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Quantum reservoir computing provides a framework for exploiting the natural dynamics of quantum

systems as a computational resource. It can implement real-time signal processing and solve temporal

machine-learning problems in general, which requires memory and nonlinear mapping of the recent input

stream using the quantum dynamics in the computational supremacy region, where the classical sim-

ulation of the system is intractable. A nuclear-magnetic-resonance spin-ensemble system is one of the

realistic candidates for such physical implementations, which is currently available in laboratories. In this

paper, considering these realistic experimental constraints for implementing the framework, we introduce

a scheme, which we call a spatial multiplexing technique, to effectively boost the computational power of

the platform. This technique exploits disjoint dynamics, which originate from multiple different quantum

systems driven by common input streams in parallel. Accordingly, unlike designing a single large quantum

system to increase the number of qubits for computational nodes, it is possible to prepare a huge number

of qubits from multiple but small quantum systems, which are operationally easy to handle in labora-

tory experiments. We numerically demonstrate the effectiveness of the technique using several benchmark

tasks and quantitatively investigate its specifications, range of validity, and limitations in detail.

DOI: 10.1103/PhysRevApplied.11.034021

I. INTRODUCTION

Recent developments in sensing and Internet-of-things

technology follow big data, which consist of a mas-

sive amount of complex time series data. Accordingly,

a novel information processing technique that can deal

with these data efficiently in real time is eagerly required.

Conventional computers are, however, based on the von

Neumann architecture, where the processor and memory

are separately aligned. This structure causes an intrin-

sic limitation in processing speed, which is called the

von Neumann bottleneck. Furthermore, the schemes of

the von Neumann–type models stipulate that to han-

dle complex information processing, the computational

*k_nakajima@mech.t.u-tokyo.ac.jp

system should also be built in a complex manner sys-

tematically. While biological systems are complex sys-

tems that are constantly exposed to massive sensory data,

they perform successful real-time information processing

with lower computational costs and energy consumptions.

Their way of information processing is a typical non–von

Neumann type, capitalizing on its natural and diverse

dynamics, and has been a source of inspiration for many

researchers [1].

Reservoir computing is a framework for recurrent neural

network training inspired by the way the brain processes

information [2–5] and it provides a typical example of

a non–von Neumann–type computation [6]. A reservoir

computing system consists of a high-dimensional dynam-

ical system, called a reservoir, driven by time-varying

input streams, which generates transient dynamics with
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fading memory property and can perform nonlinear pro-

cessing on inputs [7]. Its framework can be used for

real-time information processing with complex temporal

structures, which makes it particularly suited to machine-

learning problems requiring memory, such as speech

recognition, prediction of stock markets, and autonomous

motor controls for robots. Conventionally, this scheme is

implemented through randomly coupled artificial neural

networks [i.e., echo state networks (ESN) [2] ] or through

spiking neural networks (i.e., liquid state machines [3])

in the software program running on a PC. As long as

it runs on a conventional PC, the resulting computa-

tion is inevitably a von Neumann type. On this basis,

the physical implementations of the reservoir have been

proposed to exploit the dynamics of native physics for

information processing. The implementations include the

dynamics of the water surface [8], photonics [9,10], spin-

tronics [11–13], and the nanomaterials structured in the

neuromorphic chip [6]. Even the diverse body dynamics

of soft robots have been shown to be used as a suc-

cessful reservoir [14–17], suggesting that this framework

could be applied to physical systems in various scales.

Recently, quantum reservoir computing (QRC) has been

proposed, which implements reservoir computing powered

by quantum physics [18].

Quantum dynamics is difficult to simulate using a con-

ventional or classical computer due to the exponentially

large degrees of freedom. This property is generally termed

a quantum computational supremacy [19] and the frame-

work of QRC relies heavily on this property of quan-

tum dynamics. Quantum reservoir (QR) dynamics are

expressed as transitions of the basis states for quantum

bits (qubits) driven by an input stream [Fig. 1(a)], which

evolve over time through a unitary operator based on

a Hamiltonian. Signals are obtained through projective

measurements from the system, called true nodes, which

are used as direct reservoir states. An exponential num-

ber of degrees of freedom exist behind the measurement

called hidden nodes, which affect the time evolution of the

true nodes. The framework of QRC naturally takes into

account the exponential degrees of freedom of quantum

dynamics, which is intractable for the classical computer,

for information processing. Furthermore, the framework

implements non–von Neumann–type computing through a

reservoir computing scheme, suggesting the full exploita-

tion of assets from physical quantum dynamics. It has

been shown that the QR system can emulate nonlinear

dynamical systems, including classical chaos, and exhibit

robust information processing against noise [18]. As candi-

dates for the physical experimental platform of the scheme,

nuclear-magnetic-resonance (NMR) spin-ensemble sys-

tems [20,21] have been proposed. In these systems, nuclear

spins in molecules are used as the ensemble qubit system.

Usually, when monitoring a quantum system, its observ-

ables are affected by projective measurements, a process

quantum system
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FIG. 1. Schematics explaining a spatial multiplexing technique

for QRC. (a) A QRC system without spatial multiplexing for

comparison, showing a quantum system with five qubits; the

input is injected into the first qubit. (b) A QRC system with spa-

tial multiplexing. It shows multiple disjoint quantum systems,

each containing five qubits; the input is injected into the first

qubit for each system. (c) Schematic of an experimental imple-

mentation of QRC with a spatial multiplexing technique for the

NMR system.

called backaction. In the NMR ensemble system, this effect

of backaction can be neglected, and the signal can be

successfully obtained by averaging the massive amount

of copies of molecules existing in the ensemble system.

(We here note that the first physical implementation of

NMR-based QR has recently been reported; this exploits

the controllable dynamics of a nuclear spin ensemble in a

molecular solid [22].)

In this paper, we present a scheme for boosting the

computational power of QRs. (Throughout this study, the

term “computational power” implies the system’s expres-

sive capability for function approximations, like that found
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in neural networks, including reservoir computing sys-

tems.) The most prominent and straightforward approach

for improving the computational capability of the system

is increasing its number of computational nodes. In QRC,

this primarily corresponds to increasing the number of

qubits. However, when viewed from a physical implemen-

tation standpoint (e.g., using a NMR spin-ensemble sys-

tem), this approach requires a redesign or reconstruction

of the sample molecules, which is operationally difficult as

well as energy and time consuming.

To overcome this problem, we introduce an effective

approach to boost the computational power of the sys-

tem using readily available small-sample molecules, which

are operationally easy to handle in the experiments. Our

scheme is called spatial multiplexing, in which we prepare

multiple different small-sample molecules, inject common

input streams into each system, and use all the signals

obtained from these systems as a big single reservoir

system [Fig. 1(b)]. This procedure has previously been pro-

posed in the applications of conventional ESNs and many

examples have demonstrated its effectiveness (e.g., [2]).

Here, we apply the scheme to QRC and present that its

procedure is particularly suited to overcome the difficulty

in a physically implemented reservoir setting.

In a software-implemented RC, since the scheme of spa-

tial multiplexing exploits multiple disjoint ESNs as a new

reservoir, it is operationally equivalent to assuming a single

ESN having the same total number of computational nodes

in the first place with a specific sparse internal weight

matrix. However, when viewing this scheme from phys-

ical RC perspectives, the situations are different. In the

NMR-implemented QRC, for example, even if the num-

ber of computational nodes is the same, the operational

cost of preparing one huge sample molecule and that of

preparing multiple small-sample molecules are different.

By focusing on this operational difference, we can secure

the scheme as one of the realistic and practical options to

improve the computational power of physical reservoirs,

which are often difficult to design freely and easily. In the

following sections, we argue the effectiveness of the spa-

tial multiplexing technique for the NMR spin-ensemble-

system-based QRC and quantitatively demonstrate how

the scheme improves the computational performance in

QRC. We also provide a detailed theoretical explana-

tion of the specifications and range of validity of the

scheme, which will be useful for evaluating other reservoir

systems.

This paper is organized as follows. In the next section,

we overview the formalization of QRC [18] and intro-

duce spatial multiplexing into the setting. Subsequently,

we theoretically examine the effect of spatial multiplex-

ing in detail from a general standpoint. We then numer-

ically demonstrate the power of the spatial multiplex-

ing technique on QRC using conventional benchmark

tasks in a machine-learning context. Several approaches

to engineer QRs through spatial multiplexing are also dis-

cussed. Finally, its practical aspects, future application

domains in solving real-world machine-learning problems,

and its implications for the reservoir computing framework

in general are discussed.

II. QUANTUM RESERVOIR COMPUTING

THROUGH SPATIAL MULTIPLEXING

A. Quantum reservoir dynamics

Let us consider a quantum state of an N -qubit system,

which is described by a density operator ρ. By denoting

the Pauli operators to be

I = σ00, X = σ10, Z = σ01, Y = σ11, (1)

an N -qubit Pauli product is defined by 2N -bit string i:

P(i) =

N
⊗

k=1

σi2k−1i2k
. (2)

By using the Pauli products {P(i)} as a basis of the oper-

ator space, the quantum state ρ is represented by 4N real

vectors:

ρ → r =

⎛

⎜

⎝

r00···0

...

r11···1

⎞

⎟

⎠
, (3)

where each element ri is given in terms of the Schmidt-

Hilbert inner product for the operator space as

ri = Tr[P(i)ρ]/2N . (4)

From the properties of the density operators,

r00···0 = 1/2N , −1 ≤ ri ≤ 1,
∑

i

r2
i ≤ 1. (5)

In QRC, each element ri is regarded as a hidden node of

the network. In quantum mechanics, any physical opera-

tion can be written as a linear transformation via a 4N × 4N

matrix W:

r′ = Wr. (6)

The matrix W can be constructed explicitly from the

quantum operationW as follows:

Wj i = Tr{P(j )W[P(i)]}/2N . (7)

For example, a unitary dynamics under the Hamiltonian H

with a time interval τ is given by

(Uτ )j i = Tr[P(j )e−iHτ P(i)eiHτ ]/2N . (8)

In order to exploit quantum dynamics for information pro-

cessing, we have to introduce an input and the signals

034021-3
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of the quantum system [see Fig. 1(a)]. Suppose {uk} is

an input sequence, which is a continuous variable (uk ∈
[0, 1]). (We consider the setting of one-dimensional input

for simplicity, but its generalization to a multidimensional

case is straightforward.) A temporal learning task here is

to find, using the quantum system, a nonlinear function

yk = f ({ul}
k
l=1) such that the mean-square error between yk

and a target output ŷk for a given task becomes minimum.

Note that, as we see from Eq. (6), there is no nonlinearity in

each quantum operation W. Instead, the time evolution W

can be changed according to the external input uk, namely,

Wuk
, allowing the quantum reservoir to process the input

information {uk} nonlinearly, by repetitively feeding the

input. Thus, we can obtain nonlinear terms, for example,

with respect to uk and uk−1, Wuk
Wuk−1

via a multiplication

of two linear transformations.

Specifically, as an input in our work, we replace the first

qubit to the quantum state [Fig. 1(a)]

ρuk
=

I + (1 − 2uk)Z

2
. (9)

The corresponding matrix Suk
is given by

(Suk
)j i = Tr

{

P(j )
I + (1 − 2uk)Z

2
⊗ Tr1st[P(i)]

}

/2N ,

where Tr1st indicates a partial trace with respect to the first

qubit. A unit time step is written as an input-depending

linear transformation:

r[(k + 1)τ ] = Uτ Suk
r(kτ), (10)

where r(kτ) indicates the hidden nodes at time kτ .

A set of observed nodes, which we call true nodes,

{xl}
M
l=1 is defined by a 4N × M matrix R,

xl(kτ) =
∑

i

Rliri(kτ). (11)

The number of true nodes M has to be a polynomial

in the number of qubits N . That is, from exponentially

many hidden nodes, a polynomial number of true nodes

are obtained. For simplicity, we take the single-qubit Pauli

Z operator on each qubit as the true nodes, i.e.,

x1 = r010···0, x2 = r00010···0, . . . , xn = x0···01. (12)

Therefore, there are M = N true nodes. Figure 2(a) shows

the typical reservoir dynamics driven by the input stream

{uk} and they consist of signals obtained from the true

nodes. Here, we assume that the system is an ensem-

ble quantum system, which consists of a huge number of

copies of single quantum systems. Therefore, the signals

from the true nodes are obtained without any backaction.

input
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FIG. 2. Preparing computational nodes through spatial multi-

plexing. (a) A typical example of reservoir dynamics (a time

series of signals obtained from true nodes) in multiple dis-

joint quantum systems driven by a common input stream. The

plot overlays reservoir dynamics from three different quantum

systems with the number of qubits set to 5 and τ� = 8. (b)

The temporal and spatial multiplexing scheme. The upper dia-

gram focuses on the time interval when the input uk is injected.

Signals from the three QR systems are overlaid, where the

parameters τc, Vc, and Nc are set to be the same among the

systems for simplicity. The lower diagram expresses how to pre-

pare the computational nodes in our settings. The linear and

static readout weight is attached to each computational node and

the learning is performed by training the weights. See text for

details.
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Actually, the NMR spin-ensemble system is such a system.

A sample of a NMR spin-ensemble system contains typi-

cally 1018−20 copies of the same molecules. The magneti-

zation of 1014−16 spins out of the sample can be measured

with a rf coil with a sufficient signal-to-noise (SN) ratio,

while the remaining is not affected.

The unique feature of QRC in the reservoir comput-

ing context is that the exponentially many hidden nodes

that originate from the dimensions of the Hilbert space are

monitored from a polynomial number of signals defined as

the true nodes. Based on this setting, in the next section,

two coordinated schemes are introduced to harness QR

dynamics in a physically natural setting. The first is called

“temporal multiplexing,” which was already introduced in

Refs. [18,23], and the second is called “spatial multiplex-

ing,” which is a procedure applied to the QRC from this

study.

B. Temporal multiplexing

In Ref. [18], temporal multiplexing has been found to be

useful to extract complex dynamics on the exponentially

large hidden nodes through the restricted number of true

nodes. In temporal multiplexing, the signals are sampled

from the QR not only at the time kτ , but also at each of

the subdivided V time intervals during the unitary evolu-

tion Uτ to construct V virtual nodes, as shown in Fig. 2(b)

(the upper diagram). After each input by Suk
, the signals

are obtained for each subdivided interval after the time

evolution by Uvτ/V (v = 1, 2, . . . V), i.e.,

r[kτ + (v/V)τ ] ≡ U(v/V)τ Suk
r(kτ). (13)

Accordingly, as the QR system has N true nodes, we

have NV corresponding computational nodes at each input

timestep k in total, and the virtual nodes are defined by

xl[kτ + (v/V)τ ] =
∑

i

Rliri[kτ + (v/V)τ ]. (14)

This procedure allows us to make full use of input-driven

transient dynamics, which can potentially include the influ-

ence of hidden nodes. Using this technique, it is possible

to effectively increase the total number of computational

nodes employed in the learning process. A similar tech-

nique can also be found, for example, in Ref. [9] under the

same motivations.

It is important to note that, as is obvious from the set-

ting, the parameter τ modulates directly the dynamics of

QR, while the parameter V defines how we observe the

dynamics. In Ref. [18], the relevance of these parameters to

the computational capability of the QR system was inves-

tigated. It was observed that, according to the choice of

the parameter τ , the type of computation that can be per-

formed well has changed and the increase in the parameter

V essentially contributes to an improved computational

performance.

C. Spatial multiplexing

Now, we consider boosting the computational power

in QRC further. The most straightforward and promising

approach that comes to mind is increasing the number of

computational nodes. This naturally leads to an increase in

the number of qubits in the QR system. (The approach of

temporal multiplexing, which secures virtual nodes from

the signals, is also reasonable in terms of increasing the

number of computational nodes.) Considering the physical

implementations of QRC to the NMR system, however,

as we explained previously, this procedure of increasing

the number of qubits corresponds to the enlargement and

redesign of sample molecules, and it is not always easy in

practice. In the NMR system, the local control and mea-

surement of a qubit is accomplished with the difference

of the resonant frequency. The resonant frequency differs

from the nuclear species. Among many species, only a

few species such as 1H, 13C, 15N, and 19F are easy to

handle and thus used as qubits before. The resonant fre-

quency is also slightly shifted due to the difference of the

chemical environment even with the same species, which

enables us to have local control of them. However, it is

not easy to design and synthesize a molecule that includes

many addressable spins with the different species and envi-

ronment. Since a 12-addressable-spin system in a liquid

has been developed in 2006 [24], the record still remains

unbroken.

In this study, based on these physical constraints of

the experimental settings, we introduce an effective and

practical procedure to increase the computational resource,

which is relatively easy to implement under the practi-

cal condition. The procedure is called spatial multiplexing.

We prepare multiple disjoint QR systems, which are spa-

tially distant or uncoupled, and we drive them with a

common input stream in parallel [Fig. 1(b)]. Subsequently,

we collect the signals from each QR system in the pre-

viously explained manner and we use all of these signals

from different QR systems as one entire set of reser-

voir dynamics. (Note that, because of the experimental

constraints, it would be difficult to inject inputs in a per-

fectly synchronized manner into each separate system.

Even in these cases, if I/O timesteps could be coordi-

nated among each system, then the spatial multiplexing

technique could be applied.) For the NMR-implemented

QRC, this approach enables the exploitation of readily

available sample molecules, which already exist in the lab-

oratory, to increase the number of computational nodes.

Compared to redesigning the sample molecules as a com-

putational resource, this approach should be relatively

handy and practical for experimenters. For example, the

aforementioned 12-qubit molecule and another one devel-

oped in 2017 [25] can be potentially utilized for spatial

multiplexed reservoirs [Fig. 1(c)]. To synthesize other 12-

qubit molecules based on the developed molecules with
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chemical modifications may be easier than a molecule with

more qubits. It is important to note that this procedure

of spatial multiplexing combines true nodes from disjoint

quantum systems and this does not generate an exponen-

tial number of hidden nodes against the number of true

nodes. This implies that, even if the number of true nodes

is the same, the expressive power of QR with spatial multi-

plexing is different from that of QR prepared from a single

quantum system in principle.

Let us consider C different QRs driven by a common

input stream uk in parallel. For each QR system c, which

has Nc qubits with a corresponding number of true nodes,

the time interval to inject input τc and the correspond-

ing unitary evolution Uτc can be set differently [Fig. 2(b)].

Each QR system is also equipped with temporal multiplex-

ing having Vc virtual nodes [Fig. 2(b)]. As a result, the

spatial multiplexing induces
∑C

c=1 NcVc nodes in total and

these computational nodes are exploited as a single reser-

voir. We investigate systematically whether the procedure

of spatial multiplexing really boosts the computational

power of the QRC or not and, furthermore, to what extent

it improves the performance in detail in the later sections.

D. Output settings and learning procedure

In the reservoir computing approach, the output is

obtained as a weighted sum of the reservoir states and the

learning of a target function is executed by training lin-

ear and static readout weights attached to the reservoir

nodes in a supervised manner. Here, we explain how to

train the readout weights from the observed signals of QR

after the procedures of temporal and spatial multiplexing.

According to the previous sections, temporal and spatial

multiplexing introduces Ntotal =
∑C

c=1 NcVc computational

nodes in total [Fig. 2(b)]. The state of the computational

node i at timestep k is expressed as x′
ki by rearranging the

subscript from the original and we introduce a constant

bias term x′
k0 = 1.0. The system output of the system is

then expressed as

yk =

Ntotal
∑

i=0

x′
kiwi, (15)

where wi is a linear and static weight attached to node i. Let

{ŷk}
L
k=1 be the target sequence for learning, where L is the

length of the training phase that is assumed much greater

than Ntotal + 1 and the training of the readout weights

{wi}
Ntotal
i=0 is to minimize

∑L
k=1(yk − ŷk)

2. By collecting the

target output ŷ = [ŷ1, ŷ2, . . . , ŷL]T and the corresponding

Ntotal + 1 reservoir states in the learning phase as the train-

ing data matrix X , which is an L × (Ntotal + 1) matrix, the

optimal weight ŵ = [ŵ0, ŵ1, . . . , ŵNtotal
]T can be obtained

as a least-squares solution ŵ = (X TX )−1X Tŷ.

As we see later in detail, when we actually let the QR

system perform the computational tasks in this study, the

experimental trial consists of a washout phase, training

phase, and evaluation phase. The washout phase is to elim-

inate the influence of initial transients of the reservoir

states, and the trained readout weights in the training phase

are exploited to generate outputs in the evaluation phase.

E. Theoretical insights into the effect of spatial

multiplexing

In this section, we investigate theoretically the effect

of spatial multiplexing and we show its range of validity

and limitations. The argument in this section is not lim-

ited to a quantum system but is generally applicable to

any reservoir system. Initially, we prove concisely that the

procedure of spatial multiplexing always improves com-

putational performance (or, at worst, will not change the

performance).

Let us assume that we have two reservoirs, reservoirs

A and B, which have NA and NB computational nodes,

respectively. Consider the corresponding regression equa-

tions, y = XAwA + rA and y = XBwB + rB, where XA is a

T × NA matrix and XB is a T × NB matrix, with realizations

T satisfying NA + NB ≤ T, and rA and rB are residuals. We

assume that XA and XB are full rank, and wA and wB are

least-squares solutions expressed as wA = (X T
A XA)−1X T

A y

and wB = (X T
B XB)−1X T

B y, respectively. With projectors

PA = XA(X T
A XA)−1X T

A and PB = XB(X T
B XB)−1X T

B , XAwA =
PAy and XBwB = PBy. Accordingly, the residuals can

be expressed as r2
A = ‖y − XAwA‖2 = ‖(I − PA)y‖2 and

r2
B = ‖y − XBwB‖2 = ‖(I − PB)y‖2. We consider com-

bining reservoirs A and B and constructing a new

reservoir “A + B.” Similarly, for XA+B = ( XA XB ), y =
XA+BwA+B + rA+B, where wA+B is a least-squares solu-

tion expressed as wA+B = (X T
A+BXA+B)−1X T

A+By and rA+B

is a residual. We assume that XA+B is full rank. With

projectors PA+B = XA+B(X T
A+BXA+B)−1X T

A+B, XA+BwA+B =

PA+By, and a residual can be expressed as r2
A+B = ‖y −

XA+BwA+B‖2 = ‖(I − PA+B)y‖2. Because wA+B is a least-

squares solution,

r2
A+B = ‖(I − PA+B)y‖2

= ‖y − XA+BwA+B‖2

≤ ‖y − XA+B

(

wA

0

)

‖2

= ‖y −
(

XA XB

)

(

wA

0

)

‖2

= ‖y − XAwA‖2

= ‖(I − PA)y‖2 = r2
A.

The equal sign can be used only when PA+B = PA. Like-

wise, r2
A+B ≤ r2

B and r2
A+B ≤ min{r2

A, r2
B} holds. This rela-

tion clearly provides the mechanism of the boost of
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the computational power or improvement of the perfor-

mance in spatial multiplexing, specifically implying that

the improvement occurs against the performance of the

original reservoir (reservoir A or B) in terms of the learn-

ing errors, the residuals. Furthermore, this relation shows

the reason why the performance improves by increasing

the computational nodes in the system in general. It also

suggests that the couplings and interactions within the

reservoir are not explicitly required for this improvement

in theory. Conversely, this relation still holds even if there

are some couplings between reservoirs A and B (although

it may be referred to as one reservoir rather than two in this

case).

Estimating the upper limit of the improvement in per-

formance in terms of how the residual decreases by adding

the reservoir B to the reservoir A is also possible. In gen-

eral, projector P satisfies P = PT, PP = P, and if P is a

projector, then I − P is also a projector. Applying these

properties to the above results, with a few transformations,

we obtain

0 ≤ r2
A − r2

A+B = 〈(PA+B − PA)y, y〉,

where 〈·, ·〉 is an inner product. This relation suggests

that QA,A+B := PA+B − PA is positive semidefinite, and the

largest eigenvalue is

λQA,A+B
:= sup

y �=0

〈(PA+B − PA)y, y〉

〈y, y〉
.

Thus,

0 ≤ r2
A − r2

A+B ≤ λQA,A+B
‖y‖2,

where λQA,A+B
expresses the supremum of the reductions

of a normalized residual when adding reservoir B to reser-

voir A. Similarly, we obtain 0 ≤ r2
B − r2

A+B ≤ λQB,A+B
‖y‖2,

where QB,A+B := PA+B − PB is also positive semidefinite

and λQB,A+B
is the largest eigenvalue of QB,A+B. Using the

above relations for r2
B − r2

A+B and r2
A − r2

A+B, and r2
A+B ≤

min{r2
A, r2

B}, we obtain

max{(r2
A − λQA,A+B

‖y‖2), (r2
B − λQB,A+B

‖y‖2)}

≤ r2
A+B ≤ min{r2

A, r2
B},

where 0 ≤ max{(r2
A − λQA,A+B

‖y‖2), (r2
B − λQB,A+B

‖y‖2)}.
Thus, we can evaluate and predict the extent of the

improvement without actually performing the task using

reservoir A + B.

We should be careful because the above facts do not

always hold in practice. Two points should be noted. The

first is overfitting. Spatial multiplexing can increase com-

putational nodes drastically, so we should be careful when

balancing between the size of the training data set and

the system size. Since spatial multiplexing always results

in an improved performance for the training data set, if

the performance worsens with spatial multiplexing in the

evaluation phase, we can infer back that it is caused by

overfitting.

Second, the prior facts are based on the assumption that

XA, XB, and XA+B are full rank. This condition does not

always hold in practice. A typical example is a case in

which synchronization occurs, which makes the reservoir

dynamics identical or low dimensional. Notably, even if no

coupling exists between the reservoirs in spatial multiplex-

ing, the synchronization can still occur. This phenomenon

is often called generalized synchronization [26] or com-

mon input (noise) synchronization [27,28]. Ironically, as

investigated in Ref. [27], this property of common input

synchronization is rather a required property for reservoirs

in terms of the reproducibility of the signals (the opposite

case is chaotic dynamics, where an arbitrarily small change

in one state of a deterministic system results in large differ-

ences in a later state). For robust information processing,

the same reservoir is preferred to respond the same accord-

ing to the identical input stream, even if the initial states

of the reservoir differ. For the scheme of spatial multiplex-

ing, however, this property acts as a drawback that avoids

the duplication of the same reservoir in use. Accordingly,

for spatial multiplexing, preparing a different reservoir or

the same setting of the reservoir with different input scal-

ing or with a different choice of qubit for input injections

is recommended.

III. PERFORMANCE ANALYSES

In this section, we use numerical experiments to inves-

tigate the effect of spatial multiplexing. By assessing the

memory capacity and by using a benchmark task that eval-

uates the information processing capability to emulate non-

linear dynamical systems called “nonlinear autoregressive

moving average” (NARMA) systems, we demonstrate how

the order of spatial multiplexing affects the performance of

our QR system systematically. These evaluation schemes

adopted here are popular in the context of recurrent neural

network learning.

For the dynamics of QR system, we employ the simplest

quantum system, a fully connected transverse-field Ising

model, as an example:

H =
∑

ij

Jij XiXj + hZi, (16)

where the coupling strengths are randomly assigned such

that Jij is distributed randomly from −J/2 to J/2. Further-

more, a scale factor � is introduced to make τ� and J/�

dimensionless. In our numerical experiments, the quantum

dynamics of the above Hamiltonian is exactly calculated

without employing any approximation.

Here, the spatial multiplexing is implemented using QR

systems having the same number of qubits Nc, the input
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interval τc, and the virtual nodes Vc (which we simply

denote N , τ , and V, from now on) but with different random

coupling strengths of Jij . In the following, we see the case

when the number of qubits N of a single QR system, which

implies the case without spatial multiplexing, is set to 5. As

an example, we demonstrate in detail when the parameter

τ� is set to 1 and 2 for the memory capacity analyses and

for the NARMA tasks, respectively. We varied the num-

ber of the virtual nodes V as 1, 5, and 25 and checked the

dependence on the performance. (Note that the analyses

for the different parameter settings, such as the cases for

N = 3, 4 and τ� = 0.5, 1, 2, 3, 4, 8, 16, and 32, are given

in the Appendix.) Throughout the following experiments,

the input stream is randomly drawn from the range [0, 1]

and injected to the first qubit of each QR system. The order

of spatial multiplexing, which is defined as the number of

QR systems driven by a common input stream in parallel,

is varied from 1 (without spatial multiplexing) to 5 for the

analyses.

A. Memory capacity

As discussed earlier, the information processing capabil-

ity of reservoir dynamics can be characterized by its prop-

erty of transforming the input stream. In particular, one of

the important characteristics for the computational systems

in solving a temporal machine-learning task is short-term

memory, which is a property to store information of recent

inputs to the system’s current states. Focusing on this

point, a measure to evaluate the system’s short-term mem-

ory property, which is called memory capacity [29], is

commonly used. In this section, we aim to analyze the

memory capacity of the QR system and to quantify the

effect of the spatial multiplexing in terms of it. To calculate

the measure, the computational system should first learn to

reproduce the injected random input of d timesteps before

by using the current states of the system. This process is

equivalent to setting the target output as ŷk = uk−d, where

uk−d is set as a random sequence ranged in [0, 1] in this

study.

To evaluate the system’s emulatability of the target

sequence, the memory function MFd is defined as

MFd =
cov2(yk, ŷk)

σ 2(yk)σ 2(ŷk)
, (17)

where cov(x, y) and σ(x) express the covariance between

x and y and the standard deviation of x, respectively. This

measure can take the value from 0 to 1, and as the value

gets larger, it suggests that the system’s capability to recon-

struct the previous input uk−d gets higher. The memory

capacity (MC) is defined as follows:

MC =

150
∑

d=0

MFd. (18)

As explained in the earlier section, the training scheme

of our QR system is based on supervised learning and,

for each setting of d, the experimental trial consists of a

washout phase (2000 timesteps), a training phase (2000

timesteps), and an evaluation phase (2000 timesteps).

Using the time series data of 2000 timesteps in the training

phase and the linear regression explained in Secs. C D, we

optimize the readout weights, which we use to calculate

the corresponding system output in the evaluation phase.

For each order of spatial multiplexing, we iterate the above

procedure by using new QR systems with different random

coupling strengths for 100 trials and obtain the averaged

MFd and MC.

Figure 3(a) shows the averaged MFd over the input

delay d. By observing the behavior of MFd against delay

d, we can see that, according to the increase of the order of

spatial multiplexing, the performance gradually improves,

showing the relatively large value of MFd in the region

of the larger delay. This tendency can be captured more

clearly in the behavior of MC [Fig. 3(b)]. Figure 3(b) plots

how the order of spatial multiplexing affects the memory

capacity of the QR system in each setting of virtual nodes.

order 1
order 2
order 3
order 4
order 5
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0.6
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M
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d
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 40

 1  2  3  4  5
order

V = 1
V = 5
V = 25
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(a) (b)

FIG. 3. Dependence of the order of spatial multiplexing on

memory functions according to the delay and on the memory

capacity. (a) The averaged memory functions MFd are shown

with the order of spatial multiplexing varied from 1 to 5. Each

plot is calculated using 100 trials of different runs with differ-

ent QR systems, where the virtual nodes are set to 25. (b) The

averaged MCs are shown according to the order of spatial mul-

tiplexing. Each plot is calculated using 100 trials with different

QR systems, and the cases with virtual nodes set to 1, 5, and 25

are overlaid. As a reference, each plot contains the performance

of the conventional ESN. The notation “ESN20,” for example,

represents the averaged MC of the ESN with 20 nodes. For all

the plots, the error bars show the standard deviations. A single

QR system has five qubits, and the parameter τ� is fixed to 1

throughout this analysis.
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We can observe that, in all cases, the increase of the order

of spatial multiplexing induces the improvement of mem-

ory capacity. Even in other parameter regions (e.g., for

different settings of the parameter τ� and the number

of qubits) of the system, the improved memory capacity,

according to the increased order of spatial multiplexing, is

generally observed (see Fig. 8 in Appendix A for details).

Interestingly, according to the setting of the parameter τ�,

the amount of memory capacity that can be induced is dif-

ferent (Fig. 8 in Appendix A). That is, the memory capacity

reaches relatively larger values when τ� = 0.5 and 1 than

for the other settings of τ�.

B. NARMA tasks

The NARMA task is a commonly used benchmark task

for evaluating the computational capability of the learn-

ing system to implement nonlinear processing with long

time dependence. By calculating the deviations from the

target trajectory in terms of errors, the NARMA task tests

how well the target NARMA systems can be emulated by

the learning system. According to the choice of the target

NARMA system, it is possible to investigate which type

of information processing can be performed in the learning

system to be evaluated. The first NARMA system that we

introduce is a second-order nonlinear dynamical system,

which was used in Ref. [30], expressed as follows:

yk = 0.4yk−1 + 0.4yk−1yk−2 + 0.6u3
k + 0.1. (19)

We call this system NARMA2 in this paper. The next

NARMA system is the nth-order nonlinear dynamical

system, which is written as follows:

yk = αyk−1 + βyk−1

⎛

⎝

n−1
∑

j =0

yk−j −1

⎞

⎠ + γ uk−n+1uk + δ,

(20)

where α, β, γ , and δ are 0.3, 0.05, 1.5, and 0.1, respec-

tively. Here, n varies as 5, 10, 15, and 20, and the cor-

responding systems are called NARMA5, NARMA10,

NARMA15, and NARMA20, respectively. In particular,

NARMA10 is frequently used in the context of evaluat-

ing the learning capability of recurrent neural networks

(e.g., [4,30]). Here, we adopt the multitasking scheme,

where the system should simultaneously emulate all the

NARMA systems according to the input stream. For the

input stream to the NARMA systems, the range is linearly

scaled from [0, 1] to [0, 0.2] to set the range of yk into the

stable range.

The learning scheme of our QR system is exactly

the same as explained in the previous MC analysis.

Each experimental trial consists of a washout phase

(2,000 timesteps), a training phase (2,000 timesteps), and

an evaluation phase (2,000 timesteps). We evaluate the

performance by comparing the system output with the tar-

get output, which is the normalized mean-squared error

(NMSE), expressed as follows:

NMSE =

∑6000
k=4001(ŷk − yk)

2

∑6000
k=4001 ŷ2

k

, (21)

where ŷk and yk are the target output and the system out-

put at timestep k, respectively. For each τ setting, NMSEs

for all the trials are calculated and averaged for the analy-

sis. For each order of spatial multiplexing, we iterated the

above procedure by using new QR systems with different

 i
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FIG. 4. Typical system output time series for the NARMA

tasks during the evaluation phase according to the order of spa-

tial multiplexing. The uppermost plot shows the random input

sequence, and the lower plots show the corresponding task per-

formances for NARMA2, 5, 10, 15, and 20 in order from top to

bottom. Each plot overlays the time series of the target output

and system outputs, which exhibit multiplexing until five quan-

tum systems with the number of qubits set to 5, the number of

virtual nodes set to 25, and the parameter τ� set to 2.

034021-9



KOHEI NAKAJIMA et al. PHYS. REV. APPLIED 11, 034021 (2019)

random coupling strengths for 100 trials and obtained the

averaged NMSE.

Figure 4 shows the typical output time series for the

NARMA tasks in the evaluation phase. First, it is clearly

observed that according to the increase in the order of

the NARMA system, the overall task performance grad-

ually worsens, reflecting an increase of the difficulty of the

tasks. For each NARMA task, according to the increase

of the order of spatial multiplexing, we can see that the

traceability of the QR system is improved (we can visu-

ally confirm this especially for the NARMA5, NARMA10,

and NARMA15 tasks in Fig. 4). These observations can

be quantitatively confirmed in the analyses of the averaged

NMSE in Fig. 5. For each setting of the number of virtual

nodes (V = 1, 5, and 25), the figure plots how the averaged

NMSE behaves according to the increase of the order of

spatial multiplexing in each NARMA task. Figure 5 shows

that for all the NARMA tasks, the increase of the order of

spatial multiplexing induces improvements in the task per-

formance. In particular, when the order of the NARMA

system is 2, 5, and 10, the effect of the increase of the

order of spatial multiplexing is significantly high. We have

checked that this tendency of the effect generally holds for

other parameter settings of the QR system (see Fig. 9 in

Appendix A for details). Furthermore, we have found that,

for each NARMA task, a different setting of τ� exists

that shows the best performance through spatial multiplex-

ing. For example, in the case for the NARMA2 task and

NARMA5 task, the averaged NMSE shows the minimum

value when τ� = 32, while in the case for the NARMA15

task and NARMA20 task, τ� = 1 shows the minimum,

both through spatial multiplexing of order 5 (Fig. 9 in

Appendix A). These findings imply that the parameter τ�

can regulate which type of task the QR system is good at.

C. Temporal versus spatial multiplexing

Sections III A and III B demonstrate that, as the order

of spatial multiplexing increases, the memory capaci-

ties increase and the performance of the NARMA tasks

improves. In this section, we analyze the extent to which

the order of spatial multiplexing plays a part in these

improvements quantitatively.

Figure 6 plots how the improvement ratio behaves

according to the increase of spatial multiplexing in each

experimental case. The improvement ratio is defined by

setting the performance (in terms of the averaged NMSE or

MCs) when the order of spatial multiplexing is set to 1 as

a basis. For both analyses, it is calculated by dividing each

averaged MC and NMSE by those when the order of the

spatial multiplexing is 1 in each parameter setting, respec-

tively. As a comparison, the improvement ratios when the

number of virtual nodes is increased from 1 to 5, from 1 to

25, and from 5 to 25, without spatial multiplexing (reflect-

ing the effect of temporal multiplexing only), are shown in

each plot of Fig. 6. We can clearly observe that, in almost

all cases, the increase of the order of spatial multiplexing

induces the improvements of the performance.

For the memory capacity, we can observe remarkable

improvements, where the improvement ratio marks more

than twice in all of the setting of virtual nodes, when

increasing the order of the spatial multiplexing from 1 to 5

(×10–5)
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FIG. 5. Analysis of the averaged NMSE for the NARMA tasks according to the order of spatial multiplexing. For each plot, the

cases with virtual nodes set to 1, 5, and 25 are overlaid. In all the plots, a single QR system has 5 qubits, and the parameter τ� is fixed

to 2. The averaged NMSE is calculated using 100 trials with different QR systems. Note that the y axis for the plots of NARMA2 and

NARMA5 tasks are in the logarithm scale. As a reference, each plot contains the performance of the conventional ESN. The notation

“ESN20,” for example, represents the averaged NMSE of the ESN with 20 nodes. For all the plots, the error bars show the standard

deviations. See text for details on the experimental conditions.
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FIG. 6. Analyses of the effect of the spatial multiplexing based on the improvement ratio and comparisons with that of the temporal

multiplexing. Improvement ratios according to the order of spatial multiplexing in terms of the averaged memory capacity (left) and the

averaged NMSE for the NARMA tasks (right) are investigated (the parameter settings are the same as those of the analyses in Secs. III

A and III B). In the plot for the memory capacity, the solid line expresses y = x as a reference. In each plot, the improvement ratios for

the temporal multiplexing when the number of virtual nodes is increased from 1 to 5, from 1 to 25, and from 5 to 25 (without spatial

multiplexing) are overlaid as a comparison. For all the analyses, the averaged MC and NMSE used to calculate the improvement ratio

in each condition are obtained from the results of 100 trials with different QR systems.

(Fig. 6, left diagram). In particular, the effect of increas-

ing the order of spatial multiplexing from 1 to 5 with the

virtual node fixed to 1 [ratio(order = 1 → 5)] is similar or

slightly superior to that of increasing the number of virtual

nodes from 1 to 5 without spatial multiplexing [ratio(V =
1 → 5)] in terms of capacity (Fig. 6, left diagram). These

features are commonly observed in all the experimented

parameter settings in this study. For example, when the

order of spatial multiplexing is varied from 1 to 5, the aver-

aged improvement ratio of the memory capacity calculated

using all the parameter settings is 2.11, and the maximum

improvement ratio among all is 3.23 when τ� = 0.5, V =
1, and N = 5 (Fig. 7, upper left diagram). Furthermore,

we observe “ratio(order = 1 → 5) > ratio(V = 1 → 5)”

in almost all the parameter settings (Fig. 7, upper right dia-

gram), which characterizes the range of effectiveness of the

spatial multiplexing.

For the NARMA task, by increasing the order of spa-

tial multiplexing, the value of the improvement ratio

is decreased, suggesting the improvements of the per-

formance (Fig. 6, right diagrams). In particular, in the

NARMA5 task when V = 25, the value decreased by a

factor of 10 when the order of spatial multiplexing is var-

ied from 1 to 5. Interestingly, this improvement ratio is far

superior to that of increasing the virtual node from 1 to

25 despite the larger increase in the computational nodes,

which implies that cases exist in which the increase of the

order of spatial multiplexing behaves superior to that of

temporal multiplexing. This outcome is caused by the dif-

ference between the type of information processing that

the spatial multiplexing and that temporal multiplexing

can provide, as well as the type of information process-

ing capability that would be needed to perform the task.

These tendencies follow in all the experimented parameter

settings in this study. The performance of each NARMA

task improves in each parameter setting by increasing the

order of spatial multiplexing (Fig. 7, lower left diagram).

For example, when the order of spatial multiplexing is var-

ied from 1 to 5, the average improvement ratio calculated

using all the parameter settings is 0.39 in the NARMA5

task and the minimum improvement ratio among all is

0.15 when τ� = 2, V = 25, and N = 5 in the NARMA5

task (Fig. 7, lower left diagram). Similarly to the case for

the memory capacity, in each NARMA task, we observe

“ratio(order = 1 → 5) < ratio(V = 1 → 5)” in almost all

the parameter settings (Fig. 7, lower right diagram). These

results suggest that in some cases, spatial multiplexing

adds a more effective number of computational nodes than

does temporal multiplexing.

IV. TOWARD ENGINEERING QUANTUM

RESERVOIR THROUGH SPATIAL

MULTIPLEXING

As we see in Sec. II E and demonstrate in Sec. III, spa-

tial multiplexing improves the performance of the system.

In this section, we provide a few notes on the possibility to

engineer QR through the spatial multiplexing scheme. As

we discussed in Sec. II E, although we can improve per-

formance by increasing the order of spatial multiplexing

in theory, this does not always apply in actual experi-

ments because of overfitting. In such cases, limiting the
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FIG. 7. Analyses of the averaged improvement ratios in terms

of the averaged memory capacity (upper row) and the averaged

NMSE for the NARMA tasks (lower row). According to the

order of spatial multiplexing, the improvement ratios are calcu-

lated in all the combinations of the number of qubits (3, 4, and 5);

virtual nodes (1, 5, and 25); and τ� (0.5, 1, 2, 3, 4, 8, 16, and 32)

and they are averaged using all these combinations (left diagram

in each row). Note that the solid line in the upper left diagram

expresses y = x as a reference. The error bars show standard

deviations, and the maximum or minimum improvement ratio

among all the experimental conditions in each order of spatial

multiplexing is also plotted. The right diagram in each row shows

the averaged improvement ratios for spatial multiplexing against

those for temporal multiplexing in each analysis. The ratio is cal-

culated when the order is increased from 1 to 5 with the virtual

node fixed to 1 for the spatial multiplexing (x axis) and when the

virtual node is increased from 1 to 5 without spatial multiplex-

ing for the temporal multiplexing (y axis) to make the increased

number of computational nodes the same for comparison. The

plots for all the experimental conditions are overlaid. For all

the analyses, the averaged MC and NMSE used to calculate the

improvement ratio in each condition are obtained from the results

of 100 trials with different QR systems.

number of computational nodes is preferable. If we have

two QRs with the same number of true nodes and if these

true nodes originate from different quantum systems (or

different combinations of quantum systems) with differ-

ent numbers of qubits, then—as we see in the previous

sections—the computational capability of the QRs differs

in general. This outcome is largely due to the difference

of the number of hidden nodes, the exponential numbers

of degrees of freedom based on the number of qubits

behind the measurements, which influence the dynamics

of the true nodes. Then, which combination is most effi-

cient and can exert the performance the best? Given a

fixed number of computational nodes, we investigate in

this section a method to engineer the efficient combinations

of reservoirs.

Similar to Sec. II E, let us assume that we have

three reservoirs, A, B, and C, with reservoir A having

N computational nodes and reservoirs B and C hav-

ing the same number of nodes N ′. We also assume

that these reservoirs satisfy the basic properties of the

regression equation setting and least-squares solutions pre-

sented in Sec. II E. At first, the inequality r2
A+B+C ≤

min{r2
A, r2

B, r2
C, r2

A+B, r2
B+C, r2

A+C} suggests that combining

reservoirs A, B, and C performs best if we could avoid

overfitting in practice. Now, by retaining the total number

of nodes fixed to N + N ′, we determine the better choice

between reservoir B or C for combination with reservoir A

to improve performance.

At first glance, choosing the reservoir that has better per-

formance is preferable. However, this is not always the

case. Given that reservoir B has better performance than

reservoir C, that is, r2
B ≤ r2

C, then r2
A+B ≤ r2

A and r2
A+C ≤ r2

A

hold, but r2
A+B ≤ r2

A+C does not hold in general. [We can

easily find a counterexample such as y = ( 1 1 1 )T, XA =
( 0.25 1 0 )T, XB = ( 1 0 0 )T, XC = ( 0 1 −1 )T.] We then apply

the relations we obtain in Sec. II E to reservoirs A + B and

A + C, which are

max{(r2
A − λQA,A+B

‖y‖2), (r2
B − λQB,A+B

‖y‖2)}

≤ r2
A+B ≤ min{r2

A, r2
B}

and

max{(r2
A − λQA,A+C

‖y‖2), (r2
C − λQC,A+C

‖y‖2)}

≤ r2
A+C ≤ min{r2

A, r2
C}.

Given r2
B ≤ r2

C, to evaluate r2
A+B and r2

A+C, we need to

check how these ranges overlap. Only if no overlap exists

can we safely predict the reservoir to add without actu-

ally performing the task. When r2
A ≤ r2

B ≤ r2
C, these two

ranges always overlap because r2
A+B ≤ r2

A and r2
A+C ≤

r2
A. When r2

B ≤ r2
A ≤ r2

C or r2
B ≤ r2

C ≤ r2
A, and if r2

B <

max{(r2
A − λQA,A+C

‖y‖2), (r2
C − λQC,A+C

‖y‖2)} holds, then

we can safely decide to choose reservoir B as the appro-

priate partner for combination without actually performing

the task, because it satisfies r2
B < r2

A+C and accordingly

r2
A+B < r2

A+C holds.
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Furthermore, although we demonstrate spatial multi-

plexing by combining QR systems that have different

coupling strengths with the other parameters fixed in our

numerical experiments, note that the combination can con-

sist of any reservoirs if they are not synchronized. The

choice of the combination depends on the efficiency of the

usage in each experimental setting. For example, param-

eter τ� is dependent on the energy applied to the experi-

mental platform and can be regulated if we consider energy

efficiency.

V. DISCUSSION

In this paper, we introduce a scheme, spatial mul-

tiplexing, to boost the computational power in QRC.

Considering the physical experiment, this scheme is oper-

ationally easy to implement but is remarkably effective,

and we theoretically show that the scheme inevitably

increases the computational power. The effect is demon-

strated through numerical experiments using a number

of benchmark tasks and the performance of learning is

observed to be improved. We also examine the theoreti-

cal implications of the proposed scheme and discuss its

range of validity and limitations. This scheme is useful and

applicable not only for QRC but also for reservoir comput-

ing in general, including the case of conventional software

implementations.

Although the scheme of spatial multiplexing allows us

to efficiently increase the computational nodes, we should

be sensitive to the case of overfitting in practical appli-

cations. In our experiments, we observe several perfor-

mances, which are thought to be caused by overfitting

[e.g., the results of NARMA tasks in higher values of τ�

(Fig. 9 in Appendix A)]. To avoid these situations, one

can introduce a Ridge regression or Lasso for the training

procedure, which assigns a penalty to readout weights for

regressions. By combining with these sparse regressions,

one can establish a scheme to selectively exploit effec-

tive degrees of freedom from massive computational nodes

increased by spatial multiplexing.

The NMR ensemble system has been regarded as a

strong candidate for a physical platform of QRC. In the

NMR quantum reservoir system, the spatial multiplexing

with some different molecules, introduced in Sec. II C,

is an easier option to increase the computational power

than increasing the number of addressable qubits. Another

option is increasing the number of unaddressable qubits

and virtual nodes, which will be introduced in detail in our

future work. We can also introduce an easier implementa-

tion of spatial multiplexing even with the same molecule

with NMR pulse techniques to change the interaction

Hamiltonian effectively [31,32]. The pulse techniques are

often utilized for quantum simulation experiments. For

example, the Ising-type Hamiltonian XiXj can be changed

to XiXj + YiYj + aZiZj for any parameters a, by applying

multiple pulse sequences [33]. It was shown in a quantum

simulation experiment [34] that the dynamical behavior of

a nuclear spin system with the interactions XiXj + (2a −
1)YiYj − 2aZiZj is substantially different depending on a.

Just by changing the parameter of applying the pulse,

we can easily implement the spatial multiplexing with

some different quantum dynamical systems in the same

molecule.

Spatial multiplexing offers an opportunity to increase the

computational nodes and boost the computational power

not only for QRs but also for any interacting systems that

contain components that are operationally or experimen-

tally difficult to manipulate and increase. By extending this

line of thought, we can develop a concept of composing

multiple reservoirs, each with different physical systems.

For example, it might be worth composing photonic and

quantum systems and treating them as one entire reser-

voir in some applications. According to how this scheme is

applied in the real world, this concept would create options

from which to flexibly choose the physical systems to use

as a computational resource in a given situation.

Finally, one of the intriguing flavors in the framework

of QRC is its exploitation of the quantum computational

supremacy region, where the system possesses exponential

degrees of freedom as hidden nodes. We reiterate that, as

spatial multiplexing increases true nodes proportionally to

its order, its increase of hidden nodes is also proportional,

while increasing the number of qubits in the interacting

system will directly lead to an exponential increase in hid-

den nodes. This fact implies that, even if we have the

same number of true nodes, the number of hidden nodes

can differ according to how the spin-ensemble molecu-

lar samples are prepared; hence, the computational power

and preference also differ. We suggest that each experi-

menter regulate how to prepare their reservoirs based on

their given experimental conditions and their operability

of the system, and we believe that the spatial multiplexing

technique will become one of the common and practical

options for boosting the computational power of QRs in

the near future.
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APPENDIX A: EXTENDED NUMERICAL

EXPERIMENTS AND ANALYSES

In the main text, we show the results of the numerical

experiments for the QR system with its system param-

eters set to N = 5 and τ� = 1, 2. In this appendix, we

show thorough and systematic analyses of different param-

eter settings, varying N as 3, 4, and 5 and varying τ�

as 0.5, 1, 2, 3, 4, 8, 16, and 32, which are summarized in

Figs. 8 and 9.

APPENDIX B: ECHO STATE NETWORK

SETTINGS FOR COMPARISON

To characterize the computational capability of our sys-

tem, in the main text, we compare its performance of the

NARMA tasks and its memory capacity with those of a

conventional ESN [2,35,36]. This appendix explains in

detail the settings of the ESN used for the comparisons.

The ESNs are a type of random recurrent neural network

that consists of internal computational nodes (the number

of internal computational nodes is denoted as NESN), input

nodes, and output nodes. The activation of the ith internal

node at timestep k is expressed as xi
k. The weights wij for

the internal network connect the ith node to the j th node,

and the input weights wi
in connect the input node to the ith

internal node. Internal computational nodes with one bias

are connected to the output unit through readout weights

wi
out, where x0

k = 1 and w0
out is assigned for the bias term.

Learning of the readout weights wi
out is performed using

the same procedure explained in the main text for each

task. The internal weights wij are randomly determined

from the range [−1.0, 1.0] and the spectral radius of the

weights is regulated according to the setting for each task,

as explained below. Similarly, the input weights wi
in are

randomly determined from the range [−σ , σ ], where σ is

a scaling parameter explained later. The time evolution of

the ESN is expressed as follows:

xi
k = f

⎛

⎝

NESN
∑

j =1

wij x
j

k−1 + wi
inuk

⎞

⎠ , (B1)

yk =

NESN
∑

i=0

wi
outx

i
k, (B2)

where f (x) is set as tanh(x) in this paper. To make a fair

comparison of the task performance, the I/O setting of the

ESN is set to be the same as that of our system for each

task. For example, the lengths of the washout, training, and

evaluation phases and the evaluation procedures are kept

the same. The detailed experimental conditions are given

for each of these comparisons below.

For the NARMA task, we first prepare 10 different ESNs

for each setting of NESN, which vary as 5, 10, 20, 30, 40,

50, 100, 150, 200, 250, and 300. The scaling parameter of

the input weights σ is varied as 1.0, 0.5, 0.2, 0.1, 0.05,

0.01, 0.005, and 0.001, and the spectral radius of the inter-

nal weights is also varied from 0.1 to 2.0 in increments of

0.1. For each ESN, by fixing the spectral radius and the

parameter σ , we run 10 different trials, driven by different

random input sequences, and test the emulation tasks of all

the NARMA systems (NARMA2, 5, 10, 15, and 20) using

τΔ = 0.5

11
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FIG. 8. Plots showing the effect of the spatial multiplexing in terms of the averaged MC for each number of qubits of a single QR

system, each number of virtual nodes, and each parameter τ�. For each plot, the horizontal axis represents the total computational

nodes in a QR system and the vertical axis represents the averaged MC. The parameter τ� is varied as 0.5, 1, 2, 3, 4, 8, 16, and 32.

The number of qubits in a single QR system is represented by different point shapes (squares, circles, and triangles indicate the cases

for 3, 4, and 5 qubits, respectively). The number of virtual nodes is represented as a difference in color (the numbers of virtual nodes

V = 1, 5, and 25 are represented as black, red, and green, respectively). The plots connected with lines represent the results when

the order of spatial multiplexing is increased from 1 to 5 (this can be seen from the increase in the total number of computational

nodes) with other system parameters fixed. As a reference, each plot contains the performance of the conventional ESN. The notation

“ESN20,” for example, represents the averaged MC of the ESN with 20 nodes.
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FIG. 9. Plots showing the effect of the spatial multiplexing in terms of the averaged NMSE for the NARMA tasks for each number

of qubits of a single QR system, each number of virtual nodes, and each parameter τ�. The cases for NARMA2, 5, 10, 15, and

20 are investigated. For each plot, the horizontal axis represents the total computational nodes in a QR system, and the vertical axis

represents the averaged NMSE. The parameter τ� is varied as 0.5, 1, 2, 3, 4, 8, 16, and 32. The number of qubits in a single QR system

is represented by different point shapes (squares, circles, and triangles indicate the cases for 3, 4, and 5 qubits, respectively). The

number of virtual nodes is represented as a difference in color (the numbers of virtual nodes V = 1, 5, and 25 are represented as black,

red, and green, respectively). The plots connected with lines represent the results when the order of spatial multiplexing is increased

from 1 to 5 (this can be seen from the increase in the total number of computational nodes) with other system parameters fixed. As a

reference, each plot contains the performance of the conventional ESN. The notation “ESN20,” for example, represents the averaged

NMSE of the ESN with 20 nodes.
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a multitasking scheme for each trial. After performing all

the trials of the NARMA tasks with all the parameter set-

tings varied for each ESN having the computational node

NESN, we collect the lowest NMSE, which indicates the

best performance in this experiment corresponding to the

ESN, and calculate the averaged NMSE for each NARMA

task over 10 different ESNs for each setting of NESN. These

averaged NMSEs are used for comparison.

To evaluate the memory capacities, 100 different ESNs

are driven by different random input sequences with a spec-

tral radius fixed at 0.9 and the scaling parameter of the

input weights fixed to σ = 0.01. The emulation tasks of

five dynamical systems with different degrees of nonlin-

earity, which are explained in the main text, are performed

for each trial using a multitasking scheme. Analyses of

the performance are conducted using the same procedures

used by our system and defined in the main text. The aver-

aged capacities are calculated using these 100 trials and

used for comparison.
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