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Abstract—Wireless broadcasting systems, such as Digital
Video Broadcasting (DVB), are subject to signal degradation,
having an effect on end users’ reception quality. Reception
quality can be improved by increasing signal strength, but this
comes at a significantly increased energy use and still without
guaranteeing error-free reception.

In this paper we present BOOSTER, a fully decentralized
epidemic-based system that boosts reception quality by coop-
eratively repairing lossy packet streams among the community
of DVB viewers. To validate our system, we collected real data
by deploying a set of DVB receivers geographically distributed
in and around Amsterdam and Utrecht, The Netherlands.
We implemented and tested our system in PeerSim, using
our collected real trace information as input. We present in
detail the crucial design decisions, the algorithms that underpin
our system, the realistic experimental methodology, as well as
extensive results that demonstrate the feasibility and efficiency
of this approach. In particular we conclude that the upload
bandwidth required by each node for significant recovery
of a real DVB broadcast is in the order of 5KB/sec when
nodes allow up to 2 second delay for repairing – a rather
trivial bandwidth for today’s typical ADSL connections with
an acceptable introduced delay.

I. INTRODUCTION

Wireless broadcasting systems, such as Digital Video

Broadcasting — Terrestrial [1] (DVB-T), are subject to data

reception errors and an associated loss of quality for the

end user. Such errors can be caused by signal attenuation

(e.g., due to high distance from the transmitter in sparsely

populated areas, due to densely built city centers, etc.), or

by unpredictable interference with the environment,

Introducing data redundancy, such as forward error cor-

rection [2], [3], [4] (FEC), combined with interleaving-based

schemes, constitutes an obvious solution. In fact, DVB does

employ this technique, appending 16 error-correction bytes

to every 188 data bytes, relieving the receivers from a

significant fraction of (limited) errors. However, being able

to repair more severe errors would require a substantially

higher redundancy ratio. Notably, when the fraction of nodes

experiencing an error on a given data packet is very small

(which is typical in DVB-T), taxing all nodes with excessive

redundancy on all packets is inefficient. In addition, such a

technique would not guarantee to fix all errors.

1 NICTA is funded by the Australian Government as represented by
the Department of Broadband, Communications and the Digital Economy
and the Australian Research Council through the ICT Centre of Excellence
program.

The relatively small fraction of data packets affected

by signal distortion hints at reactive solutions that aim at

retrieving damaged or lost packets on demand from external

sources, rather than proactive approaches that augment all

packets with ample error correction codes. There are two

potential sources to retrieve packets from: the broadcaster

and other receivers.

In our proposed protocol, BOOSTER (Broadcast Stream

Transmission Epidemic Repair), we consider a reactive

approach where receivers detect lost or damaged packets and

retrieve them from other receivers in a peer-to-peer fashion.

This has three main advantages over retrieving packets from

a central server of the broadcaster. First, a central server

that feeds packets to all other nodes is a potential bandwidth

bottleneck, especially at peak times, such as football evening

with bad weather producing lots of errors. Contrary to that,

BOOSTER enjoys the inherent scalability of peer-to-peer ar-

chitectures. Second, our system does not require cooperation

from the broadcaster, thus allowing a TV manufacturer to

build BOOSTER-enabled TVs, or an open-source community

to provide BOOSTER software, without requiring individual

agreements and arrangements with broadcasters all over the

world. Third, as latency is crucial for the timely repair of

lost packets, clustering peers based on a latency metric can

improve the overall quality of service, contrary to using a

central server. Note that the decision to design a cooperative

repair mechanism was further motivated by our observation

that packet loss is highly uncorrelated among receivers even

in the same room. That is, a packet lost at some receiver

is very likely to have been received correctly by another

receiver nearby.

Although the concept of repairing lost packets on demand

is in principle simple, practical repair in the case of DVB-

T is severely hindered by the fact that packet identification

is troublesome, as will be explained in the paper. BOOSTER

solves this issue, and attempts to recover the broadcast at all

receivers with minimal use of bandwidth. The solution in-

volves a tradeoff between bandwidth used and the timeliness

of error recovery – using more bandwidth can recover more

errors over a given time interval. Of course we can only

recover local errors, that is, errors that occur at a receiver

or group of receivers, not global errors that occur at the

wireless transmitter, unless the source of the transmission

also participates as a peer.

BOOSTER introduces, essentially, a peer-assisted algo-



rithm that belongs to the Cooperative Peer-to-peer Repair

(CPR) protocol class. Such protocols generally involve a

primary channel being repaired using a secondary channel.

Here, the primary channel is a DVB-T wireless broadcast

video stream, and the secondary is UDP over the Internet.

Note that our work focuses specifically on repairing errors

on a wireless broadcast system. As such, it is not applicable

to IPTV or related Internet streaming systems.

Finally, note that our proposed system is readily ap-

plicable, as, first, the vast majority of households have a

DSL connection, and, second, set-top boxes decoding DVB-

T signals are generally programmable, and can implement

our protocol. Furthermore most new televisions today are

so called “smart” TVs, meaning Internet connected with

configurable application services, and are therefore perfect

platforms to deploy our technology.

In this paper we provide a detailed discussion of our

design choices and explicit fundamental peer-to-peer algo-

rithms underpinning BOOSTER. Our results have sufficient

detail to be applied to real systems, unlike other published

work in this area. We extracted a variety of DVB-T streams,

ranging from little to excessive error at multiple locations,

and used this to substantiate the effectiveness of BOOSTER

in terms of key measurements, including introduced play-

back delay, bandwidth usage and repair quality. We have

also exported an application from our emulation platform

and tested BOOSTER over a real network.

II. BACKGROUND ON DVB

Digital Video Broadcasting (DVB) is a standard for broad-

casting of digital television. It adopts the ISO/IEC 13818-1

standard for packetizing streaming data, such as video and

audio streams, including program stream multiplexing and

mapping, conditional access management, timing references

for playback synchronization, and metadata such as elec-

tronic program guides.

A video stream is first compressed by the MPEG al-

gorithm, with a quality parameter that ultimately leads to

an average bits per pixel of the encoding. This bit stream

undergoes two levels of encapsulation, as depicted in Fig. 1.

Bits are first encapsulated into variable length Packetized

Elementary Stream (PES) packets. These PES packets are,

in turn, encapsulated into 188-byte fixed length Transport

Stream (TS) packets. Combined, this leads to a total data

rate for the stream.

The DVB broadcaster has preselected a desired total

bitrate for the wireless channel from a table of possible

choices. Clearly this total bitrate must equal or exceed the

bitrate of the Transmission Stream. This leads to a required

carrier-to-noise ratio that must be achieved for quasi-error

free transmission at that rate, and an associated bit error rate.

Fluctuations in the carrier-to-noise ratio lead to fluctuations

in the bit error rate.
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Figure 1. Relevant highlevel aspects of the system in our work. Frames
of a stream are produced at a given resolution and frame rate and encoded
using a quality parameter, with the final data ultimately encapsulated in
a Transport Stream. The carrier-to-noise ratio determines the total bitrate
available to the wireless channel, and the bit error rate associated with it.
Reed-Solomon codes are used to ensure that the packet error probability at
the receiver is lower than a target value.

The DVB system uses Reed-Solomon codes (appending

16 bytes of check symbols to every 188-byte TS packet)

and two levels of interleaving to disperse packet loss to non-

consecutive packets. At the receiver, each TS packet may be

either received (i.e., received correctly, or with few errors

that were corrected), or missing (i.e., not received at all, or

received with irrecoverable errors).

Higher up the stack, PES packets use CRC error checking

to ensure that none of their associated TS packets is missing.

A single missing TS packet will lead to a CRC error for the

PES packet that contains it.

Whether PES packets have CRC errors or not, they may

be given to the viewer for the (possibly erroneous) frames

to be rendered on the display. Error concealment can take

place at the point of rendering (such as linear interpolation

of missing pixel blocks) as a further strategy to reduce the

effect of errors.

III. DESIGN DECISIONS AND CHALLENGES

A. Scope of repairing

A fundamental decision in our work has been the selection

of the level at which repair should be applied. Specifically,

there are three possibilities. Repairing frames, repairing PES

packets, or repairing TS packets. Due to diverse pros and

cons, no option constitutes a win-win tradeoff.

We decided to repair TS packets. While it is tempting

to consider working at the PES or frame level because

these levels provide more semantic information (notably,

unique sequence numbers), there are some drawbacks that

we identified:

• There is less total reliable information at the higher

levels, as a single TS packet error can invalidate an

entire PES packet.

• Semantic information tends to be optional and making

use of optional information leads to a less portable

solution.

• TS packets (188-byte long) conveniently fit into a UDP

packet, while transmitting a PES packet or a frame may

require fragmentation.
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Figure 2. Size distribution of frames (left) and PES packets (right).

• More processing is required until an error is detected

at higher levels, such as decoding PES packets and, in

turn, frame information.

Fig. 2 shows the distribution of frame and PES packet sizes

from a DVB video sample using MPEG2 704x576. Even at

this relatively low resolution (HD television usually allows

up to 1920x1080), frame sizes exceed a single UDP packet

payload. The variability of frame and PES packet sizes and

their inability to always fit in a single UDP packet would

add complexity to our overall system. We mitigate that by

working at the TS level.

On the down side, TS packets do not contain sequence

numbers, which complicates the detection of missing pack-

ets. Even worse, they do not contain unique identifiers either,

which perplexes the identification of a packet known (or

suspected) to be missing. These obstacles can be overcome

by the use of some convenient, mandatory, yet sporadic, se-

mantic information contained in some TS packets (explained

in the following section).

Furthermore, Transport Streams for the same broadcast

may also differ across transmitters (e.g., the same TV chan-

nel in different cities), meaning that in general a sequence

of TS packets from transmitter A cannot always be used to

repair a sequence from transmitter B. We therefore need to

group the nodes in our system on a per transmitter basis.

B. Transport Stream Packets

A DVB receiver, when tuned and locked to a carrier

frequency, produces a stream of TS packets, called the raw

TS stream. Among other information, every TS packet in

the raw stream contains the following key fields:

• a 13-bit Program Identifier (PID) that maps the TS

packet to an elementary stream, such as a video or audio

stream for a given TV channel;

• a 4-bit Continuity Counter (CC) that is incremented

by 1 modulo 16 for each subsequent TS packet in the

elementary stream (certain flagged conditions may arise

where the CC is not incremented); and

• a 1-bit Transport Error Indicator (TEI) that is set true

by the receiver if the TS packet is erroneous.

Other information in the raw stream, including Program

Association Tables (PATs), found in TS packets with PID=0,

and Program Mapping Tables (PMTs), found in TS packets

with a PID value as specified in the PAT, allows us to

term full term description

PES Packetized
Elementary
Stream

Encapsulates fragments of MPEG frames.
Variable packets length.

TS Transport
Stream

Encapsulates fragments of PES packets.
Fixed length of 188 bytes.

CC Continuity
Counter

4-bit field of TS packets. Incremented by 1
modulo 16 in each subsequent packet.

PCR Program
Clock
Reference

48-bit field contained in a few TS pack-
ets. Required to be inserted at least every
100ms, but not at fixed intervals.

Table I
LIST OF ACRONYMS AND TERMS.

discover the PID values for elementary video and audio

program streams. We can then, e.g., pull a specific video

stream from the raw stream for presentation to the user or

for cooperative repair prior to presentation.

The fields listed above are insufficient to synchronize

two streams for the sake of cooperative repair. There is

no uniquely identifying information in each TS packet, and

indeed duplicate TS packets may arise in the stream. How-

ever the standard allows a TS packet to contain additional

information in an optional Adaption Field, and this optional

information contains a 48-bit Program Clock Reference

(PCR).

In fact, the standard requires this optional information,

containing the 48-bit Program Clock Reference, to appear

at least every 100 milliseconds. PCR values are not sequen-

tial. They are, however, monotonically increasing, therefore

unique within a stream. The presence of the PCR provides

semi-regular, unique stamps on selected TS packets. Thus,

we make use of the PCR to synchronize two nodes so that

cooperative repair can take place.

Table I lists the acronyms that are important for under-

standing the BOOSTER peer-to-peer algorithm.

IV. BOOSTER: THE ALGORITHM

A peer-to-peer repair algorithm relies on two main com-

ponents: a mechanism to detect missing information, and

a naming scheme to uniquely identify this information in

requests to external sources.

A. Detecting Missing Packets

We use the Continuity Counter (CC) field, described in

Section III-B, to detect missing TS packets. This has a clear

limitation, as any sequence of k consecutive missing packets

is reflected by a CC gap of k modulo 16. For instance, it is

impossible to distinguish between missing a single packet,

or 17, 33, and generally 16i+ 1 consecutive packets. Even

worse, missing sequences of exactly a multiple of 16 packets

will go undetected.

To assess the accuracy of the continuity counter CC in

measuring the number of missed TS packets, we recorded

and analyzed a number of DVB streams at locations with

diverse reception qualities. For each sample recording, we
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Figure 3. Distribution of actual consecutive error lengths (left) and the
respective Continuity Counter gap lengths (right).

(d) good: (e) bad: (f) ugly:

infrequent errors frequent errors unviewable

Figure 4. Sample streams demonstrating different reception quality.

also made a reference recording, by a DVB-T antenna fixed

at a location with superb reception. Bitwise comparison be-

tween the TS packets in the sample and reference recordings

allowed us to detect the exact sequences of lost TS packets

in the former.

Fig. 3 shows the count of CC gaps, as well as the real

error sequence lengths for three recordings of the same

duration (circa 1 minute each), yet of very different viewing

qualities: infrequent errors, frequent errors and unviewable.

For streams of high quality, errors appear to be infrequent

and short, mostly a handful of consecutive TS packets.

However, worse reception qualities, that are quite common

in real use cases per our experience, demonstrate error

sequences of up to several thousands of consecutive TS

packets. Clearly, the mighty 16-state continuity counter is

not able to express the length of these errors.

Nevertheless, as demonstrated in Fig. 3, even when the

reception quality is bad, short errors of up to a dozen TS

packets are several orders of magnitude more frequent than

long sequences of errors. This is reflected on the observed

CC gaps, where gaps of length 1 (i.e., 1, 17, 33, etc.,

consecutive missed packets) are two orders of magnitude

higher than those of length 15 (15, 31, 47 packets, etc.).
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Figure 5. Blocks perceived by three receivers for a sample stream.

The respective snapshots in Fig. 4 illustrate characteristi-

cally the quality of each stream.

B. Naming Scheme for Identifying Packets

In order to let peers identify specific units for repair to

other peers, we introduce the notion of blocks. A block (see

Fig. 5) is a sequence of TS packets, consisting of all packets

between two consecutive PCRs (exclusive). The starting and

ending PCR values of a block are called its boundaries, and

uniquely identify this block across all nodes.

TS packets within a block are identified by means of their

offset relatively to the starting PCR boundary. This offset is

computed by merely counting the number of TS packets

received, as well as by adjusting this counter in the face of

CC discontinuities to account for lost packets.

More specifically, when a node receives a PCR packet, it

marks the beginning of a new block. By observing the CC

in subsequent TS packets, it keeps track of which packets

it received, and which it missed. In doing so, it follows an

optimistic approach: a CC gap of k ∈ [1, 15] is interpreted

as a loss of exactly k packets, rather than 16i + k. A zero

gap is interpreted as no lost packet, rather than as 16i lost

packets. With high probability, the assessment of what has

been received is accurate, unless 16 or more consecutive

packets were lost at some point. The next PCR received

marks the end of this block and the beginning of a new one.

The record of which TS packets were received and which

are missing constitutes the block’s bitmap: a series of bits

equal to the (perceived) number of TS packets in the block,

where 1 stands for received and 0 for missing packet. Note

that missing one or more packets containing PCR values

leads to concatenated blocks that may later be repaired and

split up to smaller blocks.



Algorithm 1: The Cooperative Repair Algorithm

// used to gradually assemble a block from many TS packets

Variables1

TsPacket[] tspArray2

long startPCR3

long endPCR4

5

// Called by the radio on new TS packet arrival

function DELIVER(tsp)6

tspArray
append
←−−−−− tsp7

if tsp contains PCR then8

// block boundary reached

endPCR ← tsp.PCR9

MEMORY.STORE (startPCR, endPCR, tspArray)10

bitmap ← COMPUTEBITMAP(tspArray)11

if bitmap contains 0 then12

// at least one TS packet is known to be missing

REPAIR (startPCR, endPCR, bitmap)13

tspArray ← {} // reset tspArray for next block14

startPCR ← tsp.PCR // first PCR of next block15

16

function REPAIR(startPCR, endPCR, bitmap)17

peer ← SELECTRANDOMPEER()18

invoke PULL(myAddress, startPCR, endPCR, bitmap) on peer19

SETTIMEOUT (pullTimeout, startPCR, endPCR, bitmap)20

21

function PULLTIMEOUT(startPCR, endPCR, bitmap)22

if no response has been received for this repair request then23

if GETTIME()-MEMORY.BCASTTIME(startPCR)<viewerTimeout then24

REPAIR(startPCR, endPCR, bitmap)25

26

function COMPUTEBITMAP(TS[] tspArray)27

bitmap ← {1}28

for i ←1 to ‖tspArray‖ − 1 do29

gap ← (tspArray[i].CC − tspArray[i− 1].CC − 1)%16 // Continuity30

Counter gap, mod 16

bitmap
append
←−−−−− 0 × gap times // for missing TS packets31

bitmap
append
←−−−−− 1 // for the packet at tspArray [i]32

return bitmap33

34

C. Regular Operation

Algorithms 1 and 2 show the pseudocode of the BOOSTER

protocol.

When tuned to a channel, a node keeps receiving TS

packets by means of its radio receiver calling the DELIVER()

function (Alg. 1, line 6). When a new TS packet is delivered,

it is appended to an array (line 7), and it is checked whether

it contains a PCR entry (line 8). If yes, this signifies the

completion of a block, and the beginning of a new one.

Upon completion of a block the node stores that block

in memory (line 10), indexed by its boundary PCRs. Then

the node checks whether all packets (are believed to) have

been received (line 12). If not (line 13), it invokes a PULL

operation on a random other node that is currently tuned to

the same TV channel (see Sec. IV-E on how this is obtained),

requesting the missing TS packets (lines 17-20). The request

is composed by including the block boundaries and the block

bitmap (line 20).

A node receiving a PULL request looks up its memory for

a block with the specified boundaries (Alg. 2, line 2). If it

has not registered such a block in its memory (e.g., it may

Algorithm 2: Network Operation

// Called when the node receives a PULL request from another node

function PULL(sender, startPCR, endPCR, bitmap)1

tspArray ← MEMORY.RETRIEVE (startPCR, endPCR)2

if tspArray ==NULL then3

// Unknown block → send an empty reply

invoke PUSH(“CAN’T HELP”, startPCR, endPCR, ∅) on sender4

else5

myBitmap ← COMPUTEBITMAP(tspArray)6

if len(myBitmap)==len(bitmap) then7

// Send selectively the TS packets he is missing

repairBitmap ← myBitmap AND NOT bitmap8

tspArrayPatch ← Select the TS packets of tspArray with a set bit in9

repairBitmap

invoke PUSH(“MERGE”,startPCR, endPCR, tspArrayPatch) on sender10

else if len(myBitmap) > len(bitmap) then11

// Send all my TS packets

invoke PUSH(“COPY”, startPCR, endPCR, tspArray) on sender12

else13

// I had more errors → send an empty reply

invoke PUSH(“CAN’T HELP”, startPCR, endPCR, ∅) on sender14

15

// Called when the node receives a PUSH response from another node

function PUSH(operation, startPCR, endPCR, bitmap, tspArrayPatch)16

if operation ==“MERGE” then17

tspArray ← MEMORY.RETRIEVE(startPCR, endPCR)18

for tsp ∈ tspArrayPatch do19

tspArray
insert
←−−−−− tsp at appropriate position based on bitmap20

MEMORY.CHECKFORNEWBOUNDARIES(startPCR, endPCR)21

else if operation ==“COPY” then22

MEMORY.REMOVE(startPCR, endPCR)23

MEMORY.STORE(startPCR, endPCR, tspArrayPatch)24

forall blocks [startPCR
′, endPCR

′] ∈ [startPCR, endPCR] do25

if TS packets still missing, and viewerTimeout not expired then26

bitmap ← COMPUTEBITMAP(MEMORY.RETRIEVE(startPCR,27

endPCR))

REPAIR(startPCR,endPCR, bitmap)28

29

have missed one of the PCR boundaries), it simply replies

with a “Can’t Help” message (line 4). Otherwise, it may

have it complete, or it may be missing some TS packets

too. In either case, it performs a bitwise operation on the

two block bitmaps to figure out which of the requested TS

packets it has (line 8). It then sends a PUSH response to the

requester, piggybacking zero or more of the requested TS

packets (lines 9-10).

Upon receiving a PUSH response (Alg. 2, line 16), a node

adds the received TS packets to the block in question (lines

18-20), updates the block’s bitmap, and checks if the block

is now complete (line 25). If it is still missing packets, it

issues a new PULL request on another random node (lines

26-27). This is repeated until either the block is complete,

or a time threshold, VIEWERTIMEOUT, has been reached

(not shown in pseudocode). At that point, the TS packets of

the block are handed to the higher layers for decoding and

viewing. A second timer, PULLTIMEOUT, is associated with

each PULL request. If no response is received for that time,

a new PULL request is sent to another random node (Alg. 1,

lines 23-25).



D. Special Cases

A node receiving a PULL request may realize that the

requested block can be located in its memory, but its length

does not match the length reported in the request. This

implies that at least one of the two nodes has missed a

sequence of 16 TS packets or more, out of this block.

Clearly, it is impossible to identify the missing packets, as

bitmap offsets cannot be matched anymore. Nevertheless,

we do know that the version with the longest bitmap is the

best pick among the two. As such, the node replies with

a complete copy of its entire block if its version is the

longer one (Alg. 2, line 12), or with a “Can’t Help” response

otherwise (line 14). Upon reception of a copy response, the

requester will replace its current version of the block with

the one received (lines 22-24).

In another occasion, a node receiving a PULL request

may discover that startPCR and endPCR can be located

in its memory, but they do not belong to the same block.

This means that the requester missed one or more TS

packets containing a PCR value, that is, it missed one

or more block boundaries between startPCR and endPCR,

consequently perceiving two or more blocks as one. In that

case, the receiving node concatenates (internally done by

MEMORY.RETRIEVE() in Alg. 2, line 2) to a temporary

buffer all consecutive blocks, from the one starting with

startPCR to the one ending in endPCR, and responds to the

request as if it were a usual single block (lines 6-14). When

the requester receives the PUSH response, it will populate

its block with the offered TS packets, and it will notice

that some of them contain PCR values. It will then split the

block in two or more blocks accordingly (line 21), and it

will continue trying to repair them individually, if some or

all of them are still missing TS packets and the respective

VIEWERTIMEOUT has not yet expired (lines 25-28).

Finally, a PULL request may refer to a block for which

both nodes have missed an equally sized, yet different, set

of 16 or more TS packets. The two nodes have the same

(wrong) perception of the block’s length, so the receiver

will trust the offsets found in the request bitmap. The PUSH

response, however, will most probably contain packets of

wrong offsets. Unfortunately, there is no way for our mech-

anism to detect this rare anomaly. The error will propagate

higher and it will trigger a CRC error at the PES level.

E. Supporting Mechanisms

Like many epidemic peer-to-peer protocols, the BOOSTER

algorithm relies on communication between peers selected

uniformly at random. To that end, we rely on the family

of Peer Sampling Service protocols [5], and specifically

CYCLON [6], which provides each node with a regularly

refreshed list of links to random other peers, in a fully

decentralized manner and at negligible bandwidth cost.

In CYCLON each node maintains a (very short) partial

view of the network, that is, a handful of links (IP addresses

and ports) to other nodes. Each node periodically gossips

with one of its neighbors, mixing their views. As a result,

views are periodically refreshed with new links to random

other nodes. When the right policies are followed (see [5]

and [6] for details), this method has shown to produce

overlays that strongly resemble random graphs, that is, at

any given moment each node’s view contains links to nodes

selected uniformly at random among all alive nodes. Then,

selecting one of these neighbors at random (e.g., to send

a PULL request), is essentially equivalent to selecting one

node at random out of the whole node population. Further,

when the node’s CYCLON view is changing over time, the

node has essentially access to an endless stream of random

peers to communicate with. Notably, the emerged overlays

are remarkably robust to node churn and failures.

In BOOSTER we additionally need to group together nodes

that are tuned to the same transmitter and are additionally

watching the same TV channel. This is fairly straightforward

using a distributed topology construction framework, such

as T-MAN [7], which clusters nodes based on a proximity

function. In short, each node maintains a short view of ℓ

neighbors, where ℓ is fixed. Each node periodically picks

one of its neighbors, they send each other a few of their

neighbors, and each one maintains the closest ℓ (based on

the proximity function) out of its previous neighbors and the

ones received. Each node converges at exponential number

of iterations at having the closest neighbors out of the whole

network.

In our application, we define the proximity between two

nodes to be the numeric difference of their concatenated

Transmitter Identifier and Program Identifier. This way, a

newly joined node gradually selects neighbors of “concate-

nated ID” closer to its own, and in a few rounds it reaches its

target cluster and keeps gossiping within it. Both CYCLON

and T-MAN have shown to operate with remarkable relia-

bility and robustness in (even highly) dynamic conditions.

Finally, their bandwidth cost is minimal. In our setup,

CYCLON and T-MAN were configured to maintain 100 links

in memory (each), and to exchange 10 links when gossiping

(each). That is, in each gossip exchange it initiates to a

neighbor, a node sends 10 links. Given that on average a

node also has to respond to a gossip exchange initiated by

another node once per round, it has to send another 10 links.

Given that CYCLON and T-MAN gossip independently, this

gives a total of 40 uploaded links per round. Finally, given

that a link can be as short as 10 bytes (IP address: 4B, port:

2B, Transmitter and Program IDs: 4B), and that nodes were

configured to gossip every 5 seconds, this gives 80B/sec

upload bandwidth total, for both protocols. The download

bandwidth is symmetric.

V. EVALUATION

For the evaluation of our system we deployed a real-world

testbed consisting of 12 DVB-T receivers to collect real
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traces. These traces were fed to our local simulation and

emulation engine (based on PeerSim [8]) that allowed us to

scale to orders of magnitude larger networks.

A. Methodology

We deployed 12 USB DVB-T receivers at distinct and di-

verse locations across Amsterdam and Utrecht, The Nether-

lands. We developed and deployed a data collection frame-

work that enabled the centrally controlled, synchronized

collection of DVB-T input data at all collaborating sites, and

we collected snippets of DVB stream recordings at various

times during a period of one week.

One of the receivers was kept in a location with excellent

reception quality (high floor, unobstructed view). The ma-

jority of its recordings were absolutely error-free, and they

served as our reference recordings. The remaining receivers

were distributed to volunteer students, that were instructed

to operate them in different parts of their apartments or even

their neighbors’ apartments every other day.

We extracted two types of traces from the collected

recordings:

1) PCR traces: These traces register the occurences of TS

packets carrying PCR values in a stream of TS packets.

Recall that PCR values are included in a (small) subset of

TS packets, and are required to appear at least every 100ms,

yet not at fixed intervals. Indeed, we observed a high interval

variation, ranging from one to 109 TS packets between two

consecutive PCR occurences. Fig. 6 shows the distribution

of interval lengths.

As PCRs serve as block boundaries, determinining block

lengths, we used these traces in our simulations to replay

the exact block length patterns observed in reality.

2) TS error traces: These traces register, for each recording

separately, the exact pattern of received and missed TS

packets. This is obtained by comparing a recording against

the corresponding reference (error-free) recording. Some of

the weakest recordings suffered close to 30% packet loss.

The most important observation from these traces is that

there is no correlation between the lost packets of different

receivers, despite their proximity. In fact, this was true even

when we tested multiple receivers in the same room. This

is fundamental for the efficiency of BOOSTER, as when a

node misses a packet, there are high chances that some other

node has received it.

These traces were used in our simulations to replay the

exact packet loss pattern observed in reality. Each simulated

node was associated with one such trace. Due to the scale

of our experiments, with up to 1000 simulated nodes, each

error trace had to be shared by multiple nodes. Each node

started processing its trace at a different random point, to

avoid systematic errors.

Finally, we modeled Internet latency between nodes using

the MIT King dataset, containing a matrix of pairwise

latencies among 1740 DNS servers collected by the King

method [9]. Note that this stress tests our system at worse

latency conditions than we would expect in real operation,

for two reasons. First, the MIT King dataset was collected

in 2004, and latency has improved since. Second, the dataset

captures latencies at a global scale, while Internet communi-

cation in BOOSTER is inherently taking place among nodes

in the same city, receiving a DVB-T stream from the same

transmitter. Therefore latencies would be among the low end

of this dataset. Nevertheless, we used the complete MIT

King dataset due to its wide acceptance.

B. Fixed error experiments

The principal metrics of interest in our system are the

percentage of TS packets that can be completely repaired

and the bandwidth required. In the first batch of experiments

we investigate how the two parameters of the system,

PULLTIMEOUT and VIEWERTIMEOUT, affect these metrics.

We assign the same fixed error pattern to all nodes in

an experiment, ranging from experiments with nearly zero

errors to experiments with nearly 30% TS packet loss

ratio for each node. This uniform error behavior across

nodes allows us to concentrate on experiment-wide statistical

properties, rather than diving into the individual behavior of

different nodes (which is left for the following section).

Fig. 7 contains four plots, for PULLTIMEOUT 100ms,

200ms, 400ms, and 800ms, respectively. Each plot shows,

as a function of the experiment-wide packet error rate, the

percentage of missing TS packets right after broadcasting

(solid line – top), and how this percentage drops with an

increasing VIEWERTIMEOUT, namely after 500ms, 1000ms,

1500ms, 2000ms, 2500ms, 3000ms, and 5000ms of collab-

orative repairing.

Clearly, as the VIEWERTIMEOUT increases, the ability to

know and repair more packets increases as well. In fact,

VIEWERTIMEOUT has a dominant effect in this respect,

more so than PULLTIMEOUT. E.g., for a mere delay of 3sec

or 5sec, users that would otherwise hardly be able to watch a

program, can now enjoy a crystal clear stream, irrespectively

of the PULLTIMEOUT used.

C. Mixed error experiments

We now investigate the interaction of nodes in the pres-

ence of diverse error patterns. In that respect, nodes are

associated with error patterns captured through our real
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world testbed. Thus, the experiments we carry out this way

“replay” a very close approximation of our system in the

real world.

First, we are interested to explore the collaborative re-

pair efficiency on nodes of different error patterns. As we

previously identified VIEWERTIMEOUT to be the dominant

parameter for repair efficiency, Fig. 8 presents four plots for

different VIEWERTIMEOUT values, namely 500ms, 1000ms,

2000ms, and 5000ms, respectively. Each plot corresponds to

a single experiment, and plots the number of TS packets a

node is missing before and after repairing, in log-scale. Note

that we explicitly mapped 0 missing packets to the value

10−5, so that they appear in the log-scale.

As expected, with a short VIEWERTIMEOUT of 500ms, or

even 1sec, nodes manage to repair several, but not an over-

whelming fraction of their missing TS packets. However, by

allowing the collaborative repair algorithm a bit more time,

such as 2 or 5 seconds, it can turn a rather weak signal to

very good, and in most cases crystal clear. Note the dense

horizontal line of points at y = 10−5, denoting zero errors.

Next, we want to assess the effect of PULLTIMEOUT

on bandwidth. In Fig. 9 we fix the VIEWERTIMEOUT to

2sec, and we present the upload and download bandwidth,

per node, for four values of the PULLTIMEOUT, namely

100ms, 200ms, 400ms, and 800ms. Note that we do not

plot the bandwidth for the maintenance of random links, as

in Sec. IV-E we calculated it to be constant and negligible:

80Bytes/sec upload + 80Bytes/sec download.

We make two observations from these plots. First, as

expected, the lower the PULLTIMEOUT, the more aggressive

nodes are with repairing their missing TS packets fast, at the

cost of higher bandwidth (both download and upload).

The second—and most important—observation is that,

although download bandwidth is proportional to the number

of TS packets a node needs to repair, the contribution of all

nodes in upload bandwidth is roughly the same, and largely

independent of the node’s original packet loss ratio. This is

attributed, first, to the random selection of nodes for PULL

requests, and second, to the fact that errors are not correlated

across different nodes, a property we have confirmed in

thorough trace analysis. Additionally, although a node may

be missing a lot of TS packets due to weak reception,

repairing them through our system makes it eligible to serve,

in turn, PULL requests of other nodes.

It should be emphasized that the upload bandwidth re-

quired by each node is in the order of 5KB/sec for reason-

ably selected settings, a rather trivial bandwidth for today’s

typical ADSL connections.

Finally, we introduced packet loss by randomly dropping

PULL requests and PUSH responses. In Fig. 10 we show

the cases for 1%, 2%, 5% and 10% packet loss. The plots

show that increased Internet packet loss has relatively little

impact on the percentage of repaired TS packets, with most

affected nodes still managing to substantially recover their

errors. Note that the VIEWERTIMEOUT is set at 2000ms and

PULLTIMEOUT set to 500ms which allows nodes enough

time to recover from lost Internet packets on top of recov-

ering from lost TS packets.

VI. RELATED WORK

Cooperative repair represents a middleground between

wireless broadcasting and live video streaming, such as
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IPTV. Unlike IPTV, which delivers the entire video over the

Internet, BOOSTER uses the Internet only when necessary to

repair a received wireless broadcast. In this way, BOOSTER

places significantly less burden on the Internet than IPTV

does. Furthermore, a given repair packet is typically needed

by a small fraction of the receivers, so off-the-shelf use

of systems like BitTorrent would introduce unnecessary

complexity and overhead.

The work in [10] is closely related to ours. The au-

thors consider a satellite broadcast and repair it via a

terrestrial network. They consider the cases where both a

centralized scheduler is available to coordinate the repair

between peers, and where no such scheduler exists. If a

centralized scheduler is available, each peer sends a negative

acknowledgement (NAK) to the scheduler for each block

that it receives in error. The scheduler then responds with

a list of peers that may be contacted for the block. When

no central scheduler is available, a peer randomly selects k

other peers to recover from a lost block. In both cases it is

assumed that peers can reliably detect the loss of each and

every lost block – which is something that in practice we

could not assume in our system due to TS packets not being

uniquely identifiable. Their work also has a slightly different

goal since they allow a signal to the source for resending

blocks which were not received by any peer – and their

experiments consider transfer of files of various sizes.

Also addressing satellite transmission as the primary chan-

nel, the work in [11] maintains trees within the terrestrial

peer-to-peer network to facilitate the exchange of repair

information and retrieval of lost packets.

A number of researchers have concentrated on wireless

broadcasts in 3G cellular networks with cooperative repair

using 802.11 or Bluetooth as the secondary channel. The

work in [12] proposes Fair Load Point Coordinated Error

Resilience, which uses an approach similar to a centralized

scheduler, but where each peer is a scheduler for a subset of

peers in the network. The primary channel is GSM and the

secondary channel is WLAN. After a node detects a packet

loss, it indicates the loss to the leader in the form of a NAK.

Then the leader selects an appropriate peer from its group

to respond with the requested packet.

The work in [13] allows a peer to broadcast over the

secondary channel that it requires assistance to recover from

errors. A detailed protocol to establish and maintain part-

nerships between peers is proposed. In [14], the BOPPER

scheme is proposed, where a peer with a correctly received

packet rebroadcasts its packet to its neighborhood, with a

certain predetermined probability in order to reduce flooding

in the network.

Alternatively [15] explores the optimal communication

required between a set of peers to recover the correct

transmission. The algorithm is NP-hard and they consider

various optimizations and a distributed implementation.

Finally, the work in [16] uses network coding to exchange

data between peers for the purpose of cooperative repair.

They consider reducing the effect of lost data in terms of the

distortions at the visual level, by appropriate coding at the

recovery level. The system proceeds in two logical phases,

where in the first phase peers receive a group of packets from

the broadcast, then in the second phase the peers broadcast

network coded information among themselves. The phases

are overlapped with subsequent groups of packets. The

information exhanged is such that peers can reconstruct lost

packets with high probability.



VII. CONCLUSION

We presented BOOSTER, an epidemic cooperative repair

system that repairs DVB transmissions among DVB re-

ceivers over the Internet. Our system works at the Transport

Stream level, where packets are conveniently fixed to 188

bytes in length. The system operates between the receiver

and the viewer, recovering lost TS packets from other peers

before handing them to the viewer. We provide a method for

peers to identify identical intervals of TS packets, using the

Program Clock Reference (PCR) that occurs in intermittent

packets, and to merge or copy intervals for the purpose of

converging to a completely repaired interval.

To validate our work we gathered trace data of real

DVB transmissions, decoded the packets to gather error

statistics, PCR statistics and other data, and simulated the

repair algorithm over a large number of peers on a clus-

ter. Our simulations show the feasibility of repairing a

DVB transmission via standard ADSL Internet connections

where about 5KB/sec upload bandwidth was acceptable for

adequate repair in reasonable circumstances. We showed

detailed tradeoffs between repair quality and Internet band-

width used, with respect to DVB errors and the number of

peers in the network.

Our system thus far assumes well behaving peers. We

have not considered solutions to other aspects such as “free

riders”. Peer-to-Peer systems are known to be vulnerable to

exploitation by free riders, selfish users making use of a

P2P service’s benefits but refusing to play by the rules and

to contribute to it.

In BOOSTER, free riding can manifest itself in two ways.

The first involves users who instrument their own client

(or network settings) to ignore incoming PULL requests.

This falls in the classic domain of free riding, and should

be addressed by appropriate incentive mechanisms, such

as BitTorrent’s tit-for-tat. The second free riding scenario

involves users that do not own a DVB-T receiver, but

participate in a collaborative repair network to download all

packets from other, legitimate users. The implication of this

is more severe than free riding on bandwidth resources: as

several of these channels are subscription based, one could

get to watch them for free.

Improvements such as the tit-for-tat algorithm are or-

thogonal to our existing work. However we believe that

some properties of the underlying system may be useful to

incorporate into solutions to the free riders problem. E.g.

since pulling a block of TS packets requires to explicitly

state the block’s boundary PCR values, a node with no

access to the original stream will have no way to initiate

a pull with two valid 33-bit PCR values. Further work is

required to establish how such properties could be applied.
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