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Abstract 

Boosting, or boosted regression, is a recent data mining technique that has shown 

considerable success in predictive accuracy. This article gives an overview over boosting 

and introduces a new Stata command, boost, that implements the boosting algorithm 

described in Hastie et al. (2001, p. 322). The plugin is illustrated with a Gaussian and a 

logistic regression example. In the Gaussian regression example the R2 value computed 

on a test data set is R2=21.3% for linear regression and R2=93.8% for boosting. In the 

logistic regression example stepwise logistic regression correctly classifies 54.1% of the 

observations in a test data set versus 76.0% for boosted logistic regression.  Currently, 

boost accommodates Gaussian (normal), logistic, and Poisson boosted regression.  boost 

is implemented as a Windows C++ plugin.  
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1 Introduction 

Economists and analysts in the data mining community differ in their approach to 

regression analysis. Economists often build a model from theory and then use the data to 

estimate parameters of their model. Because their model is justified by theory economists 

are sometimes less inclined to test how well the model fits the data. Data miners tend to 

favor the “kitchen sink” approach in which all or most available regressors are used in the 

regression model. Because the choice of x-variables is not supported by theory, validation 

of the regression model is very important.  The standard approach to validating models in 

data mining is to split the data into a training and a test data set.  

The concept of training versus test data set is central to many data mining 

algorithms. The model is fit on the training data. The fitted model is then used to make 

predictions on the test data. Assessing the model on a test data rather on the training data 

ensures that the model is not overfit and is generalizable.  If the regression model has 

tuning parameters (e.g. ridge regression, neural networks, boosting), good values for the 

tuning parameters are usually found running by the model several times with different 

values for the tuning parameters. The performance of each model is assessed on the test 

data set and the best model (according to some criterion) is chosen. 

In this paper I review boosting or boosted regression and supply a Stata plugin for 

Windows. In the same way that generalized linear models include Gaussian, logistic and 

other regressions, boosting also includes boosted versions of Gaussian, logistic and other 

regressions. Boosting is a highly flexible regression method. It allows the researcher to 

specify the x-variables without specifying the functional relationship to the response.  

Traditionally, data miners have used boosting in the context of the “kitchen sink” 

approach to regression but it is also possible to use boosting in a more targeted manner, 

i.e. using only variables motivated by theory.  Because it is more flexible, a boosted 

model will tend to fit better than a linear model and therefore inferences made based on 

the model may have more credibility. 

There is mounting empirical evidence that boosting is one of the best modeling 

approaches ever developed.  Bauer and Kohavi (1999) performed an extensive 

comparison of boosting to several other competitors on 14 datasets, and found boosting to 
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be “the best algorithm”.  Friedman et al. (2000) compare several boosting variants to the 

CART (classification and regression tree) method and find that all the boosting variants 

outperform the CART algorithm on eight datasets. 

The success of boosting in terms of predictive accuracy has been subject to much 

speculation.  Part of the mystery that surrounds boosting is due to the fact that different 

scientific communities, computer scientists and statisticians, have contributed to its 

development.  I will first give a glimpse into the fascinating history of boosting. 

The remainder of the paper is structured as follows: Section 2 contains the syntax 

of the boost command.  Section 3 contains options for that command.  Section 4 explains 

boosting and gives a historical overview.  Section 5 uses a toy example to show how the 

boost command can be used for normal (Gaussian) regression.  Section 6 features a 

logistic regression example. Section 7 gives runtime benchmarks for the boosting 

command.  Section 8 concludes with some discussion. 

 

2 Installation and Syntax 
To install the boost plugin copy the boost.hlp and boost.ado files in one of the ado 

directories, e.g. c:\ado\personal\boost.ado . A list of valid directories can be obtained by 

typing “adopath” within Stata. Copy the “boost.dll” file into a directory of your choosing 

(e.g. the same directory as the ado file).  Unlike an ado file, a plugin has to be explicitly 

loaded: 

capture program boost_plugin, plugin using("C:\ado\personal\boost.dll") 

The command "capture" prevents this line resulting into an error in case the plugin was 

already loaded.  The command syntax is as follows: 

 

boost varlist [if exp] [in range] ,  DISTribution(string) maxiter(int) 

   [ INfluence PREDict(varname) shrink(real=0.01)  

bag(real=0.5) INTERaction(int=5) seed(int=0) ] 
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3 Options 
boost determines the number of iterations that maximizes the likelihood, or, equivalently, 

the pseudo R squared. The pseudo R2 is defined as R2=1-L1/L0 where L1 and L0 are the 

log likelihood of the full model and intercept-only model respectively. 

Unlike the R2 given in regress, the pseudo R2 is an out-of-sample statistic. Out-of-

sample R2's tend to be lower than in-sample-R2's.  

Output and Return values 

The standard output consists of the best number of iterations,  bestiter,  the R squared 

value computed on the test data set,  test_R2,  and the number of observations used for 

the training data, trainn. trainn is computed as the number of observations that meet the 

in/if conditions times  trainfraction. These statistics can also be retrieved using ereturn. 

In addition, ereturn also stores the training R squared value, train_R2, as well as the log 

likelihood values from which  train_R2 and  test_R2 are computed. 

distribution(string) Currently, possible distributions are "normal", "logistic", and 

"poisson".  

influence displays the percentage of variation explained (for non-normal distributions: 

percentage of log likelihood explained) by each input variable. The influence matrix is 

saved in e(influence). 

predict(varname) predicts and saves the predictions in the variable varname. To allow for 

out-of-sample predictions predict ignores if and in. For model fitting only observations 

that satisfy if and in are used, predictions are made for all observations. 

trainfraction(int) Specifies the percentage of data to be used as training data.  The 

remainder, the test data is used to evaluate the best number of iterations. By default this 

value is 0.8.   

interaction(int) specifies the maximum number of interactions allowed. interaction=1 

means that only main effects are fit, interaction=2 means that main effect and two way 

interactions are fitted, and so forth. The number of interactions equals the number of 

terminal nodes in a tree plus 1. If  interaction=1, then each tree has 2 terminal nodes. If  
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interaction=2, then each tree has 3 terminal nodes, and so forth. By default 

interaction=5. 

maxiter(int) specifies the maximal number of trees to be fitted. The actual number used, 

bestiter, can be obtained from the output as e(bestiter). When bestiter is too close to 

maxiter the maximum likelihood iteration may be larger than maxiter. In that case it is 

useful to rerun the model with a larger value for maxiter. When trainfraction=1.0 all 

maxiter observations are used for prediction (bestiter is missing because it is computed 

on a test data set). 

shrink(#) specifies the shrinkage factor.  shrink=1 corresponds to no shrinkage. As a 

general rule of thumb, reducing the value for shrink requires an increase in the value of 

maxiter to achieve a comparable cross validation R2. By default shrink= 0.01.  

bag(real) Specifies the fraction of training observations that is used to fit an individual 

tree. bag=0.5  means that half the observations are used for building each tree. To use all 

observations specify bag=1.0.By default bag=0.5.  

seed(int) seed specifies the random number seed to generate the same sequence of 

random numbers. Random numbers are only used for bagging.  Bagging uses random 

numbers to select a random subset of the observations for each iteration. By default 

(seed=0). The boost seed option is unrelated to Stata's set seed command. 

 

4 Boosting 
 

Boosting was invented by computational learning theorists and later reinterpreted 

and generalized by statisticians and machine learning researchers. Computer scientists 

tend to think of boosting as an “ensemble” method (a weighted average of predictions of 

individual classifiers), whereas statisticians tend to think of boosting as a sequential 

regression method. To understand why statisticians and computer scientists think about 

the essentially same algorithms in different ways, both approaches are discussed.  Section 

4.1 discusses an early boosting algorithm from computer science. Section 4.2 describes 

regression trees, the most commonly used base learner in boosting.  Section 4.3 describes 

Friedman’s gradient boosting algorithm, which is the algorithm I have implemented for 
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the Stata plugin.  The remaining sections talk about variations of the algorithm that are 

relevant to my implementation (Section 4.4), how to evaluate boosting algorithms via a 

cross validated R2 (Section 4.5), the influence of variables (Section 4.6) and advice on 

how to set the boosting parameters in practice (Section 4.7). 

4.1 Boosting and its roots in computer science  

Boosting was invented by two computer scientists at AT&T Labs (Freund and 

Schapire, 1997).  Below I describe an early algorithm, the “AdaBoost” algorithm, 

because it illustrates why computer scientists think of boosting as an ensemble method; 

that is, a method that averages over multiple classifiers.   

Adaboost  (see Algorithm 1) works only in the case where the response variable 

takes only one of two values: -1 and 1. (Whether the values are 0/1 or –1/1 is not 

important- the algorithm could be modified easily).  Let C1 be a binary classifier (e.g. 

logistic regression) that predicts whether an observation belongs to the class “-1” or “1”.  

The classifier is fit to the data as usual and the misclassification rate is computed.  This 

first classifier C1 receives a classifier weight that is a monotone function of the error rate 

it attains.  In addition to classifier weights there are also observation weights.  For the 

first classifier, all observations were weighted equally.  The second classifier, C2 (e.g.. 

the second logistic regression), is fit to the same data, however with changed observation 

weights. Observation weights corresponding to observations misclassified by the 

previous classifier are increased.  Again, observations are reweighted, a third classifier C3 

(e.g. a third logistic regression) is fit and so forth. Altogether iter classifiers are fit where 

iter is some predetermined constant.  Finally, using the classifier weights the 

classifications of the individual classifiers are combined by taking a weighted majority 

vote. The algorithm is described in more detail in Algorithm 1. 
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Initialize weights to be equal wi = 1/n 

For m = 1 to iter classifiers Cm): 

(a) Fit classifier Cm to the weighted data 

(b) Compute the (weighted) misclassification rate rm 

(c) Let the classifier weight αm = log ( (1 – rm)/rm ) 

(d) Recalculate weights wi=wi exp(αm I(yi ≠ Cm )) 

Majority vote classification: sign ( )⎥
⎦

⎤
⎢
⎣

⎡∑
=
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m
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Algorithm 1: The AdaBoost algorithm for classification into two categories.  

Early on, researchers attributed the success and innovative element of this 

algorithm to the fact that observations that are repeatedly misclassified are given 

successively larger weights.  Another unusual element is that the final “boosted” 

classifier consists of a majority-weighted vote of all previous classifiers.  With this 

algorithm, the individual classifiers do not need to be particularly complex. On the 

contrary, simple classifiers tend to work best. 

4.2 Regression trees 

The most commonly used simple classifier is a regression tree (e.g. CART, 

Breiman et al.,1984).  A regression tree partitions the space of input variables into 

rectangles and then fits a constant (e.g. estimated by an average or a percentage) to each 

rectangle.  The partitions can be described by a series of if-then statements or they can be 

visualized by a graph that looks like a tree. Figure 1 gives an example of such a tree using 

age and indicator variables for race/ethnicity. The tree has 6 splits and therefore 7 leaves 

(terminal nodes). Each split represents an if-then condition. Each observation descends 

the set of if-then conditions until a leaf is reached. If the if-then condition is true then the 

observation goes to the right branch otherwise to the left branch. For example, in Figure 2 

any observation over 61 years of age would be classified in the right most leaf regardless 
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of his/her race/ethnicity. The leaf with the largest values of the response, 0.8, corresponds 

to observations between 49 and 57 years of age, who are neither Hispanic nor Black.  As 

the splits on age show, the tree can split on the same variable several times. If the 6 splits 

in the tree in Figure 1 had split on six different variables the tree would represent a 6-

level interaction because six variables would have to be considered jointly in order to 

obtain the predicted value. 

|age<61

age<13

asian<0.5

age<57
hispan<0.5

age<49

0.20

0.52 0.80

0.33
0.29

0.21

0.73

 

Figure 1:    Example of a regression tree with 6 splits 

A regression tree with only two terminal nodes (i.e., a tree with only one split) is 

called a tree stump.  It is hard to imagine a simpler classifier than a tree stump – yet tree 

stumps work surprisingly well in boosting.  Boosting with stumps fits an additive model 

and many datasets are well approximated with only additive effects. Fewer, complex 

classifiers can be more flexible and harbor a greater danger of overfitting (i.e., fitting well 

only to the training data). 
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4.3 Friedman’s gradient boosting algorithm 

Early researchers had some difficulty explaining the success of the AdaBoost 

algorithm.  The computational learning theory roots of the AdaBoost puzzled statisticians 

who have traditionally worked from likelihood-based approaches to classification and, 

more generally, to regression.  Then Friedman et al. (2000) were able to reinterpret this 

algorithm in a likelihood framework, enabling the authors to form a boosted logistic 

regression algorithm, a formulation more familiar to the statistical community.  Once the 

connection to the likelihood existed, boosting could be extended to generalized linear 

models and further still to practically any loss criterion (Friedman 2001, Ridgeway, 

1999). This meant that a boosting algorithm could be developed for all the error 

distributions in common practice: Gaussian, logistic, Poisson, Cox models, etc. With the 

publication of Hastie et al. (2001), a book on statistical learning, modern regression 

methods like boosting caught on in the statistics community. 

The interpretation of boosting in terms of regression for a continuous, normally 

distributed response variable is as follows: The average y-value is used as a first guess for 

predicting all observations.  This is analogous to fitting a linear regression model that 

consists of the intercept only.  The residuals from the model are computed.  A regression 

tree is fit to the residuals.  For each terminal node, the average y-value of the residuals 

that the node contains is computed.  The regression tree is used to predict the residuals. 

(In the first step, this means that a regression tree is fit to the difference between the 

observation and the average y-value.  The tree then predicts those differences.)  The 

boosting regression model  - consisting of the sum of all previous regression trees - is 

updated to reflect the current regression tree.  The residuals are updated to reflect the 

changes in the boosting regression model; a tree is fit to the new residuals, and so forth.  

This algorithm is summarized in more detail in Algorithm 2. 

1) Initialization:  Set initial guess to y  

2)   For all regressions trees m=1 to M:  

2a) Compute the residuals based on the current model 
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rmi =  yi – fm-1(xi)  

 where i indexes observations. 

Note that fm-1 refers to the sum of all previous regression trees. 

2b) Fit a regression tree (with a fixed number of nodes) to the residuals 

2c) For each terminal node of the tree, compute the average residual. The average  

value is the estimate for residuals that fall in the corresponding node.  

2d) Add the regression tree of the residuals to the current best fit  

fm = fm-1 + last regression tree of residuals 

 

 

Algorithm 2: Friedman’s gradient boosting algorithm for a normally distributed 

response 

Each term of the regression model thus consists of a tree.  Each tree fits the 

residuals of the prediction of all previous trees combined.  To generalize Algorithm 2 to a 

more general version with arbitrary distributions requires that “average y-value” be 

replaced with a function of y-values that is dictated by the specific distribution and that 

the residual (Step 2a) be a “deviance residual”.  (McCullagh and Nelder, 1989) 

The basic boosting algorithm requires the specification of two parameters.  One is 

the number of splits (or the number of nodes) that are used for fitting each regression tree 

in step 2b of Algorithm 2. The number of nodes equals the number of splits plus one. 

Specifying one split (tree stumps) corresponds to an additive model with only main 

effects.  Specifying two splits corresponds to a model with main effects and two-way 

interactions. Generally, specifying J splits corresponds to a model with up to J-way 

interactions. When J x-variables need to be considered jointly for a component of a 

regression model this is a J-way interaction.  Hastie et al. (2001) suggest that J = 2 in 

general is not sufficient and that 4 ≤ J ≤ 8 generally works well.  They further suggest 

that the model is typically not sensitive to the exact choice of J within that range.  In the 

Stata implementation J is specified as an option: interaction(J). 
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The second parameter is the number of iterations or the number of trees to be fit.  

If the number of iterations is too large the model will overfit; i.e., it will fit the training 

data well but not generalize to other observations from the same population.  If the 

number of iterations is too small then the model is not fit as well either.  A suitable value 

for maxiter can range from a few dozen to several thousand, depending on the value of a 

shrinkage parameter (explained below) and the data set.  The easiest way to find a 

suitable number of iterations is to check how well the model fits on a test data set. In the 

Stata implementation the maximal number of iterations, maxiter, is specified and the 

number of iteration that maximizes the log likelihood on a test data set, bestiter, is 

automatically found. The size of the test data set is controlled by trainfraction. For 

example, if trainfraction=0.5 then the last 50% of the data are used as test data. 

4.4 Shrinkage and bagging 

There are two commonly used variations on Friedman’s boosting algorithm: 

“shrinkage” and “bagging”.  Shrinkage (or regularization) means reducing or shrinking 

the impact of each additional tree in an effort to avoid overfitting.  The intuition behind 

this idea is that it is better to improve a model by taking many small steps than a smaller 

number of large steps.  If one step turns out to be a misstep, then the damage can be more 

easily undone in subsequent steps.  Shrinkage has been previously employed, for 

example, in ridge regression where it refers to shrinking regression coefficients back to 

zero to reduce the impact of unstable regression coefficients on the model.  Shrinkage is 

accomplished by introducing a parameter λ in step 2d of Algorithm 2:  

fm = fm-1 + λ * (last regression tree of residuals) 

where 0 < λ ≤ 1. The smaller λ, the greater the shrinkage.  The value λ = 1 corresponds to 

no shrinkage. Typically λ is 0.1 or smaller with λ = 0.01 or λ = 0.001 being common. 

Smaller shrinkage values require larger number of iterations. In my experience, λ and the 

number of iterations typically satisfy 10 * 100bestiterλ≤ ≤  for the best model. In other 

words, a decrease of λ by a factor of 10 implies an increase of the number of iterations by 

a similar factor. In the Stata implementation λ is specified through the option shrink(λ). 

The second commonly used variation on the boosting algorithm is bagging.  At 

each iteration only a random fraction, bag, of the residuals is selected.  In that iteration, 
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only the random subset of the residuals is used to build the tree.  Non-selected residuals 

are not used in that iteration at all.  The randomization is thought to reduce the variation 

of the final prediction without affecting bias.  Different random subsets may have 

different idiosyncrasies that will average out.  While not all observations are used in each 

iteration, all observations are eventually used across all iterations.  Friedman (2002) 

recommends the bagging with 50% of the data. In the Stata implementation this can be 

specified as bag(0.5). 

4.5 Crossvalidation and the pseudo R2  

Highly flexible models are prone to overfitting. While it may still occur, 

overfitting is less of an issue in linear regression where the restriction of linearity guards 

against this problem to some extent. To assess predictive accuracy with highly flexible 

models it is important to separate the data the model was trained on from test data.   

My boosting implementation splits the data into a training and a test data set. By 

default the first 80% of the data are used as training data and the remainder as test data.  

This percentage can be changed through the use of the option trainfraction. If 

trainfraction=0.5, for example, then the first 50% of the data are used as training data. It 

is important that the observations are in random order before invoking the boost 

command because otherwise the test data may be different form the training data in a 

systematic way. 

Crossvalidation is a generalization of the idea of splitting the data into training 

and test data sets. For example, in five-fold crossvalidation the data set is split into 5 

distinct subsets of 20% of the data. In turn each subset is used as test data and the 

remainder as training data.  This is illustrated graphically in Figure 2.  My 

implementation corresponds to the fifth row of Figure 2.  An example of how to rotate 

the 5 groups of data to accomplish five-fold crossvalidation using the boost 

implementation is given in the help file for the boost command. 

 

1 test train 
 

2 train test train 
 

3 train test train 



 13

 
4 train test train 

 
5 train test 

Figure 2:    Illustration of five-fold cross validation:  Data are split into training and test 

data in five different ways. 

For each test data set a pseudo R2 is computed on the test data set. The pseudo R2 

is defined as  

pseudo R2 = 1- L1/L0 

where L1 and L0 are the log likelihoods of the model under consideration and an 

intercept-only model, respectively (see Long and Freese, 2003, for a discussion on 

pseudo R2).  In the case of Gaussian (normal) regression, the pseudo R2 turns into the 

familiar R2 that can be interpreted as  “fraction of variance explained by the model”. For 

Gaussian regression it is sometimes convenient to compute R2 as  

 2 ˆ( ) ( , )
( )

Var y MSE y yR
Var y
−

=  (1) 

where Var(.) and MSE(.,.) refer to variance and mean squared error respectively. To 

avoid cumbersome language this is referred to as “test R2” in the remainder of this paper. 

The training R2 and test R2 are computed on training and test data, respectively. 

The training R2 is always between 0 and 1. Usually, the test R2 is also between 0 and 1. 

However, if the log likelihood based on the intercept-only model is greater than the one 

for the model under consideration the test R2 is negative. A negative test R2 is a sign that 

the model is strongly overfit. The boost command computes both training and test R2 

values and makes them available in e(test_R2) and e(train_R2).  

4.6 Influence of variables and visualization  

For a linear regression model the effect of  x-variables on the response variable is 

summarized by their respective coefficients.  The boosting model is complex but can be 

interpreted with the right tools. Instead of regression coefficients, boosting has the 

concept of “influence of variables”  (Friedman, 2001).  Each split on a variable in a 

regression tree increases the log likelihood of the regression tree model. In Gaussian 

regression the increase in log likelihood is proportional to the increase in sums of squares 
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explained by the model.  The sum of log likelihood increases across all trees due to a 

given variable yields the influence of that variable. For example, suppose there are 1000 

iterations or regression trees. Suppose that each regression tree has one split (i.e. a tree 

stump, meaning interaction=1, meaning main effects only). Further, suppose that 300 of 

the regression trees split on variable xi. Then the sum of the increase in log likelihood due 

to these 300 trees represents the influence of xi. The influences are standardized such that 

they add up to 100%. 

Because a regression tree does not separate main effects and interactions, 

influences are only defined for variables - not for individual main effect or interaction 

terms.  Influences only reveal the sum of squares explained by the variables; they say 

nothing about how the variable affects the response. The functional form of a variable is 

usually explored through visualization. Visualization of any one (or a any set of) 

variables is achieved by predicting over a range or grid of these variables. Suppose the 

effect of xi on the response is of interest. There are several options.  The easiest is to 

predict the response for a suitable range of xi  values while holding all other variables 

constant (for example at their mean or their mode).  A second option is to predict the 

response for a suitable range of xi values for each observation in the sample. Then the 

sample-averaged prediction for a give xi value can be computed. A third option is to 

numerically integrate out other variables with a suitable grid of values to get what is 

usually referred to as a main effect.   

In linear regression the coefficient of a variable need to be interpreted in the 

context of its range.  It is possible to artificially inflate coefficients by, for example, 

changing a measurement from kilogram to gram. The influence percentages are invariant 

to any one-to-one rescaling of the variables. For example, measuring a variable in miles 

or kilometers does not affect the influence but it would affect the regression coefficient of 

a logistic regression. In the Stata implementation the influence of individual variables is 

displayed when option influence is specified. The individual values are stored in a Stata 

matrix and can be accessed through e(influence). The help file gives an example. 

4.7 Advice on setting boosting parameters 
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In what follows I give some suggestions of how the user might think about setting 

parameter values. 

 

Maxiter: If e(bestiter) is almost as large as maxiter consider rerunning the model with a 

larger value for maxiter. The iteration corresponding to the maximum likelihood estimate 

may be greater than maxiter. 

 

Interactions: Usually a value between 3 and 7 works well. If you know your model only 

has two-way interactions I still suggest trying larger values also for two reasons. One, 

typically, the loss in test R2 for specifying too low a number of interactions is far worse 

than the one of specifying a larger number of interactions.  The performance of the model 

only deteriorates noticeably when the number of interactions is much too large. Two, 

specifying 5-way interactions allows each tree to have 5 splits. These splits are not 

necessarily always used for an interaction (splitting on 5 different variables in the same 

tree). They could also be used for a nonlinearity in a single variable  (5 splits on different 

values for a single variable) or for combinations of nonlinearities and interactions. 

 

Shrinkage: Lower shrinkage values usually improve the test R2 but they increase the 

running time dramatically.  Shrinkage can be thought of as a step size.  The smaller the 

step size, the more iterations and computing time are needed.  In practice I choose a small 

shrinkage value such that the command execution does not take too much time. Because I 

am impatient, I usually start out with shrink=0.1. If time permits switch to 0.01 or lower 

in a final run. There are diminishing returns for very low shrinkage values. 

 

Bagging: Bagging may improve the R2 and it also makes the estimate less variable. 

Typically, the exact value is not crucial. I typically use a value in the range of 0.4-0.8.  

 

5 Example: Boosted Gaussian regression   

This section gives a simple example with four explanatory variables constructed 

to illustrate how to perform and evaluate boosted regressions.  The results are also 
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compared to linear regression. Linear regression is a good reference model because many 

scientists initially fit a linear model. I simulated data from the following model 

 2 0.5
1 2 330( 0.5) 2y x x x ε−= − + + +  

 

where ε~uniform(0,1) and 0 1ix≤ ≤  for  1, 2,3i∈ . To keep things relatively simple, the 

model has been chosen to be additive without interactions. It is quadratic in x1, nonlinear 

in x2, linear with a small slope in x3. The nonlinear contribution of x2 is stronger than the 

linear contribution of x3 even though their slopes are similar. A fourth variable, x4, is 

unrelated to the response but is used in the analysis in an attempt to confuse the boosting 

algorithm. Scatter plots of y vs x1 through x4 is shown in Figure 3.  
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Figure 3:  Scatter plots of y versus x1 through x4  

 

I chose the following parameter values shrink=0.01, bag=0.5 and maxiter=4000.  

My rule of thumb in choosing the maximal number of iterations is that the shrinkage 

factor times the maximal number of iterations should be roughly between 10 and 100.  In 
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my experience the cross-validated R2 as a function of the number of iterations is 

unimodal, i.e. there is only one maximum. If bestiter is too close to maxiter then the 

number of iterations that maximizes the likelihood may be greater than maxiter.  It is 

recommended to rerun the command with a larger value for maxiter. The command I am 

giving is: 

boost y x1-x4, distribution(normal) train(0.5) maxiter(4000) seed(1) 
                       bag(0.5) interaction(`inter') shrink(0.01)

 

where the commands only differ by  inter ranging  from 1 through  5.  One of these boost 

commands runs in 8.8 seconds on my laptop.  Fixing the seed is only relevant for 

bagging. Figure 4 shows a plot of the test R2 versus the number of interactions.  The test 

R2 is roughly the same regardless of the number of interactions (note the scale of the 

plot). The fact that the test R2 is high even for the main effect model (interaction=1) does 

not surprise because our model did not contain any interactions.  The actual number of 

iterations that maximizes the likelihood, bestiter, varies. Here the number of iterations are 

(number of interactions in parenthesis):  3769 (1), 2171 (2), 2401 (3), 1659 (4), 1156 (5). 
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Figure 4:  Scatter plot of the R2 (computed on a test data set) versus the number of 

interactions. Note the scale on the vertical axis. 

I often want to confirm that this model indeed works better than linear regression.  

Directly comparing the R2 value for the boosted regression and the linear regression is 

not a fair comparison. The boosted regression R2 refers is computed on a test data set, 

whereas the linear regression R2 is computed on the training data set. Using equation (1) 

it is possible to compute an R2 on a test data set for the linear regression. For the 

following set of Stata commands I assume that the first trainn observations in the data set 

constitute the training data and the remainder the test data.  The predictions from the 

linear regression (or any other predictions) are denoted regress_pred. 
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global trainn=e(trainn)   /* using e() from boost */ 
regress y x1 x2 x3 x4 in 1/$trainn 
predict regress_pred 
* compute Rsquared on test data  
gen regress_eps=y-regress_pred  
gen regress_eps2= regress_eps*regress_eps  
replace regress_eps2=0 if _n<=$trainn   
gen regress_ss=sum(regress_eps2) 
local mse=regress_ss[_N] / (_N-$trainn) 
sum y if _n>$trainn 
local var=r(Var) 
local regress_r2= (`var'-`mse')/`var' 
di "mse=" `mse' " var=" `var'  " regress r2="  `regress_r2' 

 

The test R2 will usually be lower than the R2 in the output that Stata displays – but 

because of variability it may be larger on occasion.  From the Stata output of “regress” 

the (training) R2 value is R2= 24.1%. The test R2 computed from the above set of stat 

commands is R2=21.3 %.  I compute the boosting predictions and the influences of the 

variables: 

 
boost y x1 x2 x3 x4, distribution(normal) train(0.5) bag(0.5) maxiter(4000) 
       interaction(1) shrink(0.01) pred("boost_pred") influence  seed(1)   (2) 

Substituting the boosting predictions for the linear regression predictions in the 

above set of Stata commands the test boosting R2 turns out to be R2= 93.8%. This is the 

same value as the test R2 displayed in Figure 4.  Figure 5 displays actual versus fitted y-

values for both linear regression and boosting. The boosting model fits much better.  
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Figure 5:  A Calibration plot for the linear regression example: Fitted versus actual values 

for both linear regression and boosting. The Boosting model is much better calibrated. 

 

When working with linear regressions it is common to look at coefficients to 

assess how a variable affects the outcome. In boosted regression one looks at the 

influence of all variables. The influences are given in percentages.  Specifying influence 

in the Stata command listed in equation (2) gives the following output: 

x1 30.9% 

x2 68.3% 

x3  0.67% 

x4  0.08% 

Table 1:  Influence of each variable (Percent) 

 

Variables x2 and x1 are most influential. The other variables have almost no influence. 

Given that there is weak relation between y and x3 and no relation between y and x4, it is 

nice to see that the influence of x3 is larger than that of x4. 
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The influence shows one can learn how large the effect of individual variables is 

but not the functional form. To visualize the conditional effect of a variable x1:  all 

variables except x1 are set to a fixed value (here 0.5). For xi , values that cover its range 

are chosen. The new observations are fed to the model for predicting the response, and 

the predicted response is plotted against x1.  This can be accomplished as follows:  
 
drop if _n>1000 
set obs 1400 
replace x1=0.5 if _n>1000 
replace x2=0.5 if _n>1000 
replace x3=0.5 if _n>1000 
replace x4=0.5 if _n>1000 
replace x1= (_n-1000)/100 if _n>1000 & _n<=1100 
replace x2= (_n-1100)/100 if _n>1100 & _n<=1200 
replace x3= (_n-1200)/100 if _n>1200 & _n<=1300 
replace x4= (_n-1300)/100 if _n>1300 & _n<=1400 
boost y x1 x2 x3 x4 in 1/1000 , distribution(normal) /*  
*/ maxiter(4000) bag(0.5)  interaction(1) shrink(0.01) /*  
*/ pred("pred")   
line pred x1 if _n>1000 & _n<=1100 
line pred x2 if _n>1100 & _n<=1200  
line pred x3 if _n>1200 & _n<=1300 
line pred x4 if _n>1300 & _n<=1400  

 

The boost command uses the first 1000 observations to fit the model but uses all 

observations for prediction. Figure 6 displays all four conditional effects. All effects are 

step functions because the base learners, regression trees, can only produce step 

functions. The features of the smooth curves are well reproduced.  
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Figure 6:  Conditional plots: Predictions for x1 through x4 while other variables are held 

constant at xi=0.5.   

 

6 Example: Boosted logistic regression  
I compare the boosted logistic regression with a regular logistic regression model. 

I simulate data from the following model: 
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  (3) 

where the indicator function I(arg) equals one if its argument is true and zero otherwise, 

ε~uniform(0,22.985) and 0<=xi<=1 for i=1,2,3. The value 22.985 corresponds roughly to 

one standard deviation of log(p/(1-p)), i.e. the signal to noise ratio on the logit scale is 1.  

This model has a nonlinear 3-level interaction between x1, x2, and x3 and a nonlinearity in 

form of a step function for x4. I simulate 46 additional variables x5 through x50, uniformly 

distributed across their support 0<=xi<=1 for i=4,5,…,50. All x variables are uncorrelated 
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to one another.  The response y is a function of only the first four of the 50 variables. Of 

course, boosting still performs well when the variables are correlated. Boosting can also 

be used when there are more covariates than observations.  

The data consist of the response y, 50 x-variables and 4000 observations. Half of 

these observations are used as training data and half as test data. I fit a regular, linear 

logistic regression model to the data. The odds ratios of the first 4 variables are shown in 

Table 2. The odds ratios were obtained by running the command “logistic y x1-x50”.  

Except for x4, none of the variables is significant. As expected by chance, a few of the 

remaining 46 variables were also significant at the 5% level. 

 

Variable Odds Ratio p 
x1 1.07 0.69 
x2  1.26 0.15 
x3 1.07 0.68 
x4 0.54 <.001

Table 2: Odds ratios of the first 4 variables from the logistic regression  

 

For the boosting model Figure 7 shows the R2 value on a test data set as a 

function of the number of interactions. Clearly, the main effect model is not sufficiently 

complex. The slight dip in the curve for interaction=6 is just a reminder that these values 

are estimates and they are variable. The maximal R2 is reached for interaction=8, but any 

number of interactions greater or equal to 4 would probably perform similarly. The large 

number of interactions is somewhat surprising because the model in equation (3) contains 

only a 3-level interaction.  I speculate that the nonlinearities are more easily 

accommodated with additional nodes.   
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Figure 7:  Scatter plot of the pseudo R2 computed on a test data set versus the number of 

interactions. 

 

I compare classification rates on the test data.  Roughly 49% of the test data are 

classified as zero (y=0), and 51% as one (y=1).  When using a coin flip to classify 

observations one would have been right about half the time.  Using logistic regression 

52.0% of observations in the test data set are classified correctly.  This is just barely 

better than the rate one could have obtained by a coin flip. Because there were a lot of 

unrelated x-variables I also tried a backward regression using p>0.15 as criterion to 

remove a variable. Using the backward regression 54.1% of the observations were 

classified correctly. The boosting model with 8 interactions, shrinkage =0.5 and bag=0.5, 

classifies 76.0% of the test data observations correctly.   

The Stata output displays the pseudo R2 values for logistic regression (pseudo 

R2=0.02) and backward logistic regression  (pseudo R2=0.01). Because the training data 

were used to compute the pseudo R2 values, the backward logistic regression necessarily 
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has a lower value. Both values are much lower than the value obtained by boosted 

logistic regression (test R2=0.27). 

Because there are only two response values  (0 and 1), I use a different plot for 

calibration than the scatter plot shown in Figure 5.  If the predicted values are accurate 

one would expect that the predicted values are roughly the same as the fraction of 

response values classified as “1” that give rise to a given predicted value.  The fraction of 

response values classified as “1” can be estimated by averaging or smoothing over 

response values with similar predictions. In Stata I use a lowess smoother to compare the 

predictions from the boosted logistic regression and the linear logistic regression:  

twoway  (lowess y logit_pred, bwidth(0.2)) (lowess y boost_pred, 
bwidth(0.2)) (lfit straight y), xtitle("Actual Values") 
legend(label(1 "Logistic Regression") label(2 "Boosting") label(3 
"Fitted Values=Actual Values") ) xsize(4) ysize(4) 

 

Calibration plots for the test data are shown in Figure 8. The near horizontal line for 

logistic regression in the test calibration plot implies that logistic regression classifies 

50% of the observations correctly regardless of the actual predicted value. The logistic 

regression model does not generalize well.  
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Figure 8:  Calibration plot for the logistic regression example: Fitted versus actual values 

for logistic regression and boosting on the test data set.  

 

A bar chart of the influence of each of the 50 variables is shown in Figure 9. The 

first bar corresponds to x1, the second to x2, and so forth.  Boosting clearly discriminates 

between the important variables, the first 4 variables, and the remainder. The remaining 

46 variables only explain a small percentage of the variation each. The concept of 

significance does not yet exist in boosting and there is no formal test that declares these 

variables “unimportant”. Interestingly, the influences of the noise variables, x5 through 

x50, depend on the number of interactions specified in the model. If the number of 

interactions is too large the influence of the noise variables increase. 
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Figure 9:  Percentage of influence of variables x1 through x50 in the logistic regression 

example 

 

To visualize the effect of x4 on the response, I group the predictions (on the 

probability scale) from the training data set into 20 groups according to their 

corresponding x4 value.  The first group contains predictions where 0<x4<.05 , the second 

where 0.05<x4<0.1,  and so forth. Figure 10 gives a boxplot for each of the 20 groups.  

Consistent with the model in equation (3) the last group with values 0.95<x4<1.0 has 

much lower predictions than the other 19 groups.   This approach to visualizing data is 

different form that in the previous example. In the previous example all other covariates 

were fixed at one value. All predictions in the training data set are used. This second 

method displays much more variation. Visualizing the nonlinear interaction between x1, 

x2 and x3 is of course much harder.   
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Figure 10:  20 Box plots of predictions for 20 non-overlapping subsets of x4. All 

predictions stem from the training data. 

 

7 Runtime benchmarks 
To generate runtime benchmarks I ran boosting models on randomly generated 

data. A single observation is generated by generating random x-values, xij~Uniform(0,1), 

j=1,…,p where p is the number of x-variables, i=1,…,n denotes the observations and the 

output yi is computed as follows:  

 
1

p

i ij
j

y x
=

= ∑  

I generated a number of data sets with varying numbers of observations 

N∈{100,1000,10000}, varying number of x-variables p∈{10,30,100}, varying numbers 

of  iterations maxiter∈{1000,5000,10000} and varying numbers of interactions 

interaction ∈{2,4,6}.  I fit a boosting model to each of the data sets specifying a normal 
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distribution, trainfraction=0.5, bagging=0.5, shrink=0.01 and predict(varname). Table 3 

displays runtimes for all 81 combinations of these four factors.  

Because the runtimes range over several orders of magnitude, Table 3 displays the 

run time in both seconds (top) and hours (bottom) for each combination. The benchmark 

calculations were computed on a Dell D600 laptop with a 1.6 GHz processor and 0.5 GB 

of RAM.
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    Iterations 
Obs Variables 1000 5000 10000 
    Interactions Interactions Interactions 
    2 4 6 2 4 6 2 4 6 

100         
  0.3 0.5 0.6 1.3 2.2 3 2.6 4.4 6.2
  10 0 0 0 0 0 0 0 0 0
  0.6 1.1 1.6 3 5.5 7.8 6.2 11.1 15.6
  30 0 0 0 0 0 0 0 0 0
  2 3.5 5 9.5 17.9 25 19.1 35.3 50
  100 0 0 0 0 0 0 0 0 0

1000               
  3.9 5.6 7.9 15.8 22.1 31.1 27.6 43 62.9
  10 0 0 0 0 0 0 0 0 0
  7 11.4 17.2 32.3 57.6 82.6 63.8 113.9 158.7
  30 0 0 0 0 0 0 0 0 0
  39.7 75.9 111.1 197 380.9 557.6 394.5 758.4 1118
  100 0 0 0 0.1 0.1 0.2 0.1 0.2 0.3
10000               
  29.8 64.5 91.1 156.5 328 422.1 377 599.5 862.5
  10 0 0 0 0 0.1 0.1 0.1 0.2 0.2
  97 178.6 249.6 479.2 906.3 1311.7 964.3 1683.4 2780.7
  30 0 0 0.1 0.1 0.3 0.4 0.3 0.5 0.8
  487.8 935.1 1382.6 2443.7 4668.2 6840.8 4878.4 9360.5 13615.2
  100 0.1 0.3 0.4 0.7 1.3 1.9 1.4 2.6 3.8
 
 
Table 3: Benchmark runtimes for boosting:  various combinations of the number of observations 
(50% used for training, 50% for testing), number of variables, boosting iterations, and number of 
interactions chosen. The time is given both in seconds (top number) and in hours (bottom number). 
 

The runtime range from 0.3 seconds (100 observations, 10 variables, main effects 

only, 1000 iterations) to 3.8 hours (10,000 observations, 100 variables, six-way 

interactions, 10,000 iterations).  The time increases roughly linearly with the number of 

iterations, the number of interactions, and the number of variables. The time increases 

more than linearly with the number of observations. Because the observations are sorted 

the runtime is O(n log(n)) where n is the number of observations (i.e. the runtime is 

bounded by a constant times n log(n); for linear increases the runtime would be bounded 

by a constant times n ) . 
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Shrinking does not affect runtime, except in the sense that a smaller shrinkage value will 

tend to require a larger number of iterations. Bagging improves runtime. Typically, the 

runtime with bagging with 50% of the observations is roughly 30% faster than the 

runtime without bagging.  Running logistic regression instead of normal regression  

increases the runtime only a little (usually less than 10%). 

Table 3 displays runtimes for up to 10,000 observations, but 10,000 is not an upper limit. 

I have used this implementation of boosting with 100,000 observations. 

 

8 Discussion 

Boosting is a powerful regression tool. Unlike linear regression, boosting will 

work when there are more variables than observations. I successfully performed a 

boosted logistic regression with 200 observations and 500 x-variables. Linear logistic 

regression will cease to run normally with more than about 50 x-variables and assuming 

200 observations because individual observations are uniquely identified.  

The question “When should I use boosting?” is not easy to answer, but there some 

general indicators that are outlined in Table 4..  A strength of the boosting algorithm is 

that interactions and nonlinearities need not be explicitly specified.  Unless the functional 

relationship is highly nonlinear, there is probably little point in using boosted regression 

in a small data set with, for example, 50 observations and a handful of variables. In small 

data sets linearity is usually an adequate approximation. Large numbers of continuous 

variables make nonlinearities more likely. Indicator variables have only two levels. 

Nonlinearities cannot arise from indicator variables.  Ordered categorical x- variables are 

awkward to deal with in regular regression. Because boosting uses trees as a base learner 

it is highly suited for the use of ordered variables. The separation of training and test data 

guards against overfitting that may arise in the context of correlated data. 

 

 

Indicator  

Indicator 
favors the 
use of  
boosting  

Indicator 
against the 
use of 
boosting Why? 
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small data set    x linear approximation usually adequate 
large data set  x   nonlinearities and interactions likely 
more variables than 
observations (or close) 

x   linear (Gaussian and logistic) regression 
methods fail 

suspected nonlinearities x   nonlinearities need not be explicitly 
modeled 

suspected interactions x   interactions need not be explicitly specified 
ordered categorical x-
variables 

x   
awkward in parametric regression 

correlated data  x   potential for overfitting 
x-variables consist of 
indicator variables only 

  x nonlinearities cannot arise from indicator 
variables, interactions still might 

Table 4: Some indicators in favor and against the use of boosting. 

 

I would like to point out a few issues that the reader may run into as he or she 

starts experimenting with the boosting plugin. The “tree fully fit” error means that more 

tree splits are required than are possible. This arises, for example, if the data contain only 

10 observations but interaction=11 (or if bag=0.5 and interaction=6) is specified.  It will 

also tend to arise when the number of iterations (maxiter) and the number of interactions 

(inter) are accidentally switched. Reducing the number of interactions always solves this 

problem. A second issue are missing values, which are not supported in the current 

version of the boosting plugin. I suggest imputing variables ahead of time, for example 

using a stratified hotdeck imputation (my implementation of hotdeck, “hotdeckvar”, is 

available from www.schonlau.net  or type “net search hotdeckvar” within Stata). Another 

option that is popular in the social sciences is to create variables that flag missing data 

and add them to the list of covariates. Discarding observations with missing values is a 

less desirable alternative. I am working on a future release that allows saving the boosting 

model in Stata.  

   

Acknowledgement  

I am most grateful to Gregory Ridgeway, developer of the GBM boosting 

package in R, for many discussions on boosting, advice on C++ programming and for 

comments on earlier versions of this paper. I am equally grateful to Nelson Lim at the 



 33

RAND Corporation for his support and interest in this methodology and for comments on 

earlier versions of this paper.  

 

References 
 
Breiman, L., Friedman, J., Olshen, R., and Stone C.  1984.  Classification and Regression    

Trees.  Belmont, CA: Wadsworth. 
 
Elkan, C. Boosting and Naïve Bayes Learning. Technical Report No CS97-557. 

September 1997, UCSD. 
 
Friedman, J., Hastie, T. and R. Tibshirani.  2000.  Additive logistic regression: a 

statistical view of boosting.  The Annals of Statistics 28(2):337-407. 
 
Friedman, J.H. (2001). "Greedy Function Approximation: A Gradient Boosting 

Machine," Annals of Statistics 29(5):1189-1232. 
 
Hastie, T., Tibshirani, R. and J. Friedman.  2001.  The Elements of Statistical Learning.  

New York: Springer-Verlag. 
 
Long, J. S. and J. Freese. 2003. Regression Models for Categorical Dependent Variables 

Using Stata,  Revised Edition. College Station, TX: Stata Press. 
 
McCaffrey, D., Ridgeway, G., Morral, A. (2004, to appear). “Propensity Score 

Estimation with Boosted Regression for Evaluating Adolescent Substance Abuse 
Treatment,” Psychological Methods.  

 
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. New York: 

Chapman & Hall. 
 
Ridgeway, G. (1999). “The state of boosting,” Computing Science and Statistics 31:172-

181. Also available at  http://www.i-pensieri.com/gregr/papers.shtml . 
 
 


