
Proceedings of Machine Learning Research 129:145–160, 2020 ACML 2020

Boosting-Based Reliable Model Reuse

Yao-Xiang Ding dingyx@lamda.nju.edu.cn

Zhi-Hua Zhou zhouzh@lamda.nju.edu.cn

National Key Laboratory for Novel Software Technology, Nanjing University, China.

Editors: Sinno Jialin Pan and Masashi Sugiyama

Abstract

We study the following model reuse problem: a learner needs to select a subset of models
from a model pool to classify an unlabeled dataset without accessing the raw training data
of the models. Under this situation, it is challenging to properly estimate the reusability
of the models in the pool. In this work, we consider the model reuse protocol under which
the learner receives specifications of the models, including reusability indicators to verify
the models’ prediction accuracy on any unlabeled instances. We propose MoreBoost, a
simple yet powerful boosting algorithm to achieve effective model reuse under the idealized
assumption that the reusability indicators are noise-free. When the reusability indicators
are noisy, we strengthen MoreBoost with an active rectification mechanism, allowing the
learner to query ground-truth indicator values from the model providers actively. The
resulted MoreBoost.AR algorithm is guaranteed to significantly reduce the prediction er-
ror caused by the indicator noise. We also conduct experiments on both synthetic and
benchmark datasets to verify the performance of the proposed approaches.

1. Introduction

As the scale of machine learning tasks gets larger, model training usually involves high
time and sample complexity, thus it becomes increasingly expensive to learn from scratch.
This promotes the growing need to utilize existing models for solving a new task. Modeling
essential aspects under this scenario, the model reuse problem studies the following situation:
given a pool of pre-trained models without their training data, a learner tries to reuse
some of these models to make the current task to have a better performance. There are
several properties to consider. First, the models are not necessarily to be trained from the
same/similar task. In other words, not all the existing models are helpful for the current
task. Moreover, the training data of these models are unavailable to the current user. As
a result, there are two big challenges to deal with: (1) to identify which models may be
helpful to the current task; (2) to exploit these helpful models. The good news is, though the
training data are not observed, as described in the learnware paradigm (Zhou, 2016), each
model is associated with a specification, which can be carefully designed to help the future
learner to understand which model can be utilized and how to exploit it. The specification is
the key to characterize the reusability of a model. It can have various of formulations, such
as (1) descriptions of the original task from which the model is learned, e.g. information
of the original feature/label space, learning objective and data distribution statistics; (2) a
reusability indicator taking future instances as inputs, and outputting whether the model

c⃝ 2020 Y.-X. Ding & Z.-H. Zhou.

Ding Zhou

can make accurate predictions; (3) high-level knowledge such as logical rules allowing to
understand how the model can be utilized.

There have been several model reuse scenarios studied before. When we assume that
all models are useful, the simplest way is to directly build the majority voting classifier
with all existing models (Zhou, 2012). Alternatively, (Li et al., 2012) considers to reuse
the existing models to adapt to new objective functions, and (Yang et al., 2017) considers
to utilize the existing models as feature generators. These approaches do not consider the
design of specifications, thus the model reusability is not explored. In (Wu et al., 2020),
the reducible kernel mean embedding (RKME) specification is proposed, which is the first
work to consider the design of the specification. The RKME specification provides data
density information of the original task under which the model is trained. On the other
hand, RKME is only designed for the scenario where the specific mixture density assumption
holds. In this work, we consider a more general model reuse scenario without relying on such
problem-specific assumption: for any model, there is a reusability indicator included in the
specification, which takes any unlabeled instance as input, and outputs a score to measure
the model’s ability to make accurate prediction on it. Furthermore, we aim at dealing with
the following challenge: the reusability indicator can only be prepared by the local model
provider with the limited local information, thus it is not guaranteed to correctly estimate
reusability on any future instances. To deal with this issue, we consider the setting where
the target task learner can query ground-truth indicator outputs from model providers to
rectify the indicators. This provides a preliminary exploration to realize the evolvability
demanded by learnware (Zhou, 2016), that is, the learnware is able to evolve to adapt to
environmental changes and improve its own performance/usability.

Our contributions are listed as follows. In Section 2, we introduce the reusability-aware
model reuse protocol with reusability indicator specifications. In Section 3, we propose
MoreBoost (Model reuse Boosting), a simple yet powerful boosting-based model reuse al-
gorithm. We show that under the noise-free case, MoreBoost is guaranteed to minimize
the prediction error. In Section 4, we show that MoreBoost suffers from significant perfor-
mance degeneration when the reusability indicators are inaccurate. To solve this issue, we
propose an active rectification mechanism to rectify the reusability indicators. We show that
the resulted MoreBoost.AR algorithm (MoreBoost with Active Rectification) again enjoys
strong theoretical guarantees. In Section 6, we provide experimental results on synthetic
and benchmark datasets to show the desired performance of our approaches.

We utilize bolded characters to denote a set of enumerated elements by their subscripts.
The length of enumeration is clear from the content. For example, w denotes the set
{ws|s ∈ [T]} in which [T] ≡ {1, 2, . . . , T}. We also utilize I to denote the indicator function.

2. Reusability-Aware Model Reuse Protocol

Assume that the global input and output spaces are X ,Y, where Y is a finite set of classes
of size L, i.e. [L]. We assume that there is a global labeling function f∗ mapping from X
to Y, which generate labels for data sampled from any input distributions D over X .

There are K model providers involved in our problem. Each provider k observes
her local dataset Sk = (Xk, Yk) = {(x, y) ∈ X×Yk}. For each Sk, the instances are generated
by sampling from an unknown input distribution Dk over X , and then labeling by f∗. Note

146

Boosting-Based Reliable Model Reuse

…
 …

DT
<latexit sha1_base64="UQB77iZdYs14jgZB6/Xy7rD5isI=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYBFclZkq6LKoC5cV+oJ2LJk004ZmkiHJKGXof7hxoYhb/8Wdf2OmnYW2HggczrmXe3KCmDNtXPfbWVldW9/YLGwVt3d29/ZLB4ctLRNFaJNILlUnwJpyJmjTMMNpJ1YURwGn7WB8k/ntR6o0k6JhJjH1IzwULGQEGys93PbTXoTNiGCOGtN+qexW3BnQMvFyUoYc9X7pqzeQJImoMIRjrbueGxs/xcowwum02Es0jTEZ4yHtWipwRLWfzlJP0alVBiiUyj5h0Ez9vZHiSOtJFNjJLKJe9DLxP6+bmPDKT5mIE0MFmR8KE46MRFkFaMAUJYZPLMFEMZsVkRFWmBhbVNGW4C1+eZm0qhXvvFK9vyjXrvM6CnAMJ3AGHlxCDe6gDk0goOAZXuHNeXJenHfnYz664uQ7R/AHzucPMY6STw==</latexit>

D2
<latexit sha1_base64="xB2v8RW/cthlBNlsC7uHmsGRSvI=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiHjxWMG2hDWWznbZLN5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjpo5TxdBnsYhVO6QaBZfoG24EthOFNAoFtsLx7cxvPaHSPJaPZpJgENGh5APOqLGSf9fLatNeueJW3TnIKvFyUoEcjV75q9uPWRqhNExQrTuem5ggo8pwJnBa6qYaE8rGdIgdSyWNUAfZ/NgpObNKnwxiZUsaMld/T2Q00noShbYzomakl72Z+J/XSc3gOsi4TFKDki0WDVJBTExmn5M+V8iMmFhCmeL2VsJGVFFmbD4lG4K3/PIqadaq3kW19nBZqd/kcRThBE7hHDy4gjrcQwN8YMDhGV7hzZHOi/PufCxaC04+cwx/4Hz+AIN5jn0=</latexit>

D3
<latexit sha1_base64="trrpqJw3OzitOBHroBARTiSTkgM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY9FPXisYGqhDWWznbZLN5uwuxFK6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlo5TxdBnsYhVO6QaBZfoG24EthOFNAoFPobjm5n/+IRK81g+mEmCQUSHkg84o8ZK/m0vq0975Ypbdecgq8TLSQVyNHvlr24/ZmmE0jBBte54bmKCjCrDmcBpqZtqTCgb0yF2LJU0Qh1k82On5MwqfTKIlS1pyFz9PZHRSOtJFNrOiJqRXvZm4n9eJzWDqyDjMkkNSrZYNEgFMTGZfU76XCEzYmIJZYrbWwkbUUWZsfmUbAje8surpFWrevVq7f6i0rjO4yjCCZzCOXhwCQ24gyb4wIDDM7zCmyOdF+fd+Vi0Fpx85hj+wPn8AYT+jn4=</latexit>

D4
<latexit sha1_base64="ngh5b37QFdDfCzGxI/cOJ9j9JcU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKezGgB6DevAY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGNzO/9YRK81g+mnGCfkQHkoecUWOlh9tetVcsuWV3DrJKvIyUIEO9V/zq9mOWRigNE1Trjucmxp9QZTgTOC10U40JZSM6wI6lkkao/cn81Ck5s0qfhLGyJQ2Zq78nJjTSehwFtjOiZqiXvZn4n9dJTXjlT7hMUoOSLRaFqSAmJrO/SZ8rZEaMLaFMcXsrYUOqKDM2nYINwVt+eZU0K2Xvoly5r5Zq11kceTiBUzgHDy6hBndQhwYwGMAzvMKbI5wX5935WLTmnGzmGP7A+fwBwkONcw==</latexit>

Active Rectification

D
0

2
<latexit sha1_base64="EbKsGz9MVY5lek4UeomhDcyT2Sk=">AAAB73icbVBNSwMxEJ2tX7V+VT2Jl2ARPJXdKuixqAePFewHtEvJZrNtaDZZk6xQlv4JLx4U8erf8ea/MW33oK0PBh7vzTAzL0g408Z1v53Cyura+kZxs7S1vbO7V94/aGmZKkKbRHKpOgHWlDNBm4YZTjuJojgOOG0Ho5up336iSjMpHsw4oX6MB4JFjGBjpRBu0RH0odYvV9yqOwNaJl5OKpCj0S9/9UJJ0pgKQzjWuuu5ifEzrAwjnE5KvVTTBJMRHtCupQLHVPvZ7N4JOrVKiCKpbAmDZurviQzHWo/jwHbG2Az1ojcV//O6qYmu/IyJJDVUkPmiKOXISDR9HoVMUWL42BJMFLO3IjLEChNjIyrZELzFl5dJq1b1zqu1+4tK/TqPowjHcAJn4MEl1OEOGtAEAhye4RXenEfnxXl3PuatBSefOYQ/cD5/AONNjeg=</latexit>

D
0

3
<latexit sha1_base64="1w5LQeoocMMSKGhTmlQcf9e9t38=">AAAB73icbVBNSwMxEJ31s9avqifxEiyCp7LbCnos6sFjBfsB7VKy2Wwbmk3WJCuUpX/CiwdFvPp3vPlvTNs9aOuDgcd7M8zMCxLOtHHdb2dldW19Y7OwVdze2d3bLx0ctrRMFaFNIrlUnQBrypmgTcMMp51EURwHnLaD0c3Ubz9RpZkUD2acUD/GA8EiRrCxUgi36Bj6UOuXym7FnQEtEy8nZcjR6Je+eqEkaUyFIRxr3fXcxPgZVoYRTifFXqppgskID2jXUoFjqv1sdu8EnVklRJFUtoRBM/X3RIZjrcdxYDtjbIZ60ZuK/3nd1ERXfsZEkhoqyHxRlHJkJJo+j0KmKDF8bAkmitlbERlihYmxERVtCN7iy8ukVa14tUr1/qJcv87jKMAJnMI5eHAJdbiDBjSBAIdneIU359F5cd6dj3nripPPHMEfOJ8/5NGN6Q==</latexit>

D
0

4
<latexit sha1_base64="Byr4UT+YB+zDDp0xdZLxH4d3ou8=">AAAB73icbVBNSwMxEJ31s9avqifxEiyCp7JbC3os6sFjBfsB7VKy2Wwbmk3WJCuUpX/CiwdFvPp3vPlvTNs9aOuDgcd7M8zMCxLOtHHdb2dldW19Y7OwVdze2d3bLx0ctrRMFaFNIrlUnQBrypmgTcMMp51EURwHnLaD0c3Ubz9RpZkUD2acUD/GA8EiRrCxUgi36Bj6UOuXym7FnQEtEy8nZcjR6Je+eqEkaUyFIRxr3fXcxPgZVoYRTifFXqppgskID2jXUoFjqv1sdu8EnVklRJFUtoRBM/X3RIZjrcdxYDtjbIZ60ZuK/3nd1ERXfsZEkhoqyHxRlHJkJJo+j0KmKDF8bAkmitlbERlihYmxERVtCN7iy8ukVa14F5Xqfa1cv87jKMAJnMI5eHAJdbiDBjSBAIdneIU359F5cd6dj3nripPPHMEfOJ8/5lWN6g==</latexit>

D1
<latexit sha1_base64="xvOecDqKTH68V1i8ANgGEWQibQc=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRV0GVRFy4r2Ac0oUymk3boZBLmIZTQ33DjQhG3/ow7/8ZJm4W2Hhg4nHMv98wJU86Udt1vp7S2vrG5Vd6u7Ozu7R9UD486KjGS0DZJeCJ7IVaUM0HbmmlOe6mkOA457YaT29zvPlGpWCIe9TSlQYxHgkWMYG0l34+xHhPM0d3AG1Rrbt2dA60SryA1KNAaVL/8YUJMTIUmHCvV99xUBxmWmhFOZxXfKJpiMsEj2rdU4JiqIJtnnqEzqwxRlEj7hEZz9fdGhmOlpnFoJ/OMatnLxf+8vtHRdZAxkRpNBVkcigxHOkF5AWjIJCWaTy3BRDKbFZExlphoW1PFluAtf3mVdBp176LeeLisNW+KOspwAqdwDh5cQRPuoQVtIJDCM7zCm2OcF+fd+ViMlpxi5xj+wPn8ATFGkSA=</latexit>

D2
<latexit sha1_base64="ypFMCB5lSt8Z4RtcEnL6sarIyQk=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFXbisYB/QGUomzbShmUxIMkIZ+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cUHKmjet+O6W19Y3NrfJ2ZWd3b/+genjU0UmqCG2ThCeqF2JNORO0bZjhtCcVxXHIaTec3OZ+94kqzRLxaKaSBjEeCRYxgo2VfD/GZkwwR3eDxqBac+vuHGiVeAWpQYHWoPrlDxOSxlQYwrHWfc+VJsiwMoxwOqv4qaYSkwke0b6lAsdUB9k88wydWWWIokTZJwyaq783MhxrPY1DO5ln1MteLv7n9VMTXQcZEzI1VJDFoSjlyCQoLwANmaLE8KklmChmsyIyxgoTY2uq2BK85S+vkk6j7l3UGw+XteZNUUcZTuAUzsGDK2jCPbSgDQQkPMMrvDmp8+K8Ox+L0ZJT7BzDHzifPzLKkSE=</latexit>

D3
<latexit sha1_base64="2+3uvCO7gUldOW69lf1IKoVyr4w=">AAAB83icbVBNSwMxFHxbv2r9qnr0EiyCp7LbCnos6sFjBVsL3aVk02wbmk2WJCuUpX/DiwdFvPpnvPlvzLZ70NaBwDDzHm8yYcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRV8tUEdohkkvVC7GmnAnaMcxw2ksUxXHI6WM4ucn9xyeqNJPiwUwTGsR4JFjECDZW8v0YmzHBHN0OmoNqza27c6BV4hWkBgXag+qXP5QkjakwhGOt+56bmCDDyjDC6azip5ommEzwiPYtFTimOsjmmWfozCpDFEllnzBorv7eyHCs9TQO7WSeUS97ufif109NdBVkTCSpoYIsDkUpR0aivAA0ZIoSw6eWYKKYzYrIGCtMjK2pYkvwlr+8SrqNutesN+4vaq3roo4ynMApnIMHl9CCO2hDBwgk8Ayv8Oakzovz7nwsRktOsXMMf+B8/gA0TpEi</latexit>

DK
<latexit sha1_base64="m+6+PomnJ26qrwdREMRfCVmJeMI=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclZkq6LKoC8FNBfuAzlAyaaYNzWRCkhHK0N9w40IRt/6MO//GTDsLbT0QOJxzL/fkhJIzbVz321lZXVvf2Cxtlbd3dvf2KweHbZ2kitAWSXiiuiHWlDNBW4YZTrtSURyHnHbC8U3ud56o0iwRj2YiaRDjoWARI9hYyfdjbEYEc3Tbv+9Xqm7NnQEtE68gVSjQ7Fe+/EFC0pgKQzjWuue50gQZVoYRTqdlP9VUYjLGQ9qzVOCY6iCbZZ6iU6sMUJQo+4RBM/X3RoZjrSdxaCfzjHrRy8X/vF5qoqsgY0KmhgoyPxSlHJkE5QWgAVOUGD6xBBPFbFZERlhhYmxNZVuCt/jlZdKu17zzWv3hotq4LuoowTGcwBl4cAkNuIMmtICAhGd4hTcndV6cd+djPrriFDtH8AfO5w9YrpE6</latexit>

Figure 1: Illustration of MoreBoost and MoreBoost.AR. The initial new task data distri-
bution DT on U may not be close to any of the existing task data distributions
Dk, k ∈ [K]. Under the noise-free case, the changed data distributions Dt over
MoreBoost could get much closer to Dk. While under the noisy case, the mis-
match between Dt and Dk may accumulate over iterations. Thus it is necessary
to introduce the active rectification mechanism in MoreBoost.AR.

Algorithm 1 Reusability-Aware Model Reuse Protocol

1: Model Upload: Models and reusability indicators f ,h.
2: Input: New task data U , error upper bounds σ̄.
3: repeat {Model Selection}
4: repeat {Function Indicator Rectification}
5: Choose k ∈ [K], x ∈ U to query h∗k(x) .
6: Update hk(x) = h∗k(x).
7: until Stop condition reached.
8: Do model reuse algorithm iteration.
9: until Total number of iterations reaches.

10: Output: F ({fkm}, {hkm}),m ∈ [M].

that the input spaces for all parties are the global one X , while the label spaces are subsets
of the global label space, i.e. Yk ⊆ Y. The cardinality of Yk is Lk. We assume that Yk
can have intersections. Furthermore, ∪Yk = Y. Each provider learns a local model fk using
her local dataset Sk, which is a multi-class classifier mapping from X to the product space
[0, 1]Lk . For the convenience of model reuse, we assume that the provider knows the global
label space Y, and fk is augmented into a classifier fk,Y : X × [0, 1]L in the global label space
by setting the model outputs in Yk as fk, and Y \Yk as zeros. The label assignment rule is
given by f̄k(x) = argmaxl∈[L] fk,Y(x, l), in which fk,Y(x, l) is the l-th output of fk,Y(x).

For each provider, besides the classification model, there is also a certificate of model
reusability, i.e. reusability indicator hk trained with local dataset Sk. hk is a function
from x ∈ X to {0, 1}. We assume that for ∀k ∈ [K], the noise-free reusability indicator h∗k
satisfies the following relationship:

Assumption 1
h∗k(x) = 1 =⇒ p(fk(x) ̸= f∗(x)) ≤ ϵk, ∀x ∈ X ,

147

Ding Zhou

in which ϵk is a small non-negative error rate.

Thus if h∗k(x) = 1, then fk is reusable on x, otherwise this is not guaranteed. The reusability
indicators can be implemented in many ways. For example, they can be any predictors
measuring the distance between a future instance to the original task data distribution,
such as outlier detectors (Schölkopf et al., 2001; Liu et al., 2008). Furthermore, if there is
side information available for any instance x (such as additional text descriptions for image
instances), hk can also be predictors based on it. However, since hk can only be trained
with local dataset Sk, it is unlikely to make correct predictions on all future instances. Thus
we model hk as an approximation of h∗k under Bernoulli noise, such that for ∀x ∈ X , hk(x)
is generated by flipping h∗k(x) with a certain probability σk(x). We assume that the noise
upper bounds

σ̄k ≥ σk(x) = p(hk(x) ̸= h∗k(x)), ∀x ∈ X
can be observed by any future learner. In practice, σ̄k can be obtained through various
ways, such as testing hk under a small labeled hold-out validation set collected by future
learners.

The objective of our model reuse problem is as follows. A new user needs to reuse the
existing models to solve her own task: There are N unlabeled data U = {xi, i ∈ [N]}
sampled from an unknown input distribution DT over X . We assume that the underlying
true label space is global, i.e. Y. The learner faces with a transductive learning prob-
lem: She chooses a subset fk1 , fk2 , . . . , fkM out of the K existing models, and outputs
F ({fkm}, {hkm}),m ∈ [M], a transductive classifier to predict on all x ∈ U . As described
above, we assume that the learner receives all reusability indicators from the K model
providers as well as their noise rate upper bounds to identify models’ reusability.

Since the reusability indicators could be inaccurate, the learner is assumed to have the
privilege of rectifying the reusability indicators. In other words, she can actively choose any
x ∈ U , and query for h∗k(x) from any model provider k to refine hk during the running of
the model reuse algorithm. Note that querying ground-truth indicator value is much easier
than querying ground-truth labels, since the model provider only needs to verify whether
the instance is indeed similar to the model training data. The overall model reuse protocol
is illustrated in Algorithm 1.

3. Model Reuse by Boosting

In this section, we introduce the idealized assumption that reusability indicators are free
from error, i.e. h = h

∗. Under this situation, there is no need for the learner to query
the ground-truth indicator values. Motivated by the deep connection between boosting and
online learning with expert advice (Freund and Schapire, 1997), we proposed MoreBoost, a
simple yet powerful boosting approach to solve the model reuse problem under the noise-
free case. We will see that MoreBoost has a fast convergence rate to output a transductive
classifier to maximize the labeling accuracy on U . Meanwhile, it could achieve near-optimal
performance in selecting the smallest subset of models to reuse. The process of MoreBoost is
illustrated in Algorithm 2. As in classical boosting, the key idea lies in maintaining a weight
distribution D over all current task instances. In Line 4, we calculate the reusability score
of each model by the weighted sum of reusability indicator predictions. It is easy to see

148

Boosting-Based Reliable Model Reuse

Algorithm 2 MoreBoost

1: Input: Current task data U , existing models and reusability indicators f ,h, weight
update parameter η, number of total iterations T .

2: Initialize D1(xi) = 1/N for i ∈ [N].
3: for t = 1 to T do
4: Choose the optimal model index as kt = argmaxk∈[K]

∑N
i=1Dt(xi)hk(xi).

5: Set loss ct(xi) = hkt(xi), i ∈ [N].
6: Update weights: Dt+1(xi) = Dt(xi) exp(−ηct(xi))/

∑N
i=1Dt(xi) exp(−ηct(xi)).

7: end for
8: Output: Predict x ∈ U : FT (xi) = argmaxl∈[L]

∑T
t=1 hkt(xi)I[f̄kt(xi) = l].

that the higher the score, the better the model will perform on high-weight instances. The
optimal model is selected greedily according to the reusability score. The next key step is
to update the sample distribution (Line 6) with the loss defined in Line 5. The key intuition
is that if the instance is covered by the current reusability indicator, then its weight should
be decreased, otherwise we should pay more attention to it by increasing its weight. We
introduce a weight update parameter η to control the aggressiveness of weight shrinkage
once an instance is covered. In practice, the more times that we want an instance to be
covered, the smaller η can be used. Finally, different from common boosting, a transductive
classifier FT is outputted by MoreBoost, which can be utilized to label the instances in
U . To proceed on analysing the theoretical properties of MoreBoost, we propose its weak
learning conditions below.

Assumption 2 (Weak learning condition for MoreBoost.)
For any data distribution D over U , there exists k ∈ [K], such that

∑N
i=1D(xi)h

∗
k(xi) >

γ > 0.

The weak learning condition ensures that in any iteration, the fraction of instances which
are covered is at least γ. The following result provides the convergence rate of MoreBoost.

Theorem 1 Let the prediction error of FT be ϵFT
= 1

N

∑N
i=1 p(FT (xi) ̸= f∗(xi)), and

denote by ϵ̄ = maxk∈[K] ϵk. When η =
√

(lnN)/T , after running MoreBoost for T ≥
O(lnN/γ2) iterations, we have ϵFT

≤ ϵ̄.

From Theorem 1, we can see that MoreBoost requires very few iterations to run if γ is not
too small. On the other hand, even if γ is small, the algorithm still guarantees to converge.
To further verify whether MoreBoost tends to choose a small set of useful models, we take
an alternative view of the model reuse problem. We can treat f and U as two sets of graph
vertices. Then the indicators h define the edge between these two sets, such that xi connects
to fk only when hk(xi) = 1. Thus f ,U ,h jointly define a bipartite graph. It is easy to see
that MoreBoost tries to find the minimum subset of f that do the best on covering more
instances. This exactly coincides with the target of choosing a small set of useful models.
In particular, if we only require each instance to be covered by at least one model, then
this is exactly the set cover problem, which is among Karp’s 21 NP-complete problems
(Karp, 1972). It is also proved that the greedy algorithm can achieve the near-optimal
approximation ratio for set cover under the P̸=NP conjecture (Dinur and Steurer, 2014).

149

Ding Zhou

Table 1: Example to show why error rates grow for MoreBoost. The checkmark in row k,
column i indicates that h∗k(xi) = 1, otherwise h∗k(xi) = 0. Numbers indicate the
indicator error rates.

x1 x2 x3 x4 x5 x6

f1 ✓, 0.1 ✓, 0.1 ✓, 0 ✓, 0 0 0

f2 0 0 0 0 ✓, 0.1 ✓, 0.1

f3 1 1 0 0 1 0

f4 0 0 1 1 0 1

We can show the close relationship between MoreBoost and the greedy algorithm for set
cover.

Theorem 2 When η →∞, MoreBoost is equivalent to the greedy set cover algorithm.

This shows that MoreBoost can be treated as the relaxed version of the greedy set cover
algorithm, which utilizes a soft weight update rule. This verifies that MoreBoost achieves
significant performance in keeping the set of chosen models as small as possible.

4. Rectifying Function Indicators

In the previous section, we show that MoreBoost is effective when reusability indicators h

are accurate. However, this is usually not the case in practice, since it is unreasonable to
assume that h can be trained well only using data within a single task. In this section, we
first show that even small indicator errors could lead to significant performance degenera-
tion of MoreBoost. We further propose an active rectification mechanism, which enables
MoreBoost to achieve the desired accuracy even when indicator noise is large.

4.1. Risk of Indicator Error

What performance will MoreBoost achieve when the reusability indicators are not accurate?
The following result shows that even when the error rates are not large, since the prediction
error grows w.r.t. T , MoreBoost performs much worse under this situation.

Theorem 3 Let the prediction error of FT be ϵFT
= 1

N

∑N
i=1 p(FT (xi) ̸= f∗(xi)). As-

sume that ∀t ∈ [T],max{
∑N

i=1Dt(xi)I[hkt(xi) ̸= h∗kt(xi)],
1
N

∑N
i=1 I[hkt(xi) ̸= h∗kt(xi)]} ≤

σ < γ, in which h∗kt are noise-free versions of hkt. When η =
√

(lnN)/T , after running
MoreBoost for T ≥ O(lnN/(γ − σ)2) iterations, we have that ϵFT

≤ ϵ̄+ σT .

We utilize a simple example in Table 1 to show why this could happen. Assume that η
is not too small. If no error is made, then MoreBoost will select f1 and f2 in the first
two iterations to correctly label all the instances. However, in any iteration, once errors
are made on both x1 and x2, then MoreBoost will turn to choose f3 and f4, leading to
error on all instances. This example shows the key reason for the error accumulation in
Theorem 3: on any iteration of MoreBoost, once a wrong model is chosen, the prediction
error of the final obtained model could keep growing by choosing more incorrect models

150

Boosting-Based Reliable Model Reuse

Algorithm 3 MoreBoost.AR

1: Input: U , f ,h, η, error parameters σ0, δ, specification error upper bounds σ̄, number of
total iterations T .

2: Initialize h0,k = hk, D1(xi) =
1
N , I1,k(xi) = 1 for i ∈ [N], k ∈ [K].

3: for t = 1 to T do
4: Set σ̃t =

σ0

T , δ̃t =
δ
T .

5: It+1,ht, kt ← RecSpec(U , It, Dt,ht−1, σ̄, σ̃t, δ̃t).
6: Set loss ct(xi) = Dt(xi)hkt(xi), i ∈ [N].
7: Update weights: Dt+1(xi) = Dt(xi) exp(−ηct(xi))/

∑N
i=1Dt(xi) exp(−ηct(xi)).

8: end for
9: Output: Predict x ∈ U : FT (xi) = argmaxl∈[L]

∑T
t=1Dt(xi)hT,kt(xi)I[f̄kt(xi) = l].

in the following iterations. Thus it is crucial to rectify the reusability indicators in each
iteration to boost their accuracy, meanwhile to introduce effective mechanism to prevent
the errors from growing large.

To address the above issues, we propose MoreBoost with Active Rectification algo-
rithm named MoreBoost.AR, which is illustrated in Algorithm 3. The major changes w.r.t.
MoreBoost are two-fold: (1) to deal with indicator error, the loss function and the model
combination rule are modified; (2) instead of directly calculating the reusability score, an
active rectification mechanism named RecSpec is introduced, to shrink the indicator error
rates to pre-defined levels σ̃t, δ̃t. We detailedly introduce RecSpec below.

4.2. The Active Rectification Mechanism

The RecSpec mechanism is illustrated in Algorithm 4. The objective for it is to actively
query h

∗ to update h, in order to identify the model which is near-optimal under the
current iteration. It utilizes Ik(xi) to record whether an instance xi has been queried for
model k (0 for queried, 1 otherwise). RecSpec includes a greedy error pre-shrinking stage
defined in Line 2-13: it shrinks the indicator error rate for each model k under D down to a
sufficiently small level. Note that the instances are chosen greedily: The unqueried instance
with the largest sample weight is chosen first (Line 4). Then in the main loop, motivated by
(Kalyanakrishnan et al., 2012), the confidence bound based best arm identification strategy
is utilized to identify the near-optimal model quickly. Detailedly, it utilizes the query records
I to calculate the query counts (Line 15) as well as the confidence bound for each model
(Line 16). It then chooses the arm u with the maximum lower confidence bound, as well
as v with maximum upper confidence bound besides u (Line 17) to perform greedy queries
(Line 18-19, similar to Line 4-5). The intuition is that these are two most promising models
to be the best, thus they are worth querying. From the stopping criterion in Line 20, we
see that if u has high confidence to be better than v, then we output u as the best arm.
The theoretical guarantee on the query complexity for a single call of RecSpec is given as
follows. First we define a complexity term. Let dk,nk

=
∑N

i=1

{

D(xi)
[(

1 − Ik(xi)
)

h∗k(xi) +

Ik(xi)
[

σk(xi)+
(

1− 2σk(xi)
)

h∗k(xi)
]}

such that
∑N

i=1 Ik(xi) = nk. When nk instances have
not been queried for hk, dk,n is the expected proportion of instances such that hk(xi) = 1
under D. Furthermore, we set d∗ = maxk∈[K]

[

minn∈[N] dk,n
]

, and the corresponding k as

151

Ding Zhou

Algorithm 4 RecSpec

1: Input: Current task data U , query indicator I, sample weights D, reusability indicators
h, error upper bounds σ̄, error parameters σ̃, δ̃.

2: for k = 1 to K do
3: repeat
4: Choose an instance to query: q = argmaxi∈[N]D(xi)Ik(xi).

5: Set hk(xq) = h∗k(xq), Ik(xq) = 0, nk =
∑N

i=1 Ik(xi).

6: Set U(k, nk) =

√

1
2nk

ln
(

4K2N2/δ̃
)

.

7: if σ̄k ≥ 1/4 ∨ σ̃ ≥ max{ 3

√

(18σ̄k/N) ln
(

4K2N2/δ̃
)

, 72σ̄k/N} then

8: stopping condition ←∑N
i=1 Ik(xi)D(xi)σ̄k ≤ σ̃/8.

9: else
10: stopping condition ←

∑N
i=1 Ik(xi)D(xi) ≤ σ̃/2.

11: end if
12: until stopping condition.
13: end for
14: repeat
15: Set d̂k =

∑N
i=1Dk(xi)hk(xi), nk =

∑N
i=1 Ik(xi), k ∈ [K].

16: Set U(k, nk) =

√

nk

2N2 ln
(

4K2N2/δ̃
)

, k ∈ [K].

17: Choose u = argmaxk∈[K](d̂k − U(k, nk)), v = argmaxk∈[K]/{u}(d̂k + U(k, nk)).
18: Choose an instance to query for each of b ∈ {u, v}: ib = argmaxi∈[N]D(xi)Ib(xi).
19: Update hu(xiu) = h∗u(xiu), hv(xiv) = h∗v(xiv), Iu(xiu) = 0, Iv(xiv) = 0.
20: until σ̃/8 + d̂u − U(u, nu) > d̂v + U(v, nv).
21: Return: I,h, u.

k∗. We then define

∆k =

{

minn∈[N]max{d∗ − dk,n, 0}, k ̸= k∗,

minn∈[N],k∈[K]/{k∗}max{d∗ − dk,n, 0}, k = k∗.

∆k measures how easy hk can be distinguished from or recognized as the optimal one.
Furthermore, we define the query complexity measure for the pre-shrinking stage:

mk =

max
(

0, N(1− σ̃/(8σ̄k)
)

, σ̄k ≥ 1/4 ∨ σ̃ ≥ max{ 3

√

(18σ̄k/N) ln
(

4K2N2/δ̃
)

, 72σ̄k/N},

max
(

0, N(1− σ̃/2)
)

, otherwise.

Theorem 4 Let the indicator error of hu be σ̂ =
∑N

i=1D(xi)I[hu(xi) ̸= h∗(xi)], where

h∗ = argmaxh∗

k
,k∈[K]

∑N
i=1D(xi)h

∗
k(xi). The following events will happen simultaneously

with probability at least 1− δ̃: (1) The query complexity of a single call of RecSpec is smaller

than min
{

KN,
∑K

k=1max{mk, N [1− 2N(∆k/4 + σ̃/32)2 ln
(

4K2N2/δ̃
)

]}
}

; (2) σ̂ ≤ σ̃.

152

Boosting-Based Reliable Model Reuse

Theorem 4 shows that the query complexity affects by the cover gaps ∆k. The query
complexity will be significantly reduced if the cover gaps are large. By the above guarantee,
we can show that MoreBoost.AR enjoys desired performance which is close to the noise-free
case with high probability, under the following weak learning assumptions.

Assumption 3 (Weak learning conditions for MoreBoost.AR)
(1) For any data distribution D over U , there exists k ∈ [K], such that

∑N
i=1D(xi)h

∗
k(xi) >

γ > 0. (2) Setting σ0 properly: σ0 < γT .

Theorem 5 Let the error rate of FT be ϵFT
= 1

N

∑N
i=1 p(FT (xi) ̸= f∗(xi)), and denote by

ϵ̄ = maxk∈[K] ϵk. When η =
√

(lnN)/T , after running MoreBoost.AR for T ≥ O(N2 lnN/γ4)
iterations, we have ϵFT

≤ ϵ̄+ 2σ0 with probability at least 1− δ.

5. Related Work

The model reuse problem has a significant difference from other scenarios exploiting exist-
ing models in solving a new task. First, it does not assume that all existing models are
related to the current task, which is usually assumed in transfer learning (Pan et al., 2010)
scenarios such as hypothesis transfer (Dredze et al., 2010; Kuzborskij and Orabona, 2017).
Moreover, it is also different from multi-party and federated learning paradigms (Li et al.,
2010; McMahan et al., 2017; Yang et al., 2019; Wu et al., 2019). The central problem under
these scenarios is how multiple parties can cooperate to solve the same/similar learning
tasks. To achieve this target, rich information such as data distribution statistics can be
exchanged among different parties in privacy-preserving ways. While for model reuse, the
models may be trained under very different tasks to the current one, meanwhile all infor-
mation on those tasks can only be observed through the models and their specifications.
In recent years, some interesting studies have discussed how transferability of learned mod-
els can be measured (Achille et al., 2019; Nguyen et al., 2020). While they mainly study
how the transferability can be measured on target data without using model specifications.
When target data only provide limited information, e.g. the number of them are limited
or they are unlabeled, providing the specifications are strongly helpful for measuring the
transferability. There have been a number of boosting-based approaches in related areas
such as transfer learning and domain adaptation. While they usually focus on how source
and target domain data can be both utilized to train a new model (Dai et al., 2007; Becker
et al., 2013; Habrard et al., 2013; Wang and Pineau, 2015), or utilizing boosting to solve a
sequence of related learning tasks (Rettinger et al., 2006). Thus they consider very different
learning problems to our work.

The analysis of error accumulation under the noisy situation is inspired by the distribu-
tional shift issue in imitation learning (Ross et al., 2011). We design different techniques to
solve our problem since we consider a very different learning scenario.

6. Experiments

6.1. Experiements on Synthetic Data

We create a 2D toy example with five classes to verify our approaches. There are five
classes 1-5 represented by color blocks. We divide them into four tasks (1,2), (3,4,5), (2,3),

153

Ding Zhou

5

1

2

3

4

(a) Data (b) MB:99.7,σ=0 (c) MB:96.8,σ=0.1 (d) MB:86.7,σ=0.2 (e) MB:70.0,σ=0.3

(f) MV:67.2 (g) AR:99.7,σ=0 (h) AR:99.2,σ=0.1 (i) AR:96.8,σ=0.2 (j) AR:95.4,σ=0.3

Figure 2: Results on synthetic data. Figure 2a shows the target data and their true labels.
Figure 2b-2j show prediction results and accuracy (%) of different approaches. σ
are indicator noise rates.

(1,4), where we train gradient boosting decision trees as existing models with training data
sampled from the corresponding blocks. We then generate instances uniformly for each class
as the current task data, which are illustrated in Figure 2a. The reusability indicators are
built according to the ground-truth class with fixed noise σ added, which is known to the
learner. We consider the following settings and methods: (1) majority voting (MV, Figure
2f); (2) MoreBoost(MB, Figure 2b-2e); (3) MoreBoost.AR (AR, Figure 2g-2j). We run both
MoreBoost and MoreBoost.AR for 50 iterations. We observe that MoreBoost performs well
under the small noise case, meanwhile RecSpec performs better under the large noise case.

6.2. Experiments on Benchmark Data

First, we consider simpler experiments on three ten-class benchmark datasets: MNIST
(LeCun et al., 1998), fashion-MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky, 2009).
One each dataset, to obtain existing models, we form five existing tasks according to classes.
Detailedly, we randomly partition the ten classes into three tasks with proportion (4, 3, 3)
first. Furthermore, we randomly choose three of the four classes in the first task to form two
more tasks. For each task, we randomly choose 3000 training data out of the original training
set for each class to formulate the model training data. Three-layer CNNs on MNIST and
Fashion-MNIST, 16-layer wide ResNets (Zagoruyko and Komodakis, 2016) on CIFAR-10
are utilized to obtain the existing models. To form the target task, we randomly choose 50
instances for each class out of the original testing data for predicting their true labels. We
compare the following approaches: (1) the best single existing model (MAX); (2) majority
voting (MV); (3) the state-of-the-art model reuse approach RKME (Wu et al., 2020); (4)
MoreBoost (MB); (5) MoreBoost.AR with random query strategy (RND), which randomly
selects equal number of instances to query in each iteration, and (6) MoreBoost.AR (AR).
We set the total query number the same for RND and AR. To obtain reusability indicators
for MoreBoost-based approaches, we utilize pre-trained CNNs or wide ResNets to extract
features of the model training data from the outputs of the penultimate layers. Afterwards,

154

Boosting-Based Reliable Model Reuse

Table 2: Accuracy on benchmark data over five random splits. The last two rows show the
proportion of the query budget used and the indicator error rates. All results are
Value(%)±Std. Dev.(%).

MNIST Fashion-MNIST CIFAR-10 CIFAR-100 CUB-200-2011 Caltech-256

MAX 39.7±0.2 38.4±1.2 37.1±3.3 20.4±6.3 10.2±2.0 12.0±2.4

MV 48.0±3.2 39.5±1.6 37.1±0.7 29.0±7.5 27.6±5.9 48.0±3.0

RKME 98.6±0.3 90.3±1.0 84.7±9.5 65.0±6.6 27.6±7.9 20.4±4.8

MB 92.1±1.4 81.6±0.7 83.7±1.3 55.6±8.1 41.2±6.5 10.4±2.2

RND 96.9±0.7 91.1±0.9 91.6±0.8 62.0±10.6 80.6±6.0 57.6±12.3

AR 99.4±0.1 95.3±1.8 95.4±0.4 80.4±5.1 90.4±2.4 87.8±5.5

Query Prop. 55.8±2.1 58.2±5.1 55.4±4.4 81.0±3.9 89.9±1.4 93.0±2.6

Ind. Error 3.2±1.4 12.2±1.8 7.9±1.2 9.4±3.3 5.2±3.3 49.7±13.8

we train isolation forests (Liu et al., 2008) on them. We also learn RKME specifications
for the RKME approach on the same pre-trained features for fair comparison. To estimate
indicator noise, we sample five instances from the original test data for each class to form
the validation data. From Table 2, we can see that MoreBoost.AR achieves the optimal
performance as in the synthetic data experiment.

We further consider larger-scale experiments on three more benchmark datasets: CIFAR-
100 (Krizhevsky, 2009), CUB-200-2011 (Wah et al., 2011) and Caltech-256 (Griffin et al.,
2007). We keep the comparison methods and feature extraction process similar to above.
For CIFAR-100, the original training data are from 100 classes, which are grouped into
20 super-classes. We form 20 tasks accordingly to obtain the existing models, which are
16-layer wide ResNets. We further sample instances from original testing data to form the
target task. We choose ten classes randomly, and sample ten instances for each class. We
further sample five instances for each class for validating indicator noise rates. For CUB-
200-2011 and Caltech-256, we randomly partition the classes into 40 and 25 existing tasks,
and fine-tune an ImageNet pre-trained ResNet-101 model on them to obtain the existing
models. The formulation of the target task is the similar to CIFAR-100. We observe the
similar performance gain for MoreBoost.AR.

7. Conclusion

In this work, we studied the reusability-aware model reuse problem, in which a learner
chooses multiple existing models to reuse with reusability indicator specifications. We pro-
posed MoreBoost, a simple but powerful model reuse algorithm. An active rectification
mechanism was also proposed under the noisy situation. Applying our algorithms on differ-
ent kinds of model reuse settings could be interesting future work to study.

Acknowledgement

This research was supported by NSFC (61921006) and Collaborative Innovation Center of
Novel Software Technology and Industrialization. The authors would like to thank the

155

Ding Zhou

anonymous reviewers for constructive suggestions, as well as Peng Zhao and Xi-Zhu Wu for
helpful discussions.

Appendix A. Proofs

A.1. Proof of Theorem 1

Proof Assume that D1, D2, . . . , DT are data distributions generated by running MoreBoost
for T iterations. We consider an online learning view of the learning processs. Define
the cost function of distribution D at iteration t as cD(t) =

∑N
i=1D(xi)ct(xi). The

regret of MoreBoost can be defined as RT =
∑T

t=1

(

cDt
(t) − cD∗(t)

)

, in which D∗ =

argminD
∑T

t=1 cD(t). Since the cost on any single instance is equivalent to one-hot data dis-

tribution, we have that for ∀i ∈ [N], 1
T

∑T
t=1 cDt

(t)− 1
T

∑T
t=1 ct(xi) ≤ RT

T . According to the
weak learning condition, on any data distribution, the proportion of covered instances is at
least γ. Thus 1

T

∑T
t=1 cDt

(t) > γ. Then we have γ−RT

T ≤ 1
T

∑T
t=1 ct(xi). If 1

T

∑T
t=1 ct(xi) > 0,

then we know that ∃h∗t , h∗t (xi) = 1. Furthermore, by the assumption on reusability indica-
tors, we know the error rate on xi is below ϵ̄. To guarantee that 1

T

∑T
t=1 ct(xi) > 0, we can

set γ − RT

T > 0. If we guarantee that the regret RT ≤ O(
√
T lnN), it is easy to see that

we can set T ≥ O(lnN/γ2). Notice that the online learning procedure for MoreBoost is
designed exactly to fit for the regret minimization process of Hedge (Freund and Schapire,
1997). As a result, the regret bound holds as expected.

A.2. Proof of Theorem 2

Proof When η → ∞, then once ct(xi) = I[ht(xi) = 1] = 1, Dt+1(xi) = 0. Then we have
the following two observations: (1) When η → ∞, hk are chosen according to the number
of instances they can cover; (2) Each instance is covered by exactly one hk. These two
observations exactly fit for what the greedy set cover algorithm does.

A.3. Proof of Theorem 3

Proof Follow the similar proof of Theorem 1, we have that for ∀i ∈ [N], 1
T

∑T
t=1 cDt

(t) −
1
T

∑T
t=1 ct(xi) ≤ RT

T . Since for ∀h, h′, I[h = 1∧ h′ = 0] ≤ I[h ̸= h′], by the assumption in the

theorem, ∀t, cDt
(t) =

∑N
i=1Dt(xi)I[hkt(xi) = 1] ≥

∑N
i=1Dt(xi)(I[h∗kt(xi) = 1] − I[hkt(xi) ̸=

h∗kt(xi)]) ≥ γ − σ. Then after running MoreBoost for T ≥ O(lnN
(γ−σ)2

) iterations, we have

that ∀xi ∈ U ,
∑T

t=1 ht(xi) > 0. Furthermore, ∀xi ∈ U , p(FT (xi) ̸= f∗(xi)) can be upper
bounded by p(FT (xi) ̸= f∗(xi), (∄hkt(xi) ̸= h∗kt(xi))) + p(∃hkt(xi) ̸= h∗kt(xi)) ≤ p(FT (xi) ≠

f∗(xi), (∄hkt(xi) ̸= h∗kt(xi))) +
∑T

t=1 I[hkt(xi) ̸= h∗kt(xi)]. Then ϵFT
≤ 1

N

∑N
i=1

(

p(FT (xi) ̸=

f∗(xi), (∄hkt(xi) ̸= h∗kt(xi))) +
∑T

t=1 I[hkt(xi) ̸= h∗kt(xi)]
)

≤ ϵ̄+ σT .

156

Boosting-Based Reliable Model Reuse

A.4. Proof of Theorem 4

For simplicity, we analyse the first call of RecSpec, whose guarantee obviously holds for the
rest calls. The following lemma shows that the pre-training stage controls the empirical
errors of indicators close to their expectations.

Lemma 6 After the pre-training stage in Line 2-13, then ∀k ∈ [K], 1
N

∑N
i=1 I[hk(xi) ̸=

h∗k(xi)] ≥ σ̃/2 holds with probability at most δ̃/4.

Proof We study arbitrary k ∈ [K]. First,
∑N

i=1D(xi)I[hk(xi) ̸= h∗k(xi)] ≤
∑N

i=1 Ik(xi)D(xi).

Next, we study different cases. (1) If σ̄k ≥ 1/4, then
∑N

i=1 Ik(xi)D(xi) ≤ σ̃/(8σ̄k) ≤ σ̃/2. (2)

If σ̄k < 1/4 ∧ σ̃ < max{72σ̄k/N, 3

√

(18σ̄k/N) ln
(

4K2N2/δ̃
)

}, then
∑N

i=1 Ik(xi)D(xi) ≤ σ̃/2

holds by the stopping condition. (3) If σ̃ ≥ max{72σ̄k/N, 3

√

(18σ̄k/N) ln
(

4K2N2/δ̃
)

}, from

the greedy query rule in Line 4 of Algorithm 4,
∑N

i=1D(xi)I(xi)σ̄k ≤ nkσ̄k/N . Further-
more, since σ̃ ≥ 72σ̄k/N , we have σ̃N/(8σ̄k) ≥ σ̃N/(9σ̄k) + 1. As a result, we have
that when the stopping condition reaches, nk ≥ (σ̃N)/(9σ̄k). By Hoeffding’s inequal-
ity, we have p(

∑N
i=1D(xi)I[hk ̸= h∗k] ≥ σ̃/2) ≤ p(

∑N
i=1 Ik(xi)D(xi)I[hk(xi) ̸= h∗k(xi)] −

∑N
i=1 Ik(xi)D(xi)σ̄k ≥ σ̃/2) ≤ exp

(

−2nk(σ̃/2)
2
)

≤ exp
(

−Nσ̃3/(18σ̄k)
)

≤ δ̃/(4K2N2),

where the last inequality holds by the assumption that σ̃ ≥ 3

√

(18σ̄k/N) ln
(

4K2N2/δ̃
)

.

By union bound over maximum number of total loops KN , models K and instances N , we
arrive at the final result.

Next we show the correctness of the stopping criterion in Line 20 of Algorithm 4.

Lemma 7 If the stopping criterion in Line 20 of Algorithm 4 is reached, then we have that
σ̂ ≥ σ̃ with probability at most δ̃/2.

Proof Assmue that when the stopping condition is reached, we have du,nu
> d̂u−U(u, nu)

and for ∀k ∈ [K], we have dk,nk
< d̂k + U(k, nk). From the definition of v, for ∀k ∈ [K],

σ̃/8 + d̂u − U(u, nu) > d̂k + U(k, nk) =⇒ σ̃/8 + du,nu
> dk,nk

=⇒

σ̃/8 +
N
∑

i=1

D(xi)h
∗
u(xi) +

N
∑

i=1

Iu(xi)D(xi)σ̄u(xi) >
N
∑

i=1

D(xi)h
∗
k(xi)− 2

N
∑

i=1

Ik(xi)D(xi)σ̄k(xi).

Due to the stopping condition in Line 12, we have σ̃+
∑N

i=1D(xi)h
∗
u(xi) >

∑N
i=1D(xi)h

∗
k(xi),

which indicates that u is close to the true best model. The next step is to ensure that the
confidence bounds are valid for all iterations before the stopping criterion is reached. By
Hoeffding’s inequality, for ∀k ∈ [K], n ∈ [N], we have that p(|dk,n − d̂k| > U(k, n)) ≤
2e−2N

2

n
U2(k,n). Notice that the stopping criterion is reached within KN/2 iterations since

the maximum query time is KN and two instances are chosen to query in each iteration.

Then by the union bound, we need to guarantee that KN
∑K

k=1

∑N
n=1 e

−2N
2

n
U(k,n) ≤ δ̃/4,

which is indeed the case by the design of the confidence bound U(k, n). Combining with
Lemma 6, we arrive at the final result.

157

Ding Zhou

The following lemma shows how small each nk, k ∈ [K] should be to make the stopping
criterion in Line 20 reached.

Lemma 8 Let sufficient query condition be nk ≤ 2N2(∆k/4+σ̃/32)2/(ln
(

4K2N2/δ
)

), ∀k ∈
[K]. If the sufficient query condition is reached, then the stopping criterion is not reached
with probability at most δ̃/(2KN).

Proof Assume that on one iteration, all nk, k ∈ [N] satisfy the condition. Then we
have U(k∗, nk∗) ≤ ∆k∗/4 + σ̃/32, U(v, nv) ≤ ∆v/4 + σ̃/32. On the other hand, if the
stopping criterion has not been reached, we have σ̃/8 + d̂k∗ − U(k∗, nk∗) ≤ d̂v + U(v, nv).
Then we know that d̂k∗ ≤ d̂v + ∆k∗/4 + ∆v/4 − σ̃/16 ≤ d̂v + ∆v/2 − σ̃/16. By construc-
tion of ∆k∗ ,∆v, we know that ∃k ∈ [K], d̂k − dk ≥ U(k, nk) ∨ dk − d̂k ≥ U(k, nk). By
Hoeffding’s inequality and union bound, we know the probability of this event is within
∑K

k=1

∑N
nk=1 2 exp

(

((−2N2)/nk)
(

√

(nk/2N2) ln
(

4K2N2/δ̃
)

)2
)

= δ̃/(2KN).

Then we prove Theorem 4.
Proof Assume that the stopping condition is reached when querying ⌊T2 ⌋ ≤ t ≤ T instances,
and the stopping condition is reached iff the sufficient query condition is satisfied. Then
t = ⌊T/2⌋+

∑T
t=⌊T/2⌋ I{¬sufficient query condition} ≤

∑K
k=1

∑T
t=⌊T/2⌋ I{nk ≤ 2N2(∆k/4 +

σ̃/32)2/(ln
(

4K2N2/δ̃
)

)} ≤∑K
k=1max

{

0, N
(

1−2N(∆k/4+ σ̃/32)2/(ln
(

4K2N2/δ̃
)

)}

. We

can see that if T ≥
∑K

k=1max
{

0, N
(

1 − 2N(∆k/4 + σ̃/32)2/(ln
(

4K2N2/δ̃
)

)
)}

, then the

stopping condition is reached. By Lemma 8 and union bound, we know that this event
would happen with probability at least 1 − (KN)(δ̃/(2KN)) = 1 − δ̃/2. Furthermore, the
query complexity of the training stage, i.e. mk can be calculated easily from the greedy
query criterion in Line 4. Combining Lemma 7, we arrive at the final result.

A.5. Proof of Theorem 5

Proof We have that for ∀i ∈ [N], 1
T

∑T
t=1 cDt

(t) − 1
T

∑T
t=1 ct(xi) ≤ RT

T , which follows
from the similar proof of Theorem 1. Assume that the high probability events in The-
orem 4 hold for all T iterations. Since for ∀h, h′, I[h = 1 ∧ h′ = 0] ≤ I[h ̸= h′], by
Theorem 4 and the weak learning assumption,

∑N
i=1Dt(xi)hkt(xi) ≥

∑N
i=1Dt(xi)(h

∗
t (xi)−

I[hkt(xi) ̸= h∗t (xi)]) ≥ γ − σ0/T , in which h∗t = argmaxh∗

k
,k∈[K]

∑N
i=1Dt(xi)h

∗
k(xi). Further-

more, ∀t, cDt
(t) =

∑N
i=1D

2
t (xi)hkt(xi) =

∑N
i=1D

2
t (xi)h

2
kt
(xi) ≥ (

∑N
i=1Dt(xi)ht(xi))

2/N ≥
(γ − σ0/T)

2/N . As a result, after running MoreBoost.AR for T ≥ O(N2 lnN/γ4) itera-
tions, we have that ∀xi ∈ U ,

∑T
t=1Dt(xi)ht(xi) > 1. Furthermore, we have that ∀xi ∈ U ,

p(FT (xi) ̸= f∗(xi)) can be upper bounded by p
(

FT (xi) ̸= f∗(xi) ∧
∑T

t=1Dt(xi)I[hkt(xi) =

1, h∗kt(xi) = 0] < 1/2
)

+ p
(

FT (xi) ̸= f∗(xi) ∧
∑T

t=1Dt(xi)I[hkt(xi) = 1, h∗kt(xi) = 0] ≥

1/2
)

≤ ϵ̄+2
∑T

t=1Dt(xi)I[hkt(xi) ̸= h∗kt(xi)]. We then have that ϵFT
≤ 1

N

∑N
i=1 p(FT (xi) ̸=

f∗(xi)) ≤ ϵ̄ + 2
∑T

t=1

(

1
N

∑N
i=1Dt(xi)I[hkt(xi) ̸= hk∗

t
(xi)]

)

≤ ϵ̄ + 2σ0. The desired result

follows from the union bound w.r.t. T .

158

Boosting-Based Reliable Model Reuse

References

Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran, Subhransu Maji,
Charless C Fowlkes, Stefano Soatto, and Pietro Perona. Task2vec: Task embedding for
meta-learning. In CVPR, 2019.

Carlos J Becker, Christos M Christoudias, and Pascal Fua. Non-linear domain adaptation
with boosting. In NeurIPS, 2013.

Wenyuan Dai, Yang Qiang, Gui-Rong Xue, and Yong Yu. Boosting for transfer learning.
In ICML, 2007.

Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, 2014.

Mark Dredze, Alex Kulesza, and Koby Crammer. Multi-domain learning by confidence-
weighted parameter combination. Machine Learning, 79(1-2):123–149, 2010.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139,
1997.

Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object category dataset. 2007.

Amaury Habrard, Jean-Philippe Peyrache, and Marc Sebban. Boosting for unsupervised
domain adaptation. In ECML-PKDD, 2013.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and Peter Stone. Pac subset selec-
tion in stochastic multi-armed bandits. In ICML, 2012.

Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
2009.

Ilja Kuzborskij and Francesco Orabona. Fast rates by transferring from auxiliary hypotheses.
Machine Learning, 106(2):171–195, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ming Li, Wei Wang, and Zhi-Hua Zhou. Exploiting remote learners in internet environment
with agents. Science in China Series F: Information Sciences, 53(1):64–76, 2010.

Nan Li, Ivor W Tsang, and Zhi-Hua Zhou. Efficient optimization of performance measures
by classifier adaptation. IEEE transactions on pattern analysis and machine intelligence,
35(6):1370–1382, 2012.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In ICDM, 2008.

159

Ding Zhou

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In
AISTATS, 2017.

Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and Matthias Seeger. Leep: A new
measure to evaluate transferability of learned representations. In ICML, 2020.

Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2010.

Achim Rettinger, Martin Zinkevich, and Michael Bowling. Boosting expert ensembles for
rapid concept recall. In AAAI, 2006.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In AISTATS, 2011.

Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C
Williamson. Estimating the support of a high-dimensional distribution. Neural com-
putation, 13(7):1443–1471, 2001.

C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-
200-2011 Dataset. Technical report, 2011.

Boyu Wang and Joelle Pineau. Online boosting algorithms for anytime transfer and multi-
task learning. In AAAI, 2015.

Xi-Zhu Wu, Song Liu, and Zhi-Hua Zhou. Heterogeneous model reuse via optimizing mul-
tiparty multiclass margin. In ICML, 2019.

Xi-Zhu Wu, Wenkai Xu, Song Liu, and Zhi-Hua Zhou. Model reuse with reduced kernel
mean embedding specification. arXiv preprint arXiv:2001.07135, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning:
Concept and applications. ACM Transactions on Intelligent Systems and Technology, 10
(2):12, 2019.

Yang Yang, De-Chuan Zhan, Ying Fan, Yuan Jiang, and Zhi-Hua Zhou. Deep learning for
fixed model reuse. In AAAI, 2017.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. Chapman and Hall/CRC,
2012.

Zhi-Hua Zhou. Learnware: on the future of machine learning. Frontiers of Computer
Science, 10(4):589–590, 2016.

160

	Introduction
	Reusability-Aware Model Reuse Protocol
	Model Reuse by Boosting
	Rectifying Function Indicators
	Risk of Indicator Error
	The Active Rectification Mechanism

	Related Work
	Experiments
	Experiements on Synthetic Data
	Experiments on Benchmark Data

	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

