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ABSTRACT 

Generation of high-precision sub-phonetic attribute (also known as 
phonological features) and phone lattices is a key frontend 
component for detection-based bottom-up speech recognition. In 
this paper we employ deep neural networks (DNNs) to 
improve   detection accuracy over conventional shallow MLPs 
(multi-layer perceptrons) with one hidden layer. A range of DNN 
architectures with five to seven hidden layers and up to 2048 
hidden units per layer have been explored. Training on the SI84 
and testing on the Nov92 WSJ data, the proposed DNNs achieve 
significant improvements over the shallow MLPs, producing 
greater than 90% frame-level attribute estimation accuracies for all 
21 attributes tested for the full system. On the phone detection task, 
we also obtain excellent frame-level accuracy of 86.6%. With this 
level of high-precision detection of basic speech units we have 
opened the door to a new family of flexible speech recognition 
system design for both top-down and bottom-up, lattice-based 
search strategies and knowledge integration. 

Index Terms — automatic speech attribute transcription, deep 
neural networks, detection-based ASR, phonological features, 
attribute detection, phone recognition 
 

1. INTRODUCTION 
 
State-of-the-art automatic speech recognition (ASR) systems are 
often based on a pattern matching framework that is motivated by 
expressing spoken utterances as sequences of stochastic patterns 
[1]. A single probabilistic finite state network (FSN), composed of 
acoustic hidden Markov model (HMM) states, phones, lexicon, 
grammar nodes, and their connecting arcs [2], is constructed in a 
top-down manner to represent all ASR task constraints. For a given 
input utterance the FSN is searched for the most likely sequence of 
words as the recognized sentence with maximum a posteriori 
(MAP) decoding [1], known as the integrated search strategy. On 
the other hand, the need for alternative ASR paradigms had 
attracted some research attention in recent years. Automatic speech 
attribute transcription (ASAT) [3][4] is a recently proposed 
framework based on bottom-up attribute detection of a collection 
of speech cues followed by knowledge integration of such cues to 
make linguistic validations. ASAT makes use of the articulatory-
based phonological features studied earlier [6][7][8][9] in a new 
detection-based framework, and extends them to a number of tasks 
including rescoring of word lattices generated by state-of-the-art 
HMM systems [3], continuous phone recognition [5], cross-

language attribute detection and phone recognition [10] and spoken 
language recognition [11].  

In a recent attempt an LVCSR (large vocabulary continuous 
speech recognition) system was realized in a bottom-up, decoupled 
search fashion using weighted finite state machines (WFSMs) [12]. 
It was found that high-precision lattice generation at every stage of 
the knowledge integration phase and low-error lattice pruning with 
limited memory requirements are two critical research issues to 
warrant good performances for such a bottom-up, decoupled ASR 
search strategy. In this study we explore the first key challenge of 
generating high-precision attribute and phone lattices. We extend 
the conventional shallow MLPs used in [12] to deep neural 
networks (DNNs) [13], which has been shown to have very good 
theoretical properties [14] and demonstrated superior performances 
for both phone [16][17] and word recognition [15][13][18][19]. 

In this paper, we explore a wide range of DNN architectures by 
extending the conventional single hidden layer MLPs to five and 
seven layers. We also expand the number of hidden units in each 
layer from the original 800 and 1500 units [12] to 2048 units, and 
show that the DNNs lead to better attribute and phone recognition 
performance. The significantly boosted quality in attribute and 
phone estimation makes it highly promising to advance bottom-up 
LVCSR with DNNs and with new ways of incorporating the key 
asynchrony properties of the attributes. This also opens doors to 
new flexibility in combining top-down and bottom-up ASR. 
 

2.  ATTRIBUTES AND PHONES 
 
An example detection-based frontend is shown in Figure 1 which 
was used in [12]. It consists of two main blocks: a bank of speech 
attribute detectors and an evidence merger. For English, which is 
what we evaluate in this paper, an attribute detector is built for 
each of the 21 phonological features listed in Table 1. Each 
attribute detector analyzes an expanded frame of the input speech 
signal and produces the posterior probability that pertains to some 
acoustic-phonetic attribute. Feed-forward multi-layer perceptrons 
(MLPs) can be used to build detectors. The input to each detector 
can be any speech features. Here in this paper we adopt the 
conventional 39-dim MFCC+Δ+ΔΔ vector. The number of outputs 
for each attribute detector is two: attribute present and absent. The 
long-term dependencies among attributes are taken into account in 
the append & expand module, which stacks together a window of 
eleven frames around the frame to be classified and generates a 
super-vector. The merger module is then fed with this super-vector. 
The merger can also be implemented with a frame-based MLP to 
discriminate among 40 phone classes.  
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Figure 1: Front-end module of detection-based ASR 

 

 
 

3. DEEP NEURAL NETWORKS 
 
A DNN is a multi-layer perceptron (MLP) with many hidden 
layers. Due to the deep structure and the complicated nonlinear 
surface introduced by the large number of hidden layers it is 
important to employ effective training strategies. A popular trick is 
to initialize the parameters of each layer greedily and generatively 
by treating each pair of layers in DNNs as a restricted Boltzmann 
machine (RBM) before doing a joint optimization of all the layers 
[14]. This learning strategy enables discriminative training to start 
from well initialized weights and is used in this study. 
 
3.1 Restricted Boltzmann Machines 

 
An RBM can be represented as a bipartite graph with a visible 

layer and a hidden layer. The stochastic units in the visible layer 
only connect to the stochastic units in the hidden layer. The units in 
the visible layer are typically represented by Bernoulli or Gaussian 
distributions and the units in the hidden layer are typically 
represented with Bernoulli distributions. Gaussian-Bernoulli 
RBMs can be used to convert real-valued stochastic variables (such 
as MFCCs) to binary stochastic variables which can then be further 
processed using the Bernoulli-Bernoulli RBMs. 

Given the model parameters , the joint distribution  
over the visible units and hidden units  in the RBMs can be 
defined as 

 (1) 

where  is an energy function and 
 is the partition function. The 

marginal probability that the model assigns to a visible vector  is 

 (2) 

The parameters in RBMs can be optimized to maximize log 
likelihood  and can be updated as 

 (3) 
where  is the expectation that  and  occur together in 
the training set and  is that same expectation under the 
distribution defined by the model.  Because  is 
extremely expensive to compute exactly, the contrastive 
divergence (CD) approximation to the gradient is used, where 

 is replaced by running the Gibbs sampler initialized at 
the data for one full step [14].  

 
3.2 Deep Neural Network Training Process 

 
The last layer of a DNN transforms a number of Bernoulli 
distributed units into a multinomial distribution using the softmax 
operation 

 (4) 

where  denotes the input been classified into the th class, 
and  is the weight between hidden unit  at the last layer and 
class label .  

To learn the DNNs, we first train a Gaussian-Bernoulli RBM 
generatively in which the visible layer is the continuous input 
vector constructed from  frames of speech features, in 
which  is the number of look-forward and look-backward frames. 
We then use Bernoulli-Bernoulli RBMs for the remaining layers. 
When pre-training the next layer,  
from the previous layer is used as the visible input vector based on 
the mean-field theory. This process continues until the last layer at 
which time error back-propagation (BP) is used to fine-tune all the 
parameters jointly by maximizing the frame-level cross-entropy 
between the true and the predicted probability distributions over 
class labels.  

 
4. EXPERIMENTS 

 
In this section we report results on using DNNs to train attribute 
and phone detectors and show that the detectors trained using 
DNNs significantly outperform those trained using shallow MLPs 
used in [12]. 
 
4.1. Experimental Setup 

Table 1. Phonological features (attributes) and their 
associated phones used in this study. 

 Attribute Phonemes 

manner 

Vowel iy ih eh ey ae aa aw ay ah ao oy ow 
uh uw er 

Fricative jh ch s sh z zh f th v dh hh 
Nasal m n ng 
Stop b d g p t k 

Approximant w y l r 

place 

Coronal d l n s t z 
High ch ih iy jh sh uh uw y ow g k ng 

Dental dh th 
Glottal hh 
Labial b f m p v w 
Low aa ae aw ay oy 
Mid ah eh ey ow 

Retroflex er r 
Velar g k ng 

others 

Anterior b d dh f l m n p s t th v z w 
Back ay aa ah ao aw ow oy uh uw g k 

Continuant aa ae ah ao aw ay dh eh er r ey l f ih 
iy oy ow s sh th uh uw v w y z 

Round aw ow uw ao uh v y oy r w 

Tense aa ae ao aw ay ey iy ow oy uw ch s 
sh f th p t k hh 

Voiced aa ae ah aw ay ao b d dh eh er ey g ih 
iy jh l m n ng ow oy r uh uw v w y z 

Silence sil 
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All experiments were conducted on the 5,000-word speaker 
independent WSJ0 (5k-WSJ0) task [20]. The training material 
from the SI84 set (7077 utterances, or 15.3 hours of speech from 
84 speakers) is separated into a 6877-utterance training set and a 
200-sentence cross-validation (CV) set. Evaluation was carried out 
on the Nov92 evaluation data with 330 utterances from 8 speakers. 
In all the studies, 13 MFCCs+Δ+ΔΔ were chosen as the short-time 
spectral representation of the speech signal. 

In this study, the phone labels were derived from the forced 
alignments generated using a 2818 8-mixture tied-state cross-word 
tri-phone GMM-HMM LVCSR system trained with maximum 
likelihood criterion. The attribute labels were generated by 
mapping phone labels to attributes according to Table 1. No 
assimilation of attributes from one phone to the adjacent ones was 
represented and modeled in the results reported below. 
 
4.2. Results on Attribute Detector 
 
Table 2 compares the average cross entropy (CE) and classification 
accuracies at a frame level for the speech attributes used in this 
work. In this table, the prior  is estimated from the training 
data. The naïve algorithm assigns each frame with the most 
probable label (true or false). That is, when the majority of the 
frames in the training set is true for an attribute, then we assign 
value “true” to that attribute for all frames. The shallow MLP 
results were quoted from [12] and were obtained using a single 
hidden layer MLP with 800 hidden units. The DNN contains 5 
hidden layers each with 2048 units following previous work [13].  

From this table we observe that the DNN significantly 
outperforms the shallow MLP, with relative error rate reductions 
ranging from 40% to 90% for different attributes. The average 
relative error rate is reduced by 56% across all attributes over the 
shallow MLP. In fact, for many attributes, such as back, labial, and 
mid, single hidden layer MLP performs only slightly better than the 
naïve approach while the DNN achieves a much higher accuracy. 

4.3. Results on Phone Estimation 
 
Table 3 summarizes the average cross entropy (CE) and 
classification accuracies at the frame level for phones. The setup  
names are encoded as “#_hidden_units x #_hidden_layer 
input_feature”, where the input feature MFCC is the standard 39-
dim MFCCs+Δ+ΔΔ feature, input features Attr1 and Attr2 refer to 
the attribute log posterior probability generated from the 800x1 
MLP and 2048x5 DNN attribute detectors, respectively, and the 
input feature phone at the bottom row of Table 3 is the phoneme 
log posterior probability computed from the 2048x5 phone detector 
DNN with the MFCC input. All the five setups used 11 frames of 
features - 5 frames looking ahead and 5 frames looking back. 
 

 
From Table 3 we can make several observations. First, the 

shallow MLP based phone detector performs the worst even 
though it used the attribute detector’s results as the input feature. 
For example, we can increase the test set accuracy by absolute 
2.5% and 2.7% over the shallow MLP detector, respectively, using 
a 5-hidden layer and 7-hidden layer DNN. Second, breaking the 
phone detector into two stages - first to detect the attribute and then 
to estimate the phone identity based on the results of attribute 
detectors – has not provided any gain over the direct approach that 
detect phones using the MFCC features if DNN is used, although 
the same two-stage detector did show advantages if shallow MLP 

Table 3. Average cross entropy (CE) and phone classification 
accuracies at the frame level  

avg CE acc(%) avg CE acc(%) avg CE acc(%) 
- 86.7 - 82.7 - 82.6 

-0.26 91.6 -0.45 85.3 -0.46 85.1 
-0.24 91.9 -0.45 85.5 -0.46 85.3 
-0.28 90.2 -0.45 85.5 -0.48 85.0 
-0.22 92.3 -0.41 86.8 -0.43 86.6 

 

 

Table 2.  Average cross entropy (CE) and classification accuracies at a frame level for the speech attributes. 

train test test train cv test 
% Acc (%) Acc (%) Avg CE Acc (%) Avg CE Acc (%) Avg CE Acc (%) 

36.2 63.8 85.6 -0.14 94.4 -0.21 91.8 -0.19 92.5 
9.2 90.8 94.9 -0.06 97.5 -0.09 96.5 -0.09 96.4 

19.6 80.4 87.6 -0.14 94.4 -0.18 92.6 -0.17 93.1 
55.7 55.7 88.7 -0.15 94.3 -0.18 93.0 -0.16 93.5 
25.5 74.5 87.9 -0.14 94.3 -0.19 92.6 -0.20 92.4 
1.4 98.6 98.9 -0.02 99.4 -0.02 99.2 -0.02 99.0 

15.3 84.7 94.2 -0.08 96.9 -0.10 96.1 -0.10 96.2 
0.8 99.2 99.3 -0.01 99.7 -0.01 99.6 -0.01 99.7 

16.7 83.3 90.7 -0.09 96.8 -0.13 95.2 -0.13 95.0 
11.0 89 92.5 -0.07 97.3 -0.10 96.4 -0.08 96.9 
9.3 90.7 94.6 -0.05 98.1 -0.09 96.7 -0.09 96.9 

11.8 88.2 90.7 -0.13 94.9 -0.15 93.9 -0.15 93.8 
8.7 91.3 95.9 -0.04 98.5 -0.07 97.4 -0.07 97.7 
6.2 93.8 97.6 -0.02 99.1 -0.04 98.5 -0.04 98.5 

14.7 85.3 91.9 -0.07 97.4 -0.13 95.3 -0.14 94.9 
19.0 81 97.6 -0.04 98.5 -0.04 98.2 -0.03 98.7 
15.3 84.7 92.9 -0.10 96.2 -0.13 95.3 -0.12 95.7 
39.5 60.5 83.0 -0.16 93.8 -0.23 90.7 -0.24 90.6 
5.4 94.6 96.6 -0.03 99.1 -0.05 98.4 -0.04 98.7 

59.9 59.9 92.1 -0.11 95.9 -0.13 95.0 -0.12 95.3 
32.5 67.5 87.9 -0.13 94.6 -0.19 92.6 -0.18 92.8 
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or other shallow model (e.g. [24]) is used. This indicates DNNs are 
powerful enough to capture useful discriminative information. 
Third, we can obtain additional 1.5% absolute accuracy 
improvement over the “2048x5 MFCC” configuration by using its 
output (augmented by the adjacent frames) as the features into a 
new, higher-level phone detector. Finally, comparing cv and test 
set results we can see that the DNN results are robust. 
 

5. DISCUSSION AND CONCLUSION 
 
We have demonstrated in this work that we can achieve high 
accuracies for both phonological attribute detection and phone 
estimation using DNNs. This opens up new potentials to some old 
problems, such as speech recognition from a phone lattice [2] and 
from phonological parsing [22]. It also creates an exciting avenue 
to provide high-precision attribute and phone lattices for bottom-
up, detection-based speech recognition where words can be 
directly specified in terms of attributes free from phones. For 
speech understanding, concepts may be also directly specified in 
terms of attributes free from words. More specifically, for ill-
formed utterances, such as in spontaneous speech where partial 
understanding is often needed because an integrated approach is 
not sufficient to properly capture the overall knowledge sources, it 
is expected that the proposed framework will be robust and will 
give a better performance than the standard HMM-based 
technology as demonstrated in previously proposed key-phrase 
detection frameworks [23]. With our initial success reported in this 
paper, we intend to continue to explore the cross-fertilization of 
ASAT and DNNs for LVCSR and other applications. 

One clear limitation of the current framework in the detection-
based speech recognition is the lack of temporal overlapping (i.e., 
asynchrony) characteristics in the attributes across different 
dimensions. This limitation is reflected in the static phone-to-
attribute mapping (Table 1), and may account for why the use of 
attributes has not achieved better phone estimation compared with 
no use of attributes. Yet such asynchrony is central to modern 
phonological theory. Incorporation of asynchrony will significantly 
modify the attribute targets in running speech in a principled and 
parsimonious way, as demonstrated in  [6][8][9][21]. With the 
attribute targets modified in a phonologically meaningful manner, 
it is hopeful that the DNN approach will further enhance the value 
of the attributes for making word recognition more accurate in the 
detection-based framework. 
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