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Boosted Three-Dimensional Black-Hole Evolutions with Singularity Excision
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Binary black-hole interactions provide potentially the strongest source of gravitational radiation
for detectors currently under development. We present some results from the Binary Black Hole
Grand Challenge Alliance three-dimensional Cauchy evolution module. These constitute essential steps
towards modeling such interactions and predicting gravitational radiation waveforms. We report on
single black-hole evolutions and the first successful demonstration of a black hole moving freely through
a three-dimensional computational grid via a Cauchy evolution: a hole moving near6M at 0.1c during
a total evolution of duration near60M. [S0031-9007(98)05652-X]

PACS numbers: 04.70.Bw, 04.25.Dm, 04.30.Db
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The accurate computational modeling of black-hol
interactions is essential to the confident detection
astrophysical gravitational radiation by future space-bas
detectors such as LISA and by the LIGOyVIRGOyGEO
complex of ground-based detectors currently und
construction. The sensitivity of these detectors will b
significantly enhanced if accurate computer simulation
of black-hole mergers can produce predictions of radi
tion waveforms [1]. The Binary Black Hole Grand
Challenge Alliance [2] was funded in September 199
to develop the computational infrastructure for accura
simulations of the coalescence of black-hole binarie
The primary objective of the resulting code will be the
prediction of waveforms from binary black-hole mergers
In this Letter we report on an important step toward
achieving such simulations.

A key difficulty in evolving black-hole spacetimes is
handling the curvature singularity contained within eac
hole. The only viable means of accomplishing this ove
time scales required for binary coalescence appears
be black-hole excision: exclude all or part of the black
hole interior (and the singularity) from the computationa
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domain and evolve only the exterior region [3,4]. This is
possible because, by definition, the region inside the ho
cannot causally affect the exterior evolution. Black-hol
excision has been implemented successfully in spheric
symmetry by Seidel and Suen [5], Scheelet al. [6,7],
Marsa and Choptuik [8], Anninoset al. [9], and Gómez
et al. [10]; and in three dimensions (3D) by Daues [11]
Anninoset al. [12], and by Gómezet al. [13].

We are developing a general algorithm to perform
Cauchy evolution of Einstein’s equations on a domain con
taining black holes with excised interiors. Prior simu
lations of black-hole binaries have used coordinates
which the holes remain at fixed coordinate locations; fo
complicated motions, this will lead to undesirably con
torted coordinates. In contrast, our more general approa
allows black holes with excised interiors to move freely
through the computational grid. Achieving this goal re
quires the synthesis of two key ingredients: a numeric
scheme capable of stably evolving Einstein’s equations o
a domain containing moving boundaries (excised regions
and a set of gauge conditions that ensure that coordina
remain well behaved as black holes move through the gri
© 1998 The American Physical Society
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In this Letter we present a crucial step towards achievi
a general black-hole evolution scheme: the first success
Cauchy computation of a single black hole freely movin
through a 3D numerical grid. A different approach withi
the Alliance that uses a characteristic formulation [13] h
recently shown 3D black-hole evolutions to1400M and
success in moving a black hole less than one diameter.

Black-hole excision is based on the fundamental id
that the event horizon of a black hole is a natural caus
boundary. Unfortunately, an event horizon cannot b
located without knowing the full future evolution of the
spacetime. However, a related structure known as
apparent horizon can usually be located on a spacel
time slice using only the information on that hypersurfac
An apparent horizon is a topologically spherical spaceli
two-surface on which the expansion of the congruence
outgoing null rays orthogonal to the surface vanishes.
the characteristic curves of all fields being evolved lie on
within the light cone, then the apparent horizon can be us
as theinner boundaryfor a Cauchy evolution. The causa
nature of this boundary implies that no explicit bounda
condition need be imposed on the evolved quantities.

The gauge freedom (coordinate freedom) of gene
relativity allows considerable latitude in choosing how
a computational solution evolves in time. Althoug
gauge considerations cannot influence physics, they
determine how the coordinates and computational g
points used to describe the solution relate to physic
locations in spacetime. A poor choice of spatial o
temporal gauge can lead to coordinate pathologies t
ruin a numerical simulation. For example, the prop
distance between two adjacent computational grid poin
might approach zero or grow without bound. It is no
fully understood what constitutes agoodgauge choice.

An attractive choice [8,14] for describing a single blac
hole is the ingoing Kerr-Schild form [15] of the Kerr
metric:

ds2 ­ gmndxm dxn ­ shmn 1 2Hlmlnddxm dxn , (1)
wherem, n run from 0 to 3, hmn ­ diags21, 1, 1, 1d, lm

is a null four-vector, andHsxad is a scalar function.
In this gauge, the coordinates are closely related to
null structure of the spacetime. Furthermore, the soluti
is time independent (or has a trivial time dependen
for a moving black hole), the spacelike hypersurfac
extend smoothly through the horizon, and gradients ne
the horizon are smaller than in several other coordina
choices.

Equation (1) is form invariant under Lorentz transfor
mations, so it can be used to represent either a n
translating or a boosted Kerr black hole. The3 1 1
decomposition of the spacetime metric leads to a m
ric gij and extrinsic curvatureKij that we use as initial
data and for comparisons at later times [16]. The lap
function,

a ­ 1y
p

1 1 2Hl2
t , (2)

and shift vector,
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bi ­ 2Hltli , (3)

are analytic functions of space and time that we im
pose as gauge conditions. For the time-independe
Schwarzschild spacetime,H ­ Myr (M is the mass),
lm ­ s1, xiyrd, and the apparent horizon coincides with
the event horizon. In fact, the apparent and event hor
zons coincide in the boosted case as well.

Schemes for excising the interior of a black hole from
the computational grid typically require a superlumina
shift vector in some region of the computational domain
and must cope with the lack of an explicit boundary
condition on the excision boundary. The Alliance Cauch
evolution module implements an evolution scheme that
designed to provide a stable evolution for any choice o
shift vector. A typical evolution equation has the form

s≠t 2 £bdT ­ . . . , (4)

where£b is the Lie derivative along the shift vector and
T is an arbitrary spatial tensor. We can rewrite this as

≠0T 2 s£b 2 bi≠idT ­ . . . , (5)

where≠0 ; ≠t 2 bi≠i is a time derivative in the direc-
tion normal to the spatial hypersurface and which, by defi
nition, is centered in the light cone. This scheme remove
from £b the advective term that potentially leads to evolu
tion along a nontimelike direction. This guarantees that
numerical evolution will be stable against instabilities pro
duced by superluminal shifts. Note that the tensor comp
nents being evolved remain in the coordinate basis≠y≠xi

that is Lie dragged along thetm direction, but the compu-
tational grid points at which these components are define
do not remain at constant values ofxi . Instead, the grid
points remain at constant values of the spatial coordinat
x̃i that are Lie dragged along the unit normal to the spa
tial hypersurface. The evolved quantities are determine
at the desired spatial coordinate locationsxi by interpola-
tion. This interpolation requires that thex̃i coordinate val-
ues be evolved along thetm direction for each point where
the evolved quantities are to be evaluated on a given tim
slice. It also obviates the need for a boundary conditio
at the excision surface. The algorithm can easily accom
modate black holes that move through the grid. In thi
case, unused grid points that had been in the interior of
hole can move into the exterior. These new points wi
be filled by the interpolation phase and will always be
filled from data that are in the future domain of depen
dence of the previous time slice. Similar schemes we
developed by Seidel and Suen [5], Alcubierre and Schu
[17], and Daues [11]. Additional details on how this evo-
lution scheme is implemented can be found in Sche
et al. [7] and in a forthcoming paper [18] that will de-
scribe the details of the Alliance Cauchy evolution mod
ule. The key point is that by splitting the evolution along
tm into an evolution along the unit normal followed by an
interpolation, the algorithm guarantees that the numeric
2513



VOLUME 80, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 23 MARCH 1998

y
t

g

he

r
hing

w.
i-
ed
a

int

s

se

3D

s
ry.
s

se
to

rt
evolution step is always taken in the center of the physic
light cone.

The Cauchy evolution module developed by the A
liance is based on the standards3 1 1d, or ADM, de-
composition of Einstein’s field equations [19,20]. Th
module uses Cartesian coordinates and evolves the th
metric gij, and extrinsic curvatureKij , on a 3D rectan-
gular grid. The evolution equations are solved using
iterative Crank-Nicholson differencing scheme. The co
straint equations are not imposed on the solution but a
utilized as a diagnostic.

We present results from two sets of black-hole e
periments: evolutions of nontranslating and of boost
Schwarzschild black holes. In both sets of experimen
we work with a 3D n 3 n 3 m computational grid
(where the grid spacing is uniform and equal in all d
rections), and we imposeDirichlet boundary conditions
on the grid faces throughout the evolutions. For the no
translating cases, this means freezing the outer bounda
to initial data. For the boosted case, this means resett
the exact solution at the faces for each time step. At ea
time during the course of our evolution we impose th
exact gauge conditions (2) and (3) as a function of fo
spacetime coordinates. We allow for a “buffer region” b
placing the inner boundary (excised region) a short d
tance inside the apparent horizon (where the inner bou
ary might have been placed). This distance is set top
times the grid spacing.

For the case of a boosted black hole we discuss two ru
one with p ­ 3 buffer zones and the other withp ­ 5
buffer zones between the horizon and the inner boun
ary. Both runs usen ­ 33 and m ­ 65 with a domain
of 2s8y3dM to 8M in the z direction and a domain of

FIG. 1. Metric componentgzz along thez axis as a function
of time. The flat region that moves diagonally to the righ
represents the excised region (inside the black hole). Note t
points at the trailing edge (left side) are smoothly updated
the hole moves towards positivez. Coordinate effects are seen
to appear near the inner boundary.
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2s8y3dM to s8y3dM in thex andy directions. The black
hole is initially located at the origin and has a velocit
y ­ 0.1c in thez direction. The evolution was carried ou
with a Courant factor of1y4. Figure 1 shows a spacetime
picture ofgzz along thez axis vs time for thep ­ 5 run. In
this case we evolved the black hole for61M, moving three
hole radii. The evolution terminated when the leadin
edge of the black hole was within five gridpoints of thez ­
8M face. At this point the differencing algorithms failed
because of an insufficient number of points between t
inner and outer boundaries. In thep ­ 3 run the black
hole evolved for54M with coordinate stretching occurring
at the trailing edge. We find that the addition of buffe
zones enhanced the run and reduced coordinate stretc
for the duration of thep ­ 5 run. This is consistent with
the behavior of the nontranslating runs described belo
As the hole moved in each of the evolutions, many coord
nate points emerged stably and smoothly from the excis
region into the computational domain. Figure 2 shows
spacetime picture of the normalized Hamiltonian constra
diagnostic along thez axis for thep ­ 5 run. Note that
the Hamiltonian constraint is well behaved in the region
where grid points have emerged from the black hole.

For the case of a nontranslating black hole, we cho
n ­ m ­ 49. The outer boundaries are placed at24M
and4M in each direction. With a Courant factor of1y4
we can evolve a single black hole to95M. This is an
encouraging achievement comparable to the longest
single black-hole Cauchy simulation (,138M; Daues [11]
and private communication).

As in the moving hole case, the length of the evolution
is dependent on the placement of the inner bounda
We found that by setting the number of buffer zone
to p ­ 0, 1, 5, and 9, we can run a nonmoving hole
to a maximum time oftmax ­ 16M, 20M, 95M, and
82M. In all cases, the evolution terminates becau
the iterative Crank-Nicholson evolution scheme fails

FIG. 2. Normalized Hamiltonian constraint,N ­ sR 1 K2 2
KijKijdysjRj 1 jK2j 1 jKijKij jd, along thez axis as a function
of time. The flat region shows the location of the excised pa
of the domain within the hole.
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converge to a solution. While the evolved solution
all deviated from the analytic solution, the behavio
in each case was somewhat different and a definiti
explanation of why each evolution fails requires furthe
testing. The most likely causes of the late time problem
are either coordinate effects and/or numerical instabilitie
due to choices of finite difference operators. One suc
coordinate effect can come from fixing the gauge via th
analytic functions (2) and (3). As numerical evolution
progress, the evolved data drift from the exact solutio
When this happens, the choice of lapse and shift bei
used will no longer enforce the desired, underlying Ker
Schild gauge condition. In this case, effects such as g
stretching can occur and the coordinate location of th
apparent horizon will no longer coincide with the analyti
solution. Forp ­ 0 or 1, the evolution progresses rathe
smoothly and the computed location of the appare
horizon gradually moves inward. Eventually the appare
horizon passes within the computational inner boundar
so that the inner boundary becomes timelike and therefo
unsuitable as a boundary for black-hole excision. Th
evolutions terminate soon after this occurs. Forp ­ 5
or 9, the evolution is more complicated. The relatively
smooth growth in error with the apparent horizon movin
inward no longer occurs (or occurs on a much longe
time scale). In these cases, the dominant errors app
to be noise introduced at the Dirichlet outer boundarie
These errors propagate across the computational grid a
appear to be amplified in some way. It is possible that th
analytic gauge conditions are causing this amplificatio
some unusual coupling with the inner boundary may als
be responsible. Eventually, the geometry near the inn
boundary becomes quite nonspherical. While we are
longer certain of the location of the apparent horizo
at this point, we believe that the inner boundary aga
becomes timelike prior to the evolution ending.

The fact that the evolutions depend strongly on th
placement of the inner boundary agrees with prior 3
work by Daues [11] but requires further study. Using
larger number of buffer zones forces the inner bounda
deeper into the black-hole interior where an increasing
larger propagation speed is required for information to e
cape from the black hole. Thus the strong dependen
of the evolutions onp could indicate some nonphysical
gauge-dependent quantities or numerical errors propag
ing faster than light. Resolution of this question mus
await at least a consistent set of convergence tests to
derstand the effect ofp as the discretization is refined.
In spite of these concerns, the evolution to95M is an
encouraging result, and we believe that improved gau
choices that utilize information from the evolution (e.g.
the computed apparent horizon location, cf. Refs. [7,11
will allow for much longer evolutions.

In the evolutions of nontranslating holes, each cas
above results in an unstable evolution. We believe th
this is most likely due to coordinate effects. This belie
s
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is supported by evolving a region adjacent to a nontran
lating black hole. We consider a domain extending fro
2s3y2dM to s3y2dM in all directions and displace the cen
ter of the black hole along one axis by2M. By this design
the horizon passes through the center of the computatio
cube. Using resolutionn ­ m ­ 49 and Dirichlet bound-
ary conditions on all boundaries, we find that the solutio
settles down to a steady state because of numerical diss
tion and perhaps because wave disturbances fall within
horizon. At low enough resolution, the errors in the an
lytic gauge conditions and Dirichlet boundaries were to
large to allow a steady-state solution. As a rule, high
resolution cannot force a fundamentally unstable nume
cal scheme to be “more stable.” We thus find this test
be highly suggestive that our interior evolution scheme
fundamentally stable and our principal problems are wi
coordinate and boundary effects.

All of the above results are very encouraging for the u
timate goal of evolving multiple black-hole spacetime
In both the boosted and nontranslating evolutions, im
provements to the coordinate conditions are clearly ne
essary. Nonanalytical coordinate conditions need to
developed for the boosted case and we are hopeful t
it will be possible to formulate a general Kerr-Schild-like
gauge condition that does not require the solution of elli
tic equations. Other combinations of spatial and tempo
gauge conditions may also work or may even be nec
sary. There is still considerable work to be done on t
computational infrastructure required to support gene
binary black-hole simulations, but it is clear that one o
the keys to successful evolutions is understanding wh
gauge conditions are appropriate for multiple black hole
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