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ABSTRACT Software fault prediction (SFP) is a challenging process that any successful software should
go through it to make sure that all software components are free of faults. In general, soft computing and
machine learning methods are useful in tackling this problem. The size of fault data is usually huge since
it is obtained from mining software historical repositories. This data consists of a large number of features
(metrics). Determining the most valuable features (i.e., Feature Selection (FS) is an excellent solution to
reduce data dimensionality. In this paper, we proposed an enhanced version of the Whale Optimization
Algorithm (WOA) by combining it with a single point crossover method. The proposed enhancement helps
theWOA to escape from local optima by enhancing the exploration process. Five different selection methods
are employed: Tournament, Roulette wheel, Linear rank, Stochastic universal sampling, and random-based.
To evaluate the performance of the proposed enhancement, 17 available SFP datasets are adopted from
the PROMISE repository. The deep analysis shows that the proposed approach outperformed the original
WOA and the other six state-of-the-art methods, as well as enhanced the overall performance of the machine
learning classifier.

INDEX TERMS Software fault prediction, feature selection, binary whale optimization algorithm, adaptive
synthetic sampling, classification.

LIST OF ABBREVIATIONS

ABC Artificial Bee Colony
ACO Ant Colony Optimization
ADASYN Adaptive synthetic sampling method
AIRS Artificial Immune Recognition Systems
ANN Artificial Neural Network
AOA Antlion Optimization Algorithm
ASD Agile Software Development
AUC Area Under Receiver Operating

Characteristics Curve
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BACO Binary Ant Colony Optimization
BALO Binary Ant Lion Optimizer
BBA Binary Bat Algorithm
BGA Binary Genetic Algorithm
BGSA Binary Gravitational Search Algorithm
BGWO Binary Grey Wolf Optimization
BMFO Binary Moth Flame Optimization
BN Bayesian Networks
BPSO Binary Particle Swarm Optimization
BQSA Binary Queuing Search Algorithm
BSSA Binary Salp Swarm Algorithm
BWOA Binary Whale Optimization Algorithm
CR Case-Based Reasoning
DE Deferential Evolutionary
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DOA Dragonfly Optimization Algorithm
DT Decision Tree
FC Fuzzy Clustering
FIS Fuzzy Inference System
FS Feature Selection
GA Genetic Algorithm
GBO Gradient-Based Optimizer
GBRCR Gradient Boosting Regression-based

Combination Rule
GP Genetic Programming
GWO Gray Wolf Optimization
HHO Harris Hawk Optimization
k-NN K-Nearest Neighbors
LDA Linear Discriminant Analysis
LR Linear Rank
LRBWOA Linear Rank Based selection method with

binary WOA
LRCR Linear Regression-based Combination Rule
LRM Logistic Regression Method
LRNN Layered Recurrent Neural Network
MFO Moth-Flame Optimization
MGA Modified Genetic Algorithm
ML Machine Learning
MLP Multilayer Perceptron
NB Naive Bayes
NFIS Neuro-Fuzzy Inference System
PB Proportional Based
PSO Particle Swarm Optimization
RB Random-Based
RF Random Forest
SA Simulated Annealing
SBWOA Stochastic Universal Sampling with binary

WOA
SC Soft Computing
SDLC Software Development Life Cycle
SDP Software Defect Prediction
SE Software Engineering
SFP Software Fault Prediction
SI Swarm Intelligence
SMA Slime Mould Algorithm
SMOTE Synthetic Minority Oversampling Technique
SQA Software Quality Assurance
SUS Stochastic Universal Sampling
SVM Support Vector Machines
TBWOA Tournament selection method with binary

WOA
TF Transfer Function
TS Tournament Selection
TSA Tabu Search Algorithm
WOA Whale Optimization Algorithm

I. INTRODUCTION

The SDLC is amethodology that clearly defines the processes
of developing reliable and free of bugs software [1]. In SDLC,
the software goes through a set of stages starting with

requirements elicitation, where the specifications of that soft-
ware are determined, and then analysis and design of the
software. The implementation, testing, and documentation
stages come respectively after the completion of the design
stage. Many software development methodologies have been
introduced to ease and improve the software development
process. The most commonly used SDLC models are water-
fall, Agile and Spiral models. Empirically, testing is primar-
ily concerned with the enhancement of the software quality
and reducing the total cost [2]–[4]. The task of detecting
or predicting faults in software is named SFP. In the SFP
process, prior to a new version of software being developed,
hidden or clear fault-prone models can be detected with the
help of user comments, historical fault datasets gathered from
previous projects, or predefined software matrices [3], [4].
In contrast with the classic sequential waterfall model that
was introduced by [5] in 1970, the appearance of ASD
in 2001 [6] makes the process of SFP easier. The basis
of ASD is the incremental delivery of software devel-
opment. This advantage leads to rapid adaptation of the
volatile requirements and also shortens both the development
time and the gap between software developers and business
owners [7].

Generally speaking, the cost (in terms of time, effort,
and resources) or recovering fault in the early stages of the
SDLC is much lower than doing so in the later stages. Thus,
predicting software faults before delivering products to cus-
tomers becomes essential in order to reduce the negative
influence of the latest versions of the software [3].

To guarantee that the software being developed meets
the end-users needs, the development process is maintained
under the control of SQA. SQA has various processes
such as formal code inspection, software testing, and soft-
ware fault prediction [4], [8]. Conventionally, SFP models
rely on various approaches include software matrices, SC,
and ML [9].

In general, SFPmodels are constructed depending on either
certain software matrices (features) or software fault datasets
(gathered in advance from previously released versions of
similar projects). These models are appropriate especially
when the project is very large and hard to test [3], [4], [10].
The type of SFP model that is built according to pre-defined
software metrics may not be accurate in predicting faults
in given software. The reason is that if an SFP model is
constructed based on some pre-defined software matrices
and then is used to detect bugs in different software projects
without rebuilding it with updated values of the used metrics,
it will not be that accurate since each project has its matrices
and characteristics. In such cases, only faults related to similar
areas of the software may be detected [3], [11]. Alternatively,
software matrices that consider the historical changes of a
software project can be the solution to this problem. However,
in dealing with complex software projects, these models are
known as a time consuming and infeasible [3], [4]. Thus,
SC techniques can be a good solution to discover faulty
modules in software projects.
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Different SC techniques were successfully applied to the
SFP field with much success [8], [12]–[14]. For instance,
as stated in [12], a distinct type of association rules called
relational association rules mining was used as a classifier to
predict whether a software model is faulty or not. As another
example, a supervised technique named ANFIS has been
utilized for the SFP problem. It integrates the advantages of
two methods, a FIS and an ANN. ANSIF has shown superior
performance in addressing SFP problem when compared to
SVM and ANN classifiers [13]. In general, ML is known as a
core branch of SC methods that have been found effective in
solving a wide range of real-life, industrial, and data mining
related problems. Moreover, many studies have approved the
superiority ofML classifiers in improving the performance of
SFP models [15]. Some of used ML algorithms for dealing
with SFP include OneR (One Rule), DTs, NB, SVM and
ANN classifiers [16]–[18].
With the advancement in software development, and due

to the fact the computer systems are used to manage all life
aspects, the amount of available data becomes large in every
field. Therefore, using basic ML techniques as fault predic-
tion techniques becomes impractical in some cases and needs
more enhancement. That’s to say, The need for advanced
methods to predict faults in software becomes mandatory.
One of the main methods used to enhance the performance
of the machine learning techniques is to reduce the dimen-
sionality of the available datasets. Different dimensional-
ity reduction techniques have reported in the literature, and
FS [19]–[22] is one of these main techniques.
FS is a well-known dimensionality reduction technique

that aims to reduce the number of available features in
a dataset as it may contain some irrelevant/redundant
features [23]–[26]. The presence of such features misleads
the learning algorithm and consequently affects its perfor-
mance. Finding and removing noisy and irrelevant features
can improve the performance of the learning algorithm in
terms of classification accuracy and lowers the computational
time [3], [4], [27]. The authors of [28] and [29] conducted sys-
tematic reviews on ML algorithms that have applied to SFP.
In contrast with classic statistical methods, they concluded
that FS could significantly enhance the accuracy of SFPmod-
els that utilize ML classifiers. Correspondingly, FS methods
can be classified based on two criteria; subset generation and
evaluation mechanisms. In terms of evaluation, FS methods
can be further categorized into wrapper and filter as two
main FS models. Complete, heuristic and random search
mechanisms are considered as the main subset generation
mechanisms in most FS approaches.
Among the FS models, the wrapper model is frequently

employed due to its excellent performance. In this model,
a learning algorithm (e.g., classifier) is usually used as an
evaluation criterion. So, the results are associated with the
selected learning algorithm. The main advantage of the wrap-
per model over the filter is that the former produces feature
subsets that are able to maximize the performance of a spe-
cific learning technique.

Searching for the best performing feature subset is the sec-
ond aspect that should be highly considered when designing a
FS approach. Meta-heuristics algorithms proved their ability
to tackle the FS problem with high-performance levels. The
main two categories of meta-heuristics algorithms are EA
(such as GA [30] and DE [31]), and the SI (such as PSO [32],
HHO [33], SMA [34], GBO [35], and WOA [36]).

Since the aim of SFP is to predict the faults in the new
projects based on the historical data, then using a learning
algorithm in evaluating the performance of the selected fea-
tures becomes mandatory. Thus, we adopted the wrapper
FS model as it employs a learning algorithm as an evaluation
method. In contrast, the filter FS methods do not consider any
learning algorithm in the evaluation process and depend on
the relations between features themselves.

The second aspect that needs to consider when designing
a FS method is the subset generation mechanism. Since the
datasets used in this paper are high dimensional datasets,
the complete search strategy (that generates all possible fea-
ture subsets to select the best one) becomes impractical.
In this work, we adopted the heuristic search strategy as it
proved its ability to tackle different optimization problems in
different fields [37]–[39].

WOA is a recent meta-heuristic algorithm, was proposed
by Mirjalili and Liwes [40], that mimics the intelligent food
foraging behavior of the humpback whales in the ocean. Even
though the simple structure, ease of implementation, and
the good performance of the WOA have proven through the
literature in many fields, it has shortcomings when applied
to combinatorial optimization problems [41]. To enrich the
ability of WOA in exploitation tendency, [42] proposed
an enhanced associate learning-based WOA, in which the
β hill-climbing algorithm was utilized to exploit the local
solutions. Besides, a modified version of WOA was intro-
duced in [43]. The authors implemented the levy flight oper-
ator into WOA to prevent early stagnation. Also, the elite
opposition based learning and information gain were adopted
in WOA to enhance its search ability for FS problems [44].
Previous works propounded that different strategies can be
employed for improving the WOA’s performance. Moreover,
No Free Lunch theorem [45] suggests that no universal opti-
mizer can excellently solve all the problems, which motivates
our attempts to propose a new variant of WOA as a wrapper
FS method for software fault prediction.

This paper presents an efficient wrapper FS approach that
is based on the WOA optimizer and enhanced with nature
selection operators to improve the efficacy of the basic WOA
in dealing with FS tasks. The key contributions in this paper
are summarized as follows:

• Five natural selection schemes augmented with
crossover operator are integrated with WOA to enhance
the guided solution while performing the exploitation
process.

• Seventeen challenging software fault projects are
employed to confirm the effectiveness of the proposed
approach.

VOLUME 9, 2021 14241



Y. Hassouneh et al.: Boosted WOA With Natural Selection Operators for SFP

• The proposed approach showed a significant improve-
ment compared to state-of-the-art approaches.

The rest of this paper is organized as follows: Section II
presents the related works for SFP and FS. Section III
presents the proposed enhancement of WOA based on nat-
ural selection methods. Section IV presents a description of
the datasets were used in this paper. Section V reports the
obtained results and its analysis. Finally, Section VI presents
the conclusion and the future works of this paper.

II. REVIEW OF RELATED WORKS

A. SOFTWARE FAULT PREDICTION

The literature reveals that ML algorithms can effectively
tackle the SFP problem where several techniques have
been proposed for detecting faults in software modules.
Examples of ML-based SFP approaches include LRM [46],
FC [47], CR [48], DT [49], NB [16], [50], ANN [51], RF [50],
BN [52] and SVM [17], [53]. Moreover, for evaluating SFP
techniques, various publicly available datasets are used. The
most commonly applied public datasets by researchers in the
area of SFP are NASA datasets, PROMISE repository, Bug
prediction dataset, and Qualitas corpus [54]. For instance,
Catal and Diri [55] investigated the effect of three factors
comprising dataset size, feature selection, and softwarematri-
ces on software fault proneness detection. Besides, various
machine learning classifiers such as NB, RF, DT, and AIRS
were applied. The authors also used five NASA datasets
to examine the classifiers. As per the results, the values of
the evaluation parameter AUC show that the RF classifier
was superior for large datasets, whereas Naive Bayes was
the appropriate predictor for small datasets. Moreover, Singh
and Malhotra [56] studied the relationship between soft-
ware design that is developed based on the object-oriented
concept and fault proneness. The authors examined the
performance of SVM over a public dataset obtained
NASA repository (KC1). The obtained results show that
the SVM classifier is able to discover the faulty classes in
OO based systems.
Rathore and Kumar [57] employed a set of ensemble

learning methods to predict software faults. The authors
applied two methods that are LRCR and GBRCR, as an
ensemble output for GP, MLP, and LRM algorithms. The
proposed approach has been examined over eleven public
datasets obtained from the PROMISE data repository. The
obtained results show that ensemble techniques can out-
perform other traditional techniques in predicting software
faults.
As aforementioned, FS has become an essential step in

data mining in general and machine learning in particular
since it plays an important role in cleaning data from noisy,
irrelevant, and redundant features. This step will enhance the
overall quality of data and reduce its dimensionality. It has
been approved in many studies that removing such features
can significantly enhance the overall performance of machine
learning classifiers [58], [59]. Many researchers in the field
of SFP investigated the effect of applying different filters and

wrappers FS approaches on the performance of ML-based
SFPmodels. For example, using some public NASA datasets,
Catal and Diri [55] applied the correlation-based FS method
to remove the highly relevant matrices for the SFP prob-
lem. Balogun et al. [60] studied the performance of eighteen
FS methods (i.e., four feature ranking and fourteen feature
subset selection) to detect SDP. The authors applied those
methods on five public datasets obtained from the NASA
repository. The obtained results show that FS methods can
enhance the performance of ML methods for SDP problems.

Dhamayanthi et al. [61] made use of the well-known
statistical tool Principle Component Analysis as a feature
reduction technique for solving the SFP problem. Using the
extracted features by PCA, and the NB classifier was applied
over seven projects fromNASAMetrics Data Program. It was
observed that the prediction accuracy of the NB classi-
fier was increased when using the set of features selected
through PCA.

Wrapper feature selection approaches were also applied in
the SFP domain. Wahono et al. [62] proposed a combination
of GA and bagging technique for enhancing the performance
of the software defect prediction. GA was used to tackle the
feature selection, while the bagging technique was used to
solve the class imbalance problem. Several machine learning
classifiers were applied over nine datasets from NASA met-
ric data repository in order to assess the proposed method.
Results of the AUC indicated that the proposed method
improved the prediction performance of the most applied ML
classifiers. Wahono conducted another similar work in [63],
where GA and PSO algorithms were applied as feature selec-
tion techniques for the SFP problem, and bagging technique
was utilized for dealing with class imbalance problem. Ten
classifiers were applied over nine NASA MDP datasets to
evaluate these FS approaches. Results of AUC confirmed that
the proposed FS approaches yielded significant enhancement
in prediction performance for most of the applied classifiers.
A hybrid feature selection technique hybridizing PSO and
MGAwas introduced by Banga et al. [64] for improving SFP.
Furthermore, bagging was also integrated with this approach
for resolving the class imbalance problem. Empirical results
using NASA MDP dataset and a pool of machine learning
algorithms (i.e., KNN, SVM, least-squares twin SVMs, mean
weighted least squares twin SVMs, and RF) showed that
applying the proposed hybrid FS approach improves the effi-
ciency of SFP modules in classifying software modules into
defective or not defective modules.

Recently, Turabieh et al. [3] applied a L-RNN clas-
sifier with wrapper FS methods (i.e., BGA, BPSO, and
BACO) to predict faults in software modules. The proposed
approach employed an iterativemethod in order to remove the
redundant features. The authors applied their approach over
19 public datasets obtained from PROMISE data reposi-
tory. The obtained results show the ability of wapper FS
of enhancing the performance of the L-RNN classifier.
Thaher et al. [65] introduced a wrapper-based feature selec-
tion method based on BQSA for solving the SFP problem.
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SMOTE was applied for re-balancing fourteen real-world
datasets obtained from the PROMISE repository. in terms
of AUC results, Binary QSA integrated with SMOTE tech-
nique yielded the best results compared with different FS
algorithms including BBA, BWOA, BGSA, BALO and KNN
classifier without feature selection. Tumar et al. [4] developed
a wrapper FS method to predict faults in software mod-
ules using a modified version of BMFO named Enhanced
BMFO (EBMFO) in conjunction with ADASYN for solving
class imbalance issue. The proposed method was evaluated
using a set of fifteen real projects data from the PROMISE
repository, and three machine learning classifiers compris-
ing LDA, KNN, and DT. Recorded results confirm that the
proposed FS method improved the overall performance of
the three ML classifiers. In [66], Thaher et al. proposed an
enhanced binary version of the newmeta-heuristic algorithm,
the HHO, to search for ideal features subsets for SFP prob-
lem. In addition, the ADASYN oversampling technique was
used for re-balancing the datasets. Fifteen SFP datasets from
PROMISE, the sameML classifiers used by [4], and a similar
set of optimization algorithms used in [65] were employed
to assess the proposed approaches. The obtained results con-
firmed the superiority of the enhanced HHO approach when
used with the ADASYN oversampling method and Linear
Discriminant Analysis classifier compared to other optimiza-
tion algorithms.
It is clear from the reviewed literature that machine

learning-based SFP modules are highly influenced by the
quality of matrices (features) and the imbalanced data.
It can be observed from the previously published works
that building efficient SFP modules are possible when
using sophisticated FS algorithms for discarding trivial and
irrelevant features and re-balancing the data to avoid the
problem of class imbalance in SFP datasets. These facts
motivated the authors of this work to propose an efficient
feature selection approach for the SFP problem. The effi-
ciency that the Whale Optimization algorithm has previously
shown in selecting the optimal sets of features from sim-
pler datasets (Comparing to SFP datasets) nominated it in
this work to be used for dealing with feature selection in
SFP domain [67], [68].

B. FEATURE SELECTION

Feature selection (FS) is treated as a binary optimization
problem that aims to explore the search space to find the ideal
subset of features. A subset of features can be viewed as a
binary vector where each cell in the vector represents one of
the attributes (features) in the dataset. The length of the vector
equal to the number of features in the dataset. If a cell of the
vector has a value of one, then it is retained, and if its value
equals zero, it will be ignored. FS eliminates uninforma-
tive features that negatively impact the classification process
while keeping the most informative ones [26], [58], [59].
Generally, depending on the search mechanism, FS follows
two main wide branches: filter and wrapper. Filter FS meth-
ods usually use a statistical measure (e.g., chi-squared test,

information gain, correlation coefficient score, and so forth)
to calculate and assign a weight to each feature. Features
are ranked by their weights, and only the features with their
weights greater than a pre-specified threshold are retained for
data representation, while the rest of the features are elimi-
nated from the feature space [58], [59]. Unlike filter methods,
wrapper FS typically starts a search procedure (using a search
strategy) by generating a set of potential solutions (subsets of
features) called population, and employs a machine learning
classifier to evaluate the generated feature subsets to deter-
mine the best one.

In practice, the complete search is infeasible when the
number of features is huge. Compared to complete and
random approaches, Meta-heuristic algorithms have demon-
strated their superiority in finding the best or near the best
solutions for many simple and complex feature selection
problems [69]. Based on the number of solutions (subsets
of features) to be generated and assessed in each genera-
tion, meta-heuristic algorithms are classified into two types:
population-based and single-based algorithms. Themost pop-
ular single solution based algorithms are TSA [70] and
SA [71] while the famous population-based meta-heuristic
algorithms comprise GA [72], [73] and PSO [74], [75],
ABC [69], ACO [76] and BBA [77]. In addition, in the
last few years, many population-based meta-heuristic algo-
rithms have been proposed and applied for FS problem
(e.,g., AOA [78], GWO [59], MFO [4], [79], DOA [24], and
WOA [67], [68]).

III. PROPOSED METHOD

A. WHALE OPTIMIZATION ALGORITHM

One of the largest mammals in the world that lives in groups
is the whales. In deep oceans, there are seven kinds of whales
names as humpback, sei, right, black whales, killer, minke,
and finback. Humpback whales are the largest whale kind,
which has a brilliant strategy for hunting the prays such as
small fishes, seals, squid, and krill [80]. Humpback whales
use a search strategy called bubble-net feeding while search-
ing for their food, where a set of bubbles are created in
an upward spiral swimming path around the food source.
In nature, whales start generating bubbles-net to determine
the prey’s location, and then the whales start to move the
target in a spiral shape before the attack. Figure 1 demon-
strates the hunting process for humpback whales. Mirjalili
and Lewis [36] in 2016 proposed WOA that simulates the
process of humpback whales in the hunting stage. WOA is
a population-based algorithm that mimics a group of whales
(each whale represents a solution) when moving toward a
pray location that represents the optimal location. The whales
swim in a helical route that is generated by blowing a net of
bubbles.

Since WOA is a population-based algorithm, the first step
of WAO is to generate the initial population (i.e., group of
whales). The following procedure demonstrates the process
of generating the initial population.
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FIGURE 1. Bubble-net feeding method for whale.

procedure Generate initial population(LB, UB,npop,n)
LB=[LB1, LB2,. . . , LBn]
UB=[UB1, UB2,. . . , UBn]
for i=1:npop do

for j=1:n do
initial population(i,j)=(UB(j)−LB(j)) × rand +

LB(j)
end for

end for

end procedure

where LB and UB present the lower and upper bounds of the
decision variables, npop presents the population size (number
of whales), and n presents the number of decision variables.
The second step of WOA is to evaluate the population with

respect to the fitness function. This step will determine the
best solution obtained so far. To simplify the coding process
of WOA, each solution is presented as a vector of the size n
(i.e., number of variables). All solutions except the best one
will update their locations toward the best solution using
Eqs.(1) and (2).

D = | EC .EX ∗(t) − EX (t) | (1)
EX (t + 1) = EX ∗(t) − EA .D (2)

where t refers to the current iteration, EX ∗ refers to the best
solution so far at iteration t . EA and EC present specific coeffi-
cients calculated using Eqs.(3) and (4), respectively.

EA = 2Ea · Er − Ea (3)
EC = 2 · Er (4)

where the variable Ea that is initially equals 2 and linearly
decrease toward 0 after a number of iterations, and the
variable Er is a random between 0 and 1, that is generated
using a uniform distribution function. Eqs.(1) and (2) enable
the WOA to search in n-dimensional solution space in an
outstanding performance as shown in Figure 3 for 2 and 3
dimensions.

Two mathematical models have been proposed byMirjalili
and Lewis [40] to simulate the hunting process itself: The
shrinking encircling mechanism and spiral updating posi-
tion. Shrinking encircling mechanism is used to update the
whale position with respect to the best solution so far. This
process happens by decreasing the value of variable Ea over
the iterations in a linear manner, as shown in Figure 3(a).
While spiral updating position demonstrates the swimming
style (i.e., upward spiral path) of whales to reach their target.
A logarithmic spiral function is used to mimic this swimming
style, as shown in Eq.(5).

EX∗
(t+1) =

−−−−−−−→
|X∗

(t) − X(t)|.e
bt .cos(2πI ) + EX∗

(t) (5)

The shape of the spiral function is created by the parameter
b, and I is a random number between −1 and 1. Figure 3(b)
shows the spiral swimming style while hunting for whales.
Whales employed shrinking encircling and spiral swim-

ming methods with a probability of 50% for each one. The
location of the best solution obtained so far determines which
operation to be executed. In WOA, a random probability p
is generated to determine operation selection, as shown in
Eq.(6).

EXt+1 =

{

EX∗
(t) − EA. ED, p < 0.5

EX∗
t+1 = ED.ebt .cos(2πI ) + EX∗

(t), p ≥ 0.5
(6)

The exploration process in WOA is performed once each
whale updates its location based on a randomly chosen whale.
In this case, the next position of the whale will be between its
current location and the location of the selected whale. This
behavior occurs when the variable (A) between −1 and 1.
In contrast, the exploitation process is performed when each
whale updates its location with respect to the best whale
(solution). This situation happens when the variable A is
greater than 1. Figure 4 shows the exploration and exploita-
tion process inside WOA. Eqs.(7) and (8) demonstrate the
exploration process of WOA. Finally, the pseudo-code for
WOA is presented in Algorithm 1.

ED = | EC .EXrand − EX | (7)
EX(t+1) = EXrand − EA. ED (8)

B. BINARY WOA

Adapting the WOA algorithm to deal with binary opti-
mization problems requires employing so-called binarization
rules. In this regard, different mathematical TFs along with
binarization rules have been introduced to convert real input
values into binary [81]. In this work, the S-shaped TF as in
Eq. (9) is incorporated with the updating rule in Eq. (10) to
present a BWOA.

T (xj) =
1

1 + e−xj
(9)

where xj represents the real value of jth dimension, and T (xj)
is the probability of xj to be 1.

Sj =

{

1 r < T (xj)
0 Otherwise

(10)
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FIGURE 2. Possible 2D and 3D locations of whales nearby the prey.

FIGURE 3. Shrinking encircling and Spiral updating methods.

FIGURE 4. Updating whale position either toward or moving away from a
randomly chosen humpback whale.

where r is a random number within [0,1] and Sj is the binary
output.
In BWOA, each solution S is presented as a binary vector,

where S = (S1, S2, . . . , Sn), Si ∈ {0, 1}. BWOA can be
employed to solve binary optimization problems such as FS
problems. In FS, two contradictory objectives where highest
classification rate and least reduction rate of selected features
are considered. These two criteria are combined in a single
formula using Eq. 11 [4].

Fitness = 0.99 × (1 − AUC) + 0.01 ×
NF

D
(11)

where NF refers to the number of selected features, and
D refers to the number of total features.

C. NATURAL SELECTION METHODS

The selection scheme for any searching algorithm is a crit-
ical component that provides a good ratio between inten-
sification (i.e., selecting better solutions) and diversifi-
cation (i.e., selecting random solutions). Many common
selection schemes can be employed to maintain a better
trade-off between intensification and diversification. How-
ever, only five methods are employed in this work: Linear
rank-based [82], Proportional (Roulette wheel) based [83],
Random-based [84], [85], Stochastic universal sampling [86],
and Tournament based [87]. These selection methods are
commonly used in the population-based algorithm, and the
default setting of these selection methods are used [84].

1) PROPORTIONAL (ROULETTE WHEEL) BASED

PB selection is originally proposed for genetic algorithm [21].
PB is one of the most common selection methods due to
its simplicity and ease of implementation. In simple, for
any minimization problem, the PB starts by calculating the
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Algorithm 1 Pseudo-Code of WOA

A population is randomly generated
All coefficients are initialized
All solutions in the population are evaluated using fitness
function
The best solution so far (denoted as X∗) in determined
while (t < maximum nymber of iterations) do

for each solution (i.e., whale) do
Update all coefficients (i.e., a, A, C , l, and p)
if (p < 0.5) then

if |A| < 1 then
Update the position of the current solution

by Eq.(2).
else if |A| > 1 then

Select a random solution from a population
Update the position of X (t) by Eq.(8)

end if

else if (p > 0.5) then
Update the position of X (t) by Eq.(6)

end if

end for

Evaluate the fitness value for each solution.
Update X∗

t = t + 1
end while

selection probability of each solution (pj) in the population
pool with respect to its absolute fitness value for each solution
divided by the summation of the fitness value for all solutions,
as shown in Equation 12.

pj =
|fitt(xj|

|
∑N

i=1 fitt(xi)|
(12)

where N represents the population size, fitt(xj) is the fitness
of the jth solution that is calculated as in Eq.(13):

fitt(xj) =
1

1 + fitt(xj)
(13)

The PB will select the fittest solution with a higher proba-
bility to perform the diversification step. Algorithm 2 demon-
strates the pseudo-code for BP selection using roulette wheel
structure. Where the final value of S represents accumulative
selection probabilities for all solutions in the population pool.

2) LINEAR RANK-BASED

LR based selection is proposed to overcome all the weak
points for BP selection methods [82]. The basic idea of
LR is to use a real ranking system for each solution based
on its fitness value. Then each solution will gain a selection
probability based on a linear mapping function, as shown in
Equation 14.

pj =
1

N
× (η+ − (η+ − η− ×

j− 1

N − 1
)) (14)

where j refers to the solution rank, η+ refers to the
expected value of the best solution in the population

Algorithm 2 Pseudo-Code of Proportional Based

Set r ∈ U (0, 1)
Set S = 0
Set i = 0
while i ≤ N do

S = S + Pi
if S ≥ r then

best=i
break;

end if

i = i+ 1
end while

return(best)

(i.e., η+ = N × P1), and η− refers to the expected value for
the worst solution (i.e., η− = N × PN ). Where P1 presents
the probability of the best solution, while PN presents the
probability of the worst solution. The slope of the linear
function is determined based on η+ and η−. The selective
pressure of LR depends on η+ value; a higher one means a
higher selective pressure [82].

3) STOCHASTIC UNIVERSAL SAMPLING

SUS selection is a modified version of the proportional selec-
tion method proposed in 1987 [86]. The main idea of SUS is
to find a selection probability for each solution with respect
to its fitness value related to the total fitness values inside the
current population pool. In simple, roulette wheel N times to
select N parents, while SUS spins the wheel once to select N
parents. The main weakness of SUS that once the population
is converged, the SUS will not work in a good manner.

4) TOURNAMENT BASED

One of the most well-known selection methods in the evo-
lutionary and swarm algorithm is TS. In this work, we com-
bined TS with BWOA. In simple, the TS starts by selecting a
set of solutions8 of size t from the population, where t is less
than population size (N ). Then determine the best solution
from 8 based on the fitness function. A selection probability
for each solution in 8 is evaluated based on Equation 15.

pj =
1

N t
[(N − j+ 1)t − (N − j)t ] (15)

The main factor that plays a vital role in selection pressure
is the tournament size (t). Normally, a higher value of t is
used for complex and ragged search space, which increases
the selection pressure, while a lower value of t will reduce
the selection pressure and direct the search space toward
diversification. In this paper, several preliminary experiments
were employed, and the obtained results indicate that t=0.3 of
population size provided the best performance.

5) RANDOM-BASED

The RB selection method selects a solution randomly from
the population pool. In this method, all solutions have the
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FIGURE 5. Pictorial diagram for the proposed enhancement.

same probability regardless of their fitness value. Therefore,
the selection pressure is unified. Unlike the aforementioned
methods, this approach may lead to slow convergence.

D. ENHANCED WHALE OPTIMIZATION ALGORITHM

In this work, an enhanced version of WOA is proposed
to overcome the weakness of the basic WOA while per-
forming the exploitation process. The exploitation process
occurs once a solution moves toward the best solution. The
exploitation process is meaningless if the best solution is
trapped in local optima, and no chance to enhance the best
solution. To overcome this problem, we combine the WOA
with different types of natural selection methods along with
a single point crossover method. Figure 5 demonstrates the
proposed method at iteration t . In this figure, the best solu-
tion has a fitness value equals to 0.59, while the worst
solution has a fitness value equals to 0.78. There are five
different solutions (i.e., A, B, C, D, and E) that follow the
best solution. The proposed enhancement starts by selecting
a solution randomly from the population, except the best
and worst solutions. Five different natural selection meth-
ods is employed: Stochastic universal sampling selection,
Random selection, Tournament selection, Roulette wheel
selection, and Linear Rank-based selection. A single point
crossover method is employed between the best solution so
far and the selected solution (i.e., solution (D)). At this step,
a new solution will be generated (i.e., offspring). There are
three scenarios to handle the newly generated solutions as
follows:

• Scenario (1): If the fitness value of the new solu-
tion is better than the fitness value of the best solu-
tion, the fitness new solution will become the best
solution.

• Scenario (2): If the fitness value of the new solu-
tion is better than the fitness value of the worst

TABLE 1. Description of PROMISE datasets.

solution, the fitness new solution will replace the worst
solution.

• Scenario (3): If the fitness value of the new solution
is better than the fitness value of the worst solution,
the new solution will be discarded.

Algorithm 3 explores the pseudo-code of the proposed
enhancement. Meanwhile, the flowchart of the proposed
approach is shown in Figure 6.

IV. DESCRIPTION OF SFP DATASETS

In this research, 17 PROMISE datasets are utilized to assess
the performance of the proposed algorithms [88], [89].
Table 1 provides the details of utilized PROMISE
datasets. Each dataset contains 20 features as shown
in Table 2.
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Algorithm 3 Pseudo-Code of Enhanced WOA

A population is randomly generated.
All coefficients are initialized.
All solutions in the population are evaluated using fitness
function.
The best solution so far (denoted as X∗) in determined.
while (t < maximum number of iterations) do

Identify the worst solution (Xworst )
Apply selection scheme to select another solution

(X selected )
generate new solution (X crossed ) using crossover

between X∗ and X selected

if (X crossed is superior to X∗) then
use X crossed as a leader

else if (X crossed is superior to Xworst ) then
replace Xworst with X crossed

end if

for each solution (i.e., whale) do
Update all coefficients (i.e., a, A, C , l, and p)
if (p < 0.5) then

if |A| < 1 then
Update the position of the current solution

by Eq.(2).
else if |A| > 1 then

Select a random solution from a population
Update the position of X (t) by Eq.(8)

end if

else if (p > 0.5) then
Update the position of X (t) by Eq.(6)

end if

end for

Evaluate the fitness value for each solution.
Update X∗

t = t + 1
end while

V. EXPERIMENTAL RESULTS AND SIMULATIONS

A. EXPERIMENTAL SETUP

This sub-section briefly describes the setup and parameter
settings of the proposed algorithms. There are two common
parameters: population size and the number of iterations that
have to be set for all wrapper methods. To ensure a fair
environment, we set the population size and the number of
iterations at 10 and 100. Moreover, we set the parameters of
LRBWOA (η+) and TBWOA (T ) to 1.1 and 3, respectively.
The sensitivity analysis of these parameters is presented in the
next sub-section. In this study, six state-of-the-art methods
include BGWO [90], BGSA [91], BPSO [92], BALO [93],
BBA [20], and BSSA [94], are used to verify the efficacy of
the proposed algorithm. The detailed parameter settings of
the algorithms are tabulated in Table 3.
Many classification methods can be employed when deal-

ing with FS problems. In this article, four popular classifiers,
namely, SVM, DT, LDA, and kNN are adopted to evaluate

FIGURE 6. Flowchart of the enhanced WOA.

the AUC performance. These classifiers are commonly used
in the area of SE [59], [95]. Table 4 presents the AUC results
of different classification algorithms. Judging from Table 4,
the highest AUC values were mostly perceived by kNN and
DT classifiers (6 datasets). The results of mean rank affirm
the supremacy of DT and kNN in SFP. Hence, in the analysis
of the proposed variants, only twomethods are used: kNN and
DT classifiers. For performance validation, both classifiers
are trained and tested using the hold-out method, 80% for
training and 20% for testing.

The performances of the BWOA with natural selection
methods are investigated through the validation method. All
experiments in this paper have been implemented using
MATLAB 2018. Additionally, all selection methods are eval-
uated using the same criteria (i.e., AUC value) and the same
hardware infrastructure (CPU, memory, operating system,
etc.) for a fair comparison.

B. PRELIMINARY EXPERIMENTS

A set of preliminary experiments have been performed to
find the best BWOA settings. Initially, different combinations
of common parameters (e.g., number of iterations [50, 100,
and 150], and population size [10, 20, 30, and 40]) are
examined on the overall performance of BWOA. Its worth
mentioning that these values are the most used values in
the main FS papers in the highly ranked journals [20], [90],
[96]. For the sake of simplicity, the internal classifier at this
step is kNN with K=5 [20], [21], [90]. Table 5 presents the
initial results of BWOA with a different number of iterations
and population size. The findings show that the best AUC
performance was achieved when the population size equal to
10 with 100 iterations, where the algorithm achieved the best
results in 12 out of 17 datasets (i.e., 71% of the datasets).
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TABLE 2. Description of object-oriented metrics.

TABLE 3. The parameter settings of comparative algorithms.

While the worst performances were achieved when the pop-
ulation size equals to 40, 20, and 30, at 50, 100, and 100
iterations, respectively. So, it is important to carefully tune
parameters for the population-based algorithm. The result of
F-test from Table 5 supports the clarification.
Table 6 shows the performance of LRBWOA using

kNN classifier. Here, we examine different numbers of η+

(i.e., 1.1, 1.3, 1.5, 1.7, 1.9). Based on the result obtained,
the LRBWOAwith η+ equals 1.1 outperformed other settings
on average AUC values and F-Test analysis. On the one hand,
the worst performance was perceived when η+ equals 1.7
with f-test score equals 3.47. At this step, we conclude that
excellent tuning of the parameter η+ will control the selection
pressure that can best fit with the solution distribution in the
search space.

TABLE 4. AUC results of different classification algorithms.

In the next stage, we study the performance of tourna-
ment selection over all the datasets. We simulate the perfor-
mance of BWOA with tournament selection using different
tournament size t (i.e., 0.3, 0.5, 0.7, 0.9). Table 7 shows
the obtained results based on average AUC and standard
deviations. From the analysis, it is clear that the tourna-
ment size played a vital role in the performance of BWOA.
For example, the performance of BWOA at t = 0.3 or
t = 0.7 outperform other sizes. Moreover, increase the
tournament size (i.e., t = 0.9) will reduce the perfor-
mance of BWOA. The results suggest that the analysis of
tournament size was an essential step before the evaluation
process.

C. RESULTS OF DIFFERENT BWOA VARIANTS

This subsection presents a comparative study of BWOA vari-
ants using DT and KNN classifiers.
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TABLE 5. Average AUC results of BWOA for different combinations of population sizes and number of iterations.

TABLE 6. Impact of parameter n+ on the performance of LRBWOA in
terms of average AUC results.

1) RESULTS OF BWOA VARIANTS WITH KNN CLASSIFIER

Firstly, we inspect the performance of proposed approaches
using the kNN classifier. Table 8 presents the obtained AUC
results. Inspecting the result, the performance of TBWOA
dominated other versions of BWOAwith respect to the F-test
value (2.88), while the performance of SBWOA was the
worst (4.41). The reason for the low performance of SBWOA

TABLE 7. Impact of tournament size (T ) on the performance of BWOA-T
in terms of average AUC results.

is because it preserves a higher selection probability for the
solution with better fitness, thereby increasing the chance of
the whale being trapped in the local regions.

Furthermore, a Wilcoxon test is performed to determine
if the performance of BWOA has a significant difference
or not. A threshold value 0.05 is used. If the p-value is
less than 0.05, that means there is a significant difference

14250 VOLUME 9, 2021



Y. Hassouneh et al.: Boosted WOA With Natural Selection Operators for SFP

TABLE 8. Comparison between different variants of BWOA with KNN in
terms of Average AUC results.

TABLE 9. P-values obtained from Wilcoxon test for the results of TBWOA
and other variants in Table 8 (p ≤ 0.05 are significant and are bolded).

between algorithms. Table 9 presents the Wilcoxon test
result (p-value) between TBWOA and other methods. From
the reported results, the AUC performance of TBWOA
was significantly better than other methods in most cases
(p-value <0.05). The findings suggest that the implementa-
tion of a natural selection strategy can greatly enhance the
performance of BWOA in SFP. That is, the enhanced BWOA
constructs a potential solution based on natural selection to
exploit the best and worst solution, which can significantly
improve the diversity of the population.

2) RESULTS OF BWOA VARIANTS WITH DT CLASSIFIER

Secondly, the performance of BWOA with five different
nature selection methods is examined using the DT classi-
fier. From Table 10, the TBWOA outperformed the standard
BWOA and all other versions with respect to F-test value
(1.47). In a dataset like log4j-1.1 and log4j-1.2, the TBWOA

TABLE 10. Comparison between different variants of BWOA with DT
classifier in terms of Average AUC results.

TABLE 11. Comparison between different variants of BWOA with DT
classifier in terms of Average running time.

has yielded the highest AUC values of 0.9822 and 1, respec-
tively. On the other side, the standard BWOA has the worst
performance with F-test value equal to 4.53. The superiority
of BWOA variants can be interpreted by the formidable char-
acteristic of natural selection strategies, and the enrichment
that has been promoted in the proposed approaches. There-
fore, the BWOA variants can usually overtake the BWOA
in FS problems. Furthermore, the computational complexity
of BWOA and its variants is tabulated in Table 11. From
Table 11, it is seen that the BWOA variants were more time
consuming compared to BWOA. The increment in the com-
plexity of the proposed variants ismainly due to the additional
computational cost to compute the natural selection and the
enhancement process.

Table 12 shows the results of the Wilcoxon test between
TBWOA and all other versions. Judging from Table 12,
it is obvious that there was a significant difference between
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TABLE 12. P-values obtained from Wilcoxon test for the results of TBWOA
and other variants in Table 10 (p ≤ 0.05 are significant and are bolded).

TBWOA and other algorithms in most of the datasets. These
findings support our claim that natural selection methods
have a great influence on the performance of BWOA. With
the Tournament based natural selection method, the whale
can be able to exploit the promising local region. This
creative motion assists the whale to evade the local opti-
mal. Besides, the proposed approach carefully considers
the scenarios while handling the newly generated solution,
which is beneficial in improving the current best and worst
solution.
Figures 7 and 8 show the convergence curves for different

versions of BWOA with DT classifiers. From these Figures,
one can see that the proposed TBWOA expressed a good
convergence speed in some cases (i.e., ant-1.7, camel-1.2,
camel-1.4, camel-1.6, jedit-3.2, and jedit-4.0) and an excel-
lent convergence speed in others (i.e., log4j-1.1, log4j-1.2,
lucene-2.2, lucene-2.4, xalan-2.4, and xalan-2.5). Among the
competitors, the TBWOA can accelerate to reach the global
optimum. In an alternative word, the proposed TBWOA was
able to track the global minimum quickly for finding the
preferable features. In a nutshell, it can be inferred that the
convergence behavior of TBWOA is competitive compared
to other variants.
From the empirical analysis in Table 8 and 10, the pro-

posed BWOA variants have shown victorious performances.
As compared to BWOA, the TBWOA with DT was supe-
rior and robust over all datasets. Our results imply that the
TBWOA cannot only show excellent performance in the kNN
classifier, it is also worked properly in the DT model. Hence,
TBWOA can be considered a robust algorithm. Intuitively,
the performance of the DT classifier was much better than
kNNwhen applied to SFP. The TBWOAnot only gives higher
AUC but also maintains a lower feature selection ratio. As an
instant conclusion, the TBWOA is known as the best BWOA
variant in this work.

D. COMPARISON OF TBWOA WITH OTHER WELL-KNOWN

OPTIMIZERS

To measure the efficacy of the proposed TBWOA in SFP,
six well-known optimizers, namely BGWO [90], BGSA [91],
BPSO [92], BALO [93], BBA [20], and BSSA [94], are
used in this comparison section. Table 13 compares the AUC
performance of the TBWOA with other optimizers. Accord-
ing to findings, the TBWOA scored the highest AUC value
in 7 cases, followed by BGWO, BPSO, and BALO (3 cases).
Besides, the TBWOA perceived the optimal rank with F-test
equal to 2.47. The result indicates that the exploitative ten-
dency of the TBWOA has been substantially improved. In the
case of stagnation, the TBWOA can effectively escape the
local region by exploiting the current best solution. This,
in turn, will increase the capability of the algorithm in local
optima avoidance. The result of the F-test in Table 13 supports
this clarification.

TABLE 13. Comparison between TBWOA and other optimizers based on
AUC values.

On the other side, the result of computational time is
presented in Table 14. According to findings in Table 14,
it is clear that the BGWO was the fastest algorithm while
the TBWOA was the slowest method. Even though the com-
putational cost consumed by the TBWOA was the highest,
however, it can usually select the top attributes that can best
explain the SFP, in which an optimal AUC performance can
be ensured.

E. RELEVANT FEATURES SELECTED BY TBWOA

In this subsection, we demonstrate the potential features that
have been selected by the TBWOA during the FS process.
Figure 9 illustrates the importance of feature as well as their
selection rates. As can be seen in Figure 9, the top five
most frequently selected features were ’ce’ (68.82%), ’moa’
(67.84%), ’dit’ (67.06%), ’cbo’ (67.06%), and ’’rfc’ (64.9%).
The result signifies that these features had high discriminative
power, and they can best describe the software fault.
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FIGURE 7. Convergence curves for different variants of BWOA with DT classifier on ant-1.7, camel-1.2, camel-1.4, camel-1.6, jedit-3.2, jedit-4.0, jedit-4.1,
jedit-4.2, and log4j-1.0 datasets.

FIGURE 8. Convergence curves for different variants of BWOA with DT classifier on log4j-1.1, log4j-1.2, lucene-2.0, lucene-2.2, lucene-2.4, xalan-2.4,
xalan-2.5, AND xalan-2.6 datasets.

F. PERFORMANCE OF THE PROPOSED TBWOA USING

DIFFERENT CLASSIFIERS

From the previous sections, we have shown the effi-
cacy of the TBWOA in SFP. Nevertheless, it is worth to

investigate whether the performance of the TBWOA can
be further improved when different classifiers are imple-
mented. The TBWOAwith four different learning algorithms
(SVM, kNN, LDA, and DT) are used and compared in this
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TABLE 14. Comparison between TBWOA and other optimizers in terms of
average running time.

section. Table 15 depicts the results of the TBWOA with
four different learning algorithms. As can be seen, TBWOA
with DT achieved the highest AUC performance (overall
rank of 1.53). The result indicates that DT was the best
learning algorithm for SFP. The second best learning algo-
rithm was SVM, which was much better than kNN and
LDA. However, the complexity results obtained in Table 15
turn out that the computational time of the SVM was the
highest.

FIGURE 9. Importance of features in terms of the number of selections
by TBWOA.

G. COMPARISON OF TBWOA WITH OTHER APPROACHES

FROM THE LITERATURE

Finally, we compare the performance of TBWOA to other
approaches from the literature. The comparison result is
shown in Table 16, where ’-’ means that the authors did
not evaluate their algorithm on that dataset. It is clear that
the AUC performance of TBWOA was much higher than
other methods in most datasets. By observing the result in
dataset log4j-1.2, an increment of more than 20% AUC can
be achieved with TBWOA. On the whole, the results support
our research objective that the natural selection methods can
greatly enhance the overall performance of machine learning
classifiers. Ultimately, it can be concluded that TBWOA is a
useful tool for SFP problems.

TABLE 15. Comparison of the proposed TBWOA using different learning algorithms in terms of AUC rates and running time.
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TABLE 16. Comparison of TBWOA with DT classifier to other approaches from the literature based on AUC results.

VI. CONCLUSION AND FUTURE WORKS

In this paper, new variants of WOA were proposed as wrap-
per algorithms to handle the feature selection problems in
SFP applications. Five different natural selection schemes
(random selection, tournament selection, roulette wheel
selection, linear rank-based selection, and stochastic uni-
versal sampling selection) were employed and integrated
into the WOA algorithm. The main idea is to enhance the
quality of the leader as well as the worst solution in the
population, which assisted the whales (solution) to escape
from the local optima scenario while examining the search
space. The proposed approaches were simulated and vali-
dated over 17 public SFP data from the PROMISE repos-
itory. Among the proposed WOA variants, the TBWOA
has retained the best performance in most datasets. The
results obtained affirm the ability of the natural selection
method not only at enhancing the overall performance of
WOA but also in removing the unwanted attributes. Fur-
thermore, the experimental results revealed that the pro-
posed TBWOA overwhelmed the other six state-of-the-art
methods with the highest AUC performance. Our find-
ings showed that TBWOA is a useful and reliable tool for
SFP applications.
In future work, the performance of the proposed

approach can be investigated over different optimization
problems from real-world applications, such as travel sales-
man problems, educational timetabling problems, and stu-
dents’ performance prediction problems.
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