
Boosting Combinatorial Search Through Randomization

Carla P. Gomes∗
Computer Science Department

Cornell University
Ithaca, NY 14853

gomes@cs.cornell.edu

Bart Selman
Computer Science Department

Cornell University
Ithaca, NY 14853

selman@cs.cornell.edu

Henry Kautz
AT&T Labs

180 Park Avenue
Florham Park, NJ 07932
kautz@research.att.com

Abstract

Unpredictability in the running time of complete search
procedures can often be explained by the phenomenon of
“heavy-tailed cost distributions”, meaning that at any time
during the experiment there is a non-negligible probability
of hitting a problem that requires exponentially more time to
solve than any that has been encountered before (Gomeset
al. 1998a). We present a general method for introducing con-
trolled randomization into complete search algorithms. The
“boosted” search methods provably eliminate heavy-tails to
the right of the median. Furthermore, they can take advan-
tage of heavy-tails to the left of the median (that is, a non-
negligible chance of very short runs) to dramatically shorten
the solution time. We demonstrate speedups of several or-
ders of magnitude for state-of-the-art complete search pro-
cedures running on hard, real-world problems.

Introduction

The time required by complete search methods to solve
similar combinatorial problems can be surprisingly vari-
able. Two problem instances may be identical, except for
the order in which the variables are numbered. A particular
complete search algorithm may solve the first in seconds,
yet require hours or days to solve the second. Even for
a single problem instance, a seemingly trivial change in a
detail of the search algorithm may drastically alter the solu-
tion time. In addition, in many domains there are problem
instances that can be quickly solved by incomplete meth-
ods, but apparently cannot be solved by complete methods,
even methods guided by powerful heuristics.

This unpredictability in the running time of a complete
algorithm undermines one of the main reasons that one may
choose to employ such a method, namely the desire for a
guarantee that the algorithm will determine whether or not
each problem instance in fact has a solution. It is desirable,
therefore, to find ways to improve the robustness and pre-
dictability of these algorithms.

∗Carla P. Gomes is also a Research Associate at the Air Force
Research Laboratory, Rome, NY, USA.

Copyright (c) 1998, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

This paper discusses a general technique for improv-
ing complete search methods by introducing a controlled
amount ofrandomization. The technique actually takes ad-
vantage of the variability of the underlying search method
in order to find solutions more quickly and with less vari-
ance in solution time. We demonstrate the effectiveness
of this strategy on SAT and CSP algorithms, in the do-
mains of logistics planning, circuit synthesis, and round-
robin scheduling. Solutions times are reduced by an order
of magnitude or more, and some instances are solved for
the first time by a method other than local search.

We will show that the unpredictability in running times
for combinatorial algorithms can often be explained by
a phenomenon called a “heavy-tailed cost distribution”
(Gomeset al. 1998a). In our preliminary experiments, we
plotted the solution times for a deterministic search algo-
rithm running on a random distribution of scheduling prob-
lem instances. We noticed that at any time during the ex-
periment there was a non-negligible probability of hitting
a problem that required exponentially more time to solve
than any that had been encountered before. This so-called
“heavy-tail” phenomena causes the mean solution time to
increase with the length of the experiment, and to be infi-
nite in the limit.

Previous authors have noted the occurrence of seemingly
exceptionally hard problems in fixed problem distributions
(Gent and Walsh 1994; Smith and Grant 1996). However,
we further discovered that when a small amount of ran-
domization was introduced into the heuristic used by the
search algorithm, then, on some runs, the instances were
solved quickly. Thus, the “hardness” did not reside in the
instances, but rather in the combination of the instance with
the details of the deterministic algorithm. When we plotted
the solution times for many runs of the randomized com-
plete algorithm (with different random seeds) on asingle
problem instance, we discovered the same heavy-tailed dis-
tribution as we had seen before on a collection of instances.

This observation led us to realize that a deterministic
search algorithm can be viewed as asingle runof a ran-
domized algorithm. The unpredictability of deterministic,

From: AAAI-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Problem Solver Deterministic Randomized
soln. time mean soln. time

logistics.d Satz 108 min 95 sec
3bit-adder-32 Satz > 24 hrs 165 sec
3bit-adder-31 Satz > 24 hrs 17 min

round-robin 14 ILOG 411 sec 250 sec
round-robin 16 ILOG > 24 hrs 1.4 hrs
round-robin 18 ILOG > 48 hrs ≈ 22 hrs
block-world.d Satz 30 min 23 min

Table 1: Comparison of speed of original deterministic algorithms and randomized versions on test-bed problems.

complete algorithms is thus explained by the variance one
would expect in any one run of a randomized algorithm.
Furthermore, by analyzing the shape of the cost distribu-
tion we developed simple techniques that provablyreduce
the mean solution time.

For our experiments, we used known hard problem in-
stances from scheduling, planning, and circuit synthesis,
and a state of-the-art satisfiability engine (Satz, by Li
and Anbulagan (1997)), and a highly efficient CSP solver
built using the ILOG C++ constraint programming library
(Puget and Leconte 1995). It is important to note that in
both cases the underlying deterministic complete search en-
gines are among the fastest (and on many problems,the
fastest) in their class. Thus, the techniques discussed in
this paper extend the range of complete methods to prob-
lems that were previously beyond their reach. For a pre-
view of our main results, see Table 1. The table shows
how our randomization strategy enabled us to solve sev-
eral previously unsolved problem instances, and other in-
stances were solved up to an order of magnitude faster.
Given the techniques’ simplicity and generality, our ap-
proach can be easily adapted to improve the performance
of other backtrack-style search methods used in planning,
scheduling, and other tasks of interest to AI.

Problem Domains

Our problem domains are timetable scheduling, planning,
and circuit synthesis. The first is formalized as a CSP prob-
lem, and the latter two as propositional satisfiability.

Timetabling consists in determining whether there ex-
ists a feasible schedule that takes into consideration a set
of pairing and distribution constraints. More specifically,
we consider problems derived from sports scheduling ap-
plications. The literature in this area is growing, and one
can begin to get a sense of the range and mathematical dif-
ficulty of the problems encountered (McAloonet al. 1997;
Nemhauser and Trick 1997; and Schreuder 1992). Here
we consider the timetabling problem for the classic “round-
robin” schedule: every team must play every other team

exactly once. The problem is formally defined as follows:
1. There areN teams (N even) and every two teams play
each other exactly once.
2. The season lastsN − 1 weeks.
3. Every team plays one game in each week of the season.
4. There areN/2 periods and, each week, every period is
scheduled for one game.
5. No team plays more than twice in the same period over
the course of the season.

Up to 8-team problems are relatively simple and can be
done by brute force. However, the combinatorics of this
scheduling problem are explosive. For anN team league,
there areN/2·(N−1) matchups(i, j) with 0 ≤ i < j < N
to be played. A schedule can be thought of as a permutation
of these matchups. So, forN teams the search space size
is (N/2 · (N − 1))!, i.e., the search space size grows as the
factorial of the square ofN/2. Published algorithms for this
problem all scale poorly, and the times for ourdeterministic
solver (as shown in Table 1) are among the best (see also
Gomeset al.1998b).

The second domain is planning. Kautz and Selman
(1996) showed that propositional SAT encodings of diffi-
cult STRIPS-style planning problems could be efficiently
solved by SAT engines. While both a complete backtrack-
style engine and an incomplete local-search engine worked
well on moderate-sized problems, the largest problems
from the domain of logistics scheduling could only be
solved by local search. However, it turns out that the de-
terministic version of Satz can solve all of the logistics in-
stances from that paper in less than 2 minutes. Therefore we
constructed a still-larger planning problem, labeled “logis-
tics.d”. This domain involves moving packages on trucks
and airplanes between different locations in different cities.
While the largest logistics problem from the Kautz and Sel-
man (1996) paper involved 1,141 variables, “logistics.d” in-
volves 2,160 variables.

The final domain is circuit synthesis. Kamathet al.
(1993) developed a technique for expressing the problem of
synthesizing a programmable logic array (PLA) as a propo-
sitional satisfiable problem. The statement of the problem

2

includes a table specifying the function to be computed, and
an upper-bound on the number of gates that may appear in
the circuit. In general, these problems become more dif-
ficult to solve as the number of gates is reduced, until the
limit is reached where the instance is unsatisfiable. These
problems are quite hard to solve with complete SAT proce-
dures, and have been used as part of the test-beds for numer-
ous SAT competitions and research studies. The problems
considered in this paper, “3bit-adder-32” and “3bit-adder-
31” are (as one would guess) based on synthesizing a 3-bit
adder using 32 and 31 gates respectively. Although Selman
and Kautz (1993) solve the instances using local search,
no one has previously solved either using a backtrack-style
procedure.

Randomizing Complete Search Engines

We now consider general techniques for adding randomiza-
tion to complete, systematic, backtrack-style search proce-
dures. Such a procedure constructs a solution incremen-
tally. At each step a heuristic is used to select an operation
to be applied to a partial solution, such as assigning a value
to an unassigned variable. Eventually either a complete so-
lution is found, or the algorithm determines that the current
partial solution is inconsistent. In the latter case, the algo-
rithm backtracks to an earlier point in its search tree.

If several choices are heuristically determined to be
equally good, then a deterministic algorithm applies some
fixed rule to pick one of the operations; for example, to
select the lowest-numbered variable to assign. The most
obvious place to apply randomization, therefore, is in this
step of tie-breaking: if several choices are ranked equally,
choose among them at random. Even this simple modi-
fication can dramatically change the behavior of a search
algorithm, as we will see in the section on CSP below.

However, if the heuristic function is particular power-
ful, it may rarely assign more than one choice the highest
score. To handle this, we can introduce a “heuristic equiva-
lence” parameter to the algorithm. Setting the parameter to
a valueH greater than zero means all choices who receive
scores withinH-percent of the highest score are considered
equally good. This expands the choice-set for random tie-
breaking.

With these changes each run of the search algorithm on a
particular instance will differ in the order in which choices
are made and potentially in time to solution. As we will
discuss in detail below, it can be advantageous to terminate
searches which appear to be “stuck”, exploring a part of the
space far from a solution. Therefore we will also introduce
a “cutoff” parameter, that limits search to a specified num-
ber of backtracks. When the cutoff is reached, the algorithm
is restarted at the root of the search tree.

We should note that introducing randomness in the
branching variable selection does not effect the complete-

ness of the backtrack-style search. Some basic book-
keeping (only linear space) ensures that the procedures do
not revisit any previously explored part of the search space,
which means that we can still determine inconsistencies,
unlike local search methods. The cutoff parameter does
limit the size of the space that can be searched exhaustively
between restarts. In practice, we gradually increase the cut-
off, to allow us to determine inconsistencies, if necessary.

A variable-order randomization and restart strategy was
employed in Crawford and Baker’s (1994) “probing” algo-
rithm for SAT. Despite the fact that it performed no back-
tracking at all, it was shown to solve a number of examples.
Even though, the “power of randomization” in combinato-
rial search has been informally recognized by others (for
recent work in scheduling domains, see e.g., Bresina 1996
and Oddi and Smith 1997), our work provides the first ex-
planation for the potential success of this kind of strategy,
in terms of heavy-tailed distributions (Gomeset al.1998a).
As we will see, our data also shows that there is often a clear
optimal cutoff value; simply probing down with unit propa-
gation but no backtracking can be ineffective. For example,
in Table 3 we have a 0% success rate for a cutoff value of
2. More recently, Bayardo and Schrag (1997) introduced
a backtrack-style solver, rel-sat, that included randomized
tie-breaking and restarts, but with only a fixed, high cut-
off value. The focus of that work was on the backtracking
technique, rather than the effect of restarts.

The first complete search algorithm we randomized was
a CSP solver. ILOG SOLVER is a powerful C++ con-
straint programming library (Puget and Leconte 1995). For
the round-robin scheduling problems discussed below, we
used the library to build a deterministic, backtrack-style
CSP engine. (See Dechter (1991) and Freuder and Mack-
worth (1994) for an overview of basic CSP algorithms.)
It employs the first-fail heuristic for variable assignment,
which selects the variables with the smallest domain first;
ties are broken lexicographically. The performance of this
deterministic version already matches or exceeds all the
published results on solving these types of problems. We
then randomized the solver by breaking ties randomly, and
adding a cutoff parameter (Gomeset al.1998b).

The second algorithm we randomized was for propo-
sitional satisfiability. One of the fastest complete search
engines for propositional satisfiability testing is the Satz
system of Li and Anbulagan (1997). Satz is a version of
the Davis-Putnam-Loveland procedure (Daviset al. 1962),
with a heuristic based on choosing a branch variable that
maximizes a function of the number of the unit propa-
gations performed when it is set positively or negatively.
Satz is the fastest deterministic SAT procedure we have
found for the instances discussed in this paper. It can of-
ten solve smaller instances of these types with less than 100
backtracks. Because its heuristic usually chooses a single

3

branching variable without ties, we added a heuristic equiv-
alence parameter to enlarge the choice-set.

Heavy-Tailed Cost Distributions

In previous work (Gomeset al.1998a), we show that the tail
behavior of randomized complete backtrack style methods
is often best modeled using distributions which asymptoti-
cally have tails of the Pareto-L´evy form,viz.

Pr{X > x} ∼ C.x−α, x > 0 (1)

whereα > 0 is a constant (Mandelbrot 1960; and Samorod-
nitsky 1994). These are heavy-tailed distributions,i.e.,
distributions whose tails have apower law decay. The
constantα is called theindex of stabilityof the distribu-
tion. For α < 2, moments ofX of order less thanα
are finite while all higher order moments are infinite,i.e.,
α = sup{a > 0 : E|X |a < ∞}. For example, when
α = 1.5, the distribution has a finite mean but no finite
variance. Withα = 0.6, the distribution has neither a finite
mean nor a finite variance.

If a Pareto-Lévy tail is observed, then the rate of de-
crease of the distribution is a power law. (Standard dis-
tributions exhibit exponential decay.) From (1), we have
1 − F (x) = Pr{X > x} ∼ C.x−α, so the complement-
to-one of the cumulative distribution,F (x), also decays
according to a power law. Given the power law decay of
the complement-to-one of the cumulative distribution of a
heavy-tailed random variable, its log-log plot should show
an approximately linear decrease in the tail. Moreover, the
slope of the observed linear decrease provides an estimate
of the indexα.

0.001

0.01

0.1

10000 100000

1
 -

 F
(x

)
(l
o
g
)

Backtracks (log)

’’

Figure 1: Log-log plot of the tail of 12 team round-robin
scheduling.

Figure 1 shows the log-log plot of the tail (X > 10, 000)
of the complement-to-one of the cumulative distribution, 1-

F(x), for our 12 team round-robin problem. The linear na-
ture of the tail in this plot directly reveals heavy-tails of the
Pareto-Lévy type.

To complement our visual check of heavy-tailed behavior
of Figure 1, we calculate the maximum likelihood estimate
of the index of stability (the value ofα): For our round-
robin scheduling problem, forN = 12, we obtainα = 0.7,
which is consistent with the hypothesis of infinite mean and
infinite variance, sinceα ≤ 1.1

So far, we have identified heavy-tailed behavior of the
cost distribution to the right of the median. The heavy
tail nature shows that there is a computationally significant
fraction of very long runs, decaying only at a polynomial
rate. The strategy of running the search procedure with
a cutoff near the median value of the distribution clearly
avoids these long runs in the tail.

However, our experiments in Gomes (1998a) also sug-
gest a heavy tail phenomenon on the left-hand side of the
median value of the cost distribution, which means that the
success rate for a solution only increases polynomially with
the number of backtracks. This explains how a relatively
low cutoff value still gives a sufficiently high success rate
to allow us to solve a problem instance. For example, for
our round-robin scheduling problems withN = 16, we ob-
served several runs that took less than 200 backtracks, com-
pared to a median value of around 2,000,000. ForN = 18,
we ran with a cutoff of500, 000 and solved the instance af-
ter 20 tries. Each try took about 1 hour, and the successful
run took 350,632 backtracks.

Tails on the left are also characterized by an index of
stability. Based on our data (Gomes 1998a), we conjec-
ture thatα for the tail on the left is less than 1.0 on hard
combinatorial search problems. This conjecture has strong
implications in terms of algorithm design: It means that in
order to obtain the minimal expected run time, a preferred
strategy consists of relatively short runs of a randomized
backtrack-style procedure.

We do not wish to give the impression thateverysearch
problem gives rise to a heavy-tailed distribution. In fact,
doing so would give rise to the suspicion that the distribu-
tions we found were an artifact of our methodology, rather
than a real phenomena of the problem domain! One do-
main in which we havenot found heavy-tails is on blocks-
world planning problems. The hardest blocks-world prob-
lem from Kautz and Selman (1996) is blocks-world.d, and it
can be solved by deterministic Satz in 30 minutes. We ran
the randomized version of Satz on this instance at a wide
range of cutoff values and heuristic equivalence settings.

1Of course, the computational cost of complete backtrack-style
algorithms has a finite upper-bound. However, since we are deal-
ing with NP-complete problems, this upper-bound is exponential
in the size of the problem, which means thatde facto, for realistic-
size hard instances, it can be treated as infinite for practical pur-
poses: no practical procedure can explore the search full space.

4

The optimal equivalence parameter setting was 30%. How-
ever, over a range of cutoff values, there was no evidence
of a heavy-tailed distribution, and, therefore, randomization
only slightly increases the effectiveness of Satz: the mean
cost is 23 minutes. Further studies are needed to determine
exactly what characteristics of combinatorial search prob-
lems lead to heavy-tailed behavior.

Boosting Performance by Randomization and
Restarts

So far, we have discussed how heavy-tailed probability dis-
tributions underlie the large variability observed when run-
ning a randomized backtrack-style procedure on a variety of
problem instances. We can obtain more efficient and more
predictable procedures by running the search up to a cer-
tain cutoff point and then restarting at the root of the tree.
Restarts clearly prevent the procedure from getting trapped
in the long tails on the right of the distribution. In addi-
tion, a very low cutoff value can also be used to exploit the
heavy-tails to the left of the median, and will allow us to
solve previously unsolved problem instances after a suffi-
cient number of restarts. In Table 1, the mean solution times
in the “Randomized” column are based on empirically de-
termined near-optimal cutoff values. For each randomized
solution time the standard deviation is of the same order
of magnitude as the mean. This is to be expected because
the distribution is geometric, as will be shown in the next
section. Without restarts, of course, the variance and mean
tend to infinity to a first approximation.

We will now discuss these results in more detail.
Our deterministic CSP procedure on the round-robin

scheduling problem gives us us a solution forN = 14 in
about 411 seconds. (Experiments ran on a 200MHz SGI
Challenge.) We could not find a solution forN = 16 and
N = 18. Apparently, the problem quickly becomes very
difficult, even for moderate values ofN . The subtle interac-
tion between global and local constraints makes the search
for a globally consistent solution surprisingly hard.

For problems for which we can empirically determine the
overall cost profile, we can calculate anoptimalcutoff value
to minimize the expected cost of finding a solution. Our
main interest, however, is in solving previously unsolved
instances, such as theN = 16 andN = 18 case. These
problems are too hard to obtain a full cost distribution. For
example, forN = 16, running with a cutoff of 1,000,000
gives a success rate of less than 40%, so we do not even
reach the median point of the distribution. Each run takes
about 2 hours to complete. (We estimate that the median
value is around 2,000,000. Our deterministic procedure ap-
parently results in a run that still lies to the right of the ex-
pected median cost.) In order to find a good cutoff value for
very hard problem instances, the best available strategy is
a trial-and-error process, where one experiments with vari-

cutoff succ. mean cost
rate (×106)

200 0.0001 2.2
5,000 0.003 1.5
10,000 0.009 1.1
50,000 0.07 0.7
100,000 0.06 1.6
250,000 0.21 1.2

1,000,000 0.39 2.5

Table 2: Solving the 16-team robin-robin scheduling prob-
lem for a range of cutoff values.

cutoff succ. mean cost
rate

2 0.0 >300,000
4 0.00003 147,816
8 0.0016 5,509
16 0.009 1,861
32 0.014 2,405
250 0.018 13,456

16000 0.14 107,611
128000 0.32 307,550

Table 3: Solving the logistics.d problem for a range of cut-
off values.

ous cutoff values, starting at relatively low values, since the
optimal cutoff for these problems tends to lie below the me-
dian value of the distribution. This can be seen from Table
2, which gives the expected cost (backtracks) for finding a
solution forN = 16 for a range of cutoff values. The opti-
mal cutoff is around5.104, resulting in an expected cost per
solution of7.105 backtracks (≈ 1.4 hrs). For theN = 18
case, we ran with a cutoff of5.105, and found a solution
after approximately 22 hours.2

Table 3 gives the performance of Satz for a range of cut-
off values on the logistics.d instance. Again, there is a clear
optimal value: In this case, it’s surprisingly low,16 back-
tracks. Despite the low success rate (less than 1%) at this
cutoff value, the overall performance is close to optimal
here, requiring around 1,800 backtracks total per solution,
which takes around95 seconds. Compare this with the 108
minutes for the deterministic version of Satz. It’s important
to note that the 108 minutes run is not just an “unlucky”
determinist run. Given the shape of the underlying heavy-
tailed distribution, most runs take more than 100,000 back-
tracks (over 1 hour). The trick is to exploit the fact that we

2Since the submission of this paper, a lot of progress has been
made in terms of solving larger instances (McAloonet al. in
preparation). By using multiple threads on a 14 processor Sun
system, 26 and 28 teams schedules were generated, which is the
record as of this writing (Wetzel and Zabatta, 1998). We be-
lieve these numbers can be improved upon with our randomization
technique.

5

have a non-negligible probably of solving the instance in a
veryshort run. Our fast restart strategy exploits this.

See Table 1 for other improvements due to randomiza-
tion. Until now, the 3bit-adder problems had not been
solved by any backtrack-style procedure. On the block-
world problem, we obtain little improvement, which can be
attributed to the absence of heavy-tails as discussed above.

These results show that introducing a stochastic element
into a backtrack-style search procedure, combined with an
appropriate restart strategy, can significantly enhance the
procedure’s performance. In fact, as we see here, it allows
us to solve previously unsolved problem instances.

A Formal Analysis of Restarts

In this section we formalize the strategy of restartsS of a
complete stochastic procedureA. We derive the probability
distribution ofS assuming the full knowledge of the proba-
bility distribution ofA. We demonstrate that the probability
distribution associated withS does not exhibit heavy tails.
Furthermore,S has a finite mean and variance, even if the
stochastic procedureA has an infinite mean and variance.

Let us consider a complete stochastic procedure and as-
sociate with it the random variableA, whereA is the num-
ber of backtracks that it takes to find a solution or prove
that it does not exist. Let us now consider the following
stochastic strategy for runningA: runA for a fixed number
of backtracksc (the cutoff); ifA finds a solution or proves it
does not exist, then our stochastic strategy has also found a
solution (or proved that it does not exist) and it stops. Oth-
erwise, restartA from the beginning, using an independent
random seed, for anotherc backtracks, and so on. DefineS
as the number of backtracks that the stochastic strategy of
restarts ofA with cutoff c takes to find a solution or prove
that it does not exist. Let’s assume that we know P[A≤ c],
i.e., the probability that the stochastic procedureA will find
a solution or prove that it does not exist in no more than
c backtracks. The sequence of runs ofA executed by our
restart strategy are independent, and therefore they can be
seen as a sequence of Bernoulli trials, in which the success
consists in finding a solution (or proving that it doesn’t ex-
ist) before the end of the run.

It’s convenient to also define a random variableR, giving
the number of restarts until a solution is found (or the in-
stance is shown inconsistent). Note thatR = dS/ce. R fol-
lows ageometric distributionwith parameterp = P [A ≤
c]. The probability of the tail ofS, P [S > s], is given by

P [S > s] = (1 − p)bs/cc P [A > s mod c]

Taking into consideration thatR = dS/ce and that it
follows a geometric distribution (exponential decay; finite
mean and variance), it follows that the tail of the distribu-
tion of S also exhibits exponential decay andS has a finite
mean and variance.

We should emphasize that when adopting a low cutoff
the strategy of restarts partially eliminates the heavy tail on
the left: the lower the cutoff, the shorter the tail. This is
true since the distribution ofS exhibits exponential decay
for S >cutoff.

Conclusions

Building on our previous work on heavy-tailed behavior in
combinatorial search (Gomes et al. 1998a), we have shown
that performance of complete, backtrack-style search al-
gorithms on hard real-world problems can be greatly en-
hanced by the addition of randomization combined with a
rapid restart strategy. Speedups of several orders of magni-
tude were observed, and some test problem instances were
solved for the first time by any backtrack-style procedure.

The success of our approach is based on exploiting the
heavy-tailed nature of the cost distributions. We saw that
in most of the domains we found that “outliers” onboth
sides of the median occur with a relatively high frequency.
Heavy-tails to the right of the median cause the mean so-
lution time to grow without bounds. Adding cutoffs and
restarts to the search algorithm, however, both theoreti-
cally and empirically eliminate the heavy-tail and bound the
mean. Heavy-tails to the left of the mean can be exploited
by performing many rapid restarts with short runs, leading
to a further dramatic decrease in expected solution time.

We applied the randomization techniques to two state-
of-the-art search engines for CSP and propositional satisfi-
ability. We were able to solve hard round-robin scheduling
instances of up to size 18, when the corresponding deter-
ministic version could only handle instances up to size 14.
In the domain of planning as satisfiability, we extended the
range of logistics problems that could be solved by com-
plete methods from problems containing 1,141 variables to
ones involving 2,160 variables (solved with mean cost of
95 seconds).

It would be interesting to explore our randomization ap-
proach in context of other backtrack-style approaches, such
as dynamic backtracking (Ginsberg 1993). We believe that
the generality of the approach will lead to further advances
in planning, scheduling, diagnosis, game-playing, and other
areas of AI.

AcknowledgmentsThe first author is sponsored by the Air
Force Research Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-98-1-0008and the
Air Force Office of Scientific Research, under the New
World Vistas Initiative, AFOSR NWV project 2304, LIRL
97RL005N25. The second author is supported by an NSF
Faculty Early Career Development Award. The views and
conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the of-
ficial policies or endorsements, either expressed or implied,

6

of the Air Force Research Laboratory or the U.S. Govern-
ment.

References

Alt, H., Guibas, L., Mehlhorn, K., Karp, R., and Wigderson A.
(1996). A method for obtaining randomized algorithms with
small tail probabilities.Algorithmica, 16, 1996, 543–547.

Bayardo, Roberto J., and Schrag, Robert C. (1997). Using CSP
look-back techniques to solve real-world SAT instances.Proc.
AAAI-97, New Providence, RI, 1997, 203–208.

Bresina, J. (1996) Heuristic-biased stochastic sampling.Proc.
AAAI-96, Portland, OR, 1996.

Crawford, J. M., and Baker, A. B. (1994). Experimental results
on the application of satisfiability algorithms to scheduling
problems.Proc. AAAI-94, Seattle, WA, 1092–1097.

Davis, M., Logemann, G., and Loveland, D. (1962). A machine
program for theorem proving.Comm. ACM, 5, 1962, 394–397.

Dechter, R. (1991). Constraint networks.Encyclopedia of Artifi-
cial IntelligenceJohn Wiley, New York (1991) 276-285.

Freuder, E. and Mackworth, A., eds. (1994).Constraint-based
reasoning.MIT Press, Cambridge, MA.

Gent, Ian P. and Walsh, Toby (1994). Easy problems are some-
times hard.Artificial Intelligence, (70)1-2, 335–345.

Ginsberg, M. (1993). Dynamic Backtracking.Journal of Artifi-
cial Intelligence, Vol. 1, 25–46.

Gomes, C.P. and Selman, B. (1997). Problem structure in the
presence of perturbations.Proc. AAAI-97, New Providence,
RI, 221–226.

Gomes, C.P., Selman, B.,and Crato, N. (1998a). Heavy-Tailed
Phenomena in Combinatorial Search, 1998. (submitted for
publication)

Gomes, C.P. and Selman, B., McAloon, K., and Tretkoff C.
(1998b). Randomization in Backtrack Search: Exploiting
Heavy-Tailed Profiles for Solving Hard Scheduling Problems.
To appear in:Proc. AIPS-98.

Kamath, A.P., Karmarkar, N.K., Ramakrishnan, K.G., and Re-
sende, M.G.C. (1993). An Interior Point Approach to Boolean
Vector Function Synthesis.Proc. 36th MSCAS, 185–189.

Kautz, H. and Selman, B. (1996). Pushing the envelope: plan-
ning, propositional logic, and stochastic search.Proc. AAAI-
1996, Portland, OR.

Li, Chu Min and Anbulagan (1997). Heuristics based on unit
propagation for satisfiability problems.Proc. IJCAI-97, Ky-
oto, Japan, 1997.

Luby, M., Sinclair A., and Zuckerman, D.
(1993). Optimal speedup of Las Vegas algorithms.Informa-
tion Process. Lett., 17, 1993, 173–180.

Mandelbrot, Benoit, B. (1960). The Pareto-L´evy law and the dis-
tribution of income.International Economic Review1, 79–106.

McAloon, K., Regin, J-C., Tretkoff C. and Wetzel G. (1998).
Constraint-Based Programming for Sports League Scheduling.
Manuscript in preparation 1998.

McAloon, K., Tretkoff C. and Wetzel G. (1997). Sports League
Scheduling. Proceedings of Third Ilog International Users
Meeting, 1997.

Nemhauser, G., and Trick, M. (1997). Scheduling a major col-
lege basketball conference. Georgia Tech., Technical Report,
1997.

Oddi A. and Smith, S. (1997) Stochastic procedures for generat-
ing feasible schedules.Proc. AAAI-97, New Providence, RI,
1997.

Puget, J-F., and Leconte, M. (1995). Beyond the Black Box:
Constraints as objects.Proceedings of ILPS’95, MIT Press,
513–527.

Samorodnitsky, Gennady and Taqqu, Murad S. (1994).Stable
Non-Gaussian Random Processes: Stochastic Models with In-
finite Variance, Chapman and Hall, New York.

Schreuder, J. A. M. (1992). Combinatorial Aspects of Construc-
tion of Competition Dutch Professional Football Leagues,Dis-
crete Applied Mathematics35 (1992) 301-312.

Selman, B. and Kautz, H. (1993). Domain-independent exten-
sions to GSAT: solving large structured satisfiability problems.
Proc. IJCAI-93, Chambéry, France, 290–295.

Smith, B. and Grant S.A. (1996). Sparse constraint graphs and
exceptionally hard problems.IJCAI-95, 646–651, 1995. Full
version in AIJ (Hogg et al. 1996).

Wetzel, G. and Zabatta, F. (1998). CUNY Graduate Center CS
Technical Report, 1998.

7

