish Ministry of Economy, Industry and Com-
petitiveness. J.A., A.S., and F.M. were also partially
supported by the European Union projects AEROARMS
(H2020-ICT-2014-1-644271) and LOGIMATIC (H2020-
Galileo-2015-1-687534).

REFERENCES

[1] S. Agarwal and D. Roth. Learning a sparse representation for
object detection. In Europ. Conf. on Computer Vision, pages 113–
130, 2002.

[2] S.Y. Bao, Y. Xiang, and S. Savarese. Object co-detection. In Europ.
Conf. on Computer Vision, pages 86–101, 2012.

[3] O. Barinova, V. Lempitsky, and P. Kholi. On detection of multiple
object instances using Hough transforms. IEEE Trans. Pattern
Analylis and Machine Intelligence, 34(9):1773–1784, 2012.

[4] H. Bay, T. Tuytelaars, and L. Van Gool. Speeded-up robust features
(SURF). Comp. Vision and Image Underst., 110(3):346–359, 2008.

[5] R. Caruana and A. Niculescu-Mizil. An empirical comparison of
supervised learning algorithms. In Int. Conf. in Machine Learning,
2006.

[6] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests for
classification, regression, density estimation, manifold learning
and semi-supervised learning. Foundations and Trends in Computer
Graphics and Vision, 7(2):81–227, 2011.

[7] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Conf. on Comp. Vision and Pattern Recogn.,
pages 886–893, 2005.

[8] G. Fanelli, J. Gall, and L. Van Gool. Real time head pose estimation
with random regression forests. In Conf. on Comp. Vision and
Pattern Recogn., pages 617–624, 2011.

[9] P.F. Felzenszwalb, R.B. Girshick, and D. McAllester. Cascade
object detection with deformable part models. In Conf. on Comp.
Vision and Pattern Recogn., pages 2241–2248, 2010.

[10] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan.
Object detection with discriminatively trained part-based models.
IEEE Trans. Pattern Analylis and Machine Intelligence, 32(9):1627–
1645, 2010.

[11] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid. Groups of adjacent
contour segments for object detection. IEEE Trans. Pattern Analylis
and Machine Intelligence, 30(1):36–51, 2008.

[12] V. Ferrari, F. Jurie, and C. Schmid. Accurate object detection with
deformable shape models learnt from images. In Conf. on Comp.
Vision and Pattern Recogn., 2007.

[13] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic
regression: A statistical view of boosting. The Annals of Statistics,
28(2):337–407, 2000.

[14] M. Fritz, B. Leibe, B. Caputo, and B. Schiele. Integrating repre-
sentative and discriminant models for object category detection.
In Int. Conf. on Comp. Vision, pages 1363–1370, 2005.

[15] J. Gall and V. Lempitsky. Class-specific Hough forests for object
detection. In Conf. on Comp. Vision and Pattern Recogn., pages 1022–
1029, 2009.

[16] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough
forests for object detection, tracking, and action recognition. IEEE
Trans. Pattern Analylis and Machine Intelligence, 33:2188–2202, 2011.

[17] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready
for autonomous driving? the kitti vision benchmark suite. In
Conference on Computer Vision and Pattern Recognition (CVPR), 2012.

[18] D. Glasner, M. Galun, S. Alpert, R. Basri, and G. Shakhnarovich.
Viewpoint-aware object detection and pose estimation. In Int.
Conf. on Comp. Vision, pages 1275–1282, 2011.

[19] H. Grabner and H. Bischof. On-line boosting and vision. In Conf.
on Comp. Vision and Pattern Recogn., pages 260–267, 2006.

[20] C. Gu and X. Ren. Discriminative mixture-of-templates for
viewpoint classification. In Europ. Conf. on Computer Vision, pages
408–421, 2010.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

Classification Results Confidence Map Uncertainty Map Score Distributions
R

F
s

B
R

F
s

R
F
o
r
e
s
t

G
B

o
o
s
t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 98.8

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
−1.5 −1 −0.5 0 0.5 1 1.5

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Score

P
ro

b
a
b
ili

ty

Positive

Negative

Distance: 0.99

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 99.2

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
−1 −0.5 0 0.5 1

0

0.005

0.01

0.015

0.02

0.025

Score

P
ro

b
a
b
ili

ty

Positive

Negative

Distance: 1.0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 99.0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Score

P
ro

b
a
b
ili

ty

Positive

Negative

Distance: 1.0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 99.0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Score

P
ro

b
a
b
ili

ty

Positive

Negative

Distance: 0.99

Fig. 16: 2D classification results of BRFs vs. RFs [38], Random Forest [6] and GentleBoost classifier [13]. First column: classification
results on testing samples. Misclassified samples are shown in black. Second column: confidence maps provided by the classifiers
over the 2D feature space. Third column: uncertainty maps where brighter regions correspond to uncertain classification values.
Red contours indicate uncertainty of 90%. Fourth column: score distributions for the positive and negative classes.

Classification Results Confidence Map Uncertainty Map Score Distributions

R
F
s

B
R

F
s

R
F
o
r
e
s
t

G
B

o
o
s
t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 87.1

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
−1 −0.5 0 0.5 1

0

0.002

0.004

0.006

0.008

0.01

0.012

Score

P
ro

b
a
b
ili

ty

Positive

Negative
Distance: 0.63

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER:99.8

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0.03

Score

P
ro

b
a
b
ili

ty
Positive

Negative

Distance: 0.99

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 98.2

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Score

P
ro

b
a
b
ili

ty

Positive

Negative

Distance: 0.99

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x1

x
2

EER: 93.9

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0

x1

x
2

0.2 0.4 0.6 0.8 1

0.8

0.6

0.4

0.2

0
−0.1 −0.05 0 0.05 0.1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Score

P
ro

b
a
b
ili

ty

Positive

Negative Distance: 0.60

Fig. 17: 2D classification results of BRFs vs. RFs [38], Random Forest [6] and GentleBoost classifier [13]. First column: classification
results on testing samples. Misclassified samples are shown in black. Second column: confidence maps provided by the classifiers
over the 2D feature space. Third column: uncertainty maps where brighter regions correspond to uncertain classification values.
Red contours indicate uncertainty of 90%. Fourth column: score distributions for the positive and negative classes.

[21] Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrap-
ping binary classifiers by structural constraints. In Conf. on Comp.
Vision and Pattern Recogn., pages 49–56, 2010.

[22] T-K. Kim and R. Cipolla. Mcboost: Multiple classifier boosting for
perceptual co-clustering of images and visual features. In Neural
Information Processing Systems, volume 11, pages 841–848, 2008.

[23] E. Krupka, A. Vinnikov, B. Klein, A.B. Hillel, D. Freedman,
and S. Stachniak. Discriminative ferns ensemble for hand pose
recognition. In Conf. on Comp. Vision and Pattern Recogn., pages
3670–3677, 2014.

[24] C.H. Lampert, M.B. Blaschko, and T. Hofmann. Beyond sliding
windows: Object localization by efficient subwindow search. In

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

Equal Error Rate [%] Hellinger Distance [%] Training Time [sec.] Run Times [msec.] D
76.5 71.9 74.3 73.8 33.7 30.9 32.0 34.5 0.01 0.01 0.02 0.02 0.03 0.02 0.02 0.03 1
75.4 78.7 76.9 76.6 31.2 38.5 40.5 40.9 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.03 2
80.0 80.5 81.2 80.0 41.7 48.0 49.1 49.9 0.01 0.02 0.02 0.04 0.02 0.03 0.03 0.05 4

RFs

84.6 84.8 85.4 86.8 55.4 58.4 60.8 63.1 0.01 0.02 0.03 0.05 0.02 0.03 0.04 0.06 6
92.2 94.8 95.6 95.8 55.2 61.4 63.4 64.3 0.30 0.62 1.22 2.37 0.02 0.03 0.02 0.03 1
98.2 98.9 99.1 99.0 80.5 91.3 90.4 89.5 0.30 0.64 1.23 2.38 0.02 0.02 0.02 0.03 2
98.9 99.5 99.6 99.6 94.4 97.6 98.1 98.1 0.35 0.71 1.30 2.48 0.02 0.02 0.03 0.04 4

BRFs

99.5 99.6 99.7 99.9 99.3 99.7 99.8 99.8 0.45 0.79 1.40 2.58 0.02 0.03 0.04 0.06 6
79.3 79.9 75.0 74.7 35.0 34.8 36.2 35.4 0.19 0.37 0.74 1.49 0.28 0.59 1.16 2.34 1
80.1 78.8 76.7 77.5 32.8 33.0 33.7 33.5 0.41 1.01 2.00 3.98 0.37 0.85 1.67 3.34 2
91.2 91.8 92.3 91.9 73.9 74.0 77.6 77.6 1.15 2.77 5.45 11.47 0.50 1.19 2.39 4.93 4

RForest

97.7 96.7 97.5 97.4 98.5 96.7 98.5 98.0 1.94 4.58 9.56 18.76 0.61 1.48 2.97 6.05 6
GBoost 89.8 92.5 94.5 95.1 55.4 58.9 60.3 61.3 0.01 0.01 0.02 0.04 0.02 0.02 0.02 0.02 1
WLs 10 25 50 100 10 25 50 100 10 25 50 100 10 25 50 100

Fig. 18: 2D Classification Performance. Left: mean EERs on the precision-recall curve for the RFs and BRFs classification methods
in the two scenarios shown in Fig. 5. Right: equal error rates on the precision-recall curve for the Boosted Random Ferns and
Random Ferns classification methods in Scenario B, and varying number of weak learners and features. The plot shows mean
EERs values and their standard deviation.

Equal Error Rate [%] Hellinger Distance [%] Training Time [sec.] Run Times [msec.] D
94.5 98.5 98.4 99.0 69.7 91.7 85.7 95.0 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.03 1
98.0 98.8 99.3 99.2 88.2 95.9 95.9 96.3 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.03 2
98.9 99.2 99.3 99.4 96.2 98.0 98.8 99.0 0.01 0.02 0.02 0.03 0.02 0.03 0.03 0.04 4

RFs

99.1 99.3 99.2 99.4 98.9 99.6 99.7 99.7 0.01 0.02 0.03 0.05 0.02 0.03 0.04 0.06 6
99.0 99.2 98.9 99.1 99.1 99.5 99.0 99.2 0.28 0.62 1.21 2.36 0.02 0.02 0.02 0.03 1
99.2 99.1 99.5 99.1 99.8 99.7 99.9 99.8 0.29 0.64 1.22 2.37 0.02 0.02 0.02 0.03 2
99.1 99.3 99.4 99.3 100 100 100 100 0.35 0.70 1.29 2.46 0.02 0.02 0.03 0.04 4

BRFs

99.1 99.3 99.2 99.3 100 100 100 100 0.43 0.80 1.38 2.57 0.02 0.03 0.04 0.06 6
97.1 97.3 96.8 96.8 99.1 99.3 98.7 98.6 0.17 0.37 0.75 1.47 0.26 0.60 1.17 2.28 1
98.3 98.1 98.5 98.1 99.9 99.9 100 99.9 0.41 1.03 2.03 4.00 0.37 0.86 1.69 3.36 2
98.9 99.2 99.3 99.2 100 100 100 100 0.89 2.28 4.41 8.89 0.41 1.01 1.93 4.01 4

RForest

99.0 99.3 99.2 99.2 100 100 100 100 1.01 2.67 5.06 10.25 0.44 1.09 2.09 4.27 6
GBoost 99.0 99.3 99.0 99.1 99.1 99.4 98.7 98.8 0.01 0.01 0.02 0.04 0.02 0.02 0.02 0.02 1
WLs 10 25 50 100 10 25 50 100 10 25 50 100 10 25 50 100

Fig. 19: 2D Classification Performance. Left: mean EERs on the precision-recall curve for the RFs and BRFs classification methods
in the two scenarios shown in Fig. 5. Right: equal error rates on the precision-recall curve for the Boosted Random Ferns and
Random Ferns classification methods in Scenario B, and varying number of weak learners and features. The plot shows mean
EERs values and their standard deviation.

Conf. on Comp. Vision and Pattern Recogn., pages 1–8, 2008.

[25] I. Laptev. Improving object detection using boosted histograms.
Image and Vision Computing, 27(5):535–544, 2009.

[26] A. Lehmann, P. V. Gehler, and L. Van Gool. Branchandrank: Non-
linear object detection. In British Mach. Vision Conf., 2011.

[27] B. Leibe, A. Leonardis, and B. Schiele. Robust object detection
with interleaved categorization and segmentation. International
Journal of Computer Vision, 77(1):259–289, 2008.

[28] B. Leibe, K. Mikolajczyk, and B. Schiele. Segmentation based
multi-cue integration for object detection. In British Mach. Vision
Conf., pages 1169–1178, 2006.

[29] V. Lepetit and P. Fua. Keypoint recognition using random-
ized trees. IEEE Trans. Pattern Analylis and Machine Intelligence,
28(9):1465–1479, 2006.

[30] J. Liebelt and C. Schmid. Multi-view object class detection with a
3D geometric model. In Conf. on Comp. Vision and Pattern Recogn.,
pages 1688–1695, 2010.

[31] K. Liu, Q. Wang, W. Driever, and O. Ronneberger. 2D/3D rotation-
invariant detection using equivariant filters and kernel weighted
mapping. In Conf. on Comp. Vision and Pattern Recogn., pages 917–
924, 2012.

[32] D.G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60(2):91–110, 2004.

[33] S. Maji and J. Malik. Object detection using a max-margin Hough
transform. In Conf. on Comp. Vision and Pattern Recogn., pages
1038–1045, 2009.

[34] T. Malisiewicz, A. Gupta, and A.A. Efros. Ensemble of exemplar-

svms for object detection and beyond. In Int. Conf. on Comp. Vision,
pages 89–96, 2011.

[35] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object class
detection with a generative model. In Conf. on Comp. Vision and
Pattern Recogn., pages 26–36, 2006.

[36] T. Mita, T. Kaneko, B. Stenger, and O. Hori. Discriminative feature
co-occurrence selection for object detection. IEEE Trans. Pattern
Analylis and Machine Intelligence, 30(7):1257–1269, 2008.

[37] A. Monroy, A. Eigenstetter, and B. Ommer. Beyond straight lines-
object detection using curvature. In Int. Conf. on Image Processing,
pages 3561–3564, 2011.

[38] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint
recognition using random ferns. IEEE Trans. Pattern Analylis and
Machine Intelligence, 32(3):448–461, 2010.

[39] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in
ten lines of code. In Conf. on Comp. Vision and Pattern Recogn.,
pages 1–8, 2007.

[40] M. Ozuysal, V. Lepetit, and P. Fua. Pose estimation for category
specific multiview object localization. In Conf. on Comp. Vision and
Pattern Recogn., pages 778–785, 2009.

[41] H. Riemenschneider, M. Donoser, and H. Bischof. Using partial
edge contour matches for efficient object category localization. In
Europ. Conf. on Computer Vision, pages 29–42, 2010.

[42] S. Savarese and L. Fei-Fei. 3D generic object categorization,
localization and pose estimation. In Int. Conf. on Comp. Vision,
pages 1–8, 2007.

[43] R.E. Schapire and Y. Singer. Improved boosting algorithms using

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

Samples

W
e
ig

h
ts

Positive
Negative

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

Samples

W
e
ig

h
ts

Positive
Negative

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

Samples

W
e
ig

h
ts

Positive
Negative

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

Samples

W
e
ig

h
ts

Positive
Negative

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
2

x
1

θ
2

θ
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
2

x
1

θ
2

θ
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
2

x
1

θ
2

θ
1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
2

x
1

θ
2

θ
1

Z0 Z1 Z2 Z3

1

1

10 0

0

Z0 Z1 Z2 Z3

1

1

10 0

0

Z0 Z1 Z2 Z3

1

1

10 0

0

Z0 Z1 Z2 Z3

Z3

Z2

Z1

Z0

Z1 Z3

Z0 Z2

Z0 Z1 Z3

Z0 Z1

Z3Z2

1 10 0

10

Fig. 20: Computation of the BRFs for a 2D classification problem. Top row: visualization of each fern as a decision tree. The
parameters for the i-th fern are θi = {θi1, θi2}, where θij corresponds to a pair {axis, τ} chosen from a large pool of random
values. Middle row: Weight associated to the 200 training samples (100 positive and 100 negative) after each boosting step.
Bottom row: Classification response of each weak learner. Black circles and crosses represent misclassified samples, and the
size of each sample is proportional to its associated weight. Additionally, we indicate the spatial coverage of each output
{z1, z2, z3, z4}, i.e, the samples within the region z0 fill end-up on the z0 leaf of the classification tree.

Fig. 21: Detection results obtained with the Boosted Random Ferns on the KITTI Car dataset [17].

confidence-rated predictions. Machine Learning, 37(3):297–336,
1999.

[44] J. Shotton, A. Blake, and R. Cipolla. Multiscale categorical object
recognition using contour fragments. IEEE Trans. Pattern Analylis
and Machine Intelligence, 30(7):1270–1281, 2008.

[45] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for
image categorization and segmentation. In Conf. on Comp. Vision
and Pattern Recogn., pages 1–8, 2008.

[46] M. Stark, M. Goesele, and B. Schiele. Back to the future: Learning
shape models from 3D CAD data. In British Mach. Vision Conf.,
pages 106.1–106.11, 2010.

[47] H. Su, M. Sun, L. Fei-Fei, and S. Savarese. Learning a dense
multi-view representation for detection, viewpoint classification
and synthesis of object categories. In Int. Conf. on Comp. Vision,
pages 213–220, 2009.

[48] D. Tang, Y. Liu, and T-K. Kim. Fast pedestrian detection by
cascaded random forest with dominant orientation templates. In
British Mach. Vision Conf., pages 1–11, 2012.

[49] A. Torralba, K.P. Murphy, and W.T. Freeman. Sharing visual
features for multiclass and multiview object detection. IEEE Trans.
Pattern Analylis and Machine Intelligence, 29(5):854–869, 2007.

[50] A. Toshev, B. Taskar, and K. Daniilidis. Object detection via
boundary structure segmentation. In Conf. on Comp. Vision and
Pattern Recogn., pages 950–957, 2010.

[51] M. Villamizar, J. Andrade-Cetto, A. Sanfeliu, and F. Moreno-
Noguer. Bootstrapping boosted random ferns for discriminative
and efficient object classification. Pattern Recognition, 45(9):3141–
3153, 2012.

[52] M. Villamizar, H. Grabner, J. Andrade-Cetto, A. Sanfeliu, L. Van
Gool, and F. Moreno-Noguer. Efficient 3D object detection using
multiple pose-specific classifiers. In British Mach. Vision Conf.,
pages 20.1–20.10, 2011.

[53] M. Villamizar, F. Moreno-Noguer, J. Andrade-Cetto, and A. San-
feliu. Efficient rotation invariant object detection using boosted
random ferns. In Conf. on Comp. Vision and Pattern Recogn., pages
1038–1045, 2010.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 18

[54] M. Villamizar, F. Moreno-Noguer, J. Andrade-Cetto, and A. San-
feliu. Shared random ferns for efficient detection of multiple
categories. In Int. Conf. on Pattern Recognition, 2010.

[55] M. Villamizar, A. Sanfeliu, and J. Andrade-Cetto. Computation of
rotation local invariant features using the integral image for real
time object detection. In Int. Conf. on Pattern Recognition, 2006.

[56] M. Villamizar, A. Sanfeliu, and F. Moreno-Noguer. Fast online
learning and detection of natural landmarks for autonomous
aerial robots. In Int. Conf. on Robotics and Automation, 2014.

[57] M. Villamizar, A. Sanfeliu, and F. Moreno-Noguer. Interactive
multiple object learning with scanty human supervision. Comp.
Vision and Image Underst., 149:51–64, 2016.

[58] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Conf. on Comp. Vision and Pattern
Recogn., pages 511–518, 2001.

[59] P. Viola and M. Jones. Robust real-time face detection. International
Journal of Computer Vision, 57(2):137–154, 2004.

[60] X. Wang, T.X. Han, and S. Yan. An HOG-LBP human detector
with partial occlusion handling. In Int. Conf. on Comp. Vision,
pages 32–39, 2009.

[61] B. Wu and R. Nevatia. Cluster boosted tree classifier for multi-
view, multi-pose object detection. In Int. Conf. on Comp. Vision,
pages 1–8, 2007.

[62] Y. Xiang and S. Savarese. Estimating the aspect layout of object
categories. In Conf. on Comp. Vision and Pattern Recogn., pages
3410–3417, 2012.

[63] P. Yarlagadda, A. Monroy, and B. Ommer. Voting by grouping
dependent parts. In Europ. Conf. on Computer Vision, pages 197–
210, 2010.

[64] J. Zhang, K. Huang, Y. Yu, and T. Tan. Boosted local structured
HOG-LBP for object localization. In Conf. on Comp. Vision and
Pattern Recogn., pages 1393–1400, 2011.

[65] Z. Zhang, J. Warrell, and P. Torr. Proposal generation for object
detection using cascaded ranking SVMs. In Conf. on Comp. Vision
and Pattern Recogn., pages 1497–1504, 2011.

Michael Villamizar Vergel is a postodoctoral
researcher at the IDIAP Research Institute in
Martigny (Switzerland). Before, he was a post-
doctoral researcher at the Institut de Robòtica i
Informàtica Industrial, CSIC-UPC, in Barcelona
(Spain). He obtained his PhD in computer vision
and robotics from the Universitat Politècnica de
Catalunya in 2012. He also received the BSc
degree in mechatronics engineering from San
Buenaventura University (Colombia) in 2004.
Michael has participated in diverse national and

European projects and has worked with other research groups in
Europe. His research interests are focused on object detection and cat-
egorization, robust visual tracking, and real-time robotics applications.

Juan Andrade-Cetto is Associate Researcher
of the Spanish National Research Council and
Director of the Institut de Robòtica i informàtica
Industrial CSIC-UPC. His research addresses
state estimation and computer vision problems
with applications to mobile robotics. He obtained
the BSEE degree from CETYS Universidad,
Mexico, in 1993, the MSEE degree from Purdue
University, USA, in 1995, and the PhD degree
in Systems Engineering from the Universitat
Politècnica de Catalunya, Spain, in 2003, and is

the recipient of the EURON Georges Giralt Best PhD Award.

Alberto Sanfeliu received the Engineer and
PhD degrees from the Universitat PolitÃ¨cnica
de Catalunya (UPC), Spain, in 1978 and 1982
respectively. He joined the faculty of UPC in
1981 and is full professor of Computational Sci-
ences and Artificial Intelligence. He is coordina-
tor of the research Artificial Vision and Intelligent
System Group (VIS) and head of the research
line Mobile Robotics of (IRI) Institut de Robòtica
i Informàtica Industrial (UPC-CSIC). He is former
director of the Institut de Robòtica i Informàtica

Industrial, UPC-CSIC, former director of the UPC Automatic Control
Department, and past president of AERFAI, (Spanish Association for
Pattern Recognition). He has worked on various theoretical aspects on
pattern recognition, computer vision and robotics and on applications
on vision defect detection, tracking, recognition, robot vision, SLAM and
autonomous vehicles. He has several patents on quality control based
on computer vision. He has authored books in pattern recognition and
SLAM, and published more than 260 papers in international journals
and conferences. He has lead and participated in 45 RD projects, 16 of
them funded by the European Commission, and he was the coordinator
of the European project URUS (Ubiquitous Networking Robotics in
Urban Areas). He has worked in autonomous driving in the European
projects (CargoAnts and Logimatic) and with Volkswagen Research in
a CARNET project. He is member of editorial boards of top scientific
journals in computer vision and pattern recognition and has been the
General Co- Chairmen of the top international congresses of Computer
Vision (ICCV 2011) and Pattern Recognition (ICPR 2000). He received
the prize to the Technology given by the Generalitat de Catalonia and is
Fellow of the International Association for Pattern Recognition.

Francesc Moreno-Noguer received the MSc
degrees in industrial engineering and electronics
from the Universitat Politècnica de Catalunya
and the Universitat de Barcelona in 2001 and
2002, respectively, and the PhD degree from
UPC in 2005. From 2006 to 2008, he was a
postdoctoral fellow at the computer vision de-
partments of Columbia University and the École
Polytechnique Fédérale de Lausanne. In 2009,
he joined the Institut de Robòtica i Informàtica In-
dustrial in Barcelona as an associate researcher

of the Spanish National Research Council. His research interests in-
clude retrieving rigid and nonrigid shape, motion, and camera pose
from single images and video sequences. He received UPC’s Doctoral
Dissertation Extraordinary Award for his work.

	Introduction
	Related Work
	Boosted Random Ferns
	Random Ferns in the HOG-domain
	Building the Classifier
	Training the Classifier
	Testing the Classifier

	A Simple 2D Classification Problem
	Online Boosted Random Ferns
	Online Boosting
	Incremental Bootstrapping

	Applications
	Object Class Detection
	Feature Space
	Boosting
	Feature sharing
	Comparison to the State of the Art
	Online Boosted Random Ferns

	Rotation-Invariant Object Detection
	Orientation Estimation
	Detection refinement
	Comparison to the State of the Art

	Multi-View Object Detection
	Pose Hypotheses Estimation
	Object Detection
	Comparison to the State of the Art

	Conclusions
	References
	Biographies
	Michael Villamizar Vergel
	Juan Andrade-Cetto
	Alberto Sanfeliu
	Francesc Moreno-Noguer

